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1. INTRODUCTION

The recent notion of Lie pseudoalgebra [BDK1] over a cocommutative Hopf algebra is a
multivariable generalization of the concept of (Lie) conformal algebra [DK], introduced by Kac
[K] in connection with vertex algebras.

Lie pseudoalgebras have proved useful in the study of representations of linearly compact Lie
algebras especially because of the possibility of associating with a given Lie pseudoalgebraL
over the cocommutative Hopf algebraH the Lie algebraL = H∗ ⊗H L of its annihilation oper-
ators, orannihilation algebrafor short. WhenL is finitely generated as anH-module, andH is
Noetherian, thenL is a linearly compact Lie algebra. Moreover there is a one-to-one correspon-
dence between pseudoalgebra representations ofL and discrete continuous representations ofL
satisfying a technical condition: the representation space must possess anH-module structure
satisfying a suitable compatibility with the naturalH-module structure ofL.

By a theorem [C, G1, G2] of Cartan and Guillemin, infinite dimensional simple linearly com-
pact Lie algebras are isomorphic either to the Lie algebraWn of all (formal) vector fields inn
indeterminates, or to one the subalgebrasSn, Hn, Kn, whose elements preserve a volume form, a
symplectic form or a contact structure respectively. The Lie algebrasWn, Sn, Kn are all obtained
as annihilation algebras of certain “primitive” finite simple Lie pseudoalgebras. Moreover, the
relevant irreducible representations all possess a compatibleH-module structure. The above
correspondence can then be exploited to obtain a complete classification of irreducible modules
– see, e.g., [BDK2, BDK3].

The first author was partially supported by PRIN “Spazi di moduli e teoria di Lie” funding from MIUR and the
“Aspetti della teoria di Lie” grant from AST – “Sapienza” Univ. di Roma.
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2 A. D’ANDREA AND G. MARCHEI

The role of the Lie algebraHn is somewhat special. There exist primitive simple Lie pseudoal-
gebrasH(d, χ, ω) of typeH, yet their annihilation algebra is a non-trivial irreducible central
extension ofHn – namely the Lie algebra structure defined onk[[t1, . . . , tn]] by the Poisson
bracket of (formal) functions, that we denote byPn. Moreover, discrete representations ofPn

corresponding to finite irreducible pseudoalgebra representations ofH(d, χ, ω) satisfy the above-
mentioned technical condition if and only if they factor via the centerless quotientHn. As a
consequence, the representation theory of the Lie pseudoalgebraH(d, χ, ω) reflects that ofHn,
and not that ofPn.

This is a strange and unexpected twist, in that the actual annihilation algebraPn disappears
from the description. Our aim in this paper is that of introducing a generalization of the concept
of (Lie) pseudoalgebra representation which makes it possible to also treat irreducible represen-
tations ofPn that do not factor viaHn. This is done by representing a Lie pseudoalgebra overH
not on anH-module, but rather on aD-moduleM , whereD is a suitable comodule algebra over
H: we call such a constructionrepresentation with coefficients inD.

All main constructions using the concept of pseudoalgebra representation carry over to the
case of representations with coefficients. We take care of adjusting the old language to the new
definition, and show that all discrete complex irreducible representations ofPn may be lifted to
representations with coefficients of the primitive simple Lie pseudoalgebraH(d, χ, ω), at least
in the case of an abelian Lie algebrad with a trivial trace formχ. We would like to thank the
referees for their insightful comments and a patient and careful inspection of the paper.

2. PSEUDOALGEBRAS ANDRINGS OFCOEFFICIENTS

We review the definitions and results about Lie pseudoalgebras which will be needed later.
In most of the paper,H will be the universal enveloping algebraU(d) of a finite-dimensional
Lie algebrad, endowed with the standard cocommutative Hopf algebra structure. All vector
spaces, linear maps, tensor products, etc. are considered over an algebraically closed fieldk of
characteristic0.

2.1. Hopf algebra notations. Let H be a cocommutative Hopf algebra with a coproduct∆, a
counitε, and an antipodeS. By using the following notation:

∆(h) = h(1) ⊗ h(2) = h(2) ⊗ h(1) ,

(∆⊗ id)∆(h) = (id⊗∆)∆(h) = h(1) ⊗ h(2) ⊗ h(3) , h ∈ H,

the axioms of antipode and counit can be written as

S(h(1))h(2) = h(1)S(h(2)) = ε(h), ε(h(1))h(2) = h(1)ε(h(2)) = h,

so that

S(h(1))h(2) ⊗ h(3) = 1⊗ h = h(1)S(h(2))⊗ h(3),

h(1) ⊗ S(h(2))h(3) = h⊗ 1 = h(1) ⊗ h(2)S(h(3)),

while the fact that∆ is a homomorphism of algebras translates as:

(hk)(1) ⊗ (hk)(2) = h(1)k(1) ⊗ h(2)k(2), h, k ∈ H.

Setting∆1 = ∆,∆i+1 = (∆i ⊗ idH) ◦ ∆ gives us the iterated coproduct maps∆m : H →
H⊗(m+1),

∆m(h) = h(1) ⊗ h(2) ⊗ . . .⊗ h(m+1),

which define onH⊗(m+1) both a left and a rightH-module structure.
The dualX = H∗ := Homk(H,k) becomes a commutative associative algebra under the

product defined as

〈xy, h〉 = 〈x, h(1)〉〈y, h(2)〉 , h ∈ H, x, y ∈ X .
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It admits left and right actions ofH, given by

〈hx, k〉 = 〈x, S(h)k〉 ,
〈xh, k〉 = 〈x, kS(h)〉 , h, k ∈ H, x ∈ X ,

satisfying

h(xy) = (h(1)x)(h(2)y) ,

(xy)h = (xh(1))(yh(2)) ,

h(xk) = (hx)k, h, k ∈ H, x, y ∈ X.
Let nowH = U(d) be the universal enveloping algebra of the finite dimensional Lie algebra

d. We choose a basis∂1, . . . ∂n of d, and set

(2.1) ∂(I) =
∂i1

1 . . . ∂
in
n

i1! . . . in!
∈ H,

whereI = (i1, . . . , in) ∈ Nn. By Poincaŕe-Birkhoff-Witt theorem, elements∂(I), I ∈ Nn

constitute a basis ofH. The standard coproduct onH given by∆(∂) = ∂ ⊗ 1 + 1 ⊗ ∂ then
satisfies

∆(∂(I)) =
∑

J+K=I

∂(J) ⊗ ∂(K).

ElementstI ∈ X = H∗ such that〈tI , ∂(J)〉 = δI,J are then linearly independent, and satisfy
tI · tJ = tI+J . We will write ti = tεi, whereεi = (0, . . . , 0, 1

i
, 0, . . . , 0), so thatI = (i1, . . . , in)

impliestI = ti11 . . . t
in
n .

H = U(d) may be provided with an increasing family of subspaces{FiH}i∈Z linearly
generated by PBW monomials of degree≤ i — here we agree thatFiH = (0) whenever
i < 0. The dual spaceX = H∗ is correspondingly filtered by a decreasing family of sub-
spacesFiX = (FiH)⊥ which define a linearly compact topology onX. The two filtrations are
compatible in the sense that the action ofH onX satisfies(FiH) · (FmX) ⊂ Fm−iX for all
i,m.

Any elementa ∈ X is uniquely determined by its valuesaI = 〈a, ∂(I)〉. It makes sense to write
a =

∑
I∈Nn aIt

I as the right-hand side becomes a finite sum when computed on any element of
H. This gives an identification ofX with On = k[[t1, . . . , tn]] as topological commutative
algebras, once we endowOn with the formal topology.

Our most typical situation will be when the Lie algebrad is abelian. In this case, the Hopf
algebraH = U(d) is isomorphic to the symmetric algebraS(d). The left and right actions ofH
onX then coincide, and are given by∂i.f = −∂f/∂ti. In this case, bothH andX are graded
vector spaces and the action ofH onX is homogeneous of degree zero.

2.2. Rings of coefficients.

Definition 2.1. LetH be a Hopf algebra overk with coproduct∆H . A comodule algebraoverH
is an associativek-algebraD endowed with a homomorphism ofk-algebras∆D : D → H ⊗D
satisfying the comodule property

(∆H ⊗ idD) ◦∆D = (idH ⊗∆D) ◦∆D,

and such thatε(d(1))d(2) = d for all d ∈ D, where as usual we use the notation∆D(d) =
d(1)⊗ d(2). In other words, it is an associativek-algebraD which is a leftH-comodule such that
the comodule map is ak-algebra homomorphism.

Remark2.1. Notice thatε(d(1)) makes sense in the above equation, asd(1) ∈ H.

Example 2.1. Let H ′ be a Hopf subalgebra ofH. Then the restriction toH ′ of the comulti-
plication ∆ : H → H ⊗ H defines a comodule algebra structure onH ′. Indeed,∆|H′ is a
homomorphism of associative algebra by restriction, and it mapsH ′ intoH ′⊗H ′ ⊂ H ⊗H ′. In
particular, bothH and the base fieldk have a structure of comodule algebras overH.
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Example 2.2.Let V be a vector space of even dimension,ω ∈
∧2 V ∗. Set:

D(V, ω) = T(V )/〈uv − vu− ω(u, v), u, v ∈ V 〉,

whereT(V ) denotes the tensor algebra over the vector spaceV .
ThenH = D(V, 0) = S(V ) has the usual Hopf algebra structure, andD = D(V, ω) is an

associative algebra. Observe thatV linearly embeds in bothH andD(V, ω). The latter has a
structure of comodule algebra overH defined by thek-algebra homomorphism∆D : D(V, ω) →
H ⊗ D(V, ω) extending∆D(v̄) = v ⊗ 1 + 1 ⊗ v̄, wherev̄ ∈ V ⊂ D(V, ω) andv denotes its
image inH = D(V, 0).

Henceforth, whenD is a comodule algebra over the cocommutative Hopf algebraH, we will
say thatD is aring of coefficientsoverH.

2.3. Left and right straightening. It was showed in [BDK1] that ifH is a Hopf algebra, then
H ⊗H = (H ⊗k)∆(H) = (k⊗H)∆(H). Only part of this statement holds in the general case
of rings of coefficients.

Lemma 2.1. If D is a ring of coefficients overH, thenH ⊗D = (H ⊗ k)∆D(D)

Proof. It is immediate to check thath⊗ d = (hS(d(1))⊗ 1)∆D(d(2)). �

Remark2.2. WhenD = H, one also hasH ⊗ H = (k ⊗ H)∆(H), as h ⊗ k = (1 ⊗
kS(h(2)))∆(h(1)). Notice that in general,H ⊗ D 6= (k ⊗ D)∆D(D). For instance, ifD = H ′

is a proper Hopf subalgebra ofH, then∆D(D) ⊂ D ⊗ D, so that(k ⊗ D)∆D(D) ⊂ D ⊗ D,
which is strictly contained inH ⊗D, and equality cannot hold.

The following lemma will be important later on.

Lemma 2.2. LetH = D(V, 0),D = D(V, ω). ThenH ⊗D = (k⊗D)∆D(D).

Proof. The statement becomes obvious after describing the comodule algebra map∆D : D →
H ⊗ D as follows: letṼ be central the extension ofV , viewed as an abelian Lie algebra, by
a one-dimensional idealkc, as defined by the2-cocycleω, and endowH̃ = U(Ṽ ) with the
standard Hopf algebra structure satisfying∆̃(x) = x⊗ 1 + 1⊗ x, x ∈ Ṽ .

Notice now that bothH andD are quotients of̃H, namelyH = H̃/cH̃ andD = H̃/(c−1)H̃.
Moreover∆̃(c− 1) = c⊗ 1 + 1⊗ (c− 1), so that

∆̃((c− 1)H̃) ⊂ (cH̃)⊗ H̃ + H̃ ⊗ ((c− 1)H̃).

It is then easy to check that the well-defined map

D = H̃/(c− 1)H̃ −→ H̃/cH̃ ⊗ H̃/(c− 1)H̃ = H ⊗D

induced by∆̃ coincides with∆D. ProjectingH̃ ⊗ H̃ = (k ⊗ H̃)∆̃(H̃) to H ⊗ D one obtains
H ⊗D = (k⊗D)∆D(D). �

Remark2.3. LetD be a ring of coefficients overH, and∆D : D → H⊗D be the corresponding
comodule map. ThenH ⊗ D has a rightD-module structure induced by∆D, so that one may
define the tensor product(H ⊗D) ⊗D M — which has a natural leftH ⊗D-module structure
given by multiplication — wheneverM is a leftD-module. The rightH-module structure on
H ⊗H is a particular instance of this construction.

We may also define∆m
D : D → H⊗m ⊗ D by repeated application of∆D and∆H . By the

comodule property and coassociativity of∆H , the composition∆m
D does not depend on which

factors we apply each occurrence of∆H or ∆D. We may then use∆m
D to endowH⊗m ⊗D with

left and rightD-module structures.

The importance of the above lemmas sits in the following statement.
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Corollary 2.1. LetD be a ring of coefficients overH,M be a leftD-module. Then every element
of (H ⊗D)⊗D M can beleft-straightenedto the form∑

(hi ⊗ 1)⊗D mi,

for a suitable choice ofhi ∈ H,mi ∈M .
Similarly, ifH ⊗D = (k⊗D)∆D(D), then every element of(H ⊗D)⊗D M may beright-

straightenedto the form ∑
(1⊗ di)⊗D mi,

for a suitable choice ofdi ∈ D,mi ∈M .

Proof. The first statement follows by Lemma 2.1 and((h ⊗ 1)∆D(d)) ⊗D m = (h ⊗ 1) ⊗D

dm, h ∈ H, d ∈ D,m ∈ M . Similarly, if H ⊗ D = (k ⊗ D)∆D(D), then one may use
((1⊗ d)∆D(d′))⊗D m = (1⊗ d)⊗D d′m, whered, d′ ∈ D,m ∈M . �

2.4. Associative and Lie pseudoalgebras.In this section, we recall some standard facts on
(associative and Lie) pseudoalgebras from [BDK1]. Apseudoalgebra overH or H-pseudo-
algebra is a leftH-moduleA endowed with apseudoproduct, i.e., anH ⊗ H-linear map (see
Remark 2.3)

A⊗ A→ (H ⊗H)⊗H A , a⊗ b 7→ a ∗ b .
Explicitly, for anyh, k ∈ H, a, b ∈ A, if a ∗ b =

∑
i(h

i ⊗ ki)⊗H ci then

(ha) ∗ (kb) =
∑

i

(hhi ⊗ kki)⊗H ci.

If A andA′ areH-pseudoalgebras, then anH-linear mapφ : A → A′ is a pseudoalgebra
homomorphismif

φ(a) ∗ φ(b) = ((idH ⊗ idH)⊗H φ) (a ∗ b),
for all a, b ∈ A. It is possible to extend (see [Ko]) any pseudoproduct onA to a well-defined
H⊗(m+n)-linear map

(H⊗m ⊗H A)⊗ (H⊗n ⊗H A) → H⊗(m+n) ⊗H A

by letting

(F ⊗H a) ∗ (G⊗H b) =
∑

i

(F ⊗G) · ((∆m−1 ⊗∆n−1)⊗H idA)((hi ⊗ ki)⊗H ci) ,

whereF ∈ H⊗m, G ∈ H⊗n, a, b ∈ A, and

a ∗ b =
∑

i

(hi ⊗ ki)⊗H ci, with hi, ki ∈ H, ci ∈ A.

This makes it possible to compute and compare “multilinear” iterated products such asa ∗ (b ∗
c), (a ∗ b) ∗ c ∈ H⊗3 ⊗H A.

Definition 2.2. An associativeH-pseudoalgebrais anH-pseudoalgebraA whose pseudoprod-
ucta⊗ b 7→ a ∗ b satisfies the following associativity axiom:

(a ∗ b) ∗ c = a ∗ (b ∗ c) ,
for all choices ofa, b, c ∈ A.

A Lie H-pseudoalgebrais anH-pseudoalgebraL endowed with a pseudoproducta ⊗ b 7→
[a∗b], calledLie pseudobracket, satisfying the following skew-commutativity and Jacobi identity
axioms:

[b ∗ a] = −(σ ⊗H idL) [a ∗ b] ,
[[a ∗ b] ∗ c] = [a ∗ [b ∗ c]]− ((σ ⊗ idH)⊗H idL) [b ∗ [a ∗ c]] ,

wherea, b, c ∈ L, andσ : H ⊗H → H ⊗H denotes the flipσ(h⊗ k) = k ⊗ h.
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Every associative pseudoalgebraA can be turned into a Lie pseudoalgebraA− by setting

[a ∗ b] = a ∗ b− (σ ⊗H idA)(b ∗ a).
If A is a pseudoalgebra overH, andU, V ⊂ A areH-submodules ofA, denote byU · V the
smallest among allH-submodulesW ⊂ A such thatu∗v ∈ (H⊗H)⊗HW for all u ∈ U, v ∈ V .
ThenS ⊂ A is asubalgebraif S·S ⊂ S, andI ⊂ A is anideal if I ·A,A·I ⊂ I. A pseudoalgebra
A is simpleif its only ideals are0 andA. We say that a pseudoalgebra overH is finite if it is
finitely generated as anH-module.

Example 2.3. Let H = U(d) be the universal enveloping algebra of a finite dimensional Lie
algebrad. ThenW (d) = H ⊗ d is given a structure of Lie pseudoalgebra by setting

[(h⊗ a) ∗ (k ⊗ b)] = (h⊗ k)⊗H (1⊗ [a, b])

− (h⊗ ka)⊗H (1⊗ b) + (hb⊗ k)⊗H (1⊗ a) ,

whereh, k ∈ H, a, b ∈ d.

Example 2.4.Let g be a finite dimensional Lie algebra overk. ThenH ⊗ g has the structure of
a Lie pseudoalgebra with the Lie pseudobracket:

[(h⊗ a) ∗ (k ⊗ b)] = (h⊗ k)⊗H (1⊗ [a, b]), h, k ∈ H, a, b ∈ g.

H ⊗ g is calledcurrentH-pseudoalgebraof g and it is denoted byCurH
k g.

Example 2.5. The construction described in Example 2.4 is an instance ofextension of scalars,
or base change, for pseudoalgebras: letφ : H ′ → H be a homomorphism of Hopf algebras,
A be a (Lie, associative) pseudoalgebra overH ′. We may useφ to endowH with a rightH ′-
module structure and give the leftH-moduleH ⊗H′ A a (Lie, associative) pseudoalgebra (over
H) structure by setting

(h⊗H′ a) ∗ (k ⊗H′ b) =
∑

i

(hφ(f i)⊗ kφ(gi))⊗H (1⊗H′ ci),

if a ∗ b =
∑

i(f
i ⊗ gi)⊗H ci, wherea, b, ci ∈ A, f i, gi ∈ H ′. This is clearlyH ⊗H-linear, and

it can be easily showed to provide a well-defined pseudoproduct.
WhenH ′ ⊂ H andφ is the inclusion homomorphism, the above construction reduces to the

currentH-pseudoalgebraCurH
H′ A.

Remark2.4. All nonzero subalgebras ofW (d) are simple. Indeed, subalgebras ofW (d) and
currentH-pseudoalgebras obtained from simple finite-dimensional Lie algebras overk provide
a complete list of finite simple Lie pseudoalgebras overH = U(d).

3. PRIMITIVE L IE PSEUDOALGEBRAS OFTYPEH

In the rest of the paper,d will be an abelian Lie algebra of even dimensionn = 2N , and
ω ∈

∧2
d∗ will be a symplectic form. As before,H = U(d).

3.1. Definition of H(d, 0, ω). We recall from [BDK1] the main facts on primitive pseudoalge-
bras of typeH that we are going to need. The pseudoproduct

[e ∗ e] = (r + s⊗ 1− 1⊗ s)⊗H e

endowsHe with a Lie pseudoalgebra structure as soon asr ∈
∧2

d and s ∈ d satisfy the
following equations:

(3.1) [r,∆(s)] = 0 , ([r12, r13] + r12s3) + cyclic permutations= 0 ,

where we use the standard notationr12 = r ⊗ 1, s3 = 1 ⊗ 1 ⊗ s, etc. In particular, sinced is
abelian, settings = 0 satisfies (3.1) for every choice ofr. Whenr is of maximal rank, it induces
an isomorphismd∗ ' d. Then the symplectic2-form ω ∈

∧2
d∗ corresponding to its inverse is a

2-cocycle ofd.
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In this caseHe is a simple Lie pseudoalgebra overH, which is denoted byH(d, 0, ω). Note
that if ∂i, i = 1, . . . , 2N , is a basis ofd, r =

∑
ij r

ij∂i ⊗ ∂j, andωij = ω(∂i, ∂j), then the
matrices(rij) and(ωij) are inverse to each other. We will use the notation:

∂i =
2N∑
j=1

rij∂j,

so that

∂i =
2N∑
j=1

ωij∂
j, r =

2N∑
i=1

∂i ⊗ ∂i = −
2N∑
i=1

∂i ⊗ ∂i.

Moreover
ω(∂i, ∂j) = δi

j = −ω(∂i, ∂
j), ω(∂i, ∂j) = −rij.

There exists a unique nontrivial (injective) Lie pseudoalgebra homomorphism

(3.2) ι : H(d, 0, ω) → W (d) , e 7→ −r ,
so that we may identifyH(d, 0, ω) with a subalgebra ofW (d).

3.2. Annihilation Algebra of W (d) and ofH(d, 0, ω). For a Lie pseudoalgebraL, we setL =
A(L) = X ⊗H L, and define a bracket onL by the formula (cf. [BDK1, Eq. (7.2)]):

(3.3) [x⊗H a, y ⊗H b] =
∑

(xhi)(yki)⊗H ci , if [a ∗ b] =
∑

(hi ⊗ ki)⊗H ci .

ThenL is a Lie algebra, called theannihilation algebraof L. If φ : L→ L′ is a Lie pseudoalge-
bra homomorphism, thenx⊗H a 7→ x⊗H φ(a), x ∈ X, a ∈ L is a Lie algebra homomorphism
A(φ) : A(L) → A(L′), thus makingA into a functor. There is a left action ofH onL given by:

(3.4) h(x⊗H a) = hx⊗H a.

As ∆(∂) = ∂ ⊗ 1 + 1 ⊗ ∂ for all ∂ ∈ d, then elements fromd ⊂ H act onL by derivations.
LetW = A(W (d)) be the annihilation algebra of the Lie pseudoalgebraW (d). SinceW (d) =
H ⊗ d, we haveW = X ⊗H (H ⊗ d) ' X ⊗ d and we can identifyW with X ⊗ d. Then the
Lie bracket (3.3) reads as follows (x, y ∈ X, a, b ∈ d):

[x⊗ a, y ⊗ b] = −x(ya)⊗ b+ (xb)y ⊗ a .

Choosing a basis∂1, . . . , ∂2N identifiesW with

W2N = DerO2N = k[[t1, . . . , t2N ]]〈∂/∂t1, . . . , ∂/∂t2N〉,
endowed with the standard Lie bracket. Under this identification,x⊗ ∂i 7→ x ∂/∂ti.

As before, letr ∈
∧2

d be a skew-symmetric non-degenerate tensor. We may then choose a
basis∂1, . . . , ∂2N of d so that

(3.5) r =
N∑

i=1

(∂i ⊗ ∂N+i − ∂N+i ⊗ ∂i) .

Let P = A(H(d, 0, ω)) = X ⊗H (He) = X ⊗H e be the annihilation algebra ofH(d, 0, ω).
According to (3.3), the Lie bracket onP is given by

(3.6) [φ⊗H e, ψ ⊗H e] =
N∑

i=1

(
∂φ

∂ti

∂ψ

∂tN+i

− ∂φ

∂tN+i

∂ψ

∂ti

)
⊗H e = {φ, ψ} ⊗H e,

where{φ, ψ} denotes the standard Poisson bracket onO2N . In other words, the mapO2N 3
φ → φ ⊗H e provides a Lie algebra isomorphism between the Poisson type linearly compact
Lie algebraP2N with the annihilation algebraP of H(d, 0, ω) = He. We may define a filtration
P = P−2 ⊃ P−1 ⊃ . . . on P = X ⊗H He by

Pp = FpP = Fp+1X ⊗H e,
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which satisfies[Pi,Pj] ⊂ Pi+j. In particular,P0 is a subalgebra ofP and normalizes allPi.
Since we have chosend to be abelian, this filtration is indeed induced by a grading onP, and the
Lie bracket is homogeneous of degree0.

Recall that the canonical injectionι of the subalgebraH(d, 0, ω) inW (d) induces a Lie algebra
homomorphismι∗ = A(ι) : P → W, which is however not injective, contrary to what happens
with primitive Lie pseudoalgebras of all other types. Indeed:

Lemma 3.1. ι∗ has a one-dimensional kernel, linearly generated by1⊗H e, which coincides with
the centre ofP. In particular,P is a central extension ofι∗P = H ⊂ W by a one-dimensional
ideal.

Proof. Using (3.2), we obtainι∗(x ⊗H e) = −
∑

i(x∂
i) ⊗ ∂i. Thenι∗(x ⊗H e) = 0 if and only

if x∂i = 0 for all i, which only happens whenx lies ink ⊂ X.
The fact that1 ⊗H e is central inP easily follows from (3.6). In order to show that1 ⊗H e

linearly spans the center ofP, notice that ifφ⊗H e is central, then we argue by (3.6) that

0 = [ti ⊗H e, φ⊗H e] =
∂φ

∂tN+i

, 0 = [tN+i ⊗H e, φ⊗H e] = −∂φ
∂ti

,

for all i = 1, . . . , N , so thatφ ∈ k. �

Remark3.1. Notice that if the basis∂1, . . . , ∂2N is chosen so that (3.5) holds, the isomorphism
W ' W2N identifiesH with the subalgebraH2N ⊂ W2N of all formal vector fields preserving
the standard symplectic form

∑N
i=1 dti ∧ dtN+i.

3.3. A central extension ofd. Recall that the linearly compact Lie algebraP is endowed by
(3.4) with a leftH-module structure given byh.(x ⊗H e) = hx ⊗H e. As the Lie algebrad
is abelian, the Hopf algebraH is commutative, and the left and right action ofH onX = H∗

coincide. Let us introduce the notation̂∂i = −ti ⊗H e, and extend∂i 7→ ∂̂i to a linear map
d 3 ∂ 7→ ∂̂ ∈ P. Then

[−ti ⊗H e , x⊗H e] = −
2N∑
j=1

(ti∂j)(x∂
j) = (x∂i)⊗H e = (∂ix)⊗H e,

for all i = 1, . . . , 2N , so that
[∂̂, x⊗H e] = ∂(x⊗H e),

for every choice of∂ ∈ d, x ∈ X. In particular,

[∂̂i, ∂̂j] = rij ⊗H e = −ω(∂i, ∂j)⊗H e,

hence[∂̂, ∂̂′] = −ω(∂, ∂′)⊗H e. In conclusion, we have:

Proposition 3.1. Let d̂ be the Lie subalgebra ofP generated by elementŝ∂ along with c =

−1⊗H e. Thenc is central ind̂ and [∂̂, ∂̂′] = ω(∂, ∂′)c. In other words,̂d is a central extension
of d of 2-cocycleω.

Let π : d̂ → d be the canonical projectionπ(∂̂) = ∂, and denote byi : d̂ → P the inclusion of
d̂ as a subalgebra ofP.

Proposition 3.2. Let δ ∈ d̂, φ ∈ P. Then

[i(δ), φ] = π(δ).φ.

In other words,
[∂̂, φ] = ∂.φ,

for all ∂ ∈ d, φ ∈ P. In particular, ifM is a representation ofP, then

(3.7) ∂̂(φ.m) = (∂.φ).m+ φ.(∂̂.m),

for all ∂ ∈ d, φ ∈ P ,m ∈M .
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4. REPRESENTATIONS WITH COEFFICIENTS

4.1. Definition of representation with coefficients. LetA be a pseudoalgebra overH,D a ring
of coefficients overH, M a leftD-module. By Remark 2.3 we may construct(H ⊗D)⊗D M ,
which has a natural leftH ⊗D-module.

A pseudoaction ofA onM with coefficients inD is then anH ⊗ D-linear mapA ⊗M 3
a⊗m −→ a ∗m ∈ (H ⊗D)⊗D M . Explicitly, if a ∗m =

∑
i(h

i ⊗ di)⊗D mi then

(ha) ∗ (dm) = (h⊗ d) · (a ∗m) =
∑

i

(hhi ⊗ ddi)⊗D mi.

We may, as in Section 2.4, extend any pseudoaction ofA onM with coefficients inD toH⊗m⊗
(H(n−1) ⊗D) = H⊗(m+n−1) ⊗D-linear maps

(4.1) (H⊗m ⊗H A)⊗ ((H⊗(n−1) ⊗D)⊗D M) → (H⊗(m+n−1) ⊗D)⊗D M

by setting

(4.2) (F ⊗H a) ∗ (G⊗D m) = (F ⊗G) · ((∆m−1
H ⊗∆n−1

D )⊗D idM) (a ∗m),

whereF ∈ H⊗m, G ∈ H⊗(n−1) ⊗ D, a ∈ A, m ∈ M. Here we are using the rightD-module
structure onH i ⊗D mentioned in Remark 2.3.

Definition 4.1. LetA be an associative pseudoalgebra overH,D a ring of coefficients overH. A
D-moduleM is arepresentation ofA with coefficients inD if it is endowed with a pseudoaction
of A onM with coefficients inD

A⊗M → (H ⊗D)⊗D M , a⊗m 7→ a ∗m
that satisfies (a, b ∈ A,m ∈M )

(a ∗ b) ∗m = a ∗ (b ∗m),

where(a ∗ b) ∗m, a ∗ (b ∗m) ∈ (H⊗2 ⊗D)⊗D M are understood by means of (4.1), (4.2).

Definition 4.2. Let L be a Lie pseudoalgebra overH, D a ring of coefficients overH. A D-
moduleM is arepresentation ofL with coefficients inD if it is endowed with a pseudoaction of
L onM with coefficients inD

L⊗M → (H ⊗D)⊗D M , a⊗m 7→ a ∗m
that satisfies (a, b ∈ L,m ∈M )

[a ∗ b] ∗m = a ∗ (b ∗m)− ((σ ⊗ idD)⊗D idM)(b ∗ (a ∗m)),

where once again, all terms are computed by using (4.1), (4.2).

Example 4.1. WhenD = H, we recover the usual notion of representation or module of a Lie
pseudoalgebra overH (see [BDK1, BDK2]).

Example 4.2. Let L be a Lie pseudoalgebra overH, M be a representation ofL (with coef-
ficients inH). If H ′ ⊂ H is a Hopf subalgebra ofH, thenM is anH ′-module by restriction
of scalars. IfN ⊂ M is anH ′-submodule such thatL ∗ N ⊂ (H ⊗ H ′) ⊗H N thenN is a
representation ofL with coefficients inH ′.

Let M,N beD-modules. AD-conformal linear map fromM to N is ak-linear homomor-
phismφ : M → (H ⊗D)⊗D N such thatφ(dm) = (1⊗ d) · φ(m). The spaceChomD(M,N)
of all D-conformal linear maps fromM to N is made into a leftH-module via(hφ)(m) =
(h⊗ 1) · φ(m). Then

ChomD(M,N)⊗M 3 φ⊗m 7→ φ(m) ∈ (H ⊗D)⊗D N

is clearly anH ⊗ D-linear map. Whenφ ∈ ChomD(M,N) andm ∈ M we will denoteφ(m)
by φ ∗m.
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Proposition 4.1. LetM be a (finitely generated)D-module. Then there exists a unique asso-
ciativeH-pseudoalgebra structure onCendD M = ChomD(M,M) such that the equality in
(H⊗2 ⊗D)⊗D M

(φ ∗ ψ) ∗m = φ ∗ (ψ ∗m),

holds for allφ, ψ ∈ CendD M,m ∈ M. Here both sides are understood according to(4.1)and
(4.2).

Proof. The proof is analogous to [BDK1, Lemma 10.1]. �

The LieH-pseudoalgebra structure(CendD M)− obtained by taking the corresponding com-
mutator

[φ ∗ ψ] = φ ∗ ψ − (σ ⊗H id) (ψ ∗ φ),

is denoted bygcD M . Notice thatM is a representation with coefficients inD of bothCendD M
andgcD M .

Remark4.1. The assumption thatM be a finitely generatedD-module is necessary in order to
set up the pseudoalgebra structure onCendD M (see [BDK1]).

Remark4.2. We may denoteCendD Dn and gcD Dn by CendD
n and gcD

n respectively. Then
CendD

n is isomorphic toH⊗D⊗Endkn, withH acting by left multiplication on the first factor,
endowed with the pseudoproduct

(h⊗ d⊗ A) ∗ (h′ ⊗ d′ ⊗ A′) = (h⊗ h′d(1))⊗H (1⊗ d′d(2) ⊗ AA′),

where the pseudoaction ofCendD
n onDn = D ⊗ kn is given by

(h⊗ d⊗ A) ∗ (d′ ⊗ v) = (h⊗ d′d)⊗D (1⊗ Av),

for h, h′ ∈ H, d, d′ ∈ D,A,A′ ∈ Endkn, v ∈ kn. The associative pseudoalgebraCendD
1 =

H ⊗D is similar to a pseudoalgebra structure considered by Kolesnikov [Ko].

The following statement is a straightforward consequence of definitions.

Proposition 4.2.LetM be a finitely generatedD-module,A an associative (resp. Lie) pseudoal-
gebra overH. Then giving onM a structure ofA-module with coefficients inD is the same as
giving an associative pseudoalgebra homomorphismA→ CendD M (resp. a Lie pseudoalgebra
homomorphismA→ gcD M ).

4.2. Equivalence of pseudoalgebra and annihilationalgebra representations.The following
statement generalizes the correspondence given in [BDK1, Proposition 9.1] to pseudoalgebra
representation with coefficients. Indeed, every Lie pseudoalgebra representation ofL with co-
efficients inD may be translated into a discrete representation ofL possessing a compatible
D-module structure.

Proposition 4.3.LetD be a ring of coefficients overH,M a representation of the LieH-pseudo-
algebraL with coefficients inD, andL = X ⊗H L the annihilation Lie algebra ofL. ThenM
has a natural structure of discrete topologicalL-module, given by

(x⊗H a) ·m =
∑

〈xhi, di
(1)〉 di

(2)mi , if a ∗m =
∑

(hi ⊗ di)⊗D mi

for a ∈ L, x ∈ X,m ∈M . Moreover, theD-module structure onM satisfies

(4.3) d(g.m) = (d(1)g).(d(2)m),

for all g ∈ L,m ∈M,d ∈ D.
Conversely, any discreteL-moduleM endowed with aD-module structure satisfying(4.3)

has a natural structure of representation ofL with coefficients inD, given by

a ∗m =
∑
I∈Nn

(
S(∂(I))⊗ 1

)
⊗D

(
(tI ⊗H a) ·m

)
,

where∂(I) ∈ H = U(d) are as in(2.1), andtI are the corresponding dual basis elements.
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Proof. The proof that the pseudoalgebra action ofL gives a continuous (discrete) representation
of L and vice-versa is the same as in [BDK1, Proposition 9.1]. We are left with showing that
H ⊗D-linearity ofa⊗m 7→ a ∗m is equivalent with (4.3).

Let us first show thatH ⊗D-linearity implies (4.3), by computing(d(1)(x⊗H a)).(d(2)m) =
((d(1)x)⊗H a).(d(2)m). ByH ⊗D-linearity, if a ∗m =

∑
(hi ⊗ di)⊗D mi then

a ∗ (d(2)m) =
∑

i

(hi ⊗ d(2)d
i)⊗D mi,

so that

((d(1)x)⊗H a).(d(2)m) =
∑

〈d(1)xh
i, d(2)d

i
(1)〉 d(3)d

i
(2)mi

=
∑

〈xhi, di
(1)〉 ε(d(1))d(2) d

i
(2)mi

= d
∑

〈xhi, di
(1)〉 di

(2)mi

= d((x⊗H a).m).

Conversely, assuming (4.3) holds, we immediately obtain

g.(dm) = d(2)((S(d(1))g).m),

for all choices ofg ∈ L, d ∈ D,m ∈M , whence

a ∗ dm =
∑

(S(∂(I))⊗ 1)⊗D (tI ⊗H a).(dm)

=
∑

(S(∂(I))⊗ 1)⊗D d(2)((S(d(1))t
I)⊗H a).m

=
∑

(S(d(1)∂
(I))⊗ 1)⊗D d(2)(t

I ⊗H a).m

=
∑

(S(∂(I))S(d(1))⊗ 1)⊗D d(2)(t
I ⊗H a).m

=
∑

(S(∂(I))S(d(1))d(2) ⊗ d(3))⊗D (tI ⊗H a).m

=
∑

(S(∂(I))ε(d(1))⊗ d(2))⊗D (tI ⊗H a).m

=
∑

(S(∂(I))⊗ d)⊗D (tI ⊗H a).m

= (1⊗ d) · (a ∗m).

�

Remark4.3. Notice that whenD = H, Proposition 4.3 reduces to [BDK1, Proposition 9.1], and
property (4.3) is the same as saying that the actions of elements ind ⊂ H on bothL and the
L-moduleM provides an action of the extended annihilation algebraL̃ = d nL.

Remark4.4. The statement of Proposition 4.3 hints to the fact that the action ofL on any repre-
sentation with coefficients may be left-straightened, i.e., thata ∗m ∈ (H ⊗ D) ⊗D M may be
always be written as an expression in(H ⊗ k)⊗D M , see Lemma 2.1.

4.3. Irreducible discrete representationsofP2N . Here we show that every irreducible discrete
representation ofP2N admits aD = D(d, λω)-module structure — whereD(d, λω) is as in
Example 2.2 — for someλ ∈ k which is compatible in the sense of (4.3) with the leftH-module
structure given onP2N by the isomorphismP2N ' P = A(H(d, 0, ω)). In other words, the
action ofP2N may be lifted to a pseudoalgebra representation ofH(d, 0, ω) with coefficients in
D.

Proposition 4.4. Assume thatk is uncountable. LetM be a continuous discrete irreducible
representation of the linearly compact Lie algebraP = P2N . Then any central element inP acts
via scalar multiplication by some element ink.
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Proof. As the action ofP on the discrete vector spaceM is continuous, then every element
m ∈ M is killed by an open subalgebra ofP, hence byPk for a suitably large value ofk. The
subspaceUk ⊂ M of all elements killed byPk is then nonzero for sufficiently largek ∈ N. Let
us choosek so thatUk 6= 0: asP0 normalizesPk, thenUk isP0-stable. We immediately see that
the action ofP0 onUk factors via the finite-dimensional Lie algebraP0/Pk.

As U(P0/Pk) is countable-dimensional, we may find a countable-dimensional nonzeroP0-
submoduleR of Uk. ThenU(P) = U(d̂)U(P0), henceU = IndPP0

R = U(P) ⊗U(P0) R =

U(d̂)⊗ R is still countable dimensional. By irreducibility ofM , there is a surjectiveP-module
homomorphismU →M , henceM is also countable-dimensional.

Using a countable Schur Lemma toM shows now that all central elements inP act by scalar
multiplication onV . �

Remark4.5. Whenk is countable, we may still assume that−1⊗H e = c ∈ Z(P) act by scalar
multiplication up to replacingk with k(c).

Theorem 4.1. LetM be a discrete irreducible representation ofP2N on which central elements
act via scalar multiplication. Then there existsλ ∈ k such thatM can be endowed with a
D = D(d, λω)-module structure, compatible in the sense of(4.3)with theH = D(d, 0)-module
structure onP2N obtained by identifying it with the annihilation algebraP of H(d, 0, ω). In
other words,M may be lifted to a pseudoalgebra representation ofH(d, 0, ω) with coefficients
in D.

Proof. We already know that̂d embeds in the annihilation algebraP of H(d, 0, ω). SinceP '
P2N ,M may be given a leftU(d̂)-module structure via this embedding.

If c = −1 ⊗H e ∈ P acts onM via multiplication byλ, then the left action ofU(d̂) factors
via the quotientD = D(d, λω). The compatibility between theH-module structure onP and
theD-module structure onM is then stated in (3.7) for a set of algebra generators ofD. �

Theorem 4.1 shows that all irreducible representations ofP2N may be read in the language of
Lie pseudoalgebra representations with coefficients. This language has proved powerful in the
study of representations of linearly compact Lie algebraL as it makes it easy to compute singular
vectors in the so-calledtensor modules, i.e., modules that are induced from a finite-dimensional
representation of a maximal open primitive subalgebra ofL.

In order to make the use of pseudoalgebra language effective, one needs aright-straightening
formula for the action ofL on its tensor modules in order to give a bound for the degree of
singular vectors, and then aleft-straightening formulafor the computation of singular vectors of
a given degree, (see [BDK2, BDK3]) .

We have seen in Corollary 2.1 that existence of right- and left-straightening amounts to show-
ing thatH⊗D equals(k⊗D)∆D(D) and(H⊗k)∆D(D) respectively: the latter always holds,
whereas the former is false in general, but holds, by Lemma 2.2, in the ring of coefficients that
is needed for expressing irreducible representations ofP2N . We will use this strategy towards
studying irreducible representations ofP2N in a forthcoming paper.
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