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1. INTRODUCTION

The recent notion of Lie pseudoalgebra [BDK1] over a cocommutative Hopf algebra is a
multivariable generalization of the concept of (Lie) conformal algebra [DK], introduced by Kac
[K] in connection with vertex algebras.

Lie pseudoalgebras have proved useful in the study of representations of linearly compact Lie
algebras especially because of the possibility of associating with a given Lie pseudodigebra
over the cocommutative Hopf algebfathe Lie algebral = H* ®y L of its annihilation oper-
ators, orannihilation algebrafor short. WhenL is finitely generated as ali-module, andH is
Noetherian, therf is a linearly compact Lie algebra. Moreover there is a one-to-one correspon-
dence between pseudoalgebra representatiohsaofl discrete continuous representations of
satisfying a technical condition: the representation space must posséssnalule structure
satisfying a suitable compatibility with the natufdtmodule structure of.

By a theorem [C, G1, G2] of Cartan and Guillemin, infinite dimensional simple linearly com-
pact Lie algebras are isomorphic either to the Lie algébyaof all (formal) vector fields im
indeterminates, or to one the subalgelffasH,,, K,,, whose elements preserve a volume form, a
symplectic form or a contact structure respectively. The Lie algdbias,,, K, are all obtained
as annihilation algebras of certain “primitive” finite simple Lie pseudoalgebras. Moreover, the
relevant irreducible representations all possess a compdfibteodule structure. The above
correspondence can then be exploited to obtain a complete classification of irreducible modules
- see, e.g., [BDK2, BDK3].

The first author was partially supported by PRIN “Spazi di moduli e teoria di Lie” funding from MIUR and the
“Aspetti della teoria di Lie” grant from AST — “Sapienza” Univ. di Roma.
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The role of the Lie algebr#,, is somewhat special. There exist primitive simple Lie pseudoal-
gebrasH (0, x,w) of type H, yet their annihilation algebra is a non-trivial irreducible central
extension ofH,, — namely the Lie algebra structure definedldft,...,t,]] by the Poisson
bracket of (formal) functions, that we denote By. Moreover, discrete representationsrf
corresponding to finite irreducible pseudoalgebra representatidh&of, w) satisfy the above-
mentioned technical condition if and only if they factor via the centerless quatigntAs a
consequence, the representation theory of the Lie pseudoalfébrg, w) reflects that off,,,
and not that of°,.

This is a strange and unexpected twist, in that the actual annihilation algglat@appears
from the description. Our aim in this paper is that of introducing a generalization of the concept
of (Lie) pseudoalgebra representation which makes it possible to also treat irreducible represen-
tations of P, that do not factor vid{,,. This is done by representing a Lie pseudoalgebra aver
not on anH -module, but rather on 2-module)M, whereD is a suitable comodule algebra over
H: we call such a constructicepresentation with coefficients .

All main constructions using the concept of pseudoalgebra representation carry over to the
case of representations with coefficients. We take care of adjusting the old language to the new
definition, and show that all discrete complex irreducible representatiofs wfay be lifted to
representations with coefficients of the primitive simple Lie pseudoalgglfvay,w), at least
in the case of an abelian Lie algelravith a trivial trace formy. We would like to thank the
referees for their insightful comments and a patient and careful inspection of the paper.

2. PSEUDOALGEBRAS ANDRINGS OF COEFFICIENTS

We review the definitions and results about Lie pseudoalgebras which will be needed later.
In most of the paper will be the universal enveloping algebt&®) of a finite-dimensional
Lie algebrad, endowed with the standard cocommutative Hopf algebra structure. All vector
spaces, linear maps, tensor products, etc. are considered over an algebraically clokeaf field
characteristi®.

2.1. Hopf algebra notations. Let H be a cocommutative Hopf algebra with a coprodii¢ta
counite, and an antipodé. By using the following notation:

A(h) = ha) @ hey = he) ® hay
(A ®id)A(h) = (Id®A)A(h) = hay @ hg) @ hey, h e H,
the axioms of antipode and counit can be written as
S(hay)he) = ha)S(he) =e(h),  elha)he) = haelhe) = h,
so that
S(ha)h@) @ he) =1 h = haS(he) © hs),
h(l) ® S(h(z))h(g) =h®1l= h(l) ® h(g)S(h(g)),
while the fact thatA is a homomorphism of algebras translates as:
(hk)1y ® (hk)2) = hayka) @ hiykey,  h k€ H.

SettingA! = A, A" = (A" ®idy) o A gives us the iterated coproduct map® : H —
H®(m+1)’

Am(h) = h(l) X h(g) X...Q0 h(erl),

which define ond®(™+1) both a left and a righf/-module structure.
The dualX = H* := Homy(H, k) becomes a commutative associative algebra under the
product defined as

(zy, h) = (x, ha)) (Y, h2)) he Hz,yeX.
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It admits left and right actions df, given by
(ha, k) = (z,5(h)k) ,
(xh, k) = (x,kS(h)), h,ke H, x € X,
satisfying
hxy) = (hayz)(hey) ,
(zy)h = (zhq))(Whe) ,
h(zk) = (hx)k, h,ke H, z,y € X.

Let now H = U(d) be the universal enveloping algebra of the finite dimensional Lie algebra
0. We choose a basty, . .. 9, of 9, and set
ot ... Oin
i)y
wherel = (iy,...,i,) € N*. By Poincaé-Birkhoff-Witt theorem, element8), ] ¢ N»
constitute a basis off. The standard coproduct di given byA(d) = 0 ® 1 + 1 ® 0 then

satisfies
AOD) = Z o) @ o),
J+K=I
Elementst! € X = H* such that{t/,0/)) = §;, are then linearly independent, and satisfy
t ¢! =17, We will write ¢; = ¢, wheres; = (0, ..., 0, },0,...,0), so thatl = (iy,...,i,)

impliest! =1 .. . tin,

H = U(d) may be provided with an increasing family of subspa¢BsH},c; linearly
generated by PBW monomials of degreei — here we agree thdt’ H = (0) whenever
1 < 0. The dual spac&X = H* is correspondingly filtered by a decreasing family of sub-
spaces’; X = (F' H)* which define a linearly compact topology ah The two filtrations are
compatible in the sense that the actionfbfon X satisfies(F* H) - (F,, X) c F,,_; X for all
2, M.

Any element: € X is uniquely determined by its values = (a, 9")). It makes sense to write
a =Y ;o art’ as the right-hand side becomes a finite sum when computed on any element of
H. This gives an identification ok with O,, = k|[t4,...,t,]] as topological commutative
algebras, once we enda®®, with the formal topology.

Our most typical situation will be when the Lie algelirds abelian. In this case, the Hopf
algebraH = U(9) is isomorphic to the symmetric algelf$éd). The left and right actions off
on X then coincide, and are given By.f = —0f/0t;. In this case, bottH and X are graded
vector spaces and the actionféfon X is homogeneous of degree zero.

(2.1) o = € H,

2.2. Rings of coefficients.

Definition 2.1. Let H be a Hopf algebra ovés with coproductA ;. A comodule algebraver H
is an associativi-algebraD endowed with a homomorphism kfalgebrasAp : D — H ® D
satisfying the comodule property

(AH & ldD) [©] AD = (ldH ®AD) O AD,

and such that(dn))dp) = d for all d € D, where as usual we use the notatidp (d) =
dny ® d(2)- In other words, it is an associatikealgebralD which is a left//-comodule such that
the comodule map isla-algebra homomorphism.

Remark2.1 Notice thate(d(;)) makes sense in the above equationj@se H.

Example 2.1. Let H' be a Hopf subalgebra aff. Then the restriction td{’ of the comulti-
plication A : H — H ® H defines a comodule algebra structure i6h Indeed,A|y is a
homomorphism of associative algebra by restriction, and it nkEpsto H' ® H' ¢ H® H'. In
particular, both/ and the base field have a structure of comodule algebras okler
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Example 2.2.Let V' be a vector space of even dimensiong /\2 V=, Set:
D(V,w) =TV)/{uwv — vu — w(u,v), u,v € V),

whereT (V') denotes the tensor algebra over the vector space

ThenH = D(V,0) = S(V) has the usual Hopf algebra structure, dnd= D(V,w) is an
associative algebra. Observe thatinearly embeds in bottl/ and D(V,w). The latter has a
structure of comodule algebra ov€rdefined by thé-algebra homomorphisth, : D(V, w) —
H ® D(V,w) extendingAp(v) = v® 1+ 1® v, wherev € V C D(V,w) andv denotes its
image inH = D(V,0).

Henceforth, wherD is a comodule algebra over the cocommutative Hopf algéhrave will
say thatD is aring of coefficient®over H.

2.3. Left and right straightening. It was showed in [BDK1] that if7 is a Hopf algebra, then
H®H=(H®k)A(H) = (k® H)A(H). Only part of this statement holds in the general case
of rings of coefficients.

Lemma 2.1. If D is a ring of coefficients ovel/, thenH ® D = (H ® k)Ap(D)
Proof. It is immediate to check thdt® d = (hS(d)) ® 1)Ap(d(2)). O

Remark2.2 WhenD = H, one also ha¥{ ® H = (k ® H)A(H), ash® k = (1 ®
kS(h(2)))A(hqy). Notice that in generalll ® D # (k ® D)Ap(D). For instance, itD = H’
is a proper Hopf subalgebra éf, thenAp(D) C D ® D, so thatk ® D)Ap(D) C D ® D,
which is strictly contained iff ® D, and equality cannot hold.

The following lemma will be important later on.
Lemma2.2.LetH = D(V,0), D = D(V,w). ThenH ® D = (k® D)Ap(D).

Proof. The statement becomes obvious after describing the comodule algebra gnap —
H @ D as follows: letV be central the extension &f, viewed as an abelian Lie algebra, by
a one-dimensional idedc, as defined by the-cocyclew, and endowH = U(V) with the
standard Hopf algebra structure satlswmgz) —r@l+1®z, zeV.

Notice now that botti/ and D are quotients of/, namelyH = H/cH andD = H/(c—1)H.
MoreoverA(c —1) = c® 1+ 1® (¢ — 1), so that

A(lc=1)H) C (cH)® H+ H® ((c—1)H).
It is then easy to check that the well-defined map
D=H/(c-1)H —H/cH®H/(c—1)H=H®D

induced byA coincides withA . Projectingd ® H = (k ® H)A(H) to H ® D one obtains
H® D = (k® D)Ap(D). O

Remark2.3 Let D be aring of coefficients ovdt, andAp : D — H ® D be the corresponding
comodule map. The# ® D has a rightD-module structure induced h¥p, so that one may
define the tensor produ¢t! ® D) ®p M — which has a natural leff @ D-module structure
given by multiplication — wheneved/ is a left D-module. The rightd-module structure on
H ® H is a particular instance of this construction.

We may also defind’; : D — H®™ @ D by repeated application @k, andAy. By the
comodule property and coassociativity &f;, the compositiom\’; does not depend on which
factors we apply each occurrence®f; or Ap. We may then us@’; to endowH®™ @ D with
left and rightD-module structures.

The importance of the above lemmas sits in the following statement.
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Corollary 2.1. Let D be aring of coefficients oveéf, M be a leftD-module. Then every element
of (H ® D) ®p M can beleft-straightenedo the form

D (hi® 1) @pm,
for a suitable choice of; € H,m; € M.
Similarly, if H ® D = (k ® D)Ap(D), then every element 6ff ® D) ®p M may beright-
straightenedo the form
Z(l ® d;) @p my,
for a suitable choice of; € D, m; € M.
Proof. The first statement follows by Lemma 2.1 afi@ ® 1)Ap(d)) p m = (h® 1) ®p

dm,h € Hid € D,m € M. Similarly, if H® D = (k ® D)Ap(D), then one may use
(1®d)Ap(d))@pm=(1®d) ®p dm,whered,d € D,m € M. O

2.4. Associative and Lie pseudoalgebrasin this section, we recall some standard facts on
(associative and Lie) pseudoalgebras from [BDK1].p#eudoalgebra ovefl or H-pseudo-
algebrais a left H-module A endowed with gpseudoprodugti.e., anH ® H-linear map (see
Remark 2.3)

ARA—- (H®H)®y A, a®b—axb.

Explicitly, foranyh, k € H, a,b € A,ifaxb=)"(h' ® k') @y ¢, then

(ha)  (kb) = > (hh' @ kk') @5 c;.
If A and A’ are H-pseudoalgebras, then df-linear mapy : A — A’ is apseudoalgebra
homomaorphisnif

¢(a) * ¢(b) = ((idy ®idu) @u ¢) (axb),
forall a,b € A. Itis possible to extend (see [Ko]) any pseudoproductdoto a well-defined
H®+1)_[inear map

by letting
(Fona)x(Goxb) =) (FOG) (A" @A) eyid)((h © ) ©r c:).
whereF € H*™ G € H®", a,b € A, and
axb=>Y (W@k)@uc,  with Wk €H, ceA
This makes it possible to compute and compare “multilinear” iterated products such(as:
), (a*xb)xce H®® @y A.

Definition 2.2. An associativel{-pseudoalgebras an H-pseudoalgebra whose pseudoprod-
ucta ® b — a * b satisfies the following associativity axiom:

(axb)xc=ax(bxc),

for all choices ofu, b, c € A.

A Lie H-pseudoalgebras an H-pseudoalgebrd endowed with a pseudoproduct? b —
laxb], calledLie pseudobrackesatisfying the following skew-commutativity and Jacobi identity
axioms:

b+a] = —(0 @ idg)fa*b],
[[axb]xc]=ax[bxc]] — ((c @idy) @y idy) [b*[a*]],
wherea,b,c € L,ando : H ® H — H ® H denotes the flip(h ® k) = k ® h.
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Every associative pseudoalgebftaan be turned into a Lie pseudoalgeldra by setting
[axbl =axb— (0 @pida)(b*a).

If Ais a pseudoalgebra ovéf, andU,V C A are H-submodules of4, denote byU - V' the
smallest among all/-submodule$V C A suchthatxv € (HH)@yzW forallu € U,v € V.
ThenS C Aisasubalgebraf S-S C S,andl C Aisanidealif -A, A-I C I. A pseudoalgebra
A is simpleif its only ideals are) and A. We say that a pseudoalgebra overis finite if it is
finitely generated as aH-module.

Example 2.3.Let H = U(0) be the universal enveloping algebra of a finite dimensional Lie
algebrap. ThenW(d) = H ® 0 is given a structure of Lie pseudoalgebra by setting

[(h®@a)x(kob)]=(h®k) @y (1®[a,b])
—(h®ka) @y (1®b)+ (Wb® k) @y (1®a),
whereh, k € H,a,b € 0.

Example 2.4.Let g be a finite dimensional Lie algebra oderThenH ® g has the structure of
a Lie pseudoalgebra with the Lie pseudobracket:

(h®a)* (kb)) =(h®k) @y (1® [a,b]), h,ke€ H, abeg.
H ® g is calledcurrent [ -pseudoalgebraof g and it is denoted byuri’ g.

Example 2.5. The construction described in Example 2.4 is an instanextasion of scalars
or base change, for pseudoalgebras:glet i’ — H be a homomorphism of Hopf algebras,
A be a (Lie, associative) pseudoalgebra okér We may usep to endowH with a right H'-
module structure and give the |git-module H ®5 A a (Lie, associative) pseudoalgebra (over
H) structure by setting

(h @pr a) x (k@ b) = (hé(f') @ ké(g') @n (1 @ i),

if axb=>(f"®g") ®u c;, Wwherea,b,c; € A, f',g" € H'. Thisis clearlyH @ H-linear, and
it can be easily showed to provide a well-defined pseudoproduct.

WhenH' ¢ H and¢ is the inclusion homomorphism, the above construction reduces to the
current [-pseudoalgebraCur?, A.

Remark2.4. All nonzero subalgebras d¥/(0) are simple. Indeed, subalgebrasi&f(o) and
currentH-pseudoalgebras obtained from simple finite-dimensional Lie algebrakgrevide
a complete list of finite simple Lie pseudoalgebras dver U(0).

3. PRIMITIVE LIE PSEUDOALGEBRAS OFTYPE H

In the rest of the papen will be an abelian Lie algebra of even dimension= 2N, and
w € \?o* will be a symplectic form. As beforef = U (d).

3.1. Definition of H(2,0,w). We recall from [BDK1] the main facts on primitive pseudoalge-

bras of typeH that we are going to need. The pseudoproduct
exel=(r+s®1—-1®s)Qye

endowsHe with a Lie pseudoalgebra structure as soon as /\20 ands € 0 satisfy the

following equations:

(3.1) [r, A(s)] =0, ([r12,m13] + r1283) + cyclic permutations= 0,

where we use the standard notatigh = r ® 1, s3 = 1 ® 1 ® s, etc. In particular, since is
abelian, setting = 0 satisfies (3.1) for every choice of Whenr is of maximal rank, it induces
an isomorphism* ~ 0. Then the symplectig-formw € /\2 0* corresponding to its inverse is a
2-cocycle ofo.
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In this caseH e is a simple Lie pseudoalgebra ovEr, which is denoted by (9,0, w). Note
that if 0;, i = 1,...,2N, is a basis ob, r = _..r79; ® 0;, andw;; = w(3;, J;), then the
matrices(r*/) and(w;;) are inverse to each other. We will use the notation:

2N
0'=> 170,
j=1
so that

2N 2N 2N
@szijaj, 7“2201@@’:—2(91@@
j=1 i=1 i=1
Moreover
w(@i,aj) = 5; = —w(0;,0"), w(0,09) = —r",
There exists a unique nontrivial (injective) Lie pseudoalgebra homomorphism
(3.2) t: H(0,0,w) — W (), er— —r,
so that we may identify? (0, 0, w) with a subalgebra ofi’ ().

3.2. Annihilation Algebra of 1W(d) and of H(0,0,w). For a Lie pseudoalgebta we setl =
A(L) = X ®py L, and define a bracket ot by the formula (cf. [BDK1, Eq. (7.2)]):

(3.3) [t @y a,y @y b = Z (xh')(yk') @ c;, if [a*b] = Z (h' @ k") ®@p c; .

Then/ is a Lie algebra, called thennihilation algebraof L. If ¢ : L — L’ is a Lie pseudoalge-
bra homomorphism, then®y a — = ®y ¢(a),x € X,a € L is a Lie algebra homomorphism
A(¢) : A(L) — A(L’), thus makingA into a functor. There is a left action éf on L given by:

(3.4) h(xr @y a) = hx @y a.

AsSA(0) =0® 1+ 1®0forall 0 € v, then elements from C H act onL by derivations.
Let W = A(W(0)) be the annihilation algebra of the Lie pseudoalgdbi@). SincelV (o) =
H®d9, we havelW = X @y (H ®0) ~ X ® 0 and we can identify) with X ® 0. Then the
Lie bracket (3.3) reads as follows,(y € X, a,b € 0):

[x®@a,y®@b] =—x(ya) @b+ (zb)y ®a.
Choosing a basig,, . . ., 0y identifies)V with
WQN = Der OQN = k[[tl, Ce ,tQN]](ﬁ/ﬁtl, N ,8/8t2N),

endowed with the standard Lie bracket. Under this identificatian,0; — = 0/0t;.
As before, letr € /\20 be a skew-symmetric non-degenerate tensor. We may then choose a

basiso,, . .., dyn Of 0 so that

N
(3.5) r= (5'1 ® Onii — Ongi ® 81) .

=1
Let? = A(H(?,0,w)) = X ®y (He) = X ®py e be the annihilation algebra df (9,0, w).
According to (3.3), the Lie bracket dR is given by

N

o9 oY dp oY
3.6 = - - il
(3.0) 9 @ e el ZZI <3ti Oty  Otny Ot
where{¢, v} denotes the standard Poisson bracket®gr. In other words, the ma@,n >
¢ — ¢ @y e provides a Lie algebra isomorphism between the Poisson type linearly compact
Lie algebraP;,y with the annihilation algebr® of H(0,0,w) = He. We may define a filtration
P=P,D>P1D...onP=XQ®yz Heby

Pp = FpP = Fp+1X®H €,

)®H6—{¢aw}®H€7
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which satisfie§P;, P;,] C P;4;. In particular,P, is a subalgebra oP and normalizes alP;.
Since we have chosearto be abelian, this filtration is indeed induced by a gradin@oand the
Lie bracket is homogeneous of degfee

Recall that the canonical injectiomf the subalgebr&/ (0, 0,w) in W () induces a Lie algebra
homomorphism. = A(:) : P — W, which is however not injective, contrary to what happens
with primitive Lie pseudoalgebras of all other types. Indeed:

Lemma 3.1. ., has a one-dimensional kernel, linearly generated By, e, which coincides with
the centre ofP. In particular, P is a central extension af? = H C W by a one-dimensional
ideal.

Proof. Using (3.2), we obtain,(z @y ¢) = —>_.(x9") ® d;. Thenw.(z @y e) = 0 if and only
if 20" = 0 for all 7, which only happens whenlies ink c X.

The fact thatl @y e is central in? easily follows from (3.6). In order to show thatz 4 e
linearly spans the center &f, notice that ifp @y e is central, then we argue by (3.6) that

¢ ¢
0=1[t; ®pe,dQue|= Dinss’ 0=[tnyi u e, ¢ Ry €] :_8_ti’
foralli=1,..., N, sothatp € k. O
Remark3.1 Notice that if the basig;, ..., d, is chosen so that (3.5) holds, the isomorphism

W ~ W,y identifiesH with the subalgebrdl,y C W,y of all formal vector fields preserving
the standard symplectic for@fvz LAt Nty

3.3. A central extension ofd. Recall that the linearly compact Lie algeliPais endowed by
(3.4) with a left H-module structure given by.(x ®y e) = hx ®y e. As the Lie algebra
is abelian, the Hopf algebrd is commutative, and the left and right action@fon X = H*

coincide. Let us introduce the notatiéh — —t; @y e, and extend’ — J' to a linear map
230+ 0 P.Then

2N
(~ti®ue, x@uel=—> (1:0;)(xd) = (20') @y e = (I'z) @y e,

j=1

foralli =1,...,2N, so that R
[871' OH 6] = 8($ H 6)7
for every choice 0P € 0,z € X. In particular,
(09,07 =1 @ e = —w(d, ) @y e,

hence[g, 5’] = —w(0,0") ®g e. In conclusion, we have:
Proposition 3.1. Letd be the Lie subalgebra oP generated by elements along withc =

—1®y e. Thencis central ind and [5, 5’] = w(,d)c. In other words} is a central extension
of 0 of 2-cocyclew.

Letr : 0 — 0 be the canonical projectiand) = 9, and denote by : 9 — P the inclusion of
0 as a subalgebra d1.

Proposition 3.2. Letd € 9, ¢ € P. Then
[1(6), ] = m(d).9.

In other words,

0, ¢] = 0.0,
forall 0 € 0,¢ € P. In particular, if M is a representation P, then
(3.7) A(p.m) = (8.0).m + ¢.(0.m),

forall0 € 0,0 € P,m € M.
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4. REPRESENTATIONS WITH COEFFICIENTS

4.1. Definition of representation with coefficients. Let A be a pseudoalgebra ovEr, D aring
of coefficients over, M a left D-module. By Remark 2.3 we may constryéf @ D) @p M,
which has a natural lefl¥ @ D-module.

A pseudoaction ol on M with coefficients inD is then anH ® D-linear mapA ® M >
a®@m — axm € (H® D)®p M. Explicitly, if axm =" .(h' ® d') ®p m; then

(ha) * (dm) = (h@d) - (axm) = > _(hh' @ dd’) @p m;.
We may, as in Section 2.4, extend any pseudoactioharf M/ with coefficients inD to H®™ &
(H"=Y @ D) = H®(m+"=1) @ D-linear maps

(4.1) (H*" @y A) @ (H®" Y @ D)@p M) — (H*™" Ve D)oy M
by setting
(4.2) (F@ypa)*(Gopm)=(F®G) (AT 'e ALY ®pidy) (a*m),

whereF € H®™ G € H®" D ® D, a € A, m € M. Here we are using the rigi2-module
structure o’ ® D mentioned in Remark 2.3.

Definition 4.1. Let A be an associative pseudoalgebra dv¥eD a ring of coefficients oveH. A
D-moduleM is arepresentation ofl with coefficients irD if it is endowed with a pseudoaction
of A on M with coefficients inD

A M —- (H®D)®p M, a®@m—axm
that satisfiesd, b € A, m € M)
(axb)*m =ax(bxm),
where(a * b) x m,a * (b*xm) € (H®?> ® D) @ p M are understood by means of (4.1), (4.2).

Definition 4.2. Let L be a Lie pseudoalgebra ovél, D a ring of coefficients ovefl. A D-
moduleM is arepresentation of. with coefficients inD if it is endowed with a pseudoaction of
L on M with coefficients inD
LoM—-(HD)@p M, a®@m— a*xm
that satisfiesd, b € L, m € M)
[axbl*m=ax(bxm)— ((c ®idp) ®@p idpr)(b* (a * m)),
where once again, all terms are computed by using (4.1), (4.2).

Example 4.1. WhenD = H, we recover the usual notion of representation or module of a Lie
pseudoalgebra ovéf (see [BDK1, BDK2]).

Example 4.2. Let L be a Lie pseudoalgebra ovéf, M be a representation df (with coef-
ficients inH). If H' C H is a Hopf subalgebra aff, then M is an H'-module by restriction
of scalars. IfN C M is an H’-submodule such that «x N C (H ® H') ®y N thenN is a
representation of. with coefficients inH’.

Let M, N be D-modules. AD-conformal linear map frond/ to N is ak-linear homomor-
phism¢ : M — (H ® D) ®p N such thaty(dm) = (1 ® d) - ¢(m). The spac&hom” (M, N)
of all D-conformal linear maps fromd/ to N is made into a leftd-module via(h¢)(m) =
(h®1)-¢(m). Then

Chom? (M, N)®@ M 3 ¢ @ m +— ¢(m) € (H® D)®@p N

is clearly anf ® D-linear map. Whemw € Chom” (M, N) andm € M we will denotes(m)
by ¢ * m.
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Proposition 4.1. Let M be a (finitely generatedp-module. Then there exists a unique asso-
ciative H-pseudoalgebra structure oflend” M = Chom®™ (M, M) such that the equality in
(H*?*® D) ®@p M

(@ x ) xm = ¢* (¢ *m),
holds for all, ) € Cend” M, m € M. Here both sides are understood according4al) and
(4.2).

Proof. The proof is analogous to [BDK1, Lemma 10.1]. O

The Lie H-pseudoalgebra structuf€end” 1)~ obtained by taking the corresponding com-
mutator
(@] =g x 1 — (0 @pid) (¢ * ),
is denoted byc? M. Notice that)/ is a representation with coefficientsihof both Cend” M
andgc? M.

Remark4.1 The assumption that/ be a finitely generated-module is necessary in order to
set up the pseudoalgebra structureCand” M (see [BDK1]).

Remark4.2 We may denoteCend” D™ and gc” D" by Cend” andgc? respectively. Then
Cend? is isomorphic toH ® D ® End k”, with H acting by left multiplication on the first factor,
endowed with the pseudoproduct
(h@deA)x (KW edeA)=((hehdy) @n (1 dde @ AA'),
where the pseudoaction 6knd” on D" = D @ k™ is given by
(h®d® A)x(d®v)=(hedd) ap (12 Av),
for h,h/ € H,d,d € D,A, A € Endk",v € k™ The associative pseudoalgelfrand?” =
H ® D is similar to a pseudoalgebra structure considered by Kolesnikov [KO].
The following statement is a straightforward consequence of definitions.

Proposition 4.2. Let M be a finitely generate)-module,A an associative (resp. Lie) pseudoal-
gebra overH. Then giving onV/ a structure ofA-module with coefficients i is the same as
giving an associative pseudoalgebra homomorphiss Cend” M (resp. a Lie pseudoalgebra
homomorphism — gc? M).

4.2. Equivalence of pseudoalgebra and annihilationalgebra representationsr he following
statement generalizes the correspondence given in [BDK1, Proposition 9.1] to pseudoalgebra
representation with coefficients. Indeed, every Lie pseudoalgebra representationtbfco-
efficients inD may be translated into a discrete representatiof giossessing a compatible
D-module structure.

Proposition 4.3. Let D be a ring of coefficients ovéf, M arepresentation of the LiH -pseudo-
algebra L with coefficients inD, and£ = X ®p L the annihilation Lie algebra of.. ThenM
has a natural structure of discrete topologic@module, given by

(w@pa)-m=Y_ (ah',dg)dom:, if axm=>Y (Med)epm
fora € L,x € X, m € M. Moreover, theD-module structure o/ satisfies
(4.3) d(g.-m) = (d1)9)-(d@ym),
forallge L,me M,d e D.

Conversely, any discreté-module M/ endowed with aD-module structure satisfyin(.3)
has a natural structure of representation ofwith coefficients inD, given by

axm = Z (5(3(1)) ® 1) ®p ((tI Ry a) -m)7

whered) ¢ H = U(d) are as in(2.1), andt! are the corresponding dual basis elements.
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Proof. The proof that the pseudoalgebra actior.afives a continuous (discrete) representation
of £ and vice-versa is the same as in [BDK1, Proposition 9.1]. We are left with showing that
H ® D-linearity ofa ® m — a * m is equivalent with (4.3).

Let us first show that] ® D-linearity implies (4.3), by computingl)(z ®# a)).(d@ym) =
((dpyz) @ a).(d@ym). By H @ D-linearity, if a s m = > (h' ® d') ®p m; then

* (dgym) = Z(hl ® d(2)di) ®p m;,

so that
(dye) @n a)-(deym) = Y _(dwah’, dedyy) dedigm;
= (zh',d}y) e(dg )d@) d§2)m
=d ) (ah' diy)d
= d(( TR &)m)
Conversely, assuming (4.3) holds, we immediately obtain

g-(dm) = d2)((S(d(r))g)-m),
for all choices ofy € £,d € D, m € M, whence

axdm=>» (S@O")® 1) @p (t' @ a).(dm)

Z(s DY @ 1) @p d)((S(dw)t') ©p a).m
(S(d1)0 )®1) ®p doyt @ a).m
(S0
(
(
(

(

(

(0D)S(dy) ® 1) ®@p dgy(t' @y a).m

S(0)S(dqy )d<z>®d) p (' @ a).m

S(0D)e(dwy) ® di) @p (t @5 a).m
S @ d) (tl ®p a).m

® d) - (a*m).

MM%MM

~—~
—_

O

Remarkd.3. Notice that whernD = H, Proposition 4.3 reduces to [BDK1, Proposition 9.1], and
property (4.3) is the same as saying that the actions of elements_in on both£ and the
L-moduleM provides an action of the extended annihilation algebrad x L.

Remarkd.4. The statement of Proposition 4.3 hints to the fact that the actidnaf any repre-
sentation with coefficients may be left-straightened, i.e.,dhain € (H ® D) @ p M may be
always be written as an expression i ® k) ®p M, see Lemma 2.1.

4.3. Irreducible discrete representationsof . Here we show that every irreducible discrete
representation of,y admits aD = D(0, \w)-module structure — wher® (v, \w) is as in
Example 2.2 — for somé € k which is compatible in the sense of (4.3) with the [E#module
structure given o,y by the isomorphisnP,y ~ P = A(H(0,0,w)). In other words, the
action of P,y may be lifted to a pseudoalgebra representatioH @f, 0, w) with coefficients in
D.

Proposition 4.4. Assume thak is uncountable. Lefl/ be a continuous discrete irreducible
representation of the linearly compact Lie algelita= P, . Then any central element acts
via scalar multiplication by some elementkn
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Proof. As the action ofP on the discrete vector spadé is continuous, then every element
m € M is killed by an open subalgebra &%, hence byP, for a suitably large value of. The
subspacé/, ¢ M of all elements killed byP,, is then nonzero for sufficiently largec N. Let
us choosé: so thatl,, # 0: asP, normalizesP;, thenU,, is P,-stable. We immediately see that
the action ofP, on Uj, factors via the finite-dimensional Lie algeliPa/P;.

As U(Py/Py) is countable-dimensional, we may find a countable-dimensional nomzero
submoduleR of Uy. ThenU(P) = U@®)U(Py), hencel = Indy R = U(P) Qupy R =
U(®) ® R is still countable dimensional. By irreducibility df/, there is a surjectiv@®-module
homomorphisnV — M, henceM is also countable-dimensional.

Using a countable Schur Lemmaié shows now that all central elements/nact by scalar
multiplication onV. O

Remark4.5. Whenk is countable, we may still assume that @ e = ¢ € Z(P) act by scalar
multiplication up to replacind with k(c).

Theorem 4.1. Let M be a discrete irreducible representation Bfy on which central elements
act via scalar multiplication. Then there exists€ k such that)M/ can be endowed with a
D = D(v, \w)-module structure, compatible in the sens€4B)with the H = D(0,0)-module
structure onP,y obtained by identifying it with the annihilation algebfa of H(9,0,w). In
other words,M may be lifted to a pseudoalgebra representatiort/@b, 0, w) with coefficients
in D.

Proof. We already know that embeds in the annihilation algebfaof H(2,0,w). SinceP ~
P,n, M may be given a left/(2)-module structure via this embedding.

If c = —1®p e € P acts onM via multiplication by, then the left action ot/ (2) factors
via the quotientD = D(d, \w). The compatibility between th&-module structure of? and
the D-module structure o/ is then stated in (3.7) for a set of algebra generator3.of [

Theorem 4.1 shows that all irreducible representation3,gfmay be read in the language of
Lie pseudoalgebra representations with coefficients. This language has proved powerful in the
study of representations of linearly compact Lie algebes it makes it easy to compute singular
vectors in the so-callegtnsor modules.e., modules that are induced from a finite-dimensional
representation of a maximal open primitive subalgebra.of

In order to make the use of pseudoalgebra language effective, one negglisstraightening
formulafor the action of£ on its tensor modules in order to give a bound for the degree of
singular vectors, and theneft-straightening formuldor the computation of singular vectors of
a given degree, (see [BDK2, BDK3]) .

We have seen in Corollary 2.1 that existence of right- and left-straightening amounts to show-
ing thatH @ D equalsk ® D)Ap(D) and(H @ k)Ap(D) respectively: the latter always holds,
whereas the former is false in general, but holds, by Lemma 2.2, in the ring of coefficients that
is needed for expressing irreducible representations,0f We will use this strategy towards
studying irreducible representations@fy in a forthcoming paper.
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