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ABSTRACT. One of the algebraic structures that has emerged recently in the study of the operator
product expansions of chiral fields in conformal field theory is that of a Lie conformal algebra.
A Lie pseudoalgebra is a generalization of the notion of a Lie conformal algebra for whichC[∂]
is replaced by the universal enveloping algebraH of a finite-dimensional Lie algebra. The finite
(i.e., finitely generated overH) simple Lie pseudoalgebras were classified in our previous work
[BDK]. The present paper is the second in our series on representation theory of simple Lie
pseudoalgebras. In the first paper we showed that any finite irreducible module over a simple
Lie pseudoalgebra of typeW or S is either an irreducible tensor module or the kernel of the
differential in a member of the pseudo de Rham complex. In the present paper we establish a
similar result for Lie pseudoalgebras of typeK, with the pseudo de Rham complex replaced by
a certain reduction called the contact pseudo de Rham complex. This reduction in the context of
contact geometry was discovered by Rumin.
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1. INTRODUCTION

The present paper is the second in our series of papers on representation theory of simple Lie
pseudoalgebras, the first of which is [BDK1].

Recall that aLie pseudoalgebrais a (left) moduleL over a cocommutative Hopf algebraH,
endowed with a pseudo-bracket

L⊗ L→ (H ⊗H)⊗H L , a⊗ b 7→ [a ∗ b] ,

which is anH-bilinear map ofH-modules, satisfying some analogs of the skewsymmetry and
Jacobi identity of a Lie algebra bracket (see [BD], [BDK]).

In the case whenH is the base fieldk, this notion coincides with that of a Lie algebra. Any
Lie algebrag gives rise to a Lie pseudoalgebraCur g = H ⊗ g overH with pseudobracket

[(1⊗ a) ∗ (1⊗ b)] = (1⊗ 1)⊗H [a, b] ,

extended to the wholeCur g byH-bilinearity.
In the case whenH = k[∂], the algebra of polynomials in an indeterminate∂ with the comul-

tiplication∆(∂) = ∂ ⊗ 1 + 1⊗ ∂, the notion of a Lie pseudoalgebra coincides with that of aLie
conformal algebra[K]. The main result of [DK] states that in this case any finite (i.e., finitely
generated overH = k[∂]) simple Lie pseudoalgebra is isomorphic either toCur g with simple
finite-dimensionalg, or to the Virasoro pseudoalgebraVir = k[∂]`, where

[` ∗ `] = (1⊗ ∂ − ∂ ⊗ 1)⊗k[∂] ` ,

provided thatk is algebraically closed of characteristic0.
In [BDK] we generalized this result to the case whenH = U(d), whered is any finite-

dimensional Lie algebra. The generalization of the Virasoro pseudoalgebra isW (d) = H ⊗ d
with the pseudobracket

[(1⊗ a) ∗ (1⊗ b)] = (1⊗ 1)⊗H (1⊗ [a, b]) + (b⊗ 1)⊗H (1⊗ a)− (1⊗ a)⊗H (1⊗ b) .

The main result of [BDK] is that all nonzero subalgebras of the Lie pseudoalgebraW (d) are
simple and non-isomorphic, and, along withCur g, whereg is a simple finite-dimensional Lie
algebra, they provide a complete list of finitely generated overH simple Lie pseudoalgebras,
provided thatk is algebraically closed of characteristic0. Furthermore, in [BDK] we gave a
description of all subalgebras ofW (d). Namely, a complete list consists of the “primitive” series
S(d, χ),H(d, χ, ω) andK(d, θ), and their “current” generalizations.

In [BDK1] we constructed allfinite (i.e., finitely generated overH = U(d)) irreducible mod-
ules over the Lie pseudoalgebrasW (d) andS(d, χ). The simplest nonzero module overW (d) is
Ω0(d) = H, given by

(1.1) (f ⊗ a) ∗ g = −(f ⊗ ga)⊗H 1 , f, g ∈ H , a ∈ d .
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A generalization of this construction, called a tensorW (d)-module, is as follows [BDK1]. First,
given a Lie algebrag, define the semidirect sumW (d) n Cur g as a direct sum asH-modules,
for whichW (d) is a subalgebra andCur g is an ideal, with the following pseudobracket between
them:

[(f ⊗ a) ∗ (g ⊗ b)] = −(f ⊗ ga)⊗H (1⊗ b) ,

wheref, g ∈ H, a ∈ d, b ∈ g. Given a finite-dimensionalg-moduleV0, we construct a represen-
tation ofW (d) n Cur g in V = H ⊗ V0 by (cf. (1.1)):

(1.2)
(
(f ⊗ a)⊕ (g ⊗ b)

)
∗ (h⊗ v) = −(f ⊗ ha)⊗H (1⊗ v) + (g ⊗ h)⊗H (1⊗ bv) ,

wheref, g, h ∈ H, a ∈ d, b ∈ g, v ∈ V0.
Next, we define an embedding ofW (d) in W (d) n Cur(d⊕ gl d) by

(1.3) 1⊗ ∂i 7→ (1⊗ ∂i)⊕
(
(1⊗ ∂i)⊕ (1⊗ ad ∂i +

∑
j

∂j ⊗ ej
i )

)
,

where{∂i} is a basis ofd and{ej
i} a basis ofgl d, defined byej

i (∂k) = δj
k∂i. Composing this

embedding with the action (1.2) ofW (d) n Cur g, whereg = d⊕gl d, we obtain aW (d)-module
V = H ⊗ V0 for each(d⊕ gl d)-moduleV0. This module is called atensorW (d)-moduleand is
denotedT (V0).

The main result of [BDK1] states that any finite irreducibleW (d)-module is a unique quotient
of a tensor moduleT (V0) for some finite-dimensional irreducible(d⊕gl d)-moduleV0, describes
all cases whenT (V0) are not irreducible, and provides an explicit construction of their irreducible
quotients, called thedegenerateW (d)-modules. Namely, we prove in [BDK1] that all degenerate
W (d)-modules occur as images of the differentiald in theΠ-twisted pseudo de Rham complex
of W (d)-modules

(1.4) 0 → Ω0
Π(d)

d−→ Ω1
Π(d)

d−→ · · · d−→ Ωdim d
Π (d) .

HereΠ is a finite-dimensional irreducibled-module andΩn
Π(d) = T (Π⊗

∧n
d∗) is the space of

pseudon-forms.
In the present paper we construct all finite irreducible modules over the contact Lie pseudoal-

gebraK(d, θ), whered is a Lie algebra of odd dimension2N + 1 and θ is a contact linear
function ond. To anyθ ∈ d∗ one can associate a skewsymmetric bilinear formω on d, defined
byω(a∧ b) = −θ([a, b]). The linear functionθ is calledcontactif d is a direct sum of subspaces
d̄ = ker θ andkerω. In this casedim kerω = 1 and there exists a unique element∂0 ∈ kerω
such thatθ(∂0) = −1. Furthermore, the restriction ofω to d̄ is non-degenerate; hence we can
choose dual bases{∂i} and{∂i} of d̄, i.e., ω(∂i ∧ ∂j) = δi

j for i, j = 1, . . . , 2N . Then the
element

r =
2N∑
i=1

∂i ⊗ ∂i ∈ H ⊗H

is skewsymmetric and independent of the choice of dual bases.
The Lie pseudoalgebraK(d, θ) is defined as a freeH-moduleHe of rank1 with the following

pseudobracket:
[e ∗ e] = (r + ∂0 ⊗ 1− 1⊗ ∂0)⊗H e .

There is a unique pseudoalgebra embedding ofK(d, θ) in W (d), which is given by

e 7→ −r + 1⊗ ∂0 .

We will denote again bye its image inW (d). Let sp d (respectivelysp d̄) be the subalgebra of
the Lie algebragl d (resp.gl d̄), consisting ofA ∈ gl d (resp.A ∈ gl d̄), such thatω(Au ∧ v) =
−ω(u ∧ Av) for all u, v ∈ d (resp.d̄). Let csp d = sp d ⊕ kI ′, whereI ′(∂0) = 2∂0, I ′|d̄ = Id̄,
andcsp d̄ = sp d̄ ⊕ kId̄. We have an obvious surjective Lie algebra homomorphism of the Lie
algebrasp d onto the (simple) Lie algebrasp d̄, and ofcsp d ontocsp d̄. We show that the image
of e ∈ W (d) under the map (1.3) lies inW (d) n Cur(d⊕ csp d). Hence each(d⊕ csp d̄)-module
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V0, being a(d⊕ csp d)-module, gives rise to aK(d, θ)-moduleT (V0) = H ⊗V0, with the action
given by (1.2). These are thetensor modulesT (V0) overK(d, θ).

In the present paper we show that any finite irreducibleK(d, θ)-module is a unique quotient
of a tensor moduleT (V0) for some finite-dimensional irreducible(d ⊕ cspd̄)-moduleV0. We
describe all cases when theK(d, θ)-modulesT (V0) are not irreducible and give an explicit con-
struction of their irreducible quotients called degenerateK(d, θ)-modules. It turns out that all
degenerateK(d, θ)-modules again appear as images of the differential in a certain complex of
K(d, θ)-modules, which we call theΠ-twisted contact pseudo de Rham complex, obtained by a
certain reduction of theΠ-twisted pseudo de Rham complex (1.4). The idea of this reduction is
borrowed from Rumin’s reduction of the de Rham complex on a contact manifold [Ru].

As a corollary of our results we obtain the classification of all degenerate modules over the
contact Lie–Cartan algebraK2N+1, along with a description of the corresponding singular vec-
tors given (without proofs) in [Ko]. Moreover, we obtain an explicit construction of these mod-
ules.

We will work over an algebraically closed fieldk of characteristic0. Unless otherwise spec-
ified, all vector spaces, linear maps and tensor products will be considered overk. Throughout
the paper,d will be a Lie algebra of odd dimension2N + 1 <∞.

2. PRELIMINARIES

In this section we review some facts and notation that will be used throughout the paper.

2.1. Forms with constant coefficients.Consider the cohomology complex of the Lie algebrad
with trivial coefficients:

(2.1) 0 → Ω0 d0−→ Ω1 d0−→ · · · d0−→ Ω2N+1 , dim d = 2N + 1 ,

whereΩn =
∧n

d∗. SetΩ =
∧•

d∗ =
⊕2N+1

n=0 Ωn andΩn = {0} if n < 0 or n > 2N + 1. We
will think of the elements ofΩn as skew-symmetricn-forms, i.e., linear maps from

∧n
d to k.

Then thedifferentiald0 is given by the formula (α ∈ Ωn, ai ∈ d):

(d0α)(a1 ∧ · · · ∧ an+1)

=
∑
i<j

(−1)i+jα([ai, aj] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an+1)(2.2)

if n ≥ 1, andd0α = 0 if α ∈ Ω0 = k. Here, as usual, a hat over a term means that it is omitted
in the wedge product.

Recall also that thewedge productof two formsα ∈ Ωn andβ ∈ Ωp is defined by:

(α ∧ β)(a1 ∧ · · · ∧ an+p)

=
1

n!p!

∑
π∈Sn+p

(sgnπ)α(aπ(1) ∧ · · · ∧ aπ(n)) β(aπ(n+1) ∧ · · · ∧ aπ(n+p)) ,
(2.3)

whereSn+p denotes the symmetric group onn+p letters andsgnπ is the sign of the permutation
π.

The wedge product, defined by (2.3), makesΩ an associative graded-commutative algebra:
for α ∈ Ωn, β ∈ Ωp, γ ∈ Ω, we have

(2.4) α ∧ β = (−1)npβ ∧ α ∈ Ωn+p, (α ∧ β) ∧ γ = α ∧ (β ∧ γ) .

The differentiald0 is an odd derivation ofΩ :

(2.5) d0(α ∧ β) = d0α ∧ β + (−1)nα ∧ d0β .

Fora ∈ d, define operatorsιa : Ωn → Ωn−1 by

(2.6) (ιaα)(a1 ∧ · · · ∧ an−1) = α(a ∧ a1 ∧ · · · ∧ an−1) , ai ∈ d .
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Then eachιa is also an odd derivation ofΩ. ForA ∈ gl d, denote byA· its action onΩ ; explicitly,

(2.7) (A · α)(a1 ∧ · · · ∧ an) =
n∑

i=1

(−1)iα(Aai ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ an) .

EachA· is an even derivation ofΩ :

(2.8) A · (α ∧ β) = (A · α) ∧ β + α ∧ (A · β) ,

and we have the following Cartan formula for the coadjoint action ofd :

(2.9) (ad a)· = d0ιa + ιad0 .

The latter implies that(ad a)· commutes withd0.

2.2. Contact forms ond. From now on we will assume that the Lie algebrad admits acontact
form θ ∈ Ω1 = d∗, i.e., a1-form such that

(2.10) θ ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸
N

6= 0 , where ω = d0θ .

Consider the kernel ofω, i.e., the space of all elementsa ∈ d such thatιaω = 0. Equation (2.10)
implies thatkerω is 1-dimensional andθ does not vanish on it. We lets ∈ kerω be the unique
element for whichθ(s) = −1, and letd̄ ⊂ d be the kernel ofθ. Then it is easy to deduce the
following lemma (cf. [BDK]).

Lemma 2.1. With the above notation, we have a direct sum of vector subspacesd = d̄⊕ks such
that

(2.11) [a, b] = ω(a ∧ b)s mod d̄ , a, b ∈ d .

The restriction ofω to d̄ ∧ d̄ is nondegenerate,ιsω = 0, and[s, d̄] ⊂ d̄.

Note that not every Lie algebra of odd dimension admits a contact form. In particular, it is
clear from the above lemma thatd cannot be abelian. Also, the Lie algebrad cannot be simple
other thansl2 (see [BDK, Example 8.6]). Here are two examples of pairs(d, θ) taken from
[BDK, Section 8.7].

Example 2.1. Let d = sl2 with the standard basis{e, f, h}, and letθ(h) = 1, θ(e) = θ(f) = 0.
Thens = −h, d̄ = span{e, f}, andω(e ∧ f) = −1.

Example 2.2. Let d be the Heisenberg Lie algebra with a basis{ai, bi, c} and the only nonzero
brackets[ai, bi] = c for 1 ≤ i ≤ N , and letθ(c) = 1, θ(ai) = θ(bi) = 0. Thens = −c,
d̄ = span{ai, bi}, andω(ai ∧ bi) = −1.

Let ω̄ be the restriction ofω to d̄∧ d̄. Sinceω̄ is nondegenerate, it defines a linear isomorphism
φ : d̄ → d̄∗, given byφ(a) = ιaω̄. The inverse mapφ−1 : d̄∗ → d̄ gives rise to a skew-symmetric
elementr ∈ d̄ ⊗ d̄ such thatφ−1(α) = (α ⊗ id)(r) for α ∈ d̄∗. Explicitly, let us choose a basis
{∂0, ∂1, . . . , ∂2N} of d such that∂0 = s and{∂1, . . . , ∂2N} is a basis of̄d, and let{x0, . . . , x2N}
be the dual basis ofd∗ so that〈xj, ∂k〉 = δj

k.
We setωij = ω(∂i ∧ ∂j), and we denote by(rij)i,j=1,...,2N the inverse matrix to(ωij)i,j=1,...,2N ,

so that

(2.12)
2N∑
j=1

rijωjk = δi
k , i, k = 1, . . . , 2N .

Then

(2.13) r =
2N∑

i,j=1

rij∂i ⊗ ∂j =
2N∑
i=1

∂i ⊗ ∂i = −
2N∑
i=1

∂i ⊗ ∂i ,
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where

(2.14) ∂i =
2N∑
j=1

rij∂j , ω(∂i ∧ ∂k) = δi
k for i, k = 1, . . . , 2N .

We also have

(2.15) ω(∂i ∧ ∂j) = 〈xi, ∂j〉 = −rij = rji .

Recall that a basis{∂1, . . . , ∂2N} of d̄ is calledsymplecticiff it satisfies

(2.16) ω(∂i ∧ ∂i+N) = 1 = −ω(∂i+N ∧ ∂i) , ω(∂i ∧ ∂j) = 0 for |i− j| 6= N .

In this case we have

(2.17) ∂i = −∂i+N , ∂i+N = ∂i , i = 1, . . . , N ,

which implies that

(2.18) r =
N∑

i=1

(∂i+N ⊗ ∂i − ∂i ⊗ ∂i+N) .

Note that, by (2.3),

(2.19) θ = −x0 , ω =
1

2

2N∑
i,j=1

ωijx
i ∧ xj ,

and when the basis{∂1, . . . , ∂2N} of d̄ is symplectic, we have

(2.20) ω =
N∑

i=1

xi ∧ xi+N .

2.3. The Lie algebrassp d̄ and csp d̄. In this subsection we continue to use the notation from
the previous one. In particular, recall that{∂0, . . . , ∂2N} is a basis ofd and{x0, . . . , x2N} is the
dual basis ofd∗, while restriction to nonzero indices gives dual bases ofd̄ andd̄∗.

We will identify End d̄ with d̄ ⊗ d̄∗ as a vector space. In more detail, the elementary matrix
ej

i ∈ End d̄ is identified with the element∂i ⊗ xj ∈ d̄ ⊗ d̄∗, whereej
i (∂k) = δj

k∂i. Notice that
(∂ ⊗ x)(∂′) = 〈x, ∂′〉∂, so that the composition(∂ ⊗ x) ◦ (∂′⊗ x′) equals〈x, ∂′〉∂ ⊗ x′. We will
adopt a raising index notation for elements ofEnd d̄ as well, so that

(2.21) eij = ∂i ⊗ xj =
2N∑
k=1

rikej
k , i 6= 0 .

Definition 2.1. We denote bysp d̄ = sp(d̄, ω̄) the Lie algebra of allA ∈ gl d̄ such thatA · ω̄ = 0.

Since the2-form ω̄ is nondegenerate, the Lie algebrasp d̄ is isomorphic to thesymplectic
Lie algebrasp2N , and in particular it is simple. It will be sometimes convenient to embedsp d̄
in gl d by identifying gl d̄ with a subalgebra ofgl d. We will also consider the Lie subalgebra
csp d̄ = sp d̄⊕ kI ′ of gl d, where

(2.22) I ′ = 2e00 +
2N∑
i=1

ei
i ∈ gl d .

Note thatcsp d̄ is a trivial extension ofsp d̄ by the central idealkI ′.

Lemma 2.2. We have

(2.23) ej
k · θ = δk0 x

j , ej
0 · ω = 0 , eij · ω = xi ∧ xj , i 6= 0 .

In particular,A · θ = A · ω = 0 for all A ∈ sp d̄ and

(2.24) I ′ · θ = −2θ , I ′ · ω = −2ω , I ′ · xi = −xi , i 6= 0 .



IRREDUCIBLE MODULES OVER FINITE SIMPLE LIE PSEUDOALGEBRAS II 7

Proof. One can deduce from (2.7) thatej
k · xi = −δi

kx
j. Then the first two equations in (2.23)

are immediate from (2.19) and (2.8). To check the third one, we observe that

ej
k · ω =

2N∑
i=1

ωkix
i ∧ xj , k 6= 0

and then apply (2.21). Finally, (2.24) can be deduced from (2.22) and the above formulas.�

Corollary 2.1. The elements

(2.25) f ij = −1

2
(eij + eji) = f ji , 1 ≤ i ≤ j ≤ 2N

form a basis ofsp d̄.

Recalling that〈xi, ∂j〉 = −rij = rji, we find

(2.26) eij ◦ ekl = rkjeil,

so that

(2.27) [eij, ekl] = rkjeil − rilekj

and

(2.28) [f ij, fkl] =
1

2

(
rikf jl + rilf jk + rjkf il + rjlf ik

)
.

Let us also introduce the notation

(2.29) f j
i =

2N∑
a=1

ωiaf
aj, fij =

2N∑
a,b=1

ωiaωjbf
ab .

Lemma 2.3. (i) For everyi = 1, . . . , 2N the elements

(2.30) hi = −2f i
i , ei = fii, fi = −f ii

constitute a standardsl2-triple.
(ii) The element

(2.31) −
2N∑

i,j=1

fijf
ij ∈ U(sp d̄)

equals the Casimir element corresponding to the invariant bilinear form normalized by the con-
dition that the square length of long roots is2.

Proof. (i) We have:

[f i
i , f

ii] =
2N∑
a=1

[ωiaf
ai, f ii] =

2N∑
a=1

ωiar
aif ii = f ii,

and similarly

[f i
i , fii] =

2N∑
a,b,c=1

[ωiaf
ai, ωibωicf

bc]

=
1

2

2N∑
a,b,c=1

ωiaωibωic(r
abf ic + racf ib + ribfac + ricfab)

=
1

2

2N∑
a,b,c=1

(δb
iωibωicf

ic + δc
iωicωibf

ib − ωibr
biωiaωicf

ac − ωicr
ciωiaωibf

ab) = −fii .
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Finally,

[f ii, fii] = [f ii,

2N∑
a,b=1

ωiaωibf
ab]

=
2N∑

a,b=1

ωiaωib(r
iaf ib + ribf ia)

= −
2N∑

a,b=1

ωiar
aiωibf

ib + ωibr
biωiaf

ia = −2f i
i ,

proving part (i).
(ii) Using (2.25) and (2.26), we compute:

fijf
kl =

2N∑
a,b=1

ωiaωjbf
abfkl

=
1

4

2N∑
a,b=1

ωiaωjb(r
kbeal + rlbeak + rkaebl + rlaebk) .

Since by (2.21),tr eij = rij = −rji, we obtain

tr fijf
kl =

1

2

2N∑
a,b=1

ωiaωjb(r
kbral + rlbrak) = −1

2
(δl

iδ
k
j + δk

i δ
l
j) .

The trace form is bilinear, symmetric, invariant under the adjoint action, and gives square length
2 for long roots ofsp d̄ (see, e.g., [FH, Lecture 16]). This proves part (ii). �

The above lemma turns out to be particularly useful when the basis{∂i} of d̄ is symplectic
(see (2.16)). In this case one has

(2.32) hi = ei
i − eN+i

N+i , i = 1, . . . , N ;

hence{hi}i=1,...,N is a basis for the diagonal Cartan subalgebra ofsp d̄ (cf. [FH, Lecture 16]).
Following the notation of [OV], we denote byR(λ) the irreduciblesp d̄-module with highest

weightλ. Recall that the highest weight of the vector representationd̄ is the fundamental weight
π1, and that

(2.33)
∧n

d̄ ' R(πn)⊕R(πn−2)⊕R(πn−4)⊕ · · · , 0 ≤ n ≤ N ,

whereπn are the fundamental weights and we setR(π0) = k, R(πn) = {0} if n < 0 or n > N .
The following facts are standard (see, e.g., [OV], Reference Chapter, Table 5).

Lemma 2.4. With the above notation, we have:

R(πn)⊗R(π1) ' R(πn + π1)⊕R(πn−1)⊕R(πn+1) ,

dimR(πn + π1) > dimR(πn) , 1 ≤ n ≤ N .

Furthermore, the Casimir element(2.31)acts onR(πn) as scalar multiplication byn(2N + 2−
n)/2.

2.4. Bases and filtrations ofU(d) andU(d)∗. Let d be a Lie algebra of dimension2N +1 with
a basis{∂0, ∂1, . . . , ∂2N}, as in Section 2.2. Then its universal enveloping algebraH = U(d) has
a basis

(2.34) ∂(I) = ∂i0
0 · · · ∂

i2N
2N /i0! · · · i2N ! , I = (i0, . . . , i2N) ∈ Z2N+1

+ .
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Recall that the coproduct∆: H → H ⊗H is a homomorphism of associative algebras defined
by ∆(∂) = ∂ ⊗ 1 + 1⊗ ∂ for ∂ ∈ d. Then it is easy to see that

(2.35) ∆(∂(I)) =
∑

J+K=I

∂(J) ⊗ ∂(K).

The canonical increasing filtration ofU(d) is given by

(2.36) Fp U(d) = spank{∂(I) | |I| ≤ p} , where |I| = i0 + · · ·+ i2N ,

and it does not depend on the choice of basis ofd. This filtration is compatible with the structure
of a Hopf algebra (see, e.g., [BDK, Section 2.2] for more details). We have:F−1H = {0},
F0H = k, F1H = k⊕ d.

It is also convenient to define a different filtration ofU(d), called thecontact filtration:

(2.37) F′p U(d) = spank{∂(I) | |I|′ ≤ p} , where |I|′ = 2i0 + i1 + · · ·+ iN−1 .

This filtration is also compatible with the Hopf algebra structure onU(d), and we haveF′0H =
k, F′1H = k ⊕ d̄, F′2H ⊃ k ⊕ d = F1H. It is easy to see that the two filtrations ofH are
equivalent.

The dualX = H∗ := Homk(H,k) is a commutative associative algebra. Define elements
xI ∈ X by 〈xI , ∂

(J)〉 = δJ
I , where, as usual,δJ

I = 1 if I = J andδJ
I = 0 if I 6= J . Then, by

(2.35), we havexJxK = xJ+K and

(2.38) xI = (x0)i0 · · · (x2N)i2N , I = (i0, . . . , i2N) ∈ Z2N+1
+ ,

where

(2.39) xi = xεi
, εi = (0, . . . , 0, 1

i
, 0, . . . , 0) , i = 0, . . . , 2N .

Therefore,X can be identified with the algebraO2N+1 = k[[t0, t1, . . . , t2N ]] of formal power
series in2N + 1 indeterminates.

There are left and right actions ofd onX by derivations given by

〈∂x, f〉 = −〈x, ∂f〉 ,(2.40)

〈x∂, f〉 = −〈x, f∂〉 , ∂ ∈ d, x ∈ X, f ∈ H ,(2.41)

where∂f andf∂ are products inH. These two actions coincide only when the Lie algebrad is
abelian. The difference∂x− x∂ gives the coadjoint action of∂ ∈ d onx ∈ X.

Let FpX = (FpH)⊥ be the set of elements fromX = H∗ that vanish onFpH. Then{FpX}
is a decreasing filtration ofX called thecanonical filtration. It has the properties:

F−1X = X , X/F0X ' k , F0X/F1X ' d∗ ,(2.42)

(FnX)(FpX) ⊂ Fn+p+1X , d(FpX) ⊂ Fp−1X , (FpX)d ⊂ Fp−1X .(2.43)

Note thatF0X is the unique maximal ideal ofX, andFpX = (F0X)p+1. We define a topology
of X by considering{FpX} as a fundamental system of neighborhoods of0. We will always
considerX with this topology, whileH andd with the discrete topology. ThenX is a linearly
compact algebra (see [BDK, Chapter 6]), and the left and right actions ofd on it are continuous
(see (2.43)).

Similar statements hold for the filtrationF′pX = (F′pH)⊥, namely:

(F′nX)(F′pX) ⊂ F′n+p+1X , d̄(F′pX) ⊂ F′p−1X , (F′pX)d̄ ⊂ F′p−1X ,(2.44)

∂0(F
′
pX) ⊂ F′p−2X , (F′pX)∂0 ⊂ F′p−2X .(2.45)

We will call {F′pX} thecontact filtration. It is equivalent to the canonical filtration{FpX}.
We can considerxi as elements ofd∗; then{xi} is a basis ofd∗ dual to the basis{∂i} of d, i.e.,

〈xi, ∂j〉 = δi
j. Let ckij be the structure constants ofd in the basis{∂i}, so that[∂i, ∂j] =

∑
ckij∂k.
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Then we have the following formulas for the left and right actions ofd onX (see, e.g., [BDK1,
Lemma 2.2]):

∂ix
j = −δj

i −
∑
k<i

cjikx
k mod F1X ,(2.46)

xj∂i = −δj
i +

∑
k>i

cjikx
k mod F1X .(2.47)

3. LIE PSEUDOALGEBRAS ANDTHEIR REPRESENTATIONS

In this section we review the definitions and results about Lie pseudoalgebras from [BDK,
BDK1], which will be needed in the paper.

3.1. Hopf algebra notations. Let H be a cocommutative Hopf algebra with a coproduct∆, a
counitε, and an antipodeS. We will use the following notation (cf. [Sw]):

∆(h) = h(1) ⊗ h(2) = h(2) ⊗ h(1) ,(3.1)

(∆⊗ id)∆(h) = (id⊗∆)∆(h) = h(1) ⊗ h(2) ⊗ h(3) ,(3.2)

(S ⊗ id)∆(h) = h(−1) ⊗ h(2) , h ∈ H .(3.3)

Then the axioms of antipode and counit can be written as follows:

h(−1)h(2) = h(1)h(−2) = ε(h),(3.4)

ε(h(1))h(2) = h(1)ε(h(2)) = h,(3.5)

while the fact that∆ is a homomorphism of algebras translates as:

(3.6) (fg)(1) ⊗ (fg)(2) = f(1)g(1) ⊗ f(2)g(2), f, g ∈ H.

Eqs. (3.4), (3.5) imply the following useful relations:

(3.7) h(−1)h(2) ⊗ h(3) = 1⊗ h = h(1)h(−2) ⊗ h(3).

The following lemma, which follows from [BDK, Lemma 2.3], plays an important role in the
paper.

Lemma 3.1. For anyH-moduleV , the linear maps

H ⊗ V → (H ⊗H)⊗H V , h⊗ v 7→ (h⊗ 1)⊗H v

and
H ⊗ V → (H ⊗H)⊗H V , h⊗ v 7→ (1⊗ h)⊗H v

are isomorphisms of vector spaces.

The dualX = H∗ := Homk(H,k) becomes a commutative associative algebra under the
product defined by

(3.8) 〈xy, h〉 = 〈x, h(1)〉〈yh(2)〉 , h ∈ H, x, y ∈ X .

X admits left and right actions ofH, given by (cf. (2.40), (2.41)):

〈hx, f〉 = 〈x, S(h)f〉 ,(3.9)

〈xh, f〉 = 〈x, fS(h)〉 , h, f ∈ H, x, y ∈ X .(3.10)

They have the following properties:

h(xy) = (h(1)x)(h(2)y) ,(3.11)

(xy)h = (xh(1))(yh(2)) ,(3.12)

h(xg) = (hx)g, h, g ∈ H, x, y ∈ X.(3.13)
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3.2. Lie pseudoalgebras and their representations.Let us recall the definition of a Lie pseudo-
algebra from [BDK, Chapter 3]. Apseudobracketon a leftH-moduleL is anH-bilinear map

(3.14) L⊗ L→ (H ⊗H)⊗H L , a⊗ b 7→ [a ∗ b] ,
where we use the comultiplication∆: H → H ⊗ H to define(H ⊗ H) ⊗H L. We extend the
pseudobracket (3.14) to maps(H⊗2⊗HL)⊗L→ H⊗3⊗HL andL⊗(H⊗2⊗HL) → H⊗3⊗HL
by letting:

[(h⊗H a) ∗ b] =
∑

(h⊗ 1) (∆⊗ id)(gi)⊗H ci ,(3.15)

[a ∗ (h⊗H b)] =
∑

(1⊗ h) (id⊗∆)(gi)⊗H ci ,(3.16)

whereh ∈ H⊗2, a, b ∈ L, and

[a ∗ b] =
∑

gi ⊗H ci with gi ∈ H⊗2, ci ∈ L.(3.17)

A Lie pseudoalgebrais a leftH-module equipped with a pseudobracket satisfying the follow-
ing skewsymmetry and Jacobi identity axioms:

[b ∗ a] = −(σ ⊗H id) [a ∗ b] ,(3.18)

[[a ∗ b] ∗ c] = [a ∗ [b ∗ c]]− ((σ ⊗ id)⊗H id) [b ∗ [a ∗ c]] .(3.19)

Here,σ : H ⊗ H → H ⊗ H is the permutation of factors, and the compositions[[a ∗ b] ∗ c],
[a ∗ [b ∗ c]] are defined using (3.15), (3.16).

The definition of a module over a Lie pseudoalgebras is an obvious modification of the above.
A moduleover a Lie pseudoalgebraL is a leftH-moduleV together with anH-bilinear map

(3.20) L⊗ V → (H ⊗H)⊗H V , a⊗ v 7→ a ∗ v
that satisfies (a, b ∈ L, v ∈ V )

(3.21) [a ∗ b] ∗ v = a ∗ (b ∗ v)− ((σ ⊗ id)⊗H id) (b ∗ (a ∗ v)) .
An L-moduleV will be calledfinite if it is finitely generated as anH-module.

Remark3.1. If V is a torsion module overH, then the action ofL onV is trivial, i.e.,L ∗ V =
{0} (see [BDK, Corollary 10.1]). Notice that this holds wheneverV is finite dimensional and
H = U(d) with dim d > 0.

Some of the most important Lie pseudoalgebras are described in the following examples (see
[BDK]).

Example 3.1. For a Lie algebrag, the current Lie pseudoalgebraCur g = H ⊗ g has an action
of H by left multiplication on the first tensor factor and a pseudobracket

(3.22) [(f ⊗ a) ∗ (g ⊗ b)] = (f ⊗ g)⊗H (1⊗ [a, b]) .

Example 3.2. Let H = U(d) be the universal enveloping algebra of a Lie algebrad. Then
W (d) = H ⊗ d has the structure of a Lie pseudoalgebra with the pseudobracket

[(f ⊗ a) ∗ (g ⊗ b)] = (f ⊗ g)⊗H (1⊗ [a, b])

− (f ⊗ ga)⊗H (1⊗ b) + (fb⊗ g)⊗H (1⊗ a) .
(3.23)

The formula

(3.24) (f ⊗ a) ∗ g = −(f ⊗ ga)⊗H 1

defines the structure of aW (d)-module onH.

Example 3.3. The semidirect sumW (d) n Cur g containsW (d) andCur g as subalgebras and
has the pseudobracket

(3.25) [(f ⊗ a) ∗ (g ⊗ b)] = −(f ⊗ ga)⊗H (1⊗ b)

for f, g ∈ H = U(d), a ∈ d, b ∈ g (cf. (3.24)).
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Let U andV be twoL-modules. A mapβ : U → V is ahomomorphismof L-modules ifβ is
H-linear and satisfies

(3.26)
(
(id⊗ id)⊗H β

)
(a ∗ u) = a ∗ β(u) , a ∈ L , u ∈ U .

A subspaceW ⊂ V is anL-submoduleif it is anH-submodule andL∗W ⊂ (H⊗H)⊗HW ,
whereL ∗W is the linear span of all elementsa ∗ w with a ∈ L andw ∈ W . A submodule
W ⊂ V is calledproper if W 6= V . An L-moduleV is irreducible (or simple) if it does not
contain any nonzero properL-submodules andL ∗ V 6= {0}.

Remark3.2. (i) Let V be a module over a Lie pseudoalgebraL and letW be anH-submodule
of V . By Lemma 3.1, for eacha ∈ L, v ∈ V , we can write

(3.27) a ∗ v =
∑

I∈Z2N+1
+

(∂(I) ⊗ 1)⊗H v′I , v′I ∈ V ,

where the elementsv′I are uniquely determined bya andv. ThenW ⊂ V is anL-submodule iff
it has the property that allv′I ∈ W wheneverv ∈ W . This follows again from Lemma 3.1.

(ii) Similarly, for eacha ∈ L, v ∈ V , we can write

(3.28) a ∗ v =
∑

I∈Z2N+1
+

(1⊗ ∂(I))⊗H v′′I , v′′I ∈ V ,

andW is anL-submodule iffv′′I ∈ W wheneverv ∈ W .

3.3. Twistings of representations.LetL be a Lie pseudoalgebra overH = U(d), and letΠ be
any finite-dimensionald-module. In [BDK1, Section 4.2], we introduced a covariant functorTΠ

from the category of finiteL-modules to itself. In the present paper we will use it only in the
special case when all the modules are free asH-modules. For a finiteL-moduleV = H ⊗ V0,
which is free overH, we choose ak-basis{vi} of V0, and write the action ofL onV in the form

(3.29) a ∗ (1⊗ vi) =
∑

j

(fij ⊗ gij)⊗H (1⊗ vj)

wherea ∈ L, fij, gij ∈ H.

Definition 3.1. Thetwistingof V by Π is theL-moduleTΠ(V ) = H ⊗Π⊗V0, whereH acts by
a left multiplication on the first factor and

(3.30) a ∗ (1⊗ u⊗ vi) =
∑

j

(
fij ⊗ gij(1)

)
⊗H

(
1⊗ gij(−2)u⊗ vj

)
for a ∈ L, u ∈ Π.

The facts thatTΠ(V ) is anL-module and that the action ofL on it is independent of the choice
of basis ofV0 follow from [BDK1, Proposition 4.2]. Let us now recall howTΠ is defined on
homomorphisms ofL-modules. Consider two finiteL-modules,V = H ⊗V0 andV ′ = H ⊗V ′

0 .
Choosek-bases{vi} and{v′i} of V0 andV ′

0 , respectively. For a homomorphism ofL-modules
β : V → V ′, write

(3.31) β(1⊗ vi) =
∑

j

hij ⊗ v′j , hij ∈ H .

ThenTΠ(β) : TΠ(V ) → TΠ(V ′) is given by

(3.32) TΠ(β)(1⊗ u⊗ vi) =
∑

j

hij(1) ⊗ hij(−2)u⊗ v′j .

Thanks to [BDK1, Proposition 4.3], the mapTΠ(β) is a homomorphism ofL-modules, indepen-
dent of the choice of bases.

Note thatTΠ can be defined on the category of (free)H-modules. The next result concerns
only theH-module structure.
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Proposition 3.1. (i) The functorTΠ is exact on freeH-modules, i.e., ifV
β−→ V ′ β′−→ V ′′ is a short

exact sequence of finite freeH-modules, then the sequenceTΠ(V )
TΠ(β)−−−→ TΠ(V ′)

TΠ(β′)−−−→ TΠ(V ′′)
is exact.

(ii) Let β : V → V ′ be a homomorphism between two freeH-modules. If the image ofβ has
a finite codimension overk, then the image ofTΠ(β) has a finite codimension inTΠ(V ′).

Proof. Consider the linear map

F : H ⊗ Π → H ⊗ Π , h⊗ u 7→ h(1) ⊗ h(−2)u ,

which was introduced in the proof of [BDK1, Lemma 5.2]. From (3.7) it is easy to see thatF is
a linear isomorphism and

F−1(h⊗ u) = h(1) ⊗ h(2)u , h ∈ H, u ∈ Π .

SinceF is a linear isomorphism, both statements of the proposition are true if and only if they
are true for(F−1 ⊗ id)TΠ(β) instead ofTΠ(β). In this case, they follow easily from the identity

(F−1 ⊗ id)TΠ(β)(1⊗ u⊗ vi) =
∑

j

hij ⊗ u⊗ v′j = σ12

(
u⊗ β(1⊗ vi)

)
,

whereσ12 is the transposition of the first and second factors. �

3.4. Annihilation algebras of Lie pseudoalgebras.For a Lie pseudoalgebraL, we setA(L) =
X ⊗H L, where as beforeX = H∗, and we define a Lie bracket onL = A(L) by the formula
(cf. [BDK, Eq. (7.2)]):

(3.33) [x⊗H a, y ⊗H b] =
∑

(xfi)(ygi)⊗H ci , if [a ∗ b] =
∑

(fi ⊗ gi)⊗H ci .

ThenL is a Lie algebra, called theannihilation algebraof L (see [BDK, Section 7.1]). We define
a left action ofH onL in the obvious way:

(3.34) h(x⊗H a) = hx⊗H a.

In the caseH = U(d), the Lie algebrad acts onL by derivations. The semidirect sum̃L = d nL
is called theextended annihilation algebra.

Similarly, if V is a module over a Lie pseudoalgebraL, we letA(V ) = X ⊗H V , and we
define an action ofL = A(L) onA(V ) by:

(3.35) (x⊗H a)(y ⊗H v) =
∑

(xfi)(ygi)⊗H vi , if a ∗ v =
∑

(fi ⊗ gi)⊗H vi .

We also define anH-action onA(V ) similarly to (3.34). ThenA(V ) is an L̃-module [BDK,
Proposition 7.1].

WhenL is a finiteH-module, we can define a filtration onL as follows (see [BDK, Sec-
tion 7.4] for more details). We fix a finite-dimensional vector subspaceL0 of L such that
L = HL0, and set

(3.36) Fp L = spank{x⊗H a ∈ L | x ∈ FpX , a ∈ L0} , p ≥ −1 .

The subspacesFp L constitute a decreasing filtration ofL, satisfying

(3.37) [Fn L,Fp L] ⊂ Fn+p−` L , d(Fp L) ⊂ Fp−1 L ,
where` is an integer depending only on the choice ofL0. Notice that the filtration just defined
depends on the choice ofL0, but the topology that it induces does not [BDK, Lemma 7.2]. We
setLp = Fp+` L, so that[Ln,Lp] ⊂ Ln+p. In particular,L0 is a subalgebra ofL.

We also define a filtration of̃L by letting F−1 L̃ = L̃, Fp L̃ = Fp L for p ≥ 0, and we set
L̃p = Fp+` L̃. An L̃-moduleV is calledconformalif everyv ∈ V is killed by someLp; in other
words, ifV is a continuous̃L-module when endowed with the discrete topology.

The next two results from [BDK] play a crucial role in our study of representations (see
[BDK], Propositions 9.1 and 14.2, and Lemma 14.4).
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Proposition 3.2. Any moduleV over the Lie pseudoalgebraL has a natural structure of a
conformalL̃-module, given by the action ofd onV and by

(3.38) (x⊗H a) · v =
∑

〈xfi, gi(1)〉 gi(2)vi , if a ∗ v =
∑

(fi ⊗ gi)⊗H vi

for a ∈ L, x ∈ X, v ∈ V .
Conversely, any conformal̃L-moduleV has a natural structure of anL-module, given by

(3.39) a ∗ v =
∑

I∈Z2N+1
+

(
S(∂(I))⊗ 1

)
⊗H

(
(xI ⊗H a) · v

)
.

Moreover,V is irreducible as anL-module iff it is irreducible as añL-module.

Lemma 3.2. LetL be a finite Lie pseudoalgebra andV be a finiteL-module. Forp ≥ −1 − `,
let

kerp V = {v ∈ V | Lp v = 0},
so that, for example,ker−1−` V = kerV andV =

⋃
kerp V . Then all vector spaceskerp V/ kerV

are finite dimensional. In particular, ifkerV = {0}, then every vectorv ∈ V is contained in a
finite-dimensional subspace invariant underL0.

4. PRIMITIVE L IE PSEUDOALGEBRAS OFTYPEK

Here we introduce the main objects of our study: the Lie pseudoalgebraK(d, θ) and its anni-
hilation algebraK (see [BDK, Chapter 8]). We will review the (unique) embedding ofK(d, θ)
intoW (d) and the induced embedding of annihilation algebras. Throughout this section,d will
be a Lie algebra of odd dimension2N + 1, andθ ∈ d∗ will be a contact form, as in Section 2.2.
As before, letH = U(d).

4.1. Definition of K(d, θ). Recall the elementsr ∈ d ⊗ d ands ∈ d introduced in Section 2.2
and notice thatr is skew-symmetric. It was shown in [BDK, Lemma 8.7] thatr ands satisfy the
following equations:

[r,∆(s)] = 0 ,(4.1)

([r12, r13] + r12s3) + cyclic = 0 ,(4.2)

where we use the standard notationr12 = r⊗ 1, s3 = 1⊗ 1⊗ s, etc., and “cyclic” denotes terms
obtained by applying the two nontrivial cyclic permutations.

Definition 4.1. The Lie pseudoalgebraK(d, θ) is defined as a freeH-module of rank one,He,
with the following pseudobracket

(4.3) [e ∗ e] = (r + s⊗ 1− 1⊗ s)⊗H e .

The fact thatK(d, θ) is a Lie pseudoalgebra follows from (4.1), (4.2); see [BDK, Section 4.3].
By [BDK, Lemma 8.3], there is an injective homomorphism of Lie pseudoalgebras

(4.4) ι : K(d, θ) → W (d) , e 7→ −r + 1⊗ s ,

whereW (d) = H ⊗ d is from Example 3.2. Moreover, this is the unique nontrivial homomor-
phism fromK(d, θ) toW (d) [BDK, Theorem 13.7]. From now on, we will often identifyK(d, θ)
with its image inW (d) and will write simplye instead ofι(e). In the notation of Section 2.2, we
have the formula

(4.5) e = 1⊗ ∂0 −
2N∑
i=1

∂i ⊗ ∂i .
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4.2. Annihilation algebra of W (d). LetW = A(W (d)) be the annihilation algebra of the Lie
pseudoalgebraW (d) (see Section 3.4). SinceW (d) = H ⊗ d, we haveW = X ⊗H (H ⊗ d) '
X ⊗ d, so we can identifyW with X ⊗ d. Then the Lie bracket inW becomes (x, y ∈ X,
a, b ∈ d):

(4.6) [x⊗ a, y ⊗ b] = xy ⊗ [a, b]− x(ya)⊗ b+ (xb)y ⊗ a ,

while the left action ofH onW is given by:h(x ⊗ a) = hx ⊗ a. The Lie algebrad acts onW
by derivations. We denote bỹW the extended annihilation algebrad nW, where

(4.7) [∂, x⊗ a] = ∂x⊗ a , ∂, a ∈ d, x ∈ X .

We chooseL0 = k ⊗ d as a subspace ofW (d) such thatW (d) = HL0, and we obtain the
following filtration ofW:

(4.8) Wp = FpW = FpX ⊗H L0 ≡ FpX ⊗ d , p ≥ −1 .

This is a decreasing filtration ofW, satisfyingW−1 = W and [Wi,Wj] ⊂ Wi+j. Note that
W/W0 ' k⊗ d ' d andW0/W1 ' d∗ ⊗ d.

Lemma 4.1([BDK1]) . For x ∈ F0X, a ∈ d, the map

(4.9) (x⊗ a) mod W1 7→ −a⊗ (x mod F1X)

is a Lie algebra isomorphism fromW0/W1 to d⊗d∗ ' gl d. Under this isomorphism, the adjoint
action ofW0/W1 onW/W0 coincides with the standard action ofgl d ond.

The action (3.24) ofW (d) onH induces a corresponding action of the annihilation algebraW
onA(H) ≡ X:

(4.10) (x⊗ a)y = −x(ya), x, y ∈ X, a ∈ d.

Sinced acts onX by continuous derivations, the Lie algebraW acts onX by continuous deriva-
tions. The isomorphismX ' O2N+1 from Section 2.4 induces a Lie algebra homomorphism
W → W2N+1 = DerO2N+1. In fact, this is an isomorphism compatible with the filtrations
[BDK1, Proposition 3.1]. Recall that the canonical filtration of the Lie–Cartan algebraW2N+1 is
given by

(4.11) FpW2N+1 =
{ 2N∑

i=0

fi
∂

∂ti

∣∣∣ fi ∈ FpO2N+1

}
,

whereFpO2N+1 is the(p+ 1)-st power of the maximal ideal(t0, . . . , t2N) of O2N+1.
The Euler vector field

(4.12) E :=
2N∑
i=0

ti
∂

∂ti
∈ F0W2N+1

gives rise to a grading ofO2N+1 and a gradingW2N+1;j (j ≥ −1) of W2N+1 such that

(4.13) FpW2N+1 =
∏
j≥p

W2N+1;j , FpW2N+1/Fp+1W2N+1 ' W2N+1;p .

We define thecontact filtrationof W by (see (2.37)):

(4.14) W ′
p = F′pW = (F′pX ⊗ d̄)⊕ (F′p+1X ⊗ ks) .

Introduce thecontact Euler vector field

(4.15) E ′ := 2t0
∂

∂t0
+

2N∑
i=1

ti
∂

∂ti
∈ F0W2N+1 ∩ F′0W2N+1 .
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Then the adjoint action ofE ′ decomposesW2N+1 as a direct product of eigenspacesW ′
2N+1;j

(j ≥ −1), on whichadE ′ acts as multiplication byj. One defines

(4.16) F′pW2N+1 =
∏
j≥p

W ′
2N+1;j

so that

(4.17) F′pW2N+1/F′p+1W2N+1 ' W ′
2N+1;p .

The filtration{F′pW2N+1} induces onW2N+1 the same topology as the filtration{FpW2N+1}.

4.3. Annihilation algebra of K(d, θ). We define a filtration on the annihilation algebraK =
A(K(d, θ)) by

(4.18) K′
p = F′pK = F′p+1X ⊗H e , p ≥ −2 .

This filtration is equivalent to the one defined in Section 3.4 by choosingL0 = ke, because the
filtrations{F′pX} and{FpX} are equivalent.

Recall that the canonical injectionι of the subalgebraK(d, θ) in W (d) induces an injective
Lie algebra homomorphismA(ι) : K → W that allows us to viewK as a subalgebra ofW. In
more detail, by (4.5) we have

(4.19) A(ι)(x⊗H e) = x⊗ ∂0 −
2N∑
i=1

x∂i ⊗ ∂i , x ∈ X .

Lemma 4.2. The contact filtrations ofK andW are compatible, i.e., one hasK′
p = K ∩W ′

p. In
particular, [K′

m,K′
n] ⊂ K′

m+n.

Proof. Any element ofK′
p has the formx ⊗H e with x ∈ F′p+1X. Then, by (4.19), (4.14) and

(2.44), its image inW lies inW ′
p. Therefore,K′

p ⊂ K ∩W ′
p. The opposite inclusion is proved

similarly. �

Composing the isomorphismW → W2N+1 with the injectionK → W, one obtains a map
φ : K → W2N+1, whose image however does not coincide withK2N+1 ⊂ W2N+1. Recall that
K2N+1 is the Lie subalgebra ofW2N+1 consisting of vector fields preserving the standard contact
form dt0 +

∑N
i=1 t

idtN+i up to multiplication by a function, i.e., by an element ofO2N+1 (see
[BDK, Chapter 6] and the references therein).

Proposition 4.1.There exists a ring automorphismψ of O2N+1 such that the induced Lie algebra
automorphismψ of W2N+1 satisfiesφ(K) = ψ(K2N+1).

Proof. The proof is similar to that of [BDK1, Proposition 3.6]. The imageφ(K) is the Lie algebra
of all vector fields preserving a certain contact form up to multiplication by an element ofO2N+1

[BDK1, Proposition 8.3]. We can find a change of variables conjugating this contact form to the
standard contact formdt0 +

∑N
i=1 t

idtN+i. Hence, there exists an automorphismψ of O2N+1

such thatφ(K) = ψ(K2N+1). �

We will denote byE ′ the lifting toK of the contact Euler vector fieldE ′ ∈ K2N+1, that is
E ′ = φ−1ψ(E ′).

Remark4.1. The adjoint action ofE ′ onK is semisimple, as it translates the semisimple action
of E ′ onK2N+1. As the automorphismψ can be chosen so that the induced homomorphism on
the associated graded Lie algebra equals the identity, one can easily show that the adjoint action
of E ′ onK preserves eachK′

n and that it equals multiplication byn onK′
n/K′

n+1.
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4.4. The normalizer NK. It is well known that all derivations of the Lie–Cartan algebras of
typeW are inner. This fact was used in [BDK1, Section 3.3] to prove that the centralizer ofW
in W̃ consists of elements̃∂ (∂ ∈ d) so that the map∂ 7→ ∂̃ is an isomorphism of Lie algebras.
We have

(4.20) ∂̃ = ∂ + 1⊗ ∂ − ad ∂ mod W1, ∂ ∈ d ,

wheread ∂ is understood as an element ofgl d ' W0/W1.

Proposition 4.2. Elements̃∂ span a Lie subalgebrãd ⊂ K̃ isomorphic tod. The normalizerNK
of K′

p in K̃ coincides with̃d ⊕ K′
0 and is independent ofp ≥ 0. There is a decomposition as a

direct sum of subspaces̃K = d⊕NK.

Proof. Since all derivations ofK ' K2N+1 are inner, there exist elements∂̂ ∈ K̃ centralizingK
and such that̂∂ = ∂ mod K for ∂ ∈ d. Then∂̂ − ∂̃ ∈ W centralizesK, which implies∂̂ = ∂̃,
because the centralizer ofK in W is zero. Therefore, the centralizer ofK in K̃ coincides with
the centralizer̃d of W in W̃. The other statements follow as in [BDK1, Proposition 3.3]. �

The above proposition implies that for every∂ ∈ d the element̃∂ − ∂ ∈ W lies in the
subalgebraK, and hence it can be expressed as a Fourier coefficientx⊗H e for suitablex ∈ X.
In order to do so, let us compute the images of the first few Fourier coefficients ofe under the
identification ofK as a subalgebra ofW.

Lemma 4.3. The embeddingA(ι) : K →W identifies the following elements:

1⊗H e 7→ 1⊗ ∂0 ;(i)

xj ⊗H e 7→ 1⊗ ∂j + xj ⊗ ∂0 −
∑

0<i<k

cjikx
k ⊗ ∂i mod W ′

1 ∩W1 ;(ii)

x0 ⊗H e 7→ x0 ⊗ ∂0 −
∑

0<i<k

ωikx
k ⊗ ∂i mod W ′

1 ∩W1 ;(iii)

xixj ⊗H e 7→ 2f ij mod W1 , i, j 6= 0 ;(iv)

x0xj ⊗H e 7→ x0 ⊗ ∂j mod W ′
1 ∩W1 , j 6= 0 ;(v)

xixjxk ⊗H e 7→ 0 mod W ′
1 ∩W1 , i, j, k 6= 0 .(vi)

Proof. The proof is straightforward, using (4.19), (2.47), and (2.11). Note that elementsf ij ∈
gl d, defined in (2.25), need to be understood by means of the identificationgl d = W0/W1 given
in Lemma 4.1. �

Notice thatK (respectivelyK′
0, K′

1) is spanned overk by elements (i)-(vi) (resp. (iii)-(vi),
(v)-(vi)) moduloK′

2. Also,K′
2 ⊂ W ′

2 ⊂ W1, by Lemma 4.2 andF′2X ⊂ F1X, which follows
from F1H ⊂ F′2H.

In the proof of next proposition, we will use the following abelian Lie subalgebra ofgl d:

(4.21) c0 = x0 ⊗ d̄ = span{ei0}1≤i≤2N = span{e0i }1≤i≤2N ⊂ gl d .

Note that the semidirect sumc0 o csp d̄ ⊂ gl d is a Lie algebra containingc0 as an abelian ideal.

Proposition 4.3. We haveK′
0/K′

1 ' sp d̄⊕ kI ′ = csp d̄.

Proof. Since elements (iii)-(vi) in the previous lemma all lie inW0, andK′
2 ⊂ W1, we have

K′
0 ⊂ W0. MoreoverW1 ⊂ W0 is an ideal, so the inclusionK → W induces a well-defined Lie
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algebra homomorphismπ : K′
0 →W0/W1 ' gl d. Observe now that inW0/W1 one has

−I ′ = 2x0 ⊗ ∂0 +
2N∑
i=1

xi ⊗ ∂i

= 2x0 ⊗ ∂0 +
2N∑

i,j=1

ωijx
i ⊗ ∂j

= 2x0 ⊗H e+ 2
∑

0<i<j

ωijf
ij mod W1 .

(4.22)

As a consequence,I ′ ∈ gl d lies in the image ofπ. By Lemma 4.3,π is injective on the linear
span of elements (iii)-(v). The image ofπ equalsc0 o csp d̄, andπ maps the idealK′

1 ⊂ K′
0 onto

the idealc0 ⊂ c0 o csp d̄, so thatπ induces an isomorphism betweenK′
0/K′

1 andcsp d̄. �

Corollary 4.1. Elements̃∂ ∈ K̃ satisfy the following(j 6= 0):

∂̃0 − ∂0 = 1⊗H e− ad ∂0 mod K′
1 ,(4.23)

∂̃j − ∂j = xj ⊗H e−
(
ad ∂j + xj ⊗ ∂0 −

∑
0<i<k

cjikx
k ⊗ ∂i

)
mod K′

1 .(4.24)

Proof. Follows from (4.20), Lemma 4.3 and Propositions 4.2 and 4.3. �

The above two statements imply:

Corollary 4.2. Elements

(4.25) ad ∂0 , ad ∂j − ej
0 +

∑
0<i<k

cjike
ik , j 6= 0

lie in sp d̄.

Proof. Indeed, they must lie incsp d̄ but the matrix coefficient multiplyinge00 is zero in both
cases. �

Similarly to [BDK, BDK1], we will say that anNK-moduleV is conformalif K′
p acts trivially

on it for somep ≥ 1.

Proposition 4.4. The subalgebraK′
1 ⊂ NK acts trivially on any irreducible finite-dimensional

conformalNK-module. Irreducible finite-dimensional conformalNK-modules are in one-to-one
correspondence with irreducible finite-dimensional modules over the Lie algebraNK/K′

1 '
d⊕ csp d̄.

Proof. The proof is the same as in [BDK1, Proposition 3.4]. LetV be a finite-dimensional
irreducible conformalNK-module; then it is an irreducible module over the finite-dimensional
Lie algebrag = NK/K′

p = d̃ ⊕ (K′
0/K′

p) for somep ≥ 1. We apply [BDK1, Lemma 3.4]
for I = K′

1/K′
p and g0 = (kE ′ + K′

p)/K′
p. Note that by Lemma 4.2, one hasI ⊂ Rad g,

and [E ′,K′
p] ⊂ K′

p. Moreover, the adjoint action ofE ′ on K′
1 is invertible. Thus, the adjoint

action ofE ′ is injective onI, andI acts trivially onV . We can then takep = 1, in which case
g = d̃⊕ (K′

0/K′
1) ' d⊕ csp d̄. �

5. SINGULAR VECTORS ANDTENSORMODULES

We start this section by recalling an important class of modules over the Lie pseudoalgebra
W (d) called tensor modules. Restricting such modules toK(d, θ) leads us to the definition of
a tensor module overK(d, θ). By investigating singular vectors, we show that every irreducible
module is a homomorphic image of a tensor module. We continue to use the notation of Sec-
tion 2.
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5.1. Tensor modules forW (d). Consider a Lie algebrag with a finite-dimensional representa-
tion V0. Then the semidirect sum Lie pseudoalgebraW (d) n Cur g from Example 3.3 acts on
the freeH-moduleV = H ⊗ V0 as follows (see [BDK1, Remark 4.3]):

(5.1)
(
(f ⊗ a)⊕ (g ⊗ b)

)
∗ (h⊗ u) = −(f ⊗ ha)⊗H (1⊗ u) + (g ⊗ h)⊗H (1⊗ bu) ,

wheref, g, h ∈ H = U(d), a ∈ d, b ∈ g, u ∈ V0. This combines the usual action ofCur g onV
with theW (d)-action onH given by (3.24).

By [BDK1, Remark 4.6], there is an embedding of Lie pseudoalgebrasW (d) ↪→ W (d) n Cur(d⊕
gl d) given by

(5.2) 1⊗ ∂i 7→ (1⊗ ∂i)⊕
(
(1⊗ ∂i)⊕ (1⊗ ad ∂i +

∑
j

∂j ⊗ ej
i )

)
.

Composing this embedding with the above action (5.1) forg = d ⊕ gl d, we obtain aW (d)-
moduleV = H ⊗ V0 for every(d ⊕ gl d)-moduleV0. This moduleV is called atensor module
and denotedT (V0). The action ofW (d) on T (V0) is given explicitly by [BDK1, Eq. (4.30)],
which we reproduce here for convenience:

(1⊗ ∂i) ∗ (1⊗ u) = (1⊗ 1)⊗H (1⊗ (ad ∂i)u) +
∑

j

(∂j ⊗ 1)⊗H (1⊗ ej
iu)

− (1⊗ ∂i)⊗H (1⊗ u) + (1⊗ 1)⊗H (1⊗ ∂iu) .

(5.3)

If Π is a finite-dimensionald-module andV0 is a finite-dimensionalgl d-module, then their
exterior tensor productΠ � V0 is defined as the(d ⊕ gl d)-moduleΠ ⊗ V0, whered acts on the
first factor andgl d acts on the second one. Following [BDK1], in this case the tensor module
T (Π � V0) will also be denoted asT (Π, V0). Then

(5.4) T (Π, V0) = TΠ(T (k, V0)) ,

whereTΠ is the twisting functor from Definition 3.1.

5.2. Tensor modules forK(d, θ). We will identify K(d, θ) with a subalgebra ofW (d) via
embedding (4.4). ThenK(d, θ) = He wheree ∈ W (d) is given by (4.5). Introduce theH-linear
mapτ : W (d) → Cur gl d given by (cf. (5.2))

(5.5) τ(h⊗ ∂i) = h⊗ ad ∂i +
2N∑
j=0

h∂j ⊗ ej
i , h ∈ H .

Then the image ofe under the map (5.2) has the forme⊕ (e⊕ τ(e)).

Definition 5.1. We define a linear mapadsp : d → sp d̄ by adsp ∂0 = ad ∂0 and

(5.6) adsp ∂k = ad ∂k − ek
0 +

1

2

2N∑
i,j=1

ckije
ij , k 6= 0 .

Remark5.1. The fact that the image ofadsp is insidesp d̄ follows from Corollary 4.2 (cf. (2.25),
(4.25)). One can show thatadsp ∂k is obtained fromad ∂k by first restricting it tōd ⊂ d and then
projecting ontosp d̄. This implies that the mapadsp does not depend on the choice of basis.

Lemma 5.1. With the above notation, we have

(5.7) τ(e) = (id⊗ adsp)(e) +
1

2
∂0 ⊗ I ′ −

2N∑
i=1

∂i∂0 ⊗ ei0 +
2N∑

i,j=1

∂i∂j ⊗ f ij .
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Proof. Using (2.25) and theH-linearity of τ , we find fori 6= 0

τ(∂i ⊗ ∂i) = ∂i ⊗ ad ∂i +
2N∑
j=0

∂i∂j ⊗ eij

= ∂i ⊗ ad ∂i + ∂i∂0 ⊗ ei0 −
2N∑
j=1

∂i∂j ⊗ f ij +
1

2

2N∑
j=1

[∂i, ∂j]⊗ eij .

By (2.11) and (2.22), we have

(5.8) [∂i, ∂j] = ωij∂0 +
2N∑
k=1

ckij∂k , i, j 6= 0

and
2N∑

i,j=1

ωij∂0 ⊗ eij = −
2N∑
j=1

∂0 ⊗ ej
j = ∂0 ⊗ 2(e00 − I ′) .

The rest of the proof is straightforward. �

Recall the definition of the abelian subalgebrac0 ⊂ gl d given in (4.21).

Corollary 5.1. With the above notation, we have: τ(e) ∈ Cur(c0 o csp d̄).

Therefore, the image ofe under map (5.2) lies inW (d) n Cur g whereg := d⊕ (c0 o csp d̄).
Hence, every finite-dimensionalg-moduleV0 gives rise to aK(d, θ)-moduleH ⊗ V0 with an
action given by (5.1). An important special case is whenc0 acts trivially onV0. Sincec0 is an
ideal ing, having such a representation is equivalent to having a representation of the Lie algebra
d⊕ csp d̄ ' g/c0.

Definition 5.2. (i) Let V0 be a finite-dimensional representation ofd ⊕ csp d̄. Then the above
K(d, θ)-moduleH ⊗ V0 is called atensor moduleand will be denoted asT (V0).

(ii) Let V0 = Π � U , whereΠ is a finite-dimensionald-module andU is a finite-dimensional
csp d̄-module. Then the moduleT (V0) will also be denoted asT (Π, U).

(iii) Let V0 be as in part (ii), and assumeI ′ ∈ csp d̄ acts onU as multiplication by a scalar
c ∈ k. Then the moduleT (V0) will also be denoted asT (Π, U, c), and similarly thecsp d̄-module
structure onU will be denoted(U, c).

The action ofe ∈ K(d, θ) on a tensor moduleT (V0) = H ⊗ V0 is given explicitly by (cf.
(4.5), (5.1), (5.7)):

e ∗ (1⊗ u) = −e⊗H (1⊗ u) + (1⊗ 1)⊗H

(
1⊗ (∂0 + ad ∂0)u

)
−

2N∑
k=1

(∂k ⊗ 1)⊗H

(
1⊗ (∂k + adsp ∂k)u

)
+

1

2
(∂0 ⊗ 1)⊗H (1⊗ I ′u)

+
2N∑

i,j=1

(∂i∂j ⊗ 1)⊗H (1⊗ f iju) , u ∈ V0 .

(5.9)

Remark5.2. More generally, ifc0 does not act trivially onV0, the above action (5.9) is modified
by adding the term

−
2N∑
i=1

(∂i∂0 ⊗ 1)⊗H (1⊗ ei0u)

to the right-hand side (cf. Lemma 5.1).
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As in [BDK1], in the sequel it will be convenient to modify the above definition of tensor
module. LetR be a finite-dimensional(d ⊕ csp d̄)-module, with an action denoted asρR. We
equipR with the following modified action ofd⊕ csp d̄ (cf. [BDK1, Eqs. (6.7), (6.8)]):

∂u = (ρR(∂) + tr(ad ∂))u , ∂ ∈ d , u ∈ R ,
Au = (ρR(A)− trA)u , A ∈ csp d̄ , u ∈ R .

(5.10)

Note that, in fact,trA = 0 for A ∈ sp d̄ andtr I ′ = 2N + 2.

Definition 5.3. Let R be a finite-dimensional(d ⊕ csp d̄)-module with an actionρR. Then the
tensor moduleT (R), whereR is considered with the modified action (5.10), will be denoted
asV(R). As in Definition 5.2, we will also use the notationV(Π, U) andV(Π, U, c) when
R = Π � U andI ′ acts onU as multiplication by a scalarc.

The above definition can be made more explicit as follows:

V(Π, U, c) = T (Π⊗ ktr ad, U, c− 2N − 2) ,

T (Π, U, c) = V(Π⊗ k−tr ad, U, c+ 2N + 2) ,
(5.11)

where for a trace formχ ond we denote bykχ the corresponding1-dimensionald-module.

Remark5.3. (cf. [BDK1, Remark 6.2]). LetR be a finite-dimensional representation ofd⊕csp d̄,
or more generally, ofd⊕ (c0 o csp d̄). Using the mapπ from the proof of Proposition 4.3, whose
image isc0 o csp d̄, we endowR with an action ofNK = d̃ ⊕ K′

0. Moreover,c0 acts trivially
onR if and only ifK′

1 does. Then Propositions 3.2, 4.2 and 4.3 imply that, as aK̃-module, the

tensor moduleV(R) is isomorphic to the induced moduleInd
eK
NK R.

The action ofK(d, θ) onV(R) can be derived from (5.9) and (5.10). We will need the follow-
ing explicit form of this action.

Proposition 5.1. The action ofK(d, θ) on a tensor moduleV(R) is given by:

e ∗ (1⊗ u) = (1⊗ 1)⊗H

(
1⊗ ρR(∂0 + ad ∂0)u− ∂0 ⊗ u

)
−

2N∑
k=1

(∂k ⊗ 1)⊗H

(
1⊗ ρR(∂k + adsp ∂k)u− ∂k ⊗ u

)
+

1

2
(∂0 ⊗ 1)⊗H

(
1⊗ ρR(I ′)u

)
+

2N∑
i,j=1

(∂i∂j ⊗ 1)⊗H

(
1⊗ ρR(f ij)u

)
.

(5.12)

Proof. Let us compare (5.12) to (5.9), using (5.10) and the fact that

−(1⊗ 1)⊗H (∂0 ⊗ u) +
2N∑
i=1

(∂i ⊗ 1)⊗H (∂i ⊗ u)

= −e⊗H (1⊗ u)− (∂0 ⊗ 1)⊗H (1⊗ u) +
2N∑
i=1

(∂i∂
i ⊗ 1)⊗H (1⊗ u) .

Noting thatad ∂0 ∈ sp d̄ andtr ad ∂0 = 0, we see that (5.12) reduces to the following identity

2N∑
i=1

∂i∂
i = −N∂0 −

2N∑
k=1

(tr ad ∂k)∂k .
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By (2.11)–(2.14), we have:

2
2N∑
i=1

∂i∂
i =

2N∑
i=1

[∂i, ∂
i] =

2N∑
i,j=1

rij[∂i, ∂j]

=
2N∑

i,j=1

rijωij∂0 +
2N∑

i,j,k=1

rijckij∂k ,

(5.13)

and the coefficient of∂0 in the right-hand side is indeed−2N . On the other hand, fork 6= 0 the
fact thatadsp ∂k ∈ sp d̄ implies

0 = tr adsp ∂k = tr ad ∂k +
1

2

2N∑
i,j=1

rijckij ,

using thattr eij = rij. This completes the proof. �

Remark5.4. Computing directly

tr ad ∂k =
2N∑
i=1

rki tr ad ∂i =
2N∑

i,j=1

rkicjij ,

we obtain the identities
2N∑

i,j=1

rkicjij +
1

2

2N∑
i,j=1

rijckij = 0 , k 6= 0 .

5.3. Singular vectors. The annihilation algebraK ofK(d, θ) has a decreasing filtration{K′
p}p≥−2

(see (4.18)). For aK-moduleV , we denote bykerp V the set of allv ∈ V that are killed byK′
p.

A K-moduleV is calledconformaliff V =
⋃

kerp V . For anyp ≥ 0 the normalizer ofK′
p in K̃ is

equal toNK due to Proposition 4.2. Therefore, eachkerp V is anNK-module, and in fact,kerp V

is a representation of the finite-dimensional Lie algebraNK/K′
p = d̃ ⊕ (K′

0/K′
p). In particular,

by Proposition 4.3,NK/K′
1 is isomorphic to the direct sum of Lie algebrasd⊕ csp d̄.

Equivalence of the filtrations{Kp} and{K′
p}, along with Proposition 3.2, implies that any

K(d, θ)-module has a natural structure of a conformalK̃-module and vice versa.

Definition 5.4. For anyK(d, θ)-moduleV , a singular vectoris an elementv ∈ V such that
K′

1 · v = 0. The space of singular vectors inV will be denoted bysing V . We will denote
by ρsing : d ⊕ csp d̄ → gl(sing V ) the representation obtained from theNK-action onsing V ≡
ker1 V via the isomorphismNK/K′

1 ' d⊕ csp d̄.

It follows that a vectorv ∈ V is singular if and only if

(5.14) e ∗ v ∈ (F′2H ⊗ k)⊗H V ,

or equivalently

(5.15) e ∗ v ∈ (k⊗ F′2H)⊗H V .

Proposition 5.2. For any nonzero finiteK(d, θ)-moduleV , the vector spacesing V is nonzero
and the spacesing V/ kerV is finite dimensional.

Proof. Finite dimensionality ofkerp V/ kerV for all p follows from Lemma 3.2. To prove that
sing V 6= {0}, we may assume without loss of generality thatkerV = {0}. Since theK-
moduleV is conformal,kerp V is nonzero for somep ≥ 0. Note thatkerp V is preserved by the
normalizerNK. Choose an irreducibleNK-submoduleU ⊂ kerp V . AsU is finite dimensional,
Proposition 4.4 shows that the action ofK′

1 onU is trivial, henceU ⊂ sing V . �
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Note that, by definition,

(5.16) ρsing(∂)v = ∂̃ · v , ∂ ∈ d , v ∈ sing V ,

and, due to Lemma 4.3(iv),

(5.17) ρsing(f
ij)v =

1

2
(xixj ⊗H e) · v , v ∈ sing V .

The next result describes the action ofK(d, θ) on a singular vector. It can be derived from
Remark 5.3, but for completeness we give a direct proof.

Proposition 5.3. LetV be aK(d, θ)-module andv ∈ V be a singular vector. Then the action of
K(d, θ) onv is given by

e ∗ v =
2N∑

i,j=1

(∂i∂j ⊗ 1)⊗H ρsing(f
ij)v +

1

2
(∂0 ⊗ 1)⊗H ρsing(I

′)v

−
2N∑
k=1

(∂k ⊗ 1)⊗H

(
ρsing(∂

k + adsp ∂k)v − ∂kv
)

+ (1⊗ 1)⊗H

(
ρsing(∂0 + ad ∂0)v − ∂0v

)
.

(5.18)

Proof. AsK′
1 acts trivially on a singular vectorv, Proposition 3.2 implies that

e ∗ v =
∑

0<i<j

(S(∂i∂j)⊗ 1)⊗H (xixj ⊗H e) · v

+
1

2

2N∑
i=1

(S(∂2
i )⊗ 1)⊗H ((xi)2 ⊗H e) · v

+
2N∑
k=0

(S(∂k)⊗ 1)⊗H (xk ⊗H e) · v

+ (1⊗ 1)⊗H (1⊗H e) · v .

(5.19)

On the other hand, by Corollary 4.2 and Lemma 4.3(iv), we have fork 6= 0:

(1⊗H e) · v = ∂̃0 · v − ∂0v + ρsing(ad ∂0)v ,(5.20)

(xk ⊗H e) · v = ∂̃k · v − ∂kv + ρsing

(
ad ∂k − ek

0 +
∑

0<i<j

ckije
ij
)
v .(5.21)

Now we rewrite the first summand on the right-hand side of (5.19) using that

S(∂i∂j) = ∂j∂i =
1

2
(∂i∂j + ∂j∂i)−

1

2
[∂i, ∂j] .

Then, thanks to (5.17), the first two summands become

2N∑
i,j=1

(∂i∂j ⊗ 1)⊗H ρsing(f
ij)v −

∑
0<i<j

([∂i, ∂j]⊗ 1)⊗H ρsing(f
ij)v .

This shows that the first summand in (5.18) matches with (5.19). By (5.16), (5.20), the last
summands in (5.18) and (5.19) are also equal.

It remains to rewrite∑
0<i<j

([∂i, ∂j]⊗ 1)⊗H ρsing(f
ij)v +

2N∑
k=0

(∂k ⊗ 1)⊗H (xk ⊗H e) · v
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so that it matches the negative of the second and third terms in the right-hand side of (5.18).
Recalling the commutation relations (5.8), we obtain

(∂0 ⊗ 1)⊗H

(
(x0 ⊗H e) · v + ρsing

( ∑
0<i<j

ωijf
ij
)
v
)

+
2N∑
k=1

(∂k ⊗ 1)⊗H

(
(xk ⊗H e) · v + ρsing

( ∑
0<i<j

ckijf
ij
)
v
)
.

By (4.22), the first summand is equal to−1
2
(∂0 ⊗ 1)⊗H ρsing(I

′)v.
Finally, by (5.21), (2.25) and (5.6), we have

(xk ⊗H e) · v + ρsing

( ∑
0<i<j

ckijf
ij
)
v

= ∂̃k · v − ∂kv + ρsing

(
ad ∂k − ek

0 +
∑

0<i<j

ckije
ij +

∑
0<i<j

ckijf
ij
)
v

= ∂̃k · v − ∂kv + ρsing(ad
sp ∂k)v .

This completes the proof. �

Corollary 5.2. Let V be aK(d, θ)-module and letR be a nonzero(d ⊕ csp d̄)-submodule
of sing V . Denote byHR theH-submodule ofV generated byR. ThenHR is a K(d, θ)-
submodule ofV . In particular, if V is irreducible, thenV = HR.

Proof. By (5.18),K(d, θ) ∗ R ⊂ (H ⊗ H) ⊗H HR, and byH-bilinearity, K(d, θ) ∗ HR ⊂
(H ⊗H)⊗H HR. �

Corollary 5.3. LetR be a finite-dimensional(d⊕ csp d̄)-module with an actionρR. Then for the
tensorK(d, θ)-moduleV(R) = H ⊗R, we havek⊗R ⊂ singV(R) and

(5.22) ρsing(A)(1⊗ u) = 1⊗ ρR(A)u , A ∈ d⊕ csp d̄, u ∈ R .

We will call elements ofk ⊗ R ⊂ V(R) constantvectors. Combining the above results, we
obtain the following theorem.

Theorem 5.1. Let V be an irreducible finiteK(d, θ)-module, and letR be an irreducible(d ⊕
csp d̄)-submodule ofsing V . ThenV is a homomorphic image ofV(R). In particular, every
irreducible finiteK(d, θ)-module is a quotient of a tensor module.

Proof. Comparing (5.18) and (5.12), we see that the canonical projectionV(R) = H⊗R→ HR
is a homomorphism ofK(d, θ)-modules. However,HR = V by Corollary 5.2. �

We will now show that reducibility of a tensor module depends on the existence of nonconstant
singular vectors.

Definition 5.5. An elementv of aK(d, θ)-moduleV is calledhomogeneousif it is an eigenvector
for the action ofE ′ ∈ K.

Remark5.5. Note that the homogeneous components of a singular vector are still singular, so
that a classification of singular vectors will follow from a description of homogeneous ones.

Lemma 5.2. Let R be an irreducible representation ofd ⊕ csp d̄. Then any nonzero proper
K(d, θ)-submoduleM of V(R) does not contain nonzero constant vectors, i.e.,M ∩ (k⊗R) =
{0}.

Proof. BothM andk⊗R ⊂ singV(R) areNK-stable, and the same is true of their intersection
M0. SinceK′

1 acts trivially onM0, it is a representation ofNK/K′
1 ' d⊕ csp d̄. The claim now

follows from the irreducibility ofk⊗R ' R. �

Corollary 5.4. If singV(R) = k⊗R, then theK(d, θ)-moduleV(R) is irreducible.
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Proof. Assume there is a nonzero proper submoduleM . ThenM must contain some nonzero
singular vector. However,M ∩ singV(R) = {0} by Lemma 5.2. �

Proposition 5.4. Every nonconstant homogeneous singular vector inV(R) is contained in a
nonzero proper submodule. In particular,V(R) is irreducible if and only ifsingV(R) = k⊗R.

Proof. Recall that, by Remark 5.3, we haveV(R) = Ind
eK
NK R. The Lie algebraK is graded by

the eigenspace decomposition ofad E ′. If kn denotes the graded summand of eigenvaluen, then
one has the direct sum decomposition of Lie algebras

NK = d̃⊕K′
0 = d̃⊕

∏
j≥0

kj

and the decomposition of vector spaces

K̃ = (k−2 ⊕ k−1)⊕NK.

Sincek−2 ⊕ k−1 is a graded Lie algebra, its universal enveloping algebra is also graded. Then
V(R) = Ind

eK
NK R is isomorphic toU(k−2 ⊕ k−1) ⊗ R, which can be endowed with aZ-grading

by setting elements fromR to have degree zero, and elements fromk−i to have degree−i. Thus
submodules ofV(R) contain allE ′-homogeneous components of their elements, i.e., they are
graded submodules.

It is now easy to show that every homogeneous singular vectorv, say of degreed < 0, is
contained in some nonzero properK̃-submodule ofV(R). IndeedU(K̃)v = U(k−2 ⊕ k−1)v is
a nonzero submodule ofV(R) lying in degrees≤ d, and it intersectsR trivially, sinceR lies in
degree zero. �

5.4. Filtration of tensor modules. After filtering the Lie algebraK using the contact filtration
F′ of X, it is convenient to filter tensorK(d, θ)-modules using the contact filtration ofH. We
therefore define

(5.23) F′p V(R) = F′pH ⊗R , p = −1, 0, . . . .

As usual,F′−1 V(R) = {0} andF′0 V(R) = k ⊗ R. It will also be convenient to agree that
F′−2 V(R) = {0}. The associated graded space is defined accordingly, and we have isomor-
phisms of vector spaces

(5.24) gr′p V(R) ' gr′pH ⊗R.

Note that, sinced = d̄⊕ k∂0 and the degree of∂0 equals two,gr′pH is isomorphic to the direct
sum

⊕bp/2c
i=0 Sp−2id̄. Herebp/2c denotes the largest integer not greater thanp/2, which isp/2 for

p even and(p− 1)/2 for p odd.

Lemma 5.3. For everyp ≥ 0, we have:

d̄ · F′p V(R) ⊂ F′p+1 V(R) ,(i)

∂0 · F′p V(R) ⊂ F′p+2 V(R) ,(ii)

NK · F′p V(R) ⊂ F′p V(R) ,(iii)

K̃ · F′p V(R) ⊂ F′p+2 V(R) ,(iv)

K′
1 · F′p V(R) ⊂ F′p−1 V(R) .(v)

Proof. The proof of (i) and (ii) is clear, as the action of elements ind is by left multiplication on
the left factor ofV(R) = H ⊗ R. In particular, this impliesd · F′p V(R) ⊂ F′p+2 V(R). Before
proceeding with proving (iii)–(v), observe that (4.23), (4.24) imply

∂i ∈ d̃ +K′
−1, ∂0 ∈ d̃ +K′

−2,
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so that̄d ⊂ d̃ + K′
−1. Also notice that̃K = d̃ + K′

−2, which implies[K̃,K′
p] ⊂ K′

p−2. Moreover
K′
−1 +NK = d̄ +NK, asd̃ ⊂ NK. Then we have:

[d̄,K′
1] ⊂ [d̃ +K′

−1,K′
1] ⊂ [K′

−1,K′
1] ⊂ K′

0 ⊂ NK ,

[∂0,K′
1] ⊂ [K̃,K′

1] ⊂ K′
−1 ⊂ d̄ +NK ,

[d̄,NK] ⊂ [d̃ +K′
−1, d̃ +K′

0] ⊂ d̃ +K′
−1 ⊂ K′

−1 +NK ⊂ d̄ +NK ,

[∂0,NK] ⊂ K̃ = d +NK .

Now (iii) can be proved by induction as in the case ofW (d) (see [BDK1, Lemma 6.3]), the
basis of inductionp = 0 following from F′0 V(R) ⊂ singV(R). As for p > 0, notice that

F′p V(R) = F′0 V(R) + d̄ F′p−1 V(R) + ∂0 F′p−2 V(R).

Then:

NK(d̄ F′p−1 V(R)) ⊂ d̄(NK F′p−1 V(R)) + [d̄,NK] F′p−1 V(R)

⊂ d̄ F′p−1 V(R) + (d̄ +NK) F′p−1 V(R)

⊂ d̄ F′p−1 V(R) + F′p−1 V(R) ⊂ F′p V(R),

and similarly

NK(∂0 F′p−2 V(R)) ⊂ ∂0(NK F′p−2 V(R)) + [∂0,NK] F′p−2 V(R)

⊂ d F′p−2 V(R) + (d +NK) F′p−2 V(R)

⊂ d F′p−2 V(R) +NK F′p−2 V(R) ⊂ F′p V(R).

It is now immediate to prove (iv) from̃K = d +NK.
Finally, (v) can analogously be showed by induction onp: whenp = 0, we haveF′0 V(R) ⊂

singV(R), henceK′
1 F′0 V(R) = {0} by definition ofsingV(R). Whenp > 0, we observe that

K′
1(d̄ F′p−1 V(R)) ⊂ d̄(K′

1 F′p−1 V(R)) + [d̄,K′
1] F

′p−1 V(R)

⊂ d̄(F′p−2 V(R)) +NK F′p−1 V(R)

⊂ F′p−1 V(R),

and that

K′
1(∂0 F′p−2 V(R)) ⊂ ∂0(K′

1 F′p−2 V(R)) + [∂0,K′
1] F

′p−2 V(R)

⊂ ∂0(F
′p−3 V(R)) + (d̄ +NK) F′p−2 V(R)

⊂ F′p−1 V(R).

This completes the proof. �

The above lemma implies that bothNK and its quotientNK/K′
1 = d̃⊕ csp d̄ act on each space

gr′p V(R). The next result describes the action ofNK/K′
1 more explicitly.

Lemma 5.4. The action of̃d ' d andK′
0/K′

1 ' csp d̄ = sp d̄ ⊕ kI ′ on the spacegr′p V(R) '
gr′pH ⊗R is given by:

∂̃ · (f ⊗ u) = f ⊗ ρR(∂)u,(5.25)

A · (f̄∂i
0 ⊗ u) = (Af̄)∂i

0 ⊗ u+ f̄∂i
0 ⊗ ρR(A)u,(5.26)

I ′ · (f ⊗ u) = p f ⊗ u+ f ⊗ ρR(I ′)u,(5.27)

whereA ∈ sp d̄, f ∈ gr′pH, f̄ ∈ Sp−2id̄, u ∈ R, andAf̄ denotes the standard action ofsp d̄ ⊂
gl d on d̄.

Proof. The proof is similar to that of Lemmas 6.4 and 6.5 from [BDK1]. �
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Corollary 5.5. We have an isomorphism of(d⊕ csp d̄)-modules

gr′p V(Π, U, c) '
bp/2c⊕
i=0

Π � (Sp−2id̄⊗ U, c+ p).

Proof. Follows immediately from Lemma 5.4. �

6. TENSORMODULES OF DERHAM TYPE

The main goal of this section is to define an important complex ofK(d, θ)-modules, called
the contact pseudo de Rham complex. We continue to use the notation of Sections 2.1 and 2.2.

6.1. The Rumin complex. As before, letθ ∈ d∗ be a contact form, and let̄d ⊂ d be the kernel
of θ. Consider the wedge powersΩn =

∧n
d∗ andΩ̄n =

∧n
d̄∗. Then we have a short exact

sequence

(6.1) 0 → ΘΩn−1 → Ωn → Ω̄n → 0 ,

whereΘ is the operator of left wedge multiplication withθ, i.e.,Θ(α) = θ ∧ α. Forα ∈ Ωn, we
will denote byᾱ ∈ Ω̄n its projection via (6.1).

The direct sum decompositiond = d̄ ⊕ ks gives a splitting of the sequence (6.1). In more
detail, elements̄α ∈ Ω̄n are identified withn-formsα ∈ Ωn such thatιsα = 0. Thus we have
a direct sumΩn = ΘΩn−1 ⊕ Ω̄n. ThenΘ2 = 0 implies thatker Θ|Ωn = ΘΩn−1, and we get a
natural isomorphism

(6.2) ΘΩn ∼−→ Ω̄n, θ ∧ α 7→ ᾱ .

The2-form ω = d0θ can be identified with̄ω, becauseιsω = 0. Denote byΨ (respectively,
Ψ̄) the operator of left wedge multiplication withω (respectively,̄ω). Consider the images and
kernels ofΨ̄:

(6.3) Īn = Ψ̄Ω̄n−2 ⊂ Ω̄n , K̄n = ker Ψ̄|Ω̄n ⊂ Ω̄n .

Sinceω̄ is nondegenerate, we havēIn = Ω̄n for n ≥ N + 1 andK̄n = 0 for n ≤ N − 1. In
particular,Ψ̄ : Ω̄N−1 → Ω̄N+1 is an isomorphism. More generally, for allm = 0, . . . , N , the
mapsΨ̄m : Ω̄N−m → Ω̄N+m are isomorphisms.

Lemma 6.1. The composition of natural maps̄KN ↪→ Ω̄N � Ω̄N/ĪN is an isomorphism. More
generally, the composition

K̄N+m ↪→ Ω̄N+m (Ψ̄m)−1

−−−−→ Ω̄N−m � Ω̄N−m/ĪN−m

is an isomorphism for allm = 0, . . . , N .

Proof. To show surjectivity, take anyα ∈ Ω̄N−m. We want to findβ ∈ K̄N+m such thatα −
(Ψ̄m)−1β ∈ ĪN−m. SinceΨ̄m+2 : Ω̄N−m−2 → Ω̄N+m+2 is an isomorphism, there isγ ∈ Ω̄N−m−2

such that̄Ψm+2γ = Ψ̄m+1α. Thenβ = Ψ̄m(α− Ψ̄γ) satisfies the above conditions.
To prove injectivity, we need to show thatΨ̄mĪN−m∩K̄N+m = {0}. If α ∈ Ψ̄mĪN−m∩K̄N+m,

thenα = Ψ̄m+1ρ for someρ ∈ Ω̄N−m−2. But thenΨ̄m+2ρ = Ψ̄α = 0, which impliesρ = 0 and
α = 0. �

SinceA · ω̄ = 0 for A ∈ sp d̄ and the action ofA is an even derivation of the wedge product
(see Lemma 2.2 and (2.8)), it follows thatĪn andK̄n aresp d̄-submodules of̄Ωn. Furthermore,
the mapΨ̄ is ansp d̄-homomorphism. In particular, the isomorphism from Lemma 6.1 commutes
with the action ofsp d̄. Recall thatR(πn) denotes then-th fundamental representation ofsp d̄,
andR(π0) = k.

Lemma 6.2. We have isomorphisms ofsp d̄-modules

Ω̄n/Īn ' K̄2N−n ' R(πn) , 0 ≤ n ≤ N .

Proof. This is well known; see, e.g., [FH, Lecture 17]. �
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Following [Ru], we consider the spaces

(6.4) In = ΨΩn−2 + ΘΩn−1 ⊂ Ωn, Kn = ker Ψ|Ωn ∩ ker Θ|Ωn ⊂ Ωn.

UsingΘΨ = ΨΘ and (6.1), we obtain a short exact sequence

(6.5) 0 → ΘΩn−1 → In → Īn → 0 ,

while (6.2) gives a natural isomorphism

(6.6) Kn ∼−→ K̄n−1, θ ∧ α 7→ ᾱ .

The above equations imply thatIn = Ωn for n ≥ N + 1 andKn = 0 for n ≤ N . It is also clear
thatΩn/In ' Ω̄n/Īn for all n.

The “constant-coefficient”Rumin complex[Ru] is the following complex ofcsp d̄-modules

(6.7) 0 → Ω0/I0 d0−→ · · · d0−→ ΩN/IN dR
0−→ KN+1 d0−→ · · · d0−→ K2N+1 ,

where the mapdR
0 is defined as in [Ru]. We will need the “pseudo” version of this complex

defined in Section 6.3 below. The latter is a contact counterpart of the pseudo de Rham complex
from [BDK, BDK1], which we review in the next subsection.

6.2. Pseudo de Rham complex.Following [BDK], we define the spaces ofpseudoformsΩn(d) =

H⊗Ωn andΩ(d) = H⊗Ω =
⊕2N+1

n=0 Ωn(d). They are considered asH-modules, whereH acts
on the first factor by left multiplication. We can identifyΩn(d) with the space of linear maps
from

∧n
d toH, andH⊗2 ⊗H Ωn(d) with Hom(

∧n
d, H⊗2). Forg ∈ H, α ∈ Ω, we will write

the elementg ⊗ α ∈ Ω(d) asgα; in particular, we will identifyΩ with k⊗ Ω ⊂ Ω(d).
Let us considerH = U(d) as a leftd-module with respect to the actiona · h = −ha, where

ha is the product ofa ∈ d ⊂ H andh ∈ H in H. Then consider the cohomology complex ofd
with coefficients inH:

(6.8) 0 → Ω0(d)
d−→ Ω1(d)

d−→ · · · d−→ Ω2N+1(d) .

Explicitly, thedifferentiald is given by the formula (α ∈ Ωn(d), ai ∈ d):

(dα)(a1 ∧ · · · ∧ an+1)

=
∑
i<j

(−1)i+jα([ai, aj] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an+1)

+
∑

i

(−1)iα(a1 ∧ · · · ∧ âi ∧ · · · ∧ an+1) ai if n ≥ 1,

(dα)(a1) = −αa1 if α ∈ Ω0(d) = H.

(6.9)

Notice thatd is H-linear. The sequence (6.8) is called thepseudo de Rham complex. It was
shown in [BDK, Remark 8.1] that then-th cohomology of the complex(Ω(d), d) is trivial for
n 6= 2N + 1 = dim d, and it is1-dimensional forn = 2N + 1. In particular, the sequence (6.8)
is exact.

Example 6.1.Forα = 1 ∈ H = Ω0(d), Eq. (6.9) gives

(6.10) −d1 = ε :=
2N∑
i=0

∂i ⊗ xi ∈ H ⊗ d∗ = Ω1(d) .

Next, we introduceH-bilinear maps

(6.11) ∗ : W (d)⊗ Ωn(d) → H⊗2 ⊗H Ωn(d)
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by the formula [BDK]:

(w ∗ γ)(a1∧ · · · ∧ an) = −(f ⊗ ga)α(a1 ∧ · · · ∧ an)

+
n∑

i=1

(−1)i(fai ⊗ g)α(a ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ an)

+
n∑

i=1

(−1)i(f ⊗ g)α([a, ai] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ an) ∈ H⊗2 ,

(6.12)

wheren ≥ 1, w = f ⊗ a ∈ W (d) andγ = gα ∈ Ωn(d). Whenγ = g ∈ Ω0(d) = H, we let
w ∗ γ = −f ⊗ ga. Note that the latter coincides with the action (3.24) ofW (d) onH.

It was shown in [BDK, BDK1] that maps (6.11) provide eachΩn(d) with a structure of a
W (d)-module. These modules are instances oftensor modulesas introduced in [BDK1], namely
Ωn(d) = T (k,Ωn) (see Section 5.1). The action ofW (d) commutes withd, i.e.,

(6.13) w ∗ (dγ) = ((id⊗ id)⊗H d)(w ∗ γ)
for w ∈ W (d), γ ∈ Ωn(d).

Let us extend the wedge product inΩ to a product inΩ(d) by setting

(fα) ∧ (gβ) = (fg)(α ∧ β) , α, β ∈ Ω , f, g ∈ H .

In a similar way, we also extend it to products

(h⊗H (f ⊗ α)) ∧ β = h⊗H (f ⊗ (α ∧ β)) ,

α ∧ (h⊗H (g ⊗ β)) = h⊗H (g ⊗ (α ∧ β)) , h ∈ H⊗2 .

Lemma 6.3. For anyw ∈ W (d), α ∈ Ωn andβ ∈ Ω, we have:

d(α ∧ β) = d0α ∧ β + (−1)nα ∧ dβ ,(6.14)

w ∗ (α ∧ β) = (w ∗ α) ∧ β + α ∧ (w ∗ β) + w ⊗H (α ∧ β) .(6.15)

Proof. Sinced0 is an odd derivation of the wedge product, by subtracting (2.5) from (6.14), we
obtain that (6.14) is equivalent to:

(d− d0)(α ∧ β) = (−1)nα ∧ (d− d0)β .

On the other hand, comparing (6.14) with (2.5) and (2.3), we see that

(6.16) (d− d0)α = −ε ∧ α ,
whereε is defined by (6.10). Then (6.14) follows from the associativity and graded-commutativity
of the wedge product (see (2.4)).

By H-linearity, it is enough to prove (6.15) in the casew = 1⊗ ∂i. Then by (5.3) we have

(1⊗ ∂i) ∗ α− (1⊗ ∂i)⊗H α = (1⊗ 1)⊗H (ad ∂i) · α+
2N∑
j=0

(∂j ⊗ 1)⊗H ej
i · α .

Using that(ad ∂i) andej
i are even derivations of the wedge product (see (2.8)) completes the

proof. �

6.3. Contact pseudo de Rham complex.As before, letΩn(d) = H⊗Ωn, Ω(d) =
⊕2N+1

n=0 Ωn(d)
be the spaces of pseudoforms. We extend the operatorsΘ andΨ defined in Section 6.1 toΩ(d)
byH-linearity. We also setIn(d) = H ⊗ In andKn(d) = H ⊗Kn. From (6.14) andω = d0θ,
we deduce:

(6.17) dΨ = Ψd, dΘ = Ψ−Θd ,

whered is given by (6.9). This implies thatdIn(d) ⊂ In+1(d) anddKn(d) ⊂ Kn+1(d). There-
fore, we have the induced complexes

0 → Ω0(d)/I0(d)
d−→ Ω1(d)/I1(d)

d−→ · · · d−→ ΩN(d)/IN(d)(6.18)



30 B. BAKALOV, A. D’ANDREA, AND V. G. KAC

and

KN+1(d)
d−→ KN+2(d)

d−→ · · · d−→ K2N+1(d).(6.19)

Lemma 6.4(cf. [Ru]). The sequences(6.18)and (6.19)are exact.

Proof. First, to show exactness at the termΩn(d)/In(d) in (6.18) forn ≤ N−1, takeα ∈ Ωn(d)
such thatdα ∈ In+1(d). This meansdα = Θβ + Ψγ for someβ ∈ Ωn(d), γ ∈ Ωn−1(d). Then
d(α−Θγ) = dα−Ψγ+Θdγ = Θ(β+dγ) ; hence, by changing the representativeαmodIn(d),
we can assume thatγ = 0. Now we have0 = d2α = dΘβ = Ψβ − Θdβ. ThenΨ(Θβ) = 0,
i.e.,Θβ ∈ Kn+1(d). ButKn+1(d) = 0 for n ≤ N − 1; thusΘβ = 0 anddα = 0. It follows that
α = dρ for someρ ∈ Ωn−1(d).

To prove exactness at the termKn(d) in (6.19) forn ≥ N + 2, takeα ∈ Kn(d) such that
dα = 0. Thenα = dβ for someβ ∈ Ωn−1(d). SinceIn−1(d) = Ωn−1(d) for n ≥ N + 2, we
can writeβ = Θγ + Ψρ for someγ ∈ Ωn−2(d), ρ ∈ Ωn−3(d). But sinced(Ψρ) = d(Θdρ),
by replacingγ with γ + dρ, we can assume thatρ = 0. Thendβ = −Θdγ + Ψγ andΘα = 0
impliesΘΨγ = 0. Therefore,β = Θγ ∈ Kn−1(d), which completes the proof. �

Now, following [Ru], we will construct a mapdR : ΩN(d)/IN(d) → KN+1(d) that connects
the complexes (6.18) and (6.19), which we will call theRumin map. SinceIN+1(d) = ΩN+1(d),
for everyα ∈ ΩN(d) we can writedα = Θβ + Ψγ for someβ ∈ ΩN(d), γ ∈ ΩN−1(d). Then,
as in the proof of Lemma 6.4, we havedα̃ = Θ(β + dγ) ∈ KN+1(d) for α̃ = α − Θγ. We let
dRα = dα̃.

We have to prove thatdRα is independent of the choice of̃α and depends only on the class
of α modIN(d). First, if dα = Θβ + Ψγ = Θβ′ + Ψγ′, thenΘΨ(γ − γ′) = 0, which implies
Θ(γ − γ′) ∈ KN(d). But KN(d) = 0 ; hence,α̃ = α − Θγ = α − Θγ′. Next, consider
the case whenα ∈ IN(d). Write α = Θµ + Ψρ ; then dα = Θ(−dµ) + Ψ(µ + dρ) and
dRα = Θ((−dµ) + d(µ+ dρ)) = 0, as desired.

Using the Rumin mapdR, we can combine the two complexes (6.18) and (6.19).

Proposition 6.1(cf. [Ru]). The sequence

0 → Ω0(d)/I0(d)
d−→ · · · d−→ ΩN(d)/IN(d)

dR

−→ KN+1(d)
d−→ · · · d−→ K2N+1(d)

is an exact complex.

Proof. In the preceding discussion we have shown thatdR is well defined. Next, it is clear by
construction thatdRd = 0 andddR = 0. Due to Lemma 6.4, it remains only to check exactness
at the termsΩN(d)/IN(d) andKN+1(d).

First, letα ∈ ΩN(d) be such thatdRα = 0. Thendα̃ = dRα = 0 ; henceα̃ = dβ for some
β ∈ ΩN−1(d). Thenα+ IN(d) = α̃+ IN(d) = d(β + IN−1(d)).

Now let α ∈ KN+1(d) be such thatdα = 0. Thenα = dβ for someβ ∈ ΩN(d). Since
dβ ∈ KN+1(d), we can takẽβ = β, anddRβ = dβ̃ = α. �

We will call the complex from Proposition 6.1 thecontact pseudo de Rham complex.

6.4. K(d, θ)-action on the contact pseudo de Rham complex.Here we prove that the contact
pseudo de Rham complex is a complex ofK(d, θ)-modules, and we realize its members as tensor
modules.

First, we show that the members of the Rumin complex (6.7) arecsp d̄-modules. Recall that
the Lie algebragl d acts on the spaceΩn of constant coefficientn-forms via (2.7), and this action
is by even derivations (see (2.8)).

Lemma 6.5.For everyn, we have: csp d̄·In ⊂ In andcsp d̄·Kn ⊂ Kn. In addition,c0 ·Ωn ⊂ In

andc0 ·Kn = {0}. Hence thegl d-action onΩn induces actions ofcsp d̄ onΩn/In andKn, and
the trivial action ofc0 on them.
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Proof. By Lemma 2.2,A · α = cα for A ∈ csp d̄, α ∈ {θ, ω} and somec ∈ C. Then by (2.8),
A · (α ∧ β) = α ∧ (cβ + A · β) for all β ∈ Ω. This impliesA · In ⊂ In andA ·Kn ⊂ Kn.

Next, recall thatc0 = span{e0k}k 6=0 ande0k · xi = −δi
kx

0 = δi
kθ. Then

e0k · (xi1 ∧ · · · ∧ xin) = θ ∧ xi2 ∧ · · · ∧ xin , if k = i1 ,

and is zero ifk 6= is for all s. Therefore,c0 · Ωn ⊂ ΘΩn−1 ⊂ In.
Now, if α ∈ Kn, by (6.6) we can writeα = θ ∧ β for someβ ∈ Ωn−1. Then fork 6= 0 we

havee0k · β = θ ∧ γ for someγ ∈ Ωn−2, and we find

e0k · α = e0k · (θ ∧ β) = θ ∧ (e0k · β) = θ ∧ (θ ∧ γ) = 0 ,

using thate0k · θ = 0. �

Lemma 6.6. We have isomorphisms ofcsp d̄-modules

Ωn/In ' (R(πn),−n) , K2N+1−n ' (R(πn),−2N − 2 + n) , 0 ≤ n ≤ N .

Proof. Recall that we have isomorphisms ofsp d̄-modulesΩn/In ' Ω̄n/Īn andKn ' K̄n−1

(see (6.6)). Thesp d̄-action on these modules is described in Lemma 6.2. Finally, to determine
the action ofI ′, we use (2.8), (2.24) and (6.6). We obtain thatI ′ acts as−n on Ω̄n ⊂ Ωn and as
−n− 1 onKn. �

Here is the main result of this section.

Theorem 6.1.The contact pseudo de Rham complex

0 → Ω0(d)/I0(d)
d−→ · · · d−→ ΩN(d)/IN(d)

dR

−→ KN+1(d)
d−→ · · · d−→ K2N+1(d)

is an exact complex ofK(d, θ)-modules. Its members are tensor modules, namely

Ωn(d)/In(d) = T (k,Ωn/In) = T (k, R(πn),−n)

and
Kn(d) = T (k, Kn) = T (k, R(π2N+1−n),−n− 1).

Proof. Recall that allΩn(d) = T (k,Ωn) are tensor modules forW (d); see Section 5.1 and
[BDK1]. In particular,e ∗ (1 ⊗ α) is given by Remark 5.2 forα ∈ Ωn. By Lemma 6.5,c0 acts
trivially onKn andKn is acsp d̄-module. Therefore, forα ∈ Kn, the actione∗(1⊗α) is given by
(5.9). By definition, this means thatKn(d) = H ⊗Kn = T (k, Kn) has the structure of a tensor
K(d, θ)-module. The same argument applies to the quotientΩn(d)/In(d) = T (k,Ωn/In).

The exactness of the complex was established in Proposition 6.1. It remains to prove that
the maps of the complex are homomorphisms ofK(d, θ)-modules. Ford, this follows by con-
struction from the fact thatd: Ωn(d) → Ωn+1(d) is a homomorphism ofW (d)-modules. In
order to prove it fordR, we need the next lemma, which can be deduced from Remark 5.2 and
Lemma 2.2.

Lemma 6.7. Identifyingα ∈ Ωn with 1⊗ α ∈ Ωn(d) = H ⊗ Ωn, we have:

e ∗ θ = −(e+ ∂0 ⊗ 1)⊗H θ ,(6.20)

e ∗ ω = −(e+ ∂0 ⊗ 1)⊗H ω −
2N∑
i=1

(∂i∂0 ⊗ 1)⊗H (θ ∧ xi) .(6.21)

Now take anα ∈ ΩN(d) and writedα = Θβ + Ψγ = θ ∧ β + ω ∧ γ. Then, by definition,
dRα = d(α− θ ∧ γ). Using thatd is a homomorphism (see (6.13)), we obtain

e ∗ (dRα) =
(
(id⊗ id)⊗H d

)(
e ∗ α− e ∗ (θ ∧ γ)

)
.

Then we find from (6.15) and (6.20) that

e ∗ (θ ∧ γ) = θ ∧ γ′ , γ′ = e ∗ γ − (∂0 ⊗ 1)⊗H γ .
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On the other hand, using again (6.15), (6.20) and (6.21), we compute

((id⊗ id)⊗H d)(e ∗ α) = e ∗ (dα) = e ∗ (θ ∧ β) + e ∗ (ω ∧ γ) = θ ∧ β′ + ω ∧ γ′

for someβ′, whereγ′ is as above. Then

((id⊗ id)⊗H dR)(e ∗ α) =
(
(id⊗ id)⊗H d

)(
e ∗ α− θ ∧ γ′

)
,

which coincides withe ∗ (dRα). This completes the proof of the theorem. �

6.5. Twisted contact pseudo de Rham complex.For any choice of a finite-dimensionald-
moduleΠ, one may apply the twisting functorTΠ from Section 3.3 to Theorem 6.1 and obtain a
corresponding exact complex ofK(d, θ)-modules

0 → T (Π,k, 0)
dΠ−→ T (Π, R(π1),−1)

dΠ−→ · · · dΠ−→ T (Π, R(πN),−N)
dR
Π−→

T (Π, R(πN),−N − 2)
dΠ−→ · · · dΠ−→ T (Π, R(π1),−2N − 1)

dΠ−→ T (Π,k,−2N − 2),

where we used the notationdΠ = TΠ(d) anddR
Π = TΠ(dR). In the rest of the paper, we will

suppress the reference toΠ, and writed instead ofdΠ anddR instead ofdR
Π whenever there is no

possibility of confusion. If we set

VΠ
p = V(Π, R(πp), p) = T (Π⊗ ktr ad, R(πp), p− 2N − 2)

VΠ
2N+2−p = V(Π, R(πp), 2N + 2− p) = T (Π⊗ ktr ad, R(πp),−p),

(6.22)

for 0 ≤ p ≤ N , whereR(π0) = k denotes the trivial representation ofsp d̄, then we obtain an
exact sequence ofK(d, θ)-modules

0 → VΠ
2N+2

d−→VΠ
2N+1

d−→ · · · d−→ VΠ
N+2

dR

−→ VΠ
N

d−→ · · · d−→ VΠ
1

d−→ VΠ
0 .(6.23)

The above exact complex will be useful in the study of reducible tensor modules and in the
computation of their singular vectors. We will be using notation (6.22) throughout the rest of the
paper. Notice thatVΠ

N+1 is not defined.

7. IRREDUCIBILITY OF TENSORMODULES

We will investigate submodules of tensor modules, and prove a criterion for irreducibility of
tensor modules. Throughout the section,R will be an irreducible(d ⊕ csp d̄)-module with an
action denotedρR, andV(R) the corresponding tensor module.

7.1. Coefficients of elements and submodules.Note that every elementv ∈ V(R) = H ⊗ R
can be written uniquely in the form

(7.1) v =
∑

I∈Z2N+1
+

∂(I) ⊗ vI , vI ∈ R .

Definition 7.1. The nonzero elementsvI in (7.1) are calledcoefficientsof v ∈ V(R). For
a submoduleM ⊂ V(R), we denote bycoeffM the subspace ofR linearly spanned by all
coefficients of elements fromM .

It will be convenient to introduce the notation

(7.2) ψ(u) =
2N∑

i,j=1

∂i∂j ⊗ ρR(f ij)u , u ∈ R .

Lemma 7.1. If v ∈ V(R) is given by(7.1), then

e ∗ v =
∑

I

(1⊗ ∂(I))⊗H ψ(vI)

+ terms in(k⊗ ∂(I)H)⊗H (F1H ⊗ (k + ρR(sp d̄ + d)) · vI) .

(7.3)

In particular, the coefficient multiplying1⊗ ∂(I) equalsψ(vI) moduloF1 V(R).
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Proof. We rewrite (5.12) using the fact that

(7.4) (∂i ⊗ 1)⊗H v = (1⊗ 1)⊗H ∂iv − (1⊗ ∂i)⊗H v

for anyv ∈ V(R). We obtain:

e ∗ (1⊗ u) = (1⊗ 1)⊗H

(
ψ(u)−

2N∑
k=1

∂k ⊗ ρR(∂k)u
)

+ terms in(k⊗H)⊗H

(
d⊗

(
k + ρR(sp d̄)

)
· u+ k⊗

(
k + ρR(sp d̄ + d)

)
· u

)
.

(7.5)

Then plugging in (7.1) and applyingH-bilinearity completes the proof. �

Remark7.1. Forv ∈ singV(R), we have by (5.18)

(7.6) e ∗ v =
2N∑

i,j=1

(1⊗ ∂i∂j)⊗H ρsing(f
ij)v + terms in(k⊗ F1H)⊗H V(R).

Lemma 7.2. For any nonzero properK(d, θ)-submoduleM ⊂ V(R), we havecoeffM = R.

Proof. Pick a nonzero elementv =
∑

I ∂
(I) ⊗ vI contained inM . Then Lemma 7.1 shows that

M contains an element congruent toψ(vI) moduloF1 V(R), thus coefficients ofψ(vI) lie in
coeffM for all I. This proves thatsp d̄(coeffM) ⊂ coeffM . Similarly, one can write

e ∗ v =
∑

I

(1⊗ ∂(I))⊗H

(
ψ(vI)−

2N∑
k=1

∂k ⊗ ρR(∂k)vI

)
+ terms in(k⊗ ∂(I)H)⊗H

(
d⊗ ρR(sp d̄ + k)vI + k⊗

(
k + ρR(sp d̄ + d)

)
vI

)
,

showing thatρR(∂k)vI ∈ coeffM for all I and allk = 1, . . . , 2N . Thus,d̄(coeffM) ⊂ coeffM .
However,d̄ generatesd as a Lie algebra, henced stabilizescoeffM as well. ThencoeffM is a
nonzero(d⊕ csp d̄)-submodule ofR. Irreducibility ofR now gives thatcoeffM = R. �

Corollary 7.1. LetM be a nonzero properK(d, θ)-submodule ofV(R). Then for everyu ∈ R
there is an element inM that coincides withψ(u) moduloF1 V(R).

Proof. As coeffM = R, it is enough to prove the statement for coefficients of elementsv ∈ M .
SinceM is aK(d, θ)-submodule ofV(R), the coefficient multiplying1 ⊗ ∂(I) in (7.3) still lies
in M and it equalsψ(vI) moduloF1 V(R). �

7.2. An irreducibility criterion. The results of the previous subsection make it possible to
prove a sufficient condition for irreducibility ofV(R) when thesp d̄-action onR is nontrivial.
We first need the following lemma.

Lemma 7.3. Assume theK(d, θ)-tensor moduleV(R) contains a nonzero proper submodule.
Then thesp d̄-action onR satisfies

(7.7)
∑

fabf cd(u) = 0 , u ∈ R ,

for all 1 ≤ a, b, c, d ≤ 2N , where the sum is over all permutations ofa, b, c, d.

Proof. LetM be a nonzero properK(d, θ)-submodule ofV(R) andv ∈M be an element equal
toψ(u) moduloF1 V(R) (see Corollary 7.1). Let us expresse∗v in the form

∑
I(1⊗∂(I))⊗H uI

using (5.12) and (7.4). If|I| > 4 thenuI = 0; moreover if|I| = 4 thenuI lies in k ⊗ R. By
Lemma 5.2 these coefficients must cancel with each other, and they give exactly (7.7).�

Now we can prove the main result of this section.

Theorem 7.1. If theK(d, θ)-tensor moduleV(Π, U, c) is not irreducible, thenU is either the
trivial representation ofsp d̄ or is isomorphic toR(πi) for somei = 1, . . . , N .
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Proof. Lowering indices in (7.7) gives the following equivalent identity:

(f b
af

d
c + facf

bd + fd
af

b
c + f b

cf
d
a + f bdfac + fd

c f
b
a) · u = 0,

for all 1 ≤ a, b, c, d ≤ 2N andu ∈ R. Specializing toa = b = c = d = i we obtain:

4f i
i f

i
i + fiif

ii + f iifii = 0 .

Recalling that elements (2.30) form a standardsl2-triple, this can be rewritten as

h2
i − eifi − fiei = 0 .

As h2
i is a linear combination ofh2

i − (eifi + fiei) = 0 and the Casimir element of〈ei, hi, fi〉 '
sl2, it acts on any irreduciblesl2-submoduleW ⊂ U as a scalar, which forcesh2

i to be equal
either0 or 1. Then the eigenvalue of the action ofhi = −2f i

i on a highest weight vector inU is
also either0 or 1.

When the basis∂1, . . . , ∂2N of d̄ is symplectic with respect toω, elementshi = ei
i−eN+i

N+i form
a basis of the diagonal Cartan subalgebra ofsp d̄ (see (2.32)). LetU = R(λ) be an irreducible
representation ofsp d̄ with highest weightλ =

∑
i λiπi. For the standard choice of simple roots,

the eigenvalue ofh1 = e11 − eN+1
N+1 on the highest weight vectorλ is

∑
i λi ≤ 1 (cf. [FH, Lecture

16]). Sinceλi are non-negative integers,λ must be0 or one of the fundamental weightsπi. �

Remark7.2. The moduleV(Π, U, c) is always irreducible if thesp d̄-moduleU is infinite-dimensional
irreducible. In order to show this, it suffices to prove that the factor ofU(sp d̄) by the ideal gen-
erated by relations (7.7) is finite-dimensional. It is enough to prove this for the associated graded
algebraS(sp d̄): letting a = b = c = d in (7.7), we get(faa)2 = 0; then letting in (7.7)a = b,
c = d, we get(fab)2 = −4faaf bb, hence(fab)4 = 0 for all a, b, proving the claim (we are
grateful to C. De Concini for this argument). Similarly, the tensor modules for Lie pseudoalge-
bras ofW andS types in [BDK1] are irreducible if the corresponding modulesU are irreducible
infinite-dimensional.

We are left with investigating irreducibility of all tensor modules for whichU is isomorphic to
someR(πi) or to the trivial representationR(π0) = k. We will do so by explicitly constructing
all singular vectors contained in nonzero proper submodules ofV(Π, U, c), and thus determining
conditions on the scalar valuec of the action ofI ′. A central tool for the classification of singular
vectors is the following proposition, which enables us to bound the degree of singular vectors.

Proposition 7.1. Let v ∈ V(R) be a singular vector contained in a nonzero properK(d, θ)-
submoduleM , and assume that thesp d̄-action onR is nontrivial. Thenv is of degree at most
two in the contact filtration, i.e., it is of the form

(7.8) v =
2N∑

i,j=1

∂i∂j ⊗ vij +
2N∑
k=0

∂k ⊗ vk + 1⊗ ṽ .

Proof. Write v =
∑

I ∂
(I) ⊗ vI . Then Lemma 7.1, together with (7.6), shows thatψ(vI) = 0

whenever|I|′ ≥ 2. As thesp d̄-action onR is nontrivial,ψ(vI) = 0 impliesvI = 0. �

Our next goal is to characterize singular vectors of degree at most two in all modules that do
not satisfy the irreducibility criterion given in Theorem 7.1, and thus to obtain a classification of
reducible tensor modules.

8. COMPUTATION OF SINGULAR VECTORS

In this section, we will be concerned with tensor modules of the formV(Π, U, c), whereΠ is
an irreducible finite-dimensional representation ofd, andU is either the trivialsp d̄-module or
one the fundamental representations. Our final result states that such a tensor module contains
singular vectors if and only if it shows up in a twist of the contact pseudo de Rham complex, and
that in such cases singular vectors may be described in terms of the differentials.
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8.1. Singular vectors inV(Π,k, c). Here we treat separately the caseU ' k. Since thesp d̄-
action is trivial, now (5.12) can be rewritten as

e ∗ (1⊗ u) =
2N∑
k=1

(∂k ⊗ 1)⊗H

(
∂k ⊗ u− 1⊗ ρR(∂k)u

)
+ (∂0 ⊗ 1)⊗H (1⊗ cu/2)− (1⊗ 1)⊗H

(
∂0 ⊗ u− 1⊗ ρR(∂0)u

)
.

(8.1)

Using (5.13), we can also write

e ∗ (1⊗ u) =−
2N∑
k=1

(1⊗ ∂k)⊗H

(
∂k ⊗ u− 1⊗ ρR(∂k)u

)
− (1⊗ ∂0)⊗H (1⊗ cu/2) + terms in(k⊗ k)⊗H F1 V(R) .

(8.2)

Proposition 8.1. We have:

(i) singV(Π,k, c) = F0 V(Π,k, c) for c 6= 0;

(ii) singV(Π,k, 0) = F′1 V(Π,k, 0);

(iii) V(R) = V(Π,k, c) is irreducible if and only ifc 6= 0.

Proof. (i) Let v =
∑

I ∂
(I)⊗ vI ∈ V(R) be a singular vector, and assume thatvI 6= 0 for someI

with |I| > 0. If n is the maximal value of|I| for suchI, choose among allI = (i0, i1, . . . , i2N)
with |I| = n one with largest possiblei0. If we use (8.2) to computee ∗ v and express the result
in the form

(8.3)
∑

J

(1⊗ ∂(J))⊗H uJ , uJ ∈ V(R) ,

then the coefficient multiplying1⊗ ∂(I+ε0) equals−(i0 + 1)cvI/2. Sincev is singular, this must
vanish if|I| > 0, andc 6= 0 gives a contradiction withvI 6= 0.

(ii) In the same way as in part (i), we show thatsingV(Π,k, 0) ⊂ F1 V(Π,k, 0). Indeed,
computing the coefficient multiplying1 ⊗ ∂(I+εk), we see that|I| > 1 implies vI = 0. Now,
constant vectors are clearly singular, and usingu = ∂i ⊗ vi (i 6= 0) in (8.1) easily showsu to
be singular for all choices ofvi ∈ R. We are left with showing that∂0 ⊗ v0 (v0 6= 0) is never a
singular vector. Once again, substituting this in (8.1) and expressing the result as in (8.3) gives
nonzero terms multiplying∂0∂k ⊗ 1 for all k 6= 0.

(iii) If c 6= 0, thenV(Π,k, c) has no nonconstant singular vectors, hence it is irreducible by
Corollary 5.4. As far asV(Π,k, 0) is concerned, direct inspection of (8.1) shows that elements
∂ ⊗ u− 1⊗ ρR(∂)u (∂ ∈ d, u ∈ R) generate overH a properK(d, θ)-submodule ofV(Π,k, 0).

�

Corollary 8.1. We havesingVΠ
0 = F0 VΠ

0 + d F0 VΠ
1 .

Proof. The(d ⊕ csp d̄)-submoduled F0 VΠ
1 ⊂ singVΠ

0 contains nonconstant elements, so it has
a nonzero projection togr′1 VΠ

1 . However, Corollary 5.5 shows that this is isomorphic toΠ � d,
whence it is irreducible. �

We will now separately classify singular vectors of degree one and two in all other cases.

8.2. Classification of singular vectors of degree one.Our setting is the following:V =
V(R) = H⊗R is a reducibleK(d, θ) tensor module,R is isomorphic toΠ�U as a(d⊕ csp d̄)-
module, where bothΠ andU are irreducible, andU = R(πn) as ansp d̄-module for some
1 ≤ n ≤ N . We are also given a nonzero proper submoduleM ⊂ V . Note that by assumption
U is not the trivialsp d̄-representation. We look for singular vectors of degree one, i.e., of the
form

(8.4) v =
2N∑
i=0

∂i ⊗ vi + 1⊗ ṽ ,
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which are contained inM . Note that every such singular vector is uniquely determined by its
degree one part. Indeed, ifv andv′ are two such vectors agreeing in degree one, thenv − v′ is a
singular vector contained inM ∩ (k⊗R) = {0} (see Lemma 5.2).

Lemma 8.1. If v ∈M is a singular vector written as in(8.4), thenv0 = 0.

Proof. Computee ∗ v using (5.12). Then if we writee ∗ v =
∑

I(∂
(I)⊗ 1)⊗H vI , the coefficient

multiplying ∂0∂i∂j ⊗ 1 for i ≤ j is ρR(f ij)v0 ∈ M ∩ (k ⊗ R), up to a nonzero multiplicative
constant. HenceρR(f ij)v0 = 0 for all i, j, which impliesv0 = 0 as thesp d̄-action is nontrivial.

�

Proposition 8.2. Letv, v′ be nonzero singular vectors of degree one contained in nonzero proper
submodulesM,M ′ of a tensor moduleV(R) = V(Π, U, c), as above. Ifv = v′ mod F0 V(R),
thenv = v′.

Proof. By Lemma 8.1 and Corollary 5.5,I ′ acts on(singV(R) ∩ F1 V(R))/F0 V(R) via multi-
plication byc + 1, and it obviously acts onF0 V(R) via multiplication byc. ThensingV(R) ∩
F1 V(R) is isomorphic to the direct sum of thec+ 1 andc eigenspaces with respect toI ′.

Any K̃-submodule ofV is in particular stable under the action ofI ′, so it contains theI ′-
eigenspace components of all of its singular vectors. However, a nonzero proper submoduleM
cannot contain constant singular vectors. Thus, singular vectors must lie in thec+1-eigenspace,
and their constant coefficient part is determined by their degree one part, independently on the
choice of the submoduleM . �

So far, we have showed that singular vectors of degree one also have degree one in the contact
filtration, and that those contained in a nonzero submodule must be homogeneous (i.e. eigenvec-
tors) with respect to the action ofI ′. Notice that since all constant vectors are singular, a singular
vector of degree one stays singular if we alter or suppress its constant part.

Lemma 8.2. A nonzero elementv =
∑2N

k=1 ∂k ⊗ vk ∈ H ⊗ R is a singular vector inV(R) =
V(Π, U, c) for at most one value ofc.

Proof. Computee∗ v =
∑

I(∂
(I)⊗1)⊗H vI using (5.12). Fork 6= 0, the coefficient multiplying

∂0∂k ⊗ 1 equals−1/2 ⊗ cvk plus a linear combination of terms of the form1 ⊗ ρR(f ij)vk that
arise from reordering terms multiplying∂i∂j∂k ⊗ 1; such terms are however independent of the
choice ofc. All such coefficients must vanish whenv is singular. If this happens for two distinct
values ofc, we obtainvk = 0 for all k, a contradiction withv 6= 0. �

Theorem 8.1. Assume that the action ofsp d̄ on U is nontrivial. If V = V(Π, U, c) contains
singular vectors of degree one, thenV = VΠ

p for some1 ≤ p ≤ 2N + 1, p 6= N + 1. More
precisely,singVΠ

p ∩ F1 VΠ
p = F0 VΠ

p + d F0 VΠ
p+1.

Proof. By Theorem 7.1,V(R) = V(Π, U, c) is irreducible unlessU = R(πp) for some1 ≤ p ≤
N. Lemma 8.1 and Corollary 5.5 show that singular vectors of degree one in a nonzero proper
K(d, θ)-submoduleM project faithfully to a(d⊕ csp d̄)-submodule ofgr′1 V(R) isomorphic to
Π � (d̄ ⊗ U, c + 1). We can explicitly decomposēd ⊗ U as a direct sum of irreducibles using
Lemma 2.4. One has:

d̄⊗R(π1) ' R(2π1)⊕ k⊕R(π2) ,

d̄⊗R(πp) ' R(πp + π1)⊕R(πp−1)⊕R(πp+1), if 1 < p < N ,

d̄⊗R(πN) ' R(πN + π1)⊕R(πN−1) .

For all values of1 ≤ p ≤ N , thesp d̄-moduleR(πp + π1) satisfies the irreducibility criterion
stated in Theorem 7.1, and its dimension is larger thandimR(πp). We can therefore proceed as
in [BDK1, Lemma 7.8] to conclude that no singular vectors will have a nonzero projection to
this summand.
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However, by the construction of the contact pseudo de Rham complex, the tensor module
V(Π, R(πp), c) contains singular vectors projecting to the summandR(πp+1) whenc = p and to
the summandR(πp−1) if c = 2N + 2− p. Lemma 8.2 shows now that these are the only values
of c for which there are singular vectors projecting to such components, whereas Proposition 8.2
implies that those are the only homogeneous singular vectors. �

8.3. Classification of singular vectors of degree two.In all of this section,V(R) = V(Π, U, c)
will be a tensor module containing a singular vectorv of degree two. Due to Proposition 7.1, we
may assume that

(8.5) v =
2N∑

i,j=1

∂i∂j ⊗ vij +
2N∑
i=0

∂i ⊗ vi + 1⊗ ṽ

wherevij = vji for all i, j. We already know by Proposition 5.4 thatV(R) is reducible, hence
U = R(πp) for somep by Theorem 7.1 and Proposition 8.1. Our goal is to describe all possible
v’s, and show that the only tensor modules possessing them isV(Π, R(πN), N). Recall the
definition ofψ(u) given by (7.2).

Lemma 8.3. We havefαβ(v) = ψ(vαβ) mod F1 V(R).

Proof. Use (7.5) to computee ∗ v and compare it with (7.6). �

This shows that for someu ∈ R there exists a singular vector coinciding withψ(u) modulo
F1 V(R), since ifv is a singular vector of degree two, thenvαβ 6= 0 for some choice ofα, β.

Lemma 8.4. Let v, v′ be singular vectors of degree two inV(R), and assume thatv = v′

mod F1 V(R). Thenv0 = v′0.

Proof. Apply Lemma 8.1 to the singular vector of degree onev − v′. �

Note that sinceI ′ acts on singular vectors, the projection operatorp2 of V(R) = V(Π, U, c) to
thec + 2 eigenspace with respect toI ′ mapssingV(R) ∩ F2 V(R) to itself. If a nonzero proper
submoduleM of V(R) contains a singular vectorv of degree two, then it also containsp2v. We
will say thatp2v is ahomogeneoussingular vector of degree two.

Lemma 8.5. For everyu ∈ R there exists a unique homogeneous singular vector

(8.6) φ(u) = ψ(u) mod F1 V(R) .

Elementsφ(u) depend linearly onu and satisfy:

fαβ(φ(u)) = φ(fαβ(u)) ,(8.7)

∂̃ · φ(u) = φ(∂̃ · u) .(8.8)

Moreover, ifv is a homogeneous singular vector of degree two as in(8.5), then

(8.9) fαβ(v) = φ(vαβ) .

Proof. We know that for some0 6= u ∈ R we can find a singular vectorv equal toψ(u) modulo
F1 V(R). Then its projectionp2v to thec + 2-eigenspace ofI ′ is still singular and coincides
with v up to lower degree terms. If we are able to show that (8.7) and (8.8) hold whenever both
sides make sense, then the set of allu ∈ R for whichφ(u) is defined is a nonzero(d̃ ⊕ csp d̄)-
submodule ofR, hence all of it by irreducibility.

So, sayφ(u) is an element as above. By Lemma 8.3, we know thatfαβ(φ(u)) coincides with
ψ(fαβ(u)) up to lower degree terms. Moreover, asI ′ commutes withsp d̄, the vectorfαβ(φ(u))
is still homogeneous, thus showing (8.7). The proof of (8.9) is completely analogous. Similarly,
Lemma 5.4 implies (8.8), as the action ofI ′ commutes with that of̃d. �

Corollary 8.2. The mapφ : R→ singV(R) is a well-defined injective(d⊕sp d̄)-homomorphism,
and the action ofsp d̄ mapsp2 singV(R) to the image ofφ.



38 B. BAKALOV, A. D’ANDREA, AND V. G. KAC

Proof. Since we are assuming that the action ofsp d̄ onR is nontrivial, the mapψ : R → V(R)
is injective. Then, by (8.6),φ is also injective. �

Corollary 8.3. The spacep2 singV(R) does not contain trivialsp d̄-summands.

Proof. If v ∈ p2 singV(R) lies in a trivial summand, then0 = fαβ(v) = φ(vαβ) for all α, β. But
φ is injective, hencevαβ = 0 for all α, β, a contradiction withv being of degree two. Therefore
v = 0. �

The above results can be summarized as follows.

Theorem 8.2. The mapφ : R → p2 singV(R) is an isomorphism of(d ⊕ sp d̄)-modules. The
action of I ′ on p2 singV(R) is via scalar multiplication byc + 2. All homogeneous singular
vectors of degree two inV(R) are of the formφ(u) for u ∈ R.

A classification of singular vectors of degree two will now follow by computing the action
of e ∈ K(d, θ) on vectors of the formφ(u). In the computations we will need some identities,
which hold in any associative algebra. We will denote by[x, y] = xy− yx the usual commutator
and by

{x1, . . . , xn} =
1

n!

∑
σ∈Sn

xσ(1) . . . xσ(n)

the complete symmetrization of the product.

Lemma 8.6. For any elementsa, b, c, d in an associative algebra, we have:

abc = {a, b, c}+
1

2

(
{a, [b, c]}+ {b, [a, c]}+ {c, [a, b]}

)
+

1

6

(
[a, [b, c]] + [[a, b], c]

)
,

abcd = {a, b, c, d}

+
1

2

(
{a, b, [c, d]}+ {a, c, [b, d]}+ {a, d, [b, c]}

+ {b, c, [a, d]}+ {b, d, [a, c]}+ {c, d, [a, b]}
)

+
1

4

(
{[a, b], [c, d]}+ {[a, c], [b, d]}+ {[a, d], [b, c]}

)
+

1

6

(
{a, [b, [c, d]]}+ {a, [[b, c], d]}+ {b, [a, [c, d]]}+ {b, [[a, c], d]}

+ {c, [a, [b, d]]}+ {c, [[a, b], d]}+ {d, [a, [b, c]]}+ {d, [[a, b], c]}
)

+
1

6

(
[[[c, d], b], a]− [[[b, d], c], a]

)
+

1

12

(
[[a, b], [c, d]] + [[a, c], [b, d]] + [[a, d], [b, c]]

)
.

Proof. It is a lengthy but standard computation. The authors have checked it using Maple.�

Now let us write

(8.10) φ(u) = ψ(u) +
2N∑
k=0

∂k ⊗ vk + 1⊗ ṽ , u ∈ R ,

for somevk, ṽ ∈ R, which may depend onu.

Lemma 8.7. If the above vectorφ(u) is singular, thenv0 = (c/2−N − 1)u.

Proof. We use (5.12) to computee ∗ φ(u) =
∑

I(∂
(I) ⊗ 1) ⊗H vI . If 0 < a < b, then the

coefficient multiplying∂0∂a∂b⊗ 1 equalsI ′ · fab(u)− 2fab(v0)+ commutators that are obtained
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from reordering terms of the form∂i∂j∂k∂l in the associative algebraH = U(d). These can be
computed using Lemma 8.6, leading to

−2fab(v0) + I ′ · fab(u) + 2
2N∑

i,j=1

ωij[f
ia, f jb](u) = fab

(
I ′ · u− 2v0 − (2N + 2)u

)
,

where
∑

ij ωij[f
ai, f bj] = −(N + 1)fab due to (2.28).

Sinceφ(u) is a singular vector, this coefficient must vanish for alla < b, and a similar com-
putation can be done whena = b. Since thesp d̄-action onR is nontrivial, we obtain that
I ′ · u− 2v0 − (2N + 2)u = 0. To finish the proof, observe thatI ′ · u = cu for all u ∈ R. �

Lemma 8.8. If φ(u) is singular, then

(8.11) cv0 =
2N∑

a,b=1

fabf
ab(u) .

Proof. Compute the coefficient multiplying∂2
0 ⊗ 1 as in Lemma 8.7, using Lemma 8.6 in order

to explicitly compute commutators arising from terms∂0∂i∂j, which cancel, and∂i∂j∂k∂l. The
final result is

−1

2
I ′ · v0 +

1

2

2N∑
i,j,k,l=1

ωikωjlf
ijfkl(u) = −1

2
I ′ · v0 +

1

2

∑
k,l

fklf
kl(u) ,

which is a constant element, and must therefore vanish. �

Corollary 8.4. If φ(u) is singular for 0 6= u ∈ R = Π � (R(πp), c), thenc equals either
2N + 2 − p or p. In other words, the only tensor modules that may possess singular vectors of
degree2 are of the formVΠ

p or VΠ
2N+2−p.

Proof. Substitute Lemma 8.7 into Lemma 8.8, to obtain

1

2
c2u− (N + 1)cu−

2N∑
a,b=1

fabf
ab(u) = 0 .

Recall by Lemmas 2.3 and 2.4 that−
∑2N

a,b=1 fabf
ab equals the Casimir element ofsp d̄ and acts

onR(πp) via multiplication byp(2N + 2− p)/2. Hence we obtain

c2 − (2N + 2)c+ p(2N + 2− p) = 0,

whose only solutions arec = p andc = 2N + 2− p. �

Corollary 8.5. Let U be a nontrivial irreduciblesp d̄-module. Then a tensor moduleV =
V(Π, U, c) is reducible if and only if it is of the formVΠ

p for some1 ≤ p ≤ 2N + 1, p 6= N + 1.

Proof. The image of differentials constitute proper submodules of each tensor module showing
up in the contact pseudo de Rham complex (6.23). Conversely, Theorem 8.1 and Corollary 8.4
show that there are no other tensor modules possessing nonconstant singular vectors.�

Theorem 8.3. The only tensor modules overK(d, θ) possessing singular vectors of degree two
are those of the formVΠ

N .

Proof. If V(R) = V(Π, R(πp), c) has singular vectors of degree two, then we have a nonzero
homomorphism

V(Π, R(πp), c+ 2) → V(Π, R(πp), c) .

However, ifV(Π, R(πp), c + 2) is irreducible, then this map is injective, and its image has the
same rank asV(R). Hence, it is a proper cotorsion submoduleM ' V(Π, R(πp), c+2) in V(R),
and the action ofK(d, θ) on V(R)/M is trivial by Remark 3.1. This means thate ∗ V(R) ⊂
(H ⊗H) ⊗H M . But a direct inspection of (5.12) shows thate ∗ V(R) = (H ⊗H) ⊗H V(R),
which is a contradiction.
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We conclude thatV(Π, R(πp), c+ 2) andV(Π, R(πp), c) are both reducible. By Corollary 8.5
and (6.22),c andc+2 must add up to2N+2. Hence,c = p = N andV(R) = V(Π, R(πN), N) =
VΠ

N . �

9. CLASSIFICATION OF IRREDUCIBLE FINITE K(d, θ)-MODULES

We already know that allK(d, θ)-modules belonging to the exact complex (6.23) are re-
ducible, as the image of each differential provides a nonzero submodule. Further, Corollary 8.5
shows that these are the only reducible tensor modulesV(R), whenR is an irreducible finite-
dimensional representation ofd ⊕ csp d̄. However, by Proposition 5.2 and Theorem 5.1, every
finite irreducibleK(d, θ)-module is a quotient of someV(R), whereR is an irreducible finite-
dimensional(d⊕ csp d̄)-module. Thus, classifying irreducible quotients of all (reducible) tensor
modulesV(R) will yield a classification of all irreducible finiteK(d, θ)-modules.

Remark9.1. By Theorems 8.1 and 8.3, each of the reducible tensor modules from (6.23) contains
a unique irreducible(d⊕ csp d̄)-summand of nonconstant singular vectors.

Lemma 9.1. Let V and W be K(d, θ)-modules, and assumeV is generated overH by its
singular vectors. Iff : V → W is a K(d, θ)-homomorphism, thenf(V ) is alsoH-linearly
generated by its singular vectors.

Proof. This follows immediately fromf(sing V ) ⊂ singW . �

Theorem 9.1. The image modulesdRVΠ
N+2 anddVΠ

p+1, where0 ≤ p ≤ 2N + 1, p 6= N,N + 1

are the unique nonzero properK(d, θ)-submodules ofVΠ
N andVΠ

p , respectively.

Proof. We first claim that these submodules are irreducible, hence minimal. By Proposition 5.2
and Remark 9.1, it is enough to show that they areH-linearly generated by their singular vectors.
This follows from Lemma 9.1.

To prove that there are no other nonzero proper submodules, it is enough to show that these
minimal submodules are also maximal. Equivalently, the quotientsVΠ

N/d
RVΠ

N+2 andVΠ
p /dVΠ

p+1

are irreducible, which follows from exactness of the complex (6.23). �

The above results lead to the main theorem of the paper.

Theorem 9.2.A complete list of non-isomorphic finite irreducibleK(d, θ)-modules is as follows:

(i) Tensor modulesV(Π, U) whereΠ is an irreducible finite-dimensional representation ofd
andU is a nontrivial irreducible finite-dimensionalcsp d̄-module not isomorphic to(R(πp), p)
or (R(πp), 2N + 2− p) with 1 ≤ p ≤ N,

(ii) Images of differentials in the twisted contact pseudo de Rham complex(6.23), namely
dRVΠ

N+2 anddVΠ
n where1 ≤ n ≤ 2N + 1, n 6= N + 1, N + 2. HereΠ is again an irreducible

finite-dimensionald-module.

Remark9.2. The imagedVΠ
2N+2 of the first member of the complex (6.23) is isomorphic to

VΠ
2N+2 = V(Π, R(π0), 2N + 2) and it is included in part (i) of the above theorem.

Recall that representations of the Lie pseudoalgebraK(d, θ) are in one-to-one correspondence
with conformal representations of the extended annihilation algebraK̃ (see [BDK] and Proposi-
tion 3.2). The latter is a direct sum of Lie algebrasK̃ = d̃⊕K whered̃ ' d andK is isomorphic
to the Lie–Cartan algebraK2N+1 (see Propositions 4.1 and 4.2). Thus, from our classification
of finite irreducibleK(d, θ)-modules we can deduce a classification of irreducible conformal
K2N+1-modules. In this way we recover the results of I.A. Kostrikin, which were stated in [Ko]
without proof.

In order to state the results, we first need to set up some notation. LetR be a finite-dimensional
representation ofcsp d̄. Using thatcsp d̄ ' K′

0/K′
1, we endowR with an action ofK′

0 such that
K′

1 acts trivially (see Proposition 4.3). We also viewR as a (d ⊕ csp d̄)-module with a trivial
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action ofd, and as before we writeR = (U, c). Then, by Remark 5.3 and Proposition 4.2,
the inducedK-moduleIndKK′0 R is isomorphic to the tensorK(d, θ)-moduleV(R) = V(k, U, c).
Finally, let us recall theZ-grading ofV introduced in the proof of Proposition 5.4. In this setting,
Theorems 9.1 and 9.2 along with Remark 7.2 imply the following.

Corollary 9.1. (i) [Ko]. Every nonconstant homogeneous singular vector inV = V(k, U, c) has
degree1 or 2. The spaceS of such singular vectors is ansp d̄-module, and the quotient ofV by
theK-submodule generated byS is an irreducibleK-module. All singular vectors of degree1 in
V are listed in cases(a), (b)below, while all singular vectors of degree2 are listed in(c):

U = R(πp) , c = p , S = R(πp+1) , 0 ≤ p ≤ N − 1 .(a)

U = R(πp) , c = 2N + 2− p , S = R(πp−1) , 1 ≤ p ≤ N .(b)

U = R(πN) , c = N , S = R(πN) .(c)

(ii) [Ko]. If the sp d̄-moduleU is infinite-dimensional irreducible, thenV(k, U, c) does not
contain nonconstant singular vectors.

(iii) If a K-moduleV(k, U, c) is not irreducible, then its(unique) irreducible quotient is iso-
morphic to the topological dual of the kernel of the differential of a member of the Rumin complex
over formal power series.
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