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ABSTRACT. One of the algebraic structures that has emerged recently in the study of the operator
product expansions of chiral fields in conformal field theory is that of a Lie conformal algebra.
A Lie pseudoalgebra is a generalization of the notion of a Lie conformal algebra for @fith

is replaced by the universal enveloping algebraf a finite-dimensional Lie algebra. The finite

(i.e., finitely generated ovell) simple Lie pseudoalgebras were classified in our previous work
[BDK]. The present paper is the second in our series on representation theory of simple Lie
pseudoalgebras. In the first paper we showed that any finite irreducible module over a simple
Lie pseudoalgebra of typd or S is either an irreducible tensor module or the kernel of the
differential in a member of the pseudo de Rham complex. In the present paper we establish a
similar result for Lie pseudoalgebras of typge with the pseudo de Rham complex replaced by

a certain reduction called the contact pseudo de Rham complex. This reduction in the context of
contact geometry was discovered by Rumin.

CONTENTS

1. Introduction
2. Preliminaries
2.1. Forms with constant coefficients 4

AN

2.2. Contact forms on 5
2.3. The Lie algebrasp ? andcsp 0 6
2.4. Bases and filtrations 6f(d) andU (v)* 8

3. Lie Pseudoalgebras and Their Representations 10
3.1. Hopf algebra notations 10
3.2. Lie pseudoalgebras and their representations 11
3.3. Twistings of representations 12
3.4. Annihilation algebras of Lie pseudoalgebras 13
4. Primitive Lie Pseudoalgebras of Typé 14
4.1. Definition of K (2, 0) 14
4.2. Annihilation algebra of/(0) 15
4.3. Annihilation algebra of (0, ) 16
4.4, The normalizeNy 17

5. Singular Vectors and Tensor Modules 18
5.1. Tensor modules fdi/ (9) 19
5.2. Tensor modules fdk (0, 6) 19
5.3. Singular vectors 22
5.4. Filtration of tensor modules 25
6. Tensor Modules of de Rham Type 27
6.1. The Rumin complex 27
6.2. Pseudo de Rham complex 28
6.3. Contact pseudo de Rham complex 29

2000Mathematics Subject ClassificatioRrimary 17B35; secondary 16W30 17B81.
Key words and phrased.ie pseudoalgebra; Lie—Cartan algebra of vector fields; Hopf algebra; Rumin complex.
The first and third authors were partially supported by NSF grants.
The second author was supported in part by European Union TMR grant ERB FMRX-CT97-0100 and CNR
grant 203.01.71.
1



2 B. BAKALOV, A. D'ANDREA, AND V. G. KAC

6.4. K(9,0)-action on the contact pseudo de Rham complex 30
6.5. Twisted contact pseudo de Rham complex 32
7. Irreducibility of Tensor Modules 32
7.1. Coefficients of elements and submodules 32
7.2.  Anirreducibility criterion 33

8. Computation of Singular Vectors 34
8.1. Singular vectors iw(II, k, ¢) 35

8.2. Classification of singular vectors of degree one 35
8.3. Classification of singular vectors of degree two 37
9. Classification of Irreducible Finit& (0, #)-Modules 40
References 41

1. INTRODUCTION

The present paper is the second in our series of papers on representation theory of simple Lie
pseudoalgebras, the first of which is [BDK1].

Recall that d.ie pseudoalgebrés a (left) moduleL over a cocommutative Hopf algebra,
endowed with a pseudo-bracket

L®L—- (HRH)®y L, a®br [axb],

which is anH-bilinear map ofH-modules, satisfying some analogs of the skewsymmetry and
Jacobi identity of a Lie algebra bracket (see [BD], [BDK]).

In the case whet/ is the base field, this notion coincides with that of a Lie algebra. Any
Lie algebrag gives rise to a Lie pseudoalgelitar g = H ® g over H with pseudobracket

(l®a)x(1@b)]=(1e1) @ [a,b],

extended to the whol€ur g by H-bilinearity.

In the case whel = k[0, the algebra of polynomials in an indeterminateith the comul-
tiplication A(0) = 0 ® 1 + 1 ® 0, the notion of a Lie pseudoalgebra coincides with that biea
conformal algebrgdK]. The main result of [DK] states that in this case any finite (i.e., finitely
generated oveH = k[J]) simple Lie pseudoalgebra is isomorphic eithefta g with simple
finite-dimensionay, or to the Virasoro pseudoalgebvar = k[0]¢, where

Uxl)]=(1®0-0®1) @k ¢,

provided thak is algebraically closed of characteristic

In [BDK] we generalized this result to the case whBn= U(0), whered is any finite-
dimensional Lie algebra. The generalization of the Virasoro pseudoalgeldifis= H ® 0
with the pseudobracket

(1®a)*x(1ebh)]=(191)0y (1®[a,b)+ (b®]1)op (1®a) - (1®a) @y (1®D).

The main result of [BDK] is that all nonzero subalgebras of the Lie pseudoald®&lova are
simple and non-isomorphic, and, along withir g, whereg is a simple finite-dimensional Lie
algebra, they provide a complete list of finitely generated dvesimple Lie pseudoalgebras,
provided thatk is algebraically closed of characteristic Furthermore, in [BDK] we gave a
description of all subalgebras @f (v). Namely, a complete list consists of the “primitive” series
S(0,x), H(v, x,w) andK (9, 0), and their “current” generalizations.

In [BDK1] we constructed alfinite (i.e., finitely generated oveid = U(?)) irreducible mod-
ules over the Lie pseudoalgebidg0) andS(0, x). The simplest nonzero module ovéf(0) is
Q%) = H, given by

(1.2) (f@a)xg=—(fRga)®@yl, fgeH,a€n.
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A generalization of this construction, called a tend6f0)-module, is as follows [BDK1]. First,
given a Lie algebrg, define the semidirect sui’ (d) x Cur g as a direct sum a&-modules,
for which W () is a subalgebra ardur g is an ideal, with the following pseudobracket between
them:

[(f®a)x(g@b)]=—(f®ga) ©n (120),
wheref,g € H,a €0, b € g. Given a finite-dimensiongl-modulel;, we construct a represen-
tation of W (0) x Curgin V = H ® V; by (cf. (1.1)):

12 (fea®(@eb)*(hev)=—(f®hs) @y (1®v)+(g®h)Qu (1®bv),

wheref,g,h € H,a €0,b € g,v € V.
Next, we define an embedding Bf () in W (d) x Cur(d & gl?) by

(1.3) 120 (100)@ (1ed)®(1oadd+ Y 0;@¢)),

J

where{9;} is a basis ob and{¢!} a basis ofgl, defined bye! (9;) = §.0;. Composing this
embedding with the action (1.2) & (9) x Cur g, whereg = 2 gl 0, we obtain d1'(9)-module
V = H ® V, for each(d @ gl0)-moduleV;. This module is called gensorlV (2)-moduleand is
denoted’ (1}).

The main result of [BDK1] states that any finite irreduciblgd)-module is a unique quotient
of a tensor modul& (1}) for some finite-dimensional irreducib{e® gl 0)-moduleV;, describes
all cases wheff (1) are notirreducible, and provides an explicit construction of their irreducible
quotients, called thdegeneratél’ (v)-modules Namely, we prove in [BDK1] that all degenerate
W (v)-modules occur as images of the differentlah the I1-twisted pseudo de Rham complex
of W (v)-modules

(1.4) 0—0%0) 5 Q@) S 4 admogg),

Herell is a finite-dimensional irreducibkemodule and2f(v) = 7 (IT ® A" 0*) is the space of
pseudai-forms.

In the present paper we construct all finite irreducible modules over the contact Lie pseudoal-
gebraK(v,60), whered is a Lie algebra of odd dimensidV + 1 and#é is a contact linear
function ond. To anyd € 2* one can associate a skewsymmetric bilinear faron v, defined
by w(a Ab) = —0([a, b]). The linear functiord is calledcontactif d is a direct sum of subspaces
0 = kerd andkerw. In this caselimkerw = 1 and there exists a unique elemégte ker w
such that(d,) = —1. Furthermore, the restriction of to  is non-degenerate; hence we can
choose dual base®);} and{0'} of v, i.e.,w(d" A 9;) = & fori,j = 1,...,2N. Then the

element
2N

r=> @0 cH®H
=1
is skewsymmetric and independent of the choice of dual bases.
The Lie pseudoalgebr®& (0, 0) is defined as a fre&-moduleH e of rank 1 with the following
pseudobracket:
exel]=(r+0y®1—-1®0d) @pue.
There is a unique pseudoalgebra embedding @f, #) in W (2), which is given by

e— —1r+1®0.

We will denote again by its image inWW(d). Letsp o (respectivelysp 0) be the subalgebra of
the Lie algebrgl(d (resp.gld), consisting ofA € gl0 (resp.A € gl?), such thatv(Au A v) =
—w(u A Av) for all u,v € d (resp.d). Letcspd = spo @ kI, wherel'(0y) = 20y, I'|; = I,
andcsp 0 = sp0 @ kl;. We have an obvious surjective Lie algebra homomorphism of the Lie
algebrasp 0 onto the (simple) Lie algebra 0, and ofcsp 0 ontocsp 0. We show that the image

of e € W(0) under the map (1.3) lies i/ (9) x Cur(o & csp 0). Hence eacko & csp 0)-module
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Vo, being a(o & csp 9)-module, gives rise to & (0, §)-module7 (V;) = H ® V;, with the action
given by (1.2). These are thensor module§ (15) over K (0, 0).

In the present paper we show that any finite irreducikl@, #)-module is a unique quotient
of a tensor modulg (V}) for some finite-dimensional irreducibl@ @ cspd)-moduleV,. We
describe all cases when tl&0, §)-modules7 (1}) are not irreducible and give an explicit con-
struction of their irreducible quotients called degened&t®, ¢)-modules. It turns out that all
degeneraté( (v, #)-modules again appear as images of the differential in a certain complex of
K (9, 0)-modules, which we call thE-twisted contact pseudo de Rham complex, obtained by a
certain reduction of thél-twisted pseudo de Rham complex (1.4). The idea of this reduction is
borrowed from Rumin’s reduction of the de Rham complex on a contact manifold [Rul].

As a corollary of our results we obtain the classification of all degenerate modules over the
contact Lie—Cartan algebrd, . 1, along with a description of the corresponding singular vec-
tors given (without proofs) in [Ko]. Moreover, we obtain an explicit construction of these mod-
ules.

We will work over an algebraically closed fieldof characteristi@®). Unless otherwise spec-
ified, all vector spaces, linear maps and tensor products will be considereR.oVeroughout
the paperp will be a Lie algebra of odd dimensiahV + 1 < cc.

2. PRELIMINARIES

In this section we review some facts and notation that will be used throughout the paper.

2.1. Forms with constant coefficients. Consider the cohomology complex of the Lie algetra
with trivial coefficients:

(2.1) 0— Q02 0t Do do 2N+ Qi = 2N + 1,

whereQ” = \"0*. SetQ = \*0* = @V Q" andQ” = {0} if n < 0 orn > 2N + 1. We
will think of the elements of)™ as skew-symmetrie-forms i.e., linear maps from\" 0 to k.
Then thedifferential d, is given by the formulad € Q", a; € ?):

(doa)(a1 N A CLn+1)

(2.2) =N (=DM a(fai, a) Aar A NG A ATGA A G)
1<J
if n > 1, anddya = 0 if a € QY = k. Here, as usual, a hat over a term means that it is omitted

in the wedge product.
Recall also that thevedge producof two formsa € 2™ andj € 7 is defined by:

(aNB)ar A A ansp)

2.3 1
2:3) = nip! Z (sgnm) aanay A= A () B(@r(nar) A A r(ntp)) s

TESntp

wheresS,,;, denotes the symmetric group on-p letters andign 7 is the sign of the permutation
.
The wedge product, defined by (2.3), makesn associative graded-commutative algebra:

fora € Q", g € OQF, v € ), we have

(2.4) aANB=(-1)""BANae QP (@AB)Ay=aAn(BAY).
The differentiald, is an odd derivation of? :
(25) dQ(CE/\ﬁ) = doOé/\ﬁ—F (—1)”&/\(105.

Fora < 0, define operators,: Q" — Q"' by
(2.6) (ta)(ar AN+ Nap—1) =alaNag A+ ANap_1), a; €0.
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Then each, is also an odd derivation 6f. For A € gld, denote byA- its action orf2 ; explicitly,

(2.7) (A-a)(ar A+ Nay) = Z(—l)ia(Aai/\al AN NG N ANay).
=1
EachA- is an even derivation d? :

(2.8) A-(anp)=(A-a)ANB+aNn(A-f),
and we have the following Cartan formula for the coadjoint action:of
(2.9) (ada)- = dotg + tado -

The latter implies thatad a)- commutes withl,.

2.2. Contact forms ono. From now on we will assume that the Lie algebradmits acontact
formd € Q' = 0%, i.e., al-form such that

(2.10) ONWNA---Nw#0, where w =dyf.

N
Consider the kernel @, i.e., the space of all elementsc d such that,w = 0. Equation (2.10)
implies thatker w is 1-dimensional and does not vanish on it. We lete ker w be the unique
element for whichd(s) = —1, and letdo C 0 be the kernel of. Then it is easy to deduce the
following lemma (cf. [BDK]).

Lemma 2.1. With the above notation, we have a direct sum of vector subspaeas® ks such
that

(2.11) [a,b] =w(aAb)s mod D, a,ben.
The restriction ofw to 9 A 0 is nondegenerate,w = 0, and[s, 9] C 0.

Note that not every Lie algebra of odd dimension admits a contact form. In particular, it is
clear from the above lemma thaicannot be abelian. Also, the Lie algelargaannot be simple
other thansl, (see [BDK, Example 8.6]). Here are two examples of p&irs)) taken from
[BDK, Section 8.7].

Example 2.1. Letd = sl, with the standard basig, f,h}, and letd(h) = 1, 6(e) = 6(f) = 0.
Thens = —h, 0 = span{e, f}, andw(e A f) = —1.

Example 2.2. Let d be the Heisenberg Lie algebra with a bagis b;, ¢} and the only nonzero
brackets[a;,b;] = cfor1 < i < N, and letd(c) = 1, 0(a;) = 0(b;) = 0. Thens = —c,
0 = span{a;, b;}, andw(a; A b;) = —1.

Letw be the restriction of to 0 A 0. Sincew is nondegenerate, it defines a linear isomorphism
¢: 0 — 0*, given by¢(a) = 1,&. The inverse map—': 0* — 0 gives rise to a skew-symmetric
element € 9 ® 0 such thatp~'(a) = (o ®id)(r) for a € d*. Explicitly, let us choose a basis
{0y, 01, ...,0,n} Of 0 such thaty = s and{dy,...,0.n} is a basis ob, and let{z?, ... z*N}
be the dual basis af so that(z7, 9) = 7.

We setw;; = w(9; A 9;), and we denote b§'7), ;_; oy the inverse matrix tdw;;); j—1._an,
so that

2N

(2.12) > rwp =06,  ik=1,...2N.
Jj=1

Then

2N 2N 2N
(2.13) r=> o= 0,00==) 00,
i=1 i=1

i,j=1
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where
2N

(2.14) 0= "r70;,  w@A}) =0, for ik=1,..2N.
j=1

We also have
(2.15) W@ AN = (2, 0) = —rT =177,
Recall that a basi&d,, . . ., d,n} of 0 is calledsymplectidff it satisfies
(2.16) w(O; NOiyn) =1=—w(0ipn NO;), w(0;N0;) =0 for |i—j|#N.
In this case we have
(2.17) 0= -0y, O™ =09 i=1,...,N,
which implies that

N
(2.18) r= Z(az’—i-N ®0; — 0; @ OipnN) -
=1
Note that, by (2.3),
1 2N
(2.19) 6 =—2°, w=g Z wijr' A
ij=1
and when the basi§),, . .., 9,5 } Of 0 is symplectic, we have
N
(2.20) W= Z ot A
=1

2.3. The Lie algebrassp o and c¢sp 0. In this subsection we continue to use the notation from
the previous one. In particular, recall thd, . .., dan } is a basis ob and{z?, ..., z?"} is the
dual basis ob*, while restriction to nonzero indices gives dual bases afido*.

We will identify End 9 with 0 ® 9* as a vector space. In more detail, the elementary matrix
¢/ € Endd is identified with the elemerit; ® 27 € d ® d*, wheree! (9;) = 6.0;. Notice that
(O®z)(0') = (x,0")0, so that the compositiofd @ x) o (' ® 2’) equals(z, d')0 @ z’. We will
adopt a raising index notation for elementsid o as well, so that

2N
(2.21) el =0 @1 = Zrikei, 1#0.
k=1
Definition 2.1. We denote byp 0 = sp(0, @) the Lie algebra of all € gld such thatd-© = 0.

Since the2-form @ is nondegenerate, the Lie algeksad is isomorphic to thesymplectic
Lie algebrasp,,, and in particular it is simple. It will be sometimes convenient to enmipad
in glo by identifying gl 0 with a subalgebra ofl?. We will also consider the Lie subalgebra
csp 0 = sp 0 @ kI’ of glo, where
2N
(2.22) I'=2e)+) el egld.
=1
Note thatcsp 0 is a trivial extension oép 0 by the central ideak!’.

Lemma 2.2. We have

(2.23) ei-@zékoxj, eg-w:0, el w=a'Nt!, i#0.
In particular, A-0 = A-w =0forall A e spdand

(2.24) I'-0=-20, I' w=-2w, I' 2'=—-2", i#0.
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Proof. One can deduce from (2.7) thdt- ' = —diz7. Then the first two equations in (2.23)
are immediate from (2.19) and (2.8). To check the third one, we observe that

2N

e£~w:Zwkixi/\xj, k#0
i=1

and then apply (2.21). Finally, (2.24) can be deduced from (2.22) and the above formulas.

Corollary 2.1. The elements
(2.25) f9 = —5(6” + e = ", 1<i<j<2N
form a basis ofsp 0.

Recalling thatz’, &) = —r* = r7%, we find

(2.26) e o =rMel,
so that
(2.27) [, M) = phigh — ypilehi
and
(228) [fm’ fk:l] — 5 (T'ka]l + T’Zlfjk + r]kle + T,jlfzk) )
Let us also introduce the notation
. 2N 2N
(2.29) = wial®, fi =Y wiawinf®.
a=1 a,b=1

Lemma 2.3. (i) For everyi = 1,...,2N the elements

(2.30) hi = —2f, ei = fii, fi=—r"

constitute a standarll;-triple.
(i) The element

2N
(2.31) =Y [ f7 € Ulspo)
ij=1
equals the Casimir element corresponding to the invariant bilinear form normalized by the con-
dition that the square length of long rootsas

Proof. (i) We have:

2N
[ iiu fu] _ Z wwfaz fm Zwmrmfu fii,
a=1

and similarly
2N

[ f, fn'] = Z [Wiafaiawibwicfbc]
a,b,c=1

12N

_ 5 Z Wiawibwic(rabfic + ,r,acjcib + T,ibfac + Tinab)
a,b,c=1

12N

= 2 Z (55) wipWic f 4 O wicwip f P — wpr biwmwz’cf “— WicTCiwiawibf ab) = —fii-
a,b,c=1
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Finally,

L ful = 1", Z wiawibfab]

a,b=1

2N
_ Z wmwib(rmfzb + szfza)

a,b=1
2N
ai ib bi ia )
= - E wiaT"wip [ + wipr"wia f** = =2f],
a,b=1

proving part (i).
(ii) Using (2.25) and (2.26), we compute:

2N
fijfkl = Z Wiawjb.fabfkl
a,b=1
1 2N
— Z Z wmwjb(rkbeal + leealc + Tk:aebl + rlaebk) )
a,b=1

Since by (2.21)tr e = r¥ = —rJ%, we obtain

IN
1 1
tr fijfkl =3 E wmwjb(rkbr“l + rlbpaky = —5(555;-“ + 5f5§») :
a,b=1

The trace form is bilinear, symmetric, invariant under the adjoint action, and gives square length
2 for long roots ofsp 0 (see, e.g., [FH, Lecture 16]). This proves part (ii). OJ

The above lemma turns out to be particularly useful when the Hasjsof o is symplectic
(see (2.16)). In this case one has

(2.32) hi:ei—e%ﬁ, i1=1,...,N;

hence{h;},—1._n is a basis for the diagonal Cartan subalgebrapaf (cf. [FH, Lecture 16]).

Following the notation of [OV], we denote b§(\) the irreduciblesp d-module with highest
weight\. Recall that the highest weight of the vector representatisrihe fundamental weight
1, and that

(2.33) N0~ R(m,) & R(mp_2) ® R(mpa) ® -+, 0<n<N,

wherer,, are the fundamental weights and we Bétry) = k, R(m,) = {0} if n <0orn > N.
The following facts are standard (see, e.g., [OV], Reference Chapter, Table 5).

Lemma 2.4. With the above notation, we have
R(m,) ® R(m) ~ R(m, + m1) & R(mp_1) ® R(mpy1),
dim R(m, + ) > dim R(m,) , 1<n<N.
Furthermore, the Casimir eleme(®.31)acts onR(m,) as scalar multiplication by,(2N + 2 —
n)/2.

2.4. Bases and filtrations ofU (v) and U (2)*. Letd be a Lie algebra of dimensianV + 1 with
abasig 0y, 01, ...,0:n}, @asin Section 2.2. Then its universal enveloping algébra U(2) has
a basis
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Recall that the coproducdt: H — H ® H is a homomorphism of associative algebras defined
by A(0) =0® 1+ 1®0ford € d. Thenitis easy to see that

(2.35) ANy = 3" 0V @a".

J+K=I

The canonical increasing filtration 6f(2) is given by
(2.36)  FPU(d) =span {0 | [I| <p},  where [I| =g+ +iay,

and it does not depend on the choice of basia dthis filtration is compatible with the structure
of a Hopf algebra (see, e.g., [BDK, Section 2.2] for more details). We h&vé:H = {0},
F°H=kF' H=kod.

It is also convenient to define a different filtrationéfo), called thecontact filtration

(2.37) F?U(d) = span {07 | |I|' < p}, where |I|'=2ig+ i1+ +in_1.

This filtration is also compatible with the Hopf algebra structuré/gn), and we havé™® H =
k, F'H =k®?d, F?*H > k®o = F' H. Itis easy to see that the two filtrations Af are
equivalent.

The dualX = H* := Homy(H, k) is a commutative associative algebra. Define elements
x; € X by (z;,0Y)) = 67, where, as usuab/ = 1if I = Janddé/ = 0if I # J. Then, by
(2.35), we haver jx i = x5, and

(2.38) xp = (20 ... (V) I = (ig,...,ian) € Z2NT,

where

(2.39) 7=, & =(0,...,0,1,0,...,0), i=0,...,2N.

Therefore, X can be identified with the algebt@,y ., = k[[t°, ¢!, ..., ¢*]] of formal power

series i2N + 1 indeterminates.
There are left and right actions ofon X by derivations given by

(2.40) (0, f) = —(z,0f),
(2.41) (0, f) = —(x, fO), odev,re X, fe H,

whered f and f0 are products i{. These two actions coincide only when the Lie algebis
abelian. The differencéx — x0 gives the coadjoint action é¢f € 0 onz € X.

LetF, X = (F” H)* be the set of elements frofd = H* that vanish orf” H. Then{F, X'}
is a decreasing filtration oX called thecanonical filtration It has the properties:

(2.42) FiX=X, X/FoX~k, FoX/FX~0",

(2.43) F, X)(F,X)CFupn X, oF,X)CF, X, (F,X)0CF, X.

Note thatF, X is the unique maximal ideal of, andF, X = (F, X)?*'. We define a topology
of X by considering{F, X} as a fundamental system of neighborhood$.ofVe will always
considerX with this topology, whileH ando with the discrete topology. TheX is a linearly
compact algebra (see [BDK, Chapter 6]), and the left and right action®pofit are continuous

(see (2.43)).
Similar statements hold for the filtratidt}, X = (F”” H)*, namely:

(2.44) (F, X)(F;X) C F;L+p+1 X, 6(F; X) C F;le, (F;X)ﬁ C F;le,
(2.45) O(F,X) CF X, (F,X)3 CF, ,X.
We will call {F, X'} the contact filtration It is equivalent to the canonical filtratidii, X }.

We can consider’ as elements af*; then{z'} is a basis ob* dual to the basi$o, } of 9, i.e.,
(z',0;) = L. Letc}; be the structure constantswin the basig{9;}, so thatld;, 0;] = > ¢};0k.
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Then we have the following formulas for the left and right actions oh X (see, e.g., [BDK1,
Lemma 2.2]):

(2.46) 0! = =61 =Y cha® mod F1 X,

k<i
(2.47) P10 = =61+ cha® mod F1 X
k>i
3. LIE PSEUDOALGEBRAS ANDTHEIR REPRESENTATIONS

In this section we review the definitions and results about Lie pseudoalgebras from [BDK,
BDK1], which will be needed in the paper.

3.1. Hopf algebra notations. Let H be a cocommutative Hopf algebra with a coprodii¢ta
counite, and an antipodé&. We will use the following notation (cf. [Sw]):

(3.1) A(h) = ha) © h) = he) @ hay

(3.2) (A®id)A(h) = (Id®A)A(h) = ha) ® ho) ® he) ,
(3.3) (S ®id)A(h) = hi—1) ® hy) , heH.

Then the axioms of antipode and counit can be written as follows:
(3.4) hi-nhe) = hayh-2) = £(h),

(3.5) e(hm)he) = hwelhe) = h,

while the fact thatA is a homomorphism of algebras translates as:
(3.6) (f9)o @ (f9)e = fogw © fo9e,  f9€H.
Egs. (3.4), (3.5) imply the following useful relations:

(3.7) h—nyh@) @ h@) =1 h = hayh—g) ® h).

The following lemma, which follows from [BDK, Lemma 2.3], plays an important role in the
paper.

Lemma 3.1. For any H-moduleV/, the linear maps

HeV - (HH) oV, h@v— (h®l)®gv
and

HRV - (H®H)®yV, h@v— (1®h)@guv
are isomorphisms of vector spaces.

The dualX = H* := Homy(H, k) becomes a commutative associative algebra under the
product defined by

(3.8) (wy, h) = (z, ha))(yh@) , he H, z,y€e X.
X admits left and right actions d¥, given by (cf. (2.40), (2.41)):

(3.9) {ha, f) = (z, S(h)[)

They have the following properties:

(3.11) Way) = (hayr)(hey) ,

(3.12) (zy)h = (zh))(yhe) ,

(3.13) h(xzg) = (hx)g, h,ge H, v,y € X.
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3.2. Lie pseudoalgebras and their representationsLet us recall the definition of a Lie pseudo-
algebra from [BDK, Chapter 3]. Aseudobrackebn a left H-moduleL is an H-bilinear map
(3.14) LOL—- (HRH)®y L, a®br [axb],

where we use the comultiplicatioh: # — H ® H to define(H @ H) ®y L. We extend the
pseudobracket (3.14) to ma§®’ @y L)R L — H*®* @y LandL® (H*?®@y L) — H®3 @y L
by letting:

(3.15) (h@pa)«b]=> (h®1l)(A®id)(g) @,
(3.16) [ax (h@ub)] = (1©h)(doA)(g) O,
whereh € H*?, a,b € L, and

(3.17) [a * b] = Z i R ¢ with ¢, € H®?, ¢; € L.
A Lie pseudoalgebrg a left H-module equipped with a pseudobracket satisfying the follow-
ing skewsymmetry and Jacobi identity axioms:
(3.18) [bxal = —(0c @y id) [a *b],
(3.19) [ax 0] c] = [ax[bxc]] = (0 @id) ®p id) [b* [a* c]] .
Here,o: H ® H — H ® H is the permutation of factors, and the compositifas« b] * ¢,
la * [b * c]] are defined using (3.15), (3.16).

The definition of a module over a Lie pseudoalgebras is an obvious modification of the above.
A moduleover a Lie pseudoalgebrais a left H-moduleV” together with anf/-bilinear map

(3.20) LV - (H®H)®gV, a®uv—a*xv
that satisfiesd{,b € L,v € V)
(3.22) [axbl*v=ax(bxv)— ((c®id) @ id) (b* (a *xv)).

An L-moduleV will be calledfiniteif it is finitely generated as aff-module.

Remark3.1 If V is a torsion module ovef/, then the action of. onV is trivial, i.e., L x V =
{0} (see [BDK, Corollary 10.1]). Notice that this holds wheneVeis finite dimensional and
H = U(d) with dimd > 0.

Some of the most important Lie pseudoalgebras are described in the following examples (see
[BDK]).

Example 3.1. For a Lie algebray, the current Lie pseudoalgebtair g = H ® g has an action
of H by left multiplication on the first tensor factor and a pseudobracket

(3.22) [(f®a)x(g@b)] = (f©g)®n (1 a,b]).

Example 3.2.Let H = U(0d) be the universal enveloping algebra of a Lie algetrarhen
W(d) = H ® 0 has the structure of a Lie pseudoalgebra with the pseudobracket

[(f®a)x(g@b)]=(f@g) @ (12 [a,b])

(3.23) —(f®g0) @ (11 + (fb® g) @ (1 ©a).
The formula
(3.24) (f@a)xg=—(f®ga) @1

defines the structure ofl& (9)-module onH.

Example 3.3. The semidirect sumi’ () x Cur g containsi¥ (o) andCur g as subalgebras and
has the pseudobracket

(3.25) [(f®a)*(g®b)] = —(f ®ga) @n (1®D)
for f,g € H=U(®d),ac0,bec g(c (3.24)).
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Let U andV be twoL-modules. Amags: U — V is ahomomorphisnof Z-modules if is
H-linear and satisfies

(3.26) (i[d®id) @y B)(a*u) = ax B(u), acel,uelU.

A subspacél C V is anL-submoduléf it is an H-submodule and.« W C (H®R H) @z W,
where L x W is the linear span of all elements« w with ¢ € L andw € W. A submodule
W C V is calledproperif W # V. An L-moduleV is irreducible (or simplg if it does not
contain any nonzero propérsubmodules and x V' # {0}.

Remark3.2 (i) Let V' be a module over a Lie pseudoalgelirand letlW be anH-submodule
of V. By Lemma 3.1, for each € L, v € V, we can write

(3.27) a*xv= Z (O ®1) @y v}, v eV,

2N +1
Iezy

where the elements; are uniquely determined byandv. ThenWW C V' is anL-submodule iff
it has the property that alf, € W whenevew € W. This follows again from Lemma 3.1.
(i) Similarly, for eacha € L, v € V, we can write

(3.28) axv= Y (1@d)eyv), eV,

IGZ2N+1
andW is anL-submodule iffv} € W whenevew € .

3.3. Twistings of representations. Let L be a Lie pseudoalgebra ovEr= U(0), and letll be
any finite-dimensionat-module. In [BDK1, Section 4.2], we introduced a covariant fun@ier
from the category of finitd.-modules to itself. In the present paper we will use it only in the
special case when all the modules are freé/asiodules. For a finitd.-moduleV = H ® 1},
which is free ovel{, we choose &-basis{v;} of 1}, and write the action of onV" in the form

(3.29) ax(1®v) = Z(fij®9ij)®H (1®vy)
j
wherea € L, fij7gij € H.

Definition 3.1. Thetwistingof V' by IT is the L-moduleT; (V) = H ® I1 ® Vi, whereH acts by
a left multiplication on the first factor and

(3.30) ax(louev)=Y (f;® Gijy) @u (1@ gij_yyu @ v;)
J
fora e L,u eIl

The facts thaf1; (1) is anL-module and that the action éfon it is independent of the choice
of basis ofl} follow from [BDK1, Proposition 4.2]. Let us now recall hoW; is defined on
homomorphisms of.-modules. Consider two finitt-modulesV = H ® V, andV’' = H ® V.
Choosek-bases{v;} and{v.} of V, andVj, respectively. For a homomorphism bfmodules
G:V — V' write

(3.31) Blwv) = E:hm®%, hij € H.

ThenTy(B): Tu(V) — Tu(V') is given by
(3.32) Th(A)(1@u®v;) = Z hm U u®v

Thanks to [BDK1, Proposition 4.3], the mﬁh(ﬁ) is a homomorphism of.-modules, indepen-
dent of the choice of bases.

Note thatT; can be defined on the category of (frdé)modules. The next result concerns
only the H-module structure.
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Proposition 3.1. (i) The functofly is exact on freéZ-modules, i.e., ift’ Loy 2 yris ashort

exact sequence of finite frée-modules, then the sequeriGg1) ), T (V') i), T (V")
is exact.

(i) Lets: V — V'’ be a homomorphism between two fidemodules. If the image of has
a finite codimension ovék, then the image of 1;(/5) has a finite codimension i (V).

Proof. Consider the linear map
F:HRII —- H®II, h®u— hqy ®hayu,
which was introduced in the proof of [BDK1, Lemma 5.2]. From (3.7) it is easy to sedtimt
a linear isomorphism and
F ' (h®u) =ha) @ heu, he H uwell.

SinceF is a linear isomorphism, both statements of the proposition are true if and only if they
are true for F~! ® id)T(B) instead ofl1;(3). In this case, they follow easily from the identity

(F_l & ld)TH(ﬁ)(l Ru Ui) = Z hij XuR U; = 0'12(U & 6(1 & Uz)) s
j
whereo, is the transposition of the first and second factors. O

3.4. Annihilation algebras of Lie pseudoalgebras.For a Lie pseudoalgebiia we setA(L) =
X ®y L, where as befor& = H*, and we define a Lie bracket ah= A(L) by the formula
(cf. [BDK, Eg. (7.2)]):

(333) [z®ma,y®ybl = Z (xfi)(yg:)) @mci, i [axb]= Z (fi ® gi) ®m ci.

ThenL is a Lie algebra, called thennihilation algebreof L (see [BDK, Section 7.1]). We define
a left action of# on L in the obvious way:

(3.34) h(zx ®p a) = hx @y a.

In the case? = U(), the Lie algebra acts onl by derivations. The semidirect sufh= 0 x £
is called theextended annihilation algebra

Similarly, if V' is a module over a Lie pseudoalgeldtawe let A(V) = X @4 V, and we
define an action of = A(L) on A(V') by:

(3.35) (r @y a)(y @uv) = Z (xfi)(ygi) ®u v, if axv= Z (fi ® 9:) @ v; .

We also define ari/-action on.A(V) similarly to (3.34). ThenA(V) is an £-module [BDK,
Proposition 7.1].

When L is a finite H-module, we can define a filtration of as follows (see [BDK, Sec-
tion 7.4] for more details). We fix a finite-dimensional vector subspbagef L such that
L = HLgy, and set

(3.36) F,L=spay{r®@pacLl|zeF, X, aec Ly}, p>—1.
The subspaces, £ constitute a decreasing filtration 6f satisfying
(3.37) F,LF, L] CF,p L, DF,L)CF,_1L,

where/ is an integer depending only on the choice/gf Notice that the filtration just defined
depends on the choice éf,, but the topology that it induces does not [BDK, Lemma 7.2]. We
setl, = F,. L, sothatl,, L,] C L,,. In particular,C, is a subalgebra of.

We also define a filtration of by lettingF_, £ = £, F,L = F, L for p > 0, and we set
Zp =F, L. An £-moduleV is calledconformalif every v € V is killed by someL,,; in other
words, if V is a continuou<-module when endowed with the discrete topology.

The next two results from [BDK] play a crucial role in our study of representations (see
[BDK], Propositions 9.1 and 14.2, and Lemma 14.4).
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Proposition 3.2. Any moduleV” over the Lie pseudoalgebra has a natural structure of a
conformalZ-module, given by the action ofon V' and by

(3.38) (@®ua)-v=> (2figin) gigi, T axv=> (fi®g)Ouuv

forae L,xe X,veV. N
Conversely, any conformal-moduleV” has a natural structure of ah-module, given by

(3.39) a*xv= Z (5(8(1))@)1) ®n ((z1 @pa)-v) .

2N+1
Iez?!

Moreover,V is irreducible as arny.-module iff it is irreducible as af-module.

Lemma 3.2. Let L be a finite Lie pseudoalgebra andbe a finiteL-module. Forp > —1 — ¢,
let

ker,V={veV|L,v=0}

so that, for exampléer_,_,V = ker V andV = | Jker, V. Then all vector spacésr, V/ ker V
are finite dimensional. In particular, iker V= {0}, then every vector € V' is contained in a
finite-dimensional subspace invariant und&y.

4. PRIMITIVE LIE PSEUDOALGEBRAS OFTYPE K

Here we introduce the main objects of our study: the Lie pseudoaldéfaray) and its anni-
hilation algebraC (see [BDK, Chapter 8]). We will review the (unique) embeddingsdp, 6)
into W (d) and the induced embedding of annihilation algebras. Throughout this sectiolh,
be a Lie algebra of odd dimensi@iwv + 1, andd € »* will be a contact form, as in Section 2.2.
As before, letH = U (d).

4.1. Definition of K (0,6). Recall the elements € 0 ® o ands € 0 introduced in Section 2.2
and notice that is skew-symmetric. It was shown in [BDK, Lemma 8.7] thatnds satisfy the
following equations:

(4.1) [r,A(s)] =0,
(42) ({Tlg, 7”13] + 7”1253) + CyCliC =0 ,

where we use the standard notatigh=r® 1, s3 = 1 ® 1 ® s, etc., and “cyclic” denotes terms
obtained by applying the two nontrivial cyclic permutations.

Definition 4.1. The Lie pseudoalgebr& (v, 0) is defined as a fre&/-module of rank onefe,
with the following pseudobracket

(4.3) exel=(r+s®1—-1®s)®ye.

The fact that/( (0, 6) is a Lie pseudoalgebra follows from (4.1), (4.2); see [BDK, Section 4.3].
By [BDK, Lemma 8.3], there is an injective homomorphism of Lie pseudoalgebras

(4.4) v K(0,0) — W(d), e—-—r+1®s,

whereW (d) = H ® v is from Example 3.2. Moreover, this is the unique nontrivial homomor-
phism fromK (2, ) to W (v) [BDK, Theorem 13.7]. From now on, we will often identify (0, 0)
with its image inlV (o) and will write simplye instead of.(e). In the notation of Section 2.2, we
have the formula

2N
(4.5) e=1®0—-» 000,

=1
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4.2. Annihilation algebra of W (d). LetWW = A(W (0)) be the annihilation algebra of the Lie
pseudoalgebré/ (v) (see Section 3.4). Sind& (?) = H ® d, we havelV = X @y (H ®0) ~
X ® 0, so we can identifyV with X ® 0. Then the Lie bracket i’ becomes«{,y € X,
a,b €0):

(4.6) [T ®a,y®b =2y la,b —x(ya) @b+ (zb)y ® a,

while the left action off on WV is given by:h(x ® a) = hx ® a. The Lie algebra acts ony
by derivations. We denote By the extended annihilation algelbra YV, where

4.7) 0, x®@a]=0x®a, 0,a €0, r€X.

We choosel, = k ® d as a subspace &% (v) such thatiV'(v) = HL,, and we obtain the
following filtration of W:

(4.8) W,=F,W=F,X®yL=F,X®0, p>-1.

This is a decreasing filtration ofY, satisfyinglV_; = W and [W,, W;] C W,,;. Note that
W/W() ~Kk®0~D andWo/Wl ~0*®0.

Lemma 4.1(BDK1]). Forx € Fy X, a € 0, the map
(4.9) (r®a) mod W) — —a® (x mod F; X)

is a Lie algebra isomorphism froi,, /)W, tod ®0* ~ gl0. Under this isomorphism, the adjoint
action of W, /W, on W /W, coincides with the standard action gfd ond.

The action (3 24) ofV/ () on H induces a corresponding action of the annihilation alg&bra
onA(H) =

(4.10) (r®a)y = —2z(ya), z,y€X, ac.

Sinceo acts onX by continuous derivations, the Lie algebBfdacts onX by continuous deriva-
tions. The isomorphisnX ~ O,y from Section 2.4 induces a Lie algebra homomorphism
W — Waony1 = Der Ognyq. In fact, this is an isomorphism compatible with the filtrations
[BDK1, Proposition 3.1]. Recall that the canonical filtration of the Lie—Cartan algébka, ; is
given by

2N
0
(4.11) E, Woni1 = {Z fi% i €Fp O2N+1} ;
i=0

whereF, O,y 1 is the(p + 1)-st power of the maximal idedt®; . . ., t*V) of Oyy 1.
The Euler vector field

(412) FE = Zt % € Fy W2N+1

gives rise to a grading @,y ., and a gradingV,n .1, (j > —1) of W5y, such that

(4.13) Fp,Woni1 = H Wonii,  FpWonia/ Fpon Wongr & Wongay, -
Jjzp
We define thecontact filtrationof W by (see (2.37)):
(4.14) W, =F,W=(F,X®0)®(F,,, X0ks).

Introduce thecontact Euler vector field

(4.15) = 2t0% + Z tZ% € Fo Wan1 NF) Wany .
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Then the adjoint action of” decomposesl,y,; as a direct product of eigenspadégy .,
(j > —1), on whichad E’ acts as multiplication by. One defines

(4.16) F), Waons1 = [ [ Winiry
Jjzp
so that
(417) F; W2N+1/ F;)+1 W2N+1 ~ W2IN+1;p .

The fiItration{F; Wan+1} induces o,y the same topology as the filtratigi', Won 1}

4.3. Annihilation algebra of K (v,6). We define a filtration on the annihilation algetita=
A(K(2,9)) by

(4.18) K,=F,K=F, , X®pge, p>—2.

This filtration is equivalent to the one defined in Section 3.4 by chooking ke, because the
filtrations {F, X'} and{F, X} are equivalent.

Recall that the canonical injectiorof the subalgebrd( (2, ¢) in 17 () induces an injective
Lie algebra homomorphism(:): £ — W that allows us to viewC as a subalgebra o). In
more detail, by (4.5) we have

2N
(4.19) A(L)(:C@He):x@ao—Zx@i@@i, reX.

=1

Lemma 4.2. The contact filtrations ok” and )V are compatible, i.e., one ha§, = LN W,. In
particular, [KC!, K] C K!

m—+n"*

Proof. Any element oflC, has the formz @y e with z € F,,; X. Then, by (4.19), (4.14) and
(2.44), its image iV lies in W,. Therefore/C, C K N W,. The opposite inclusion is proved

similarly. O

Composing the isomorphisid — Wy, with the injectionC — W, one obtains a map
¢: K — Wsni1, Whose image however does not coincide withw 1 € Wiy 1. Recall that
Ksny1 IS the Lie subalgebra df/; y 1 consisting of vector fields preserving the standard contact
form dt® + S°N #:dtV+ up to multiplication by a function, i.e., by an element®@fy, (see
[BDK, Chapter 6] and the references therein).

Proposition 4.1. There exists a ring automorphispof O,y 1 such that the induced Lie algebra
automorphism) of Wy, satisfiess(KC) = ¢ (Kany1).

Proof. The proof is similar to that of [BDK1, Proposition 3.6]. The imag&C) is the Lie algebra

of all vector fields preserving a certain contact form up to multiplication by an elemént\of;
[BDK1, Proposition 8.3]. We can find a change of variables conjugating this contact form to the
standard contact formt® + ZiN: L tdtV T Hence, there exists an automorphignof Oay 4

such thatp(K) = (Kon1). O

We will denote by&’ the lifting to I of the contact Euler vector field’ € Kyy,4, that is
E' = o7 W(E).

Remark4.1 The adjoint action o€’ on K is semisimple, as it translates the semisimple action

of E' on Kyn.1. As the automorphisni can be chosen so that the induced homomorphism on
the associated graded Lie algebra equals the identity, one can easily show that the adjoint action
of £ on K preserves eack, and that it equals multiplication byon K, /! _ ;.



IRREDUCIBLE MODULES OVER FINITE SIMPLE LIE PSEUDOALGEBRAS I 17

4.4. The normalizer N. It is well known that all derivations of the Lie—Cartan algebras of
type W are inner. This fact was used in [BDK1, Section 3.3] to prove that the centrali2et of

in WV consists of element3 (0 € o) so that the map — dis an isomorphism of Lie algebras.
We have

(4.20) 0=0+1®d—add modW,, 9J€0,
wheread 0 is understood as an elementgdb ~ W, /W;.

Proposition 4.2. Elements) span a Lie subalgebra c K isomorphic to. The normalizefVy
of K, in K coincides witho © K and is independent gf > 0. There is a decomposition as a

direct sum of subspacés = o & Nj.

Proof. Since aII derivations ok ~ K,y are inner, there exist elemeritss centrallzmglC
and such thad = 9 mod K for @ € 2. Thend — d € W centralizesC, which |mpI|esa 0,

because the centralizer &fin W is zero. Therefore, the centralizer &fin K coincides with
the centralizeb of W in W. The other statements follow as in [BDK1, Proposition 3.3]. [

The above proposition implies that for evaty € 0 the elementd — 0 € W lies in the
subalgebrdC, and hence it can be expressed as a Fourier coefficient e for suitabler € X.
In order to do so, let us compute the images of the first few Fourier coefficieatairuder the
identification ofC as a subalgebra o .

Lemma 4.3. The embeddingl(:): £ — W identifies the following elements

0] 1®per—1®0dy;
(i) P @per— 13 +1' @0, — chka:k@)@i mod Wy N W ;
0<i<k
(iii) P @pera®®d— Y wxpr*®0 mod Wi N W
0<i<k
(iv) e @p e 2f7% mod W, i,j #0;
(v) 2 @ e 2°® 3 mod W, NW;, J#0;
(vi) r'ria® @ e 0 mod W, N W, i,7,k #0.

Proof. The proof is straightforward, using (4.19), (2.47), and (2.11). Note that elenfénts
gl0, defined in (2.25), need to be understood by means of the identifigdtdon W, /WV; given
in Lemma 4.1. O

Notice thatC (respectivelyKy, K}) is spanned ovek by elements (i)-(vi) (resp. (iii)-(vi),
(v)-(vi)) modulo K. Also, K, ¢ W, € Wy, by Lemma 4.2 and, X C F; X, which follows
fromF' H C F* H.

In the proof of next proposition, we will use the following abelian Lie subalgebgd wf

(4.21) =2"®0= Span{6i0}1§ig2N = Span{e?hg;gzzv C glo.
Note that the semidirect suep x cspd C gl 0 is a Lie algebra containing, as an abelian ideal.
Proposition 4.3. We haveC| /K ~ spd & kI’ = ¢sp 0.

Proof. Since elements (iii)-(vi) in the previous lemma all lie iy, and K, C W, we have
Ky € W,. Moreover'v; C W, is an ideal, so the inclusio — W induces a well-defined Lie
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algebra homomorphism: K, — W,/W; ~ glo. Observe now that i, /W, one has

2N

—[/ = 233‘0@804-21’1@82

=1

2N
(422) = 2[[’0 ® 80 -+ Z wijxi ® éV

ij=1

=21 ®@pe+2 Z wijfij mod W .
0<i<y

As a consequencé; € glo lies in the image ofr. By Lemma 4.3 is injective on the linear
span of elements (iii)-(v). The image ofequalsc, x csp 0, andr maps the ideal’] C K onto
the idealcy C ¢y x csp 0, so thatr induces an isomorphism betwekl/ K} andcsp 0. OJ

Corollary 4.1. Elements) € K satisfy the followindj # 0):

(4.23) Oo—0o=1®ye—add, mod K},
(4.24) & -8 =1/ @pe— (ad@j +al @ — Y hat e 6i> mod K} .
0<i<k
Proof. Follows from (4.20), Lemma 4.3 and Propositions 4.2 and 4.3. O
The above two statements imply:
Corollary 4.2. Elements
(4.25) addy, add’ —el+ Y e j#£0

0<i<k
lie in sp 0.
Proof. Indeed, they must lie insp 0 but the matrix coefficient multiplying) is zero in both
cases. 0

Similarly to [BDK, BDK1], we will say that anVi.-moduleV is conformalif KC,, acts trivially
on it for somep > 1.

Proposition 4.4. The subalgebr&’; C N acts trivially on any irreducible finite-dimensional
conformalN-module. Irreducible finite-dimensional conform¥é}-modules are in one-to-one
correspondence with irreducible finite-dimensional modules over the Lie algehraC; ~
0D csp 0.

Proof. The proof is the same as in [BDK1, Proposition 3.4]. Létbe a finite-dimensional
irreducible conformalVic.-module; then it is an irreducible module over the finite-dimensional
Lie algebrag = N /K, = @ (Ko/KC;,) for somep > 1. We apply [BDK1, Lemma 3.4]
for I = K}/, andgy, = (k& + K,)/K,. Note that by Lemma 4.2, one hdsC Rad g,
and[&', K] C K. Moreover, the adjoint action &’ on K} is invertible. Thus, the adjoint
action of£’ is injective on/, and! acts trivially onV. We can then take = 1, in which case
g=00® (K)/K}) ~ 0@ csp. O

5. SNGULAR VECTORS ANDTENSORMODULES

We start this section by recalling an important class of modules over the Lie pseudoalgebra
W (o) called tensor modules. Restricting such module&to, #) leads us to the definition of
a tensor module ovek (9, 0). By investigating singular vectors, we show that every irreducible
module is a homomorphic image of a tensor module. We continue to use the notation of Sec-
tion 2.
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5.1. Tensor modules fori¥(v). Consider a Lie algebrgwith a finite-dimensional representa-
tion V5. Then the semidirect sum Lie pseudoalgebifén) x Cur g from Example 3.3 acts on
the freeH-moduleV = H ® Vj as follows (see [BDK1, Remark 4.3]):

1) (fea)®(@ob)*xhou)=—(f@ha) @y (1Qu)+(g@h) @y (1 bu),

wheref,g,h € H=U(?),a €0,b € g, u € V. This combines the usual actionGfirg onV’
with the 1V (d)-action onH given by (3.24).

By [BDK1, Remark 4.6], there is an embedding of Lie pseudoalgabigy — W (0) x Cur(0®
gl0) given by

(5.2) 10, (120)® (180)® (1oadd+»_ 9;®el)).

j
Composing this embedding with the above action (5.1)gfee 0 @ glo, we obtain alV (9)-
moduleV = H ® V}, for every(d @ gld)-modulel}. This moduleV is called atensor module
and denoted (V). The action ofi¥/(2) on 7 (1}) is given explicitly by [BDK1, Eq. (4.30)],
which we reproduce here for convenience:

(12d)*(1ou)=191)oy (1o (add;)u Z i (1® elu)
(5.3)

—(1®8i)®H(1®u)+(1®1)®H(1®&u).

If II is a finite-dimensionad-module andVj is a finite-dimensionagl 9-module, then their
exterior tensor produdi X Vj; is defined as thé @ gl0)-modulell ® V;, whered acts on the
first factor andgl? acts on the second one. Following [BDK1], in this case the tensor module
7 (IT X Vp) will also be denoted &% (11, ;). Then

(5.4) T(IL, Vo) = Tn(7 (k, Vo)) ,

whereTt; is the twisting functor from Definition 3.1.

5.2. Tensor modules for K (0, 6). We will identify K (9,60) with a subalgebra ofV/(v) via
embedding (4.4). TheA (0,0) = He wheree € W(0) is given by (4.5). Introduce thH -linear
mapr: W (d) — Cur gld given by (cf. (5.2))

2N
(5.5) T(h®d)=h®add;+ Y _ hd;@e, heH.

=0
Then the image of under the map (5.2) has the foe® (e @ 7(e)).
Definition 5.1. We define a linear magpd®™: 9 — sp 0 by ad*® 9, = ad 9, and

2N
(5.6) ad® 0F = ad 0 — eff + = ch, U k40,

zgl

Remarks.1 The fact that the image afl** is insidesp 0 follows from Corollary 4.2 (cf. (2.25),
(4.25)). One can show thatl®* 9* is obtained fromad 9* by first restricting it too C 0 and then
projecting ontasp 0. This implies that the mapd*® does not depend on the choice of basis.

Lemma 5.1. With the above notation, we have

(5.7) 7(e) = (id ® ad®)(e) + ao®1' Zaa()@ez%Zaa ® f7.

i,j=1
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Proof. Using (2.25) and thé/-linearity of 7, we find fori # 0

2N
T(0®0)=0®add + Y 0:0;® eV
j=0
2N 1 2N
_ A 0 7 i
_8Z®ad8 +(‘3i@0®e —jzl 8,83®fj+§j21[81,8]]®63
By (2.11) and (2.22), we have
2N
(5.8) (0,05 = wigbo + Y O, i, j 0
k=1
and
Zw”&)@ej——Z@O@e—@o@Q( I,)
2,j=1
The rest of the proof is straightforward. O

Recall the definition of the abelian subalgekyaC gl o given in (4.21).
Corollary 5.1. With the above notation, we have(e) € Cur(cy x csp ).

Therefore, the image efunder map (5.2) lies ifi’ () x Cur g whereg := 2 & (co X cs5p D).
Hence, every finite-dimensiongtmoduleV; gives rise to ak (v, 0)-module H ® V; with an
action given by (5.1). An important special case is whgacts trivially onlj;. Sincec, is an
ideal ing, having such a representation is equivalent to having a representation of the Lie algebra
0P cspd =~ g/co.

Definition 5.2. (i) Let V; be a finite-dimensional representationoof> csp 0. Then the above
K(d,0)-moduleH ® Vj is called aensor moduleand will be denoted &% (15).

(i) Let Vy = II K U, wherell is a finite-dimensionad-module and’ is a finite-dimensional
csp 0-module. Then the modulg(1;) will also be denoted a& (11, U).

(iii) Let V; be as in part (ii), and assunié € ¢sp 0 acts onUU as multiplication by a scalar
¢ € k. Thenthe modulg (V;) will also be denoted a& (11, U, ¢), and similarly thesp 0-module
structure orl/ will be denoted U, ¢).

The action ofe € K(0,60) on a tensor modul& (V) = H ® V} is given explicitly by (cf.
(4.5), (5.1), (5.7)):

*(1® ):—e®H(1® u)+(1®1) @y (1® (9 + addo)u)

1
- Z 0 ®1) @y (1© (0" +ad® ) + =(6y @ 1) @y (1® I'u)
(5.9) 2

+Z(aiaj®1)®H(1®fiju), ueVy.

1,j=1

Remarks.2 More generally, ifcy does not act trivially orv;, the above action (5.9) is modified
by adding the term

—Z (800 © 1) @5 (1 ® eu)

to the right-hand side (cf. Lemma 5.1).
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As in [BDK1], in the sequel it will be convenient to modify the above definition of tensor
module. LetR be a finite-dimensiongl & csp 9)-module, with an action denoted ag. We
equip R with the following modified action od ¢ csp 0 (cf. [BDK1, Egs. (6.7), (6.8)]):

Ou = (pr(0) + tr(ad 9))u, ded,ueRr,

5.10 _
(5-10) Au = (pr(A) — tr A)u, Accspo, ueR.

Note that, in factir A = 0 for A € sp0 andtr I’ = 2N + 2.

Definition 5.3. Let R be a finite-dimensiongl @ csp 0)-module with an actiomy. Then the
tensor moduleZ (R), whereR is considered with the modified action (5.10), will be denoted
asV(R). As in Definition 5.2, we will also use the notatioAIl, U) and V(II, U, ¢) when

R =TIX U andI’ acts onU as multiplication by a scalat.

The above definition can be made more explicit as follows:

V(IL,U,¢) =TIl ® kiyaq, U, c — 2N — 2),

5.11
( ) T(ILU,¢) =VII R K _4raa,U,c+ 2N +2),

where for a trace forny ond we denote by, the corresponding-dimensionab-module.

Remarks.3. (cf. [BDK1, Remark 6.2]). Lef? be a finite-dimensional representatiorvgfcsp 0,

or more generally, 0§ & (¢ x ¢sp 0). Using the mapr from the proof of Proposition 4.3, whose
image isco < cspd, we endowR with an action ofNic = 0 @ K. Moreover,c, acts trivially
on R if and only if K} does. Then Propositions 3.2, 4.2 and 4.3 imply that, Ksraodule, the

tensor modul®’(R) is isomorphic to the induced moddledf/)C R.

The action ofi{ (0, #) on V(R) can be derived from (5.9) and (5.10). We will need the follow-
ing explicit form of this action.

Proposition 5.1. The action of K' (9, #) on a tensor modul®(R) is given by

ex(leu)=(1®1)Qy (1®p3(00—|—ad80)u—30®u)

2N
) (0 ®1) @y (1© pr(d* +ad® 9 )u — 0" @ u)
(5.12) 1

+ %(80 ®1) @n (1@ pr(Iu) + > (0:0;®1) @ (1 pr(f7)u) .

i,j=1
Proof. Let us compare (5.12) to (5.9), using (5.10) and the fact that

~(1®1) @y (hu)+ Y (0;01) @ (0" @ u)
=—e®y(10u)— (®1)®y(10u) + Y (0,0®1) @y (10 u).

=1
Noting thatad 9, € sp 0 andtr ad 9, = 0, we see that (5.12) reduces to the following identity

2N

2N
> 00" =-Nop— Y _(tradd")o.
=1

k=1
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By (2.11)—(2.14), we have:

2N 2N

2N
2y 00" =) 10,01 =_ 1[0, 0]
i=1

i=1 1,j=1
2N 2N
= E ’f‘z]u)ijao + E T’ZJCijak 5
ij=1 i, k=1

and the coefficient o), in the right-hand side is indeed2N. On the other hand, for # 0 the
fact thatad® 0% € sp 0 implies

(5.13)

2N
1 .
0 =trad® 9" = trad 9" + 5 g r”cfj ,
t,j=1

using thattr e = r%. This completes the proof. O

Remarks.4. Computing directly

2N 2N 4
trad 0% = Z r¥trad 0; = Z el
i=1 ij=1
we obtain the identities
2N ' 1 2N
Zrklcfj—FﬁZr”cfj:O, E#0.
ij=1 ij=1
5.3. Singular vectors. The annihilation algebr& of K (0, ¢) has a decreasing filtratidiiC, } > -
(see (4.18)). For &£-moduleV’, we denote byer, V' the set of alb € V' that are killed by}
A K-moduleV is calledconformaliff V' = | Jker, V. For anyp > 0 the normalizer ofC) in Kis
equal taN due to Proposition 4.2. Therefore, edeh, V' is an/N-module, and in factser, V
is a representation of the finite-dimensional Lie algebka/KC, = 0 @ (Kq/KC). In particular,
by Proposition 4.3\ /K is isomorphic to the direct sum of Lie algebras csp 0.
Equivalence of the filtration$X’,} and {K}, along with Proposition 3.2, implies that any
K (v, 60)-module has a natural structure of a conforiainodule and vice versa.
Definition 5.4. For any K (0, ¢)-moduleV/, a singular vectoris an element € V' such that
K} -v = 0. The space of singular vectors in will be denoted bying V. We will denote

by psing: 0 @ ¢spd — gl(sing V) the representation obtained from th&-action onsing V' =
ker; V' via the isomorphismiVy /KC} ~ 0 & csp D.

It follows that a vectow € V' is singular if and only if

(5.14) exveE(FPHRK)®yV,
or equivalently
(5.15) exv€ (kRF*H) oy V.

Proposition 5.2. For any nonzero finitd{ (0, §)-moduleV’, the vector spaceing V' is nonzero
and the spaceing V/ ker V' is finite dimensional.

Proof. Finite dimensionality oker, '/ ker V' for all p follows from Lemma 3.2. To prove that
singV' # {0}, we may assume without loss of generality that1” = {0}. Since theK-
moduleV is conformal ker, V' is nonzero for somg > 0. Note thatker, V' is preserved by the
normalizerNy. Choose an irreducibl&/c-submodule/ C ker, V. As U is finite dimensional,
Proposition 4.4 shows that the action/df on U is trivial, hencelU C sing V. OJ
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Note that, by definition,

(5.16) Psing(0)v =0 - v, 0€0, vesingV,

and, due to Lemma 4.3(iv),
(5.17) psing ([ )v = §(x’xj ®pge)-v, v € sing V.

The next result describes the action /6o, #) on a singular vector. It can be derived from
Remark 5.3, but for completeness we give a direct proof.

Proposition 5.3. LetV be aK (v, #)-module and) € V' be a singular vector. Then the action of
K(0,60) onv is given by

2N

. 1 ,
exv = Z (0:0; ® 1) @p Psing () + 5(80 ® 1) @n pPsing(L")v

i,j=1

(5.18) 2N

=) (O ©1) On (psing(9* + ad® 0")v — ")
k=1

+ (1 & 1) Ry (psmg(ﬁg + ad (90)1) — 0021) .

Proof. As K} acts trivially on a singular vectar, Proposition 3.2 implies that

exv = Z (S(0,0;) ® 1) @y (z'2? @ e) - v

0<i<y

1 2N ) N
(5.19) +3 (5@ 8 1) @a (@ @ne) v

2N
+) (S0 @ 1) @p (2F @y e) - v
k=0
+(1®1)ey(1ege)-v.
On the other hand, by Corollary 4.2 and Lemma 4.3(iv), we havé #r0:
(5.20) (l®ge) v= 50 -0 — Ogv + peing(ad Op)v ,
(5.21) (* @pe)-v=0" v—0v+ Psing (adak — b+ Z cZe”)v.

0<i<j

Now we rewrite the first summand on the right-hand side of (5.19) using that
1 1
S(0;0;) = 0;0; = 5(81»83- + 0,0;) — 5[81-,83»] :

Then, thanks to (5.17), the first two summands become

2N
Z (0:0; ® 1) ®n psing(fij>v - Z ([0:,0;] ®1) @n psing(fij)v.
i,j=1 0<i<j

This shows that the first summand in (5.18) matches with (5.19). By (5.16), (5.20), the last
summands in (5.18) and (5.19) are also equal.
It remains to rewrite

> ([010] 1) @n1 puing(fT)o+ ) (0 ® 1) ®p (aF @pr ) - v

0<i<y
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so that it matches the negative of the second and third terms in the right-hand side of (5.18).
Recalling the commutation relations (5.8), we obtain

(0o ®1) ®@n ((xo ®p €) - U+ Peing Z wz’jfij)v)

0<i<y
2N
+Y (G e1) oy ((x’“ D1 €) U+ Puing (Y C?jf”)v) :
k—1 0<i<y

By (4.22), the first summand is equal+g (Jy ® 1) ®p psing(I")v.
Finally, by (5.21), (2.25) and (5.6), we have

(Qik ®H 6) - U+ psing( Z ijfij)v

0<i<y
—0F . v — 9k +Psing(ad8k — elg + Z cfjeij + Z cfj ij)v
0<i<y 0<i<y
= 0F . v — v+ Pring (ad*? 0% )v .
This completes the proof. O

Corollary 5.2. Let VV be a K(v,6)-module and letR be a nonzerd® @ csp d)-submodule
of sing V. Denote byH R the H-submodule ofl” generated byR. ThenHR is a K(9,0)-
submodule of/. In particular, if V' is irreducible, then/ = HR.

Proof. By (5.18), K(0,0) «x R C (H ® H) ®y HR, and by H-bilinearity, K(0,0) x HR C
(H® H) @y HR. O

Corollary 5.3. Let R be a finite-dimensiondb & csp 9)-module with an actiopr. Then for the
tensork (0, #)-moduleV(R) = H ® R, we havek ® R C sing V(R) and
(5.22) Psing(A) (1 @ u) = 1® pr(A)u, AE0Despd, ueR.

We will call elements ok ® R C V(R) constantvectors. Combining the above results, we
obtain the following theorem.

Theorem 5.1.Let V' be an irreducible finite/ (0, §)-module, and lef? be an irreducible(d ©
¢sp 0)-submodule oking V. ThenV is a homomorphic image of(R). In particular, every
irreducible finite X' (v, #)-module is a quotient of a tensor module.

Proof. Comparing (5.18) and (5.12), we see that the canonical projectih = H®R — HR
is @ homomorphism oK (9, #)-modules. Howeverld R = V' by Corollary 5.2. O

We will now show that reducibility of a tensor module depends on the existence of nonconstant
singular vectors.

Definition 5.5. An element of a K' (9, #)-moduleV’ is calledhomogeneousit is an eigenvector
for the action o’ € K.

Remark5.5. Note that the homogeneous components of a singular vector are still singular, so
that a classification of singular vectors will follow from a description of homogeneous ones.

Lemma 5.2. Let R be an irreducible representation af & ¢spd. Then any nonzero proper
K (0,0)-submodule)! of V(R) does not contain nonzero constant vectors, \&) (k ® R) =

(0}

Proof. Both M andk ® R C sing V(R) are/N-stable, and the same is true of their intersection
M. SinceK’] acts trivially on)My, it is a representation 0¥ /K] ~ 2 & c¢sp 0. The claim now
follows from the irreducibility otk ® R ~ R. OJ

Corollary 5.4. If singV(R) = k ® R, then theK (d, §)-moduleV(R) is irreducible.
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Proof. Assume there is a nonzero proper submodule Then M must contain some nonzero
singular vector. Howeve\/ Nsing V(R) = {0} by Lemma 5.2. O

Proposition 5.4. Every nonconstant homogeneous singular vectoV(®) is contained in a
nonzero proper submodule. In particuld( R) is irreducible if and only ifsing V(R) = k ® R.

Proof. Recall that, by Remark 5.3, we haV8R) = IndA’E/,C R. The Lie algebrdaC is graded by
the eigenspace decompositionaafe’. If ¢, denotes the graded summand of eigenvaluaen
one has the direct sum decomposition of Lie algebras

Ne=vaKy=2a]]¥

7>0
and the decomposition of vector spaces
K=(@_,®t,)® N

Sincet_, ¢ ¢_; is a graded Lie algebra, its universal enveloping algebra is also graded. Then
V(R) = Ind};_ R is isomorphic toU(¢_, & ¢_;) ® R, which can be endowed withZgrading
by setting elements frork to have degree zero, and elements fiomto have degree-i. Thus
submodules o’(R) contain all€’-homogeneous components of their elements, i.e., they are
graded submodules.

It is now easy to show that every homogeneous singular vectsay of degree/ < 0, is
contained in some nonzero propéssubmodule ofV(R). IndeedU (K)v = U(t_5 @ t_1)v is
a nonzero submodule df(R) lying in degrees< d, and it intersects trivially, since R lies in
degree zero. O

5.4. Filtration of tensor modules. After filtering the Lie algebraC using the contact filtration
F' of X, it is convenient to filter tensak (v, §)-modules using the contact filtration &f. We
therefore define

(5.23) FPV(R) =F*"H®R, p=-1,0,....

As usual, "' V(R) = {0} andF°V(R) = k ® R. It will also be convenient to agree that
F2V(R) = {0}. The associated graded space is defined accordingly, and we have isomor-
phisms of vector spaces

(5.24) gr'” V(R) ~ gr” H ® R.

Note that, sinc@ = ? ® kd, and the degree df, equals twogr’” H is isomorphic to the direct

sum@p”/?) Sp=23. Here|p/2] denotes the largest integer not greater théh which isp/2 for
pevenandp — 1)/2 for p odd.

Lemma 5.3. For everyp > 0, we have

() 0-FPV(R) Cc FP™ V(R),
(ii) 9o - FPV(R) C FP2V(R),
(iii) N -FPV(R) Cc FPV(R),
(iv) K-F?V(R) C F"22V(R),
(v) K, -F?V(R) C F* ' V(R).

Proof. The proof of (i) and (ii) is clear, as the action of elements ia by left multiplication on
the left factor ofV(R) = H ® R. In particular, this implie® - F”? V(R) Cc F?*>V(R). Before
proceeding with proving (iii)—(v), observe that (4.23), (4.24) imply

ded+K.,, dher+kK.,,
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so thatd 9 + K’_,. Also notice thatC = ? + K’ ,, which implies|K, K, € K,_,. Moreover
K' | + N =0 + N, asdo C Nx. Then we have:
P cP+K. K] cK. K] cK,cNc,
[00, K] C [, K1) € KLy €0+ Nk,
PN CP+K ,0+K))Cco+K |, CK |, +NcCd+ Nk,
[D0, Nkc] € K =0+ N

Now (iii) can be proved by induction as in the caséBfo) (see [BDK1, Lemma 6.3]), the
basis of inductiorp = 0 following from F"° V(R) C sing V(R). As forp > 0, notice that

F?V(R) =F°V(R) + 0F? ' V(R) + 9, FP 2 V(R).

C
-

Then:
Nic(@F?P ' V(R)) C 0N FP ' V(R)) + [0, Nic] FP " V(R)
COF? ' V(R) + (0 + Ni) FP ' V(R)
COF? ' V(R)+F?P ' V(R) C F*V(R),
and similarly

Nic(Oo FP2V(R)) C 0y(Nic FP2V(R)) + [0, Nic] FP 2 V(R)
COFP2V(R) + (0 + Nx) FP2V(R)
COF?2V(R) + Nc FP2V(R) C F?V(R).
It is now immediate to prove (iv) front = o + N.

Finally, (v) can analogously be showed by inductionponvhenp = 0, we haveF"’ V(R) C
sing V(R), hencelC; F° V(R) = {0} by definition ofsing V(R). Whenp > 0, we observe that

K/ QF?P ' V(R)) C o(K,FP ' V(R)) + [0, K| FP 1 V(R)
Co(F??V(R)) + N FP ' V(R)

C FP ' V(R),
and that
K180 FP?V(R)) C 0o(K1 FP 2 V(R)) + 9o, K1] F"* V(R)
C O(FP2V(R)) + (0 + Nx) FP2V(R)
C FP ' V(R).
This completes the proof. O

The above lemma implies that botfic and its quotieniVi /K = 2 @ csp d act on each space
gr'’” V(R). The next result describes the action\§ /K| more explicitly.

Lemma 5.4. The action ofd ~ v andK/,/K! ~ ¢spd = spd @ kI’ on the spacer” V(R) ~
er'’” H ® Ris given by

(5.25) 0-(f®@u)=f® pr(d)u,
(5.26) A-(foy@u) = (Af)Jh @ u+ [ @ pr(A)u,
(5.27) I' (fou)=pfRu+ fpr(l')u,

whereA € spo, f € g’ H, f € SP~%0d,u € R, and Af denotes the standard action ef 0 C
gloond.

Proof. The proof is similar to that of Lemmas 6.4 and 6.5 from [BDK1]. OJ
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Corollary 5.5. We have an isomorphism ¢§ & csp 9)-modules
Lp/2] |
gr” V(ILU,c) ~ P IR (S" 2@ U,c+p).
=0
Proof. Follows immediately from Lemma 5.4. OJ

6. TENSORMODULES OF DERHAM TYPE

The main goal of this section is to define an important complek ¢, #)-modules, called
the contact pseudo de Rham complex. We continue to use the notation of Sections 2.1 and 2.2.

6.1. The Rumin complex. As before, let) € ?* be a contact form, and letcC o be the kernel
of §. Consider the wedge powef8 = A"0d* andQ"” = A" 0d*. Then we have a short exact
sequence

(6.1) 0—-00"! Q" - Q" —0,

where© is the operator of left wedge multiplication withi.e.,O(a) = 6 A a. Fora € Q", we
will denote bya € Q" its projection via (6.1).

The direct sum decompositian= 0 @ ks gives a splitting of the sequence (6.1). In more
detail, elements € Q" are identified withn-formsa € Q" such that,a = 0. Thus we have
a direct sum)” = 00" ! ¢ Q. Then©? = 0 implies thatker O|o. = ©Q"~!, and we get a
natural isomorphism

(6.2) 0N = Q" OAhara.
The 2-form w = dyf can be identified withv, because,w = 0. Denote by (respectively,

V) the operator of left wedge multiplication with (respectivelyw). Consider the images and
kernels ofU:

(6.3) =002 cQr, K" =ker Ulg, Q.
Sincew is nondegenerate, we hayé = Q" forn > N+ 1andK™ = 0forn < N —1. In
particular,¥: QN1 — QN+l is an isomorphism. More generally, for all = 0,..., N, the

maps¥y™: QN — QN+ are isomorphisms.

Lemma 6.1. The composition of natural mags" — QY — Q~/I" is an isomorphism. More
generally, the composition

FN+m  QN+m (gm)~! QN-m _, Qme/[_me

is an isomorphism for alln = 0,..., N.

Proof. To show surjectivity, take ang € QV—™. We want to find3 € KN*™ such thatn —
(Im™)~1p € [N, Sinced™*2: QN-m=2 _, ON+m+2 s an isomorphism, there igc QN ™2
such thatl™*2y = ¥™+1q, Thens = U™ (a — U+) satisfies the above conditions.

To prove injectivity, we need to show that* /N "N KN*™ = {0}. If a € U™ [N-mAKN+m,
thena = U1y for somep € QV—"-2, But thenl™*2p = W = 0, which impliesp = 0 and
a=0. ]

SinceA - & = 0 for A € sp 0 and the action ofd is an even derivation of the wedge product
(see Lemma 2.2 and (2.8)), it follows th&t and K™ aresp 0-submodules of2”. Furthermore,
the map¥ is ansp 0-homomorphism. In particular, the isomorphism from Lemma 6.1 commutes
with the action ofsp 0. Recall thatR(r,,) denotes thex-th fundamental representation 0,
andR(m) = k.

Lemma 6.2. We have isomorphisms sf 0-modules
Q"/I" ~ K*N"" ~ R(m,), 0<n<N.

Proof. This is well known; see, e.qg., [FH, Lecture 17]. O
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Following [Ru], we consider the spaces

(6.4) I" =002 400" c O, K" = ker U|gn Nker Olgn C Q™.

Using©V = ¥ and (6.1), we obtain a short exact sequence

(6.5) 0—-00" ! =I"—=]"—=0,

while (6.2) gives a natural isomorphism

(6.6) Kt S K™Y Oha—a.

Y

The above equations imply that = Q" forn > N +1andK" = 0 forn < N. Itis also clear
thatQ" /1™ ~ Q" /1™ for all n.

The “constant-coefficientRumin complefRu] is the following complex ofsp 0-modules
6.7) 0— Q010 o, . do, QN N B N o, o, g

Y

where the mapl} is defined as in [Ru]. We will need the “pseudo” version of this complex
defined in Section 6.3 below. The latter is a contact counterpart of the pseudo de Rham complex
from [BDK, BDK1], which we review in the next subsection.

6.2. Pseudo de Rham complexFollowing [BDK], we define the spaces p§eudoform&™(d) =
HeQ andQ(d) = HoQ = @2V Q" (0). They are considered d&-modules, wherél acts
on the first factor by left multiplication. We can identify*(d) with the space of linear maps
from A" 0 to H, and H®? @ Q"(0) with Hom(A" 0, H®?). Forg € H, o € Q, we will write
the elemeny ® a € Q2(9) asgq; in particular, we will identify2 with k @ ©Q C Q(0).

Let us consided = U(0) as a lefto-module with respect to the actian h = —ha, where
ha is the product of: € 0 C H andh € H in H. Then consider the cohomology complexoof
with coefficients inH:

(6.8) 0—0°0) S0 0) S L2Vt (p).
Explicitly, the differentiald is given by the formulad € Q" (), a; € ?):
(da)(ag A+ Aapir)
= (~)™a(las, a] Aay A+ NG A+ AT A+ A )
i<j

(6.9)

~

+Z al/\ <A i/\~~-/\an+1)ai Ifn21,

(da)(ar) = —aay if acQ’0)=H.

Notice thatd is H-linear. The sequence (6.8) is called feeudo de Rham complek was
shown in [BDK, Remark 8.1] that the-th cohomology of the complei2(0),d) is trivial for

n # 2N + 1 = dim, and it isl-dimensional fom = 2N + 1. In particular, the sequence (6.8)
IS exact.

Example 6.1.Fora =1 € H = Q°(0), Eq. (6.9) gives

2N
(6.10) —dl=e:=> 0i®s'c HRo =Q'(d).

=0
Next, we introduced -bilinear maps

(6.11) « W)@ Q") — H*? @4 Q(2)
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by the formula [BDK]:
(w ) (aA - Aay) = —(f © ga)a(ar A+ Aay)
+ Y(fai@g)alaNay A ANa; A -+ Aay,
(6.12) Z ! )
+Z Yi(f@g)alla,a] Aay A+ AG; A+ Aay) € HS?,

wheren > 1, w = f®a € W( )andy = ga € Q*(d). Wheny = g € Q°0) = H, we let
w x v = —f ® ga. Note that the latter coincides with the action (3.24)16f0) on H.

It was shown in [BDK, BDK1] that maps (6.11) provide ea@h(0) with a structure of a
W (v)-module. These modules are instanceteator moduleas introduced in [BDK1], namely
0" () =7 (k,Q") (see Section 5.1). The actiondf(d) commutes withl, i.e.,

(6.13) w* (dy) = ([d®id) @y d)(w * )
forw e W(d), v € Q*(0).
Let us extend the wedge productdto a product irf2(0) by setting
(fa) A (gB) = (f9)anB),  aBeR, fgeH.

In a similar way, we also extend it to products
(h@u (f@a)AB=he (f@(aAp)),

aN(h®@g(g®B)=h@y(9& (aApB)), he H*,
Lemma 6.3. Foranyw € W(d), a € Q" andj € Q, we have
(6.14) dlaAp)=doa NG+ (-1)"aNdf,
(6.15) wk(aNf)=(wxa) ANB+aA(w*xf)+wey (aApf).

Proof. Sinced, is an odd derivation of the wedge product, by subtracting (2.5) from (6.14), we
obtain that (6.14) is equivalent to:

(d=do)(anpB)=(-1)"aA(d—do)B.
On the other hand, comparing (6.14) with (2.5) and (2.3), we see that

(6.16) (d—do)a=—-€eNa,

wheree is defined by (6.10). Then (6.14) follows from the associativity and graded-commutativity
of the wedge product (see (2.4)).
By H-linearity, it is enough to prove (6.15) in the case= 1 ® 0;. Then by (5.3) we have
2N
1@d)ra-(100)era=101)®y (add) -a+ Y (%;®1) @y -
7=0
Using that(ad 9;) ande! are even derivations of the wedge product (see (2.8)) completes the
proof. O

6.3. Contact pseudo de Rham complexAs before, leQ2" () = Ho0", Q(0) = @2V Q7 (0)
be the spaces of pseudoforms. We extend the operatarsl U defined in Section 6.1 tQ ()
by H-linearity. We also sef"(d) = H ® [" andK"(d) = H ® K". From (6.14) and = d,#,
we deduce:

(6.17) dUV =vd, dO=V-06d,

whered is given by (6.9). This implies that/™(d) c ["*!(d) anddK™(2) C K""'(0d). There-
fore, we have the induced complexes

(6.18) 0— Q0)/I°0) S Q@) /') S - L aN) /1Y (d)
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and

(6.19) KNVt ) S kV2() & 4 k2N (),

Lemma 6.4(cf. [Ru]). The sequencg$.18)and(6.19)are exact.

Proof. First, to show exactness at the te?(v) /1" () in (6.18) forn < N —1, takea € Q™(0)
such thatla € 1"™1(d). This meansla = ©3 + ¥~ for somes3 € Q"(v), v € Q" (v). Then
d(a—067) = da—Vy+6dvy = ©(F+dvy) ; hence, by changing the representativeod /" (0),
we can assume that= 0. Now we have) = d?a = dOS = ¥ — OdS3. Then¥(03) = 0,
i.e.,08 € K" (d). ButK"(v) = 0forn < N — 1; thus®©g = 0 andda = 0. It follows that
a = dp for somep € Q" 1().

To prove exactness at the terki*(d) in (6.19) forn > N + 2, takea € K" (9) such that
da = 0. Thena = dg for somes € Q" 1(v). Sincel"'(d) = Q" 1(d) forn > N + 2, we
can write = Oy + Wp for somey € Q" 2(d), p € Q" 3(d). But sinced(¥p) = d(Odp),
by replacingy with v + dp, we can assume that= 0. Thendg = —©d~ + ¥~ and©a = 0
implies©W~ = 0. Therefore3 = ©y € K"~'(d), which completes the proof. O

Now, following [Ru], we will construct a mag®: Q¥ (0)/1¥(0) — K¥*1(d) that connects
the complexes (6.18) and (6.19), which we will call Remin map Since/N () = QV*+1(2),
for everya € QY (0) we can writeda = ©3 + U~ for some3 € QY (d), v € QN~1(d). Then,
as in the proof of Lemma 6.4, we hawé = ©(3 + dy) € KN*1(d) for & = a — ©v. We let
dRa = da.

We have to prove that®« is independent of the choice @fand depends only on the class
of a mod IV (d). First, if da = ©8 + Uy = O3 + U+, thenO¥(y — +') = 0, which implies
O(y —«') € KN(0). But K¥(d) = 0; hence,a = a — ©y = a — ©'. Next, consider
the case whemv € IV(d). Write a = Ou + ¥p; thenda = O(—du) + ¥(u + dp) and
d®a = O((—dp) + d(p + dp)) = 0, as desired.

Using the Rumin magd®, we can combine the two complexes (6.18) and (6.19).

Proposition 6.1(cf. [Ru]). The sequence

0— Q)/1°0) & % Q¥ (©)/1¥ (@) & KN(@R) & L KV ()
is an exact complex.

Proof. In the preceding discussion we have shown thats well defined. Next, it is clear by
construction thati®d = 0 anddd® = 0. Due to Lemma 6.4, it remains only to check exactness
at the term$2V (0) /1 (v) and KV 1 (0).

First, leta € QY (0) be such that®a = 0. Thenda = d®a = 0; hencex = dg for some
B e QN"Hd). Thena + IV (d) = a + IV (d) = d(B + IN71(0)).

Now leta € KV*1(d) be such thatla = 0. Thena = dg for somes € QY (d). Since
dg € KN*1(d), we can take? = 3, andd®j3 = djs = a. O

We will call the complex from Proposition 6.1 tlventact pseudo de Rham complex

6.4. K(9,0)-action on the contact pseudo de Rham complexere we prove that the contact
pseudo de Rham complex is a complex@f, §)-modules, and we realize its members as tensor
modules.

First, we show that the members of the Rumin complex (6.7ygare-modules. Recall that
the Lie algebragl 0 acts on the spade™ of constant coefficient-forms via (2.7), and this action
is by even derivations (see (2.8)).

Lemma 6.5. For everyn, we havecsp o-1" C 1" andesp 0- K™ C K™. In addition,c,-Q" C I
andc, - K™ = {0}. Hence thgyld-action onQ2" induces actions ofsp 0 on2" /1" and K", and
the trivial action of ¢y on them.
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Proof. By Lemma 2.2A -« = cafor A € ¢sp?, a € {f,w} and some: € C. Then by (2.8),
A-(anp)=aA(cf+ A-p)forall 5 € Q. ThisimpliesA-I™ C ["andA- K™ C K.
Next, recall that, = span{e} };.o ande} - 2* = —§;2° = §;6. Then
ey (A AT =O0ATE A A if k=i,
and is zero ifk # i, for all s. Thereforeg, - Q" Cc ©Q" ! C I™.

Now, if o € K™, by (6.6) we can writev = 0 A 3 for some3 € Q"~!. Then fork # 0 we
havee) - 3 = 6 A~ for somey € Q"2 and we find

e a=e) (OAB)=ON(EL-B)=0AONY) =0,
using that} - 6 = 0. O
Lemma 6.6. We have isomorphisms efp 0-modules
Q" /1" ~ (R(n,), —n), KT~ (R(n,),—2N —2+n), 0<n<N.

Proof. Recall that we have isomorphisms gfo-modulesQ”/I" ~ Q*/I" and K" ~ K"~1

(see (6.6)). Thep d-action on these modules is described in Lemma 6.2. Finally, to determine
the action ofl’, we use (2.8), (2.24) and (6.6). We obtain tiaacts as—n on Q™ C Q" and as
—n—1onK". [

Here is the main result of this section.

Theorem 6.1. The contact pseudo de Rham complex

0— Q'@)/1°R) & - S QVE)/1¥ @) S KVH@) S oo S K@)
is an exact complex oK (0, §)-modules. Its members are tensor modules, namely
Q"(0)/1"(0) =T (k,Q"/I") =T (k, R(m,), —n)

and
K"0)=7T(k,K") =Tk, R(mon+1-n),—n — 1).

Proof. Recall that all2"(d) = 7 (k, Q") are tensor modules fdi’(v); see Section 5.1 and
[BDK1]. In particular,e x (1 ® «) is given by Remark 5.2 forr € 2". By Lemma 6.5¢, acts
trivially on K™ andK™ is acsp 0-module. Therefore, far € K", the actiorex(1®«) is given by
(5.9). By definition, this means thaf"(v) = H ® K™ = 7 (k, K") has the structure of a tensor
K(0,6)-module. The same argument applies to the quof@iiv) /1" () = 7 (k, Q" /1™).

The exactness of the complex was established in Proposition 6.1. It remains to prove that
the maps of the complex are homomorphismgs@b, §)-modules. Foxl, this follows by con-
struction from the fact thad: Q"(d) — Q"*'(2) is @ homomorphism ofV(v)-modules. In
order to prove it fod®, we need the next lemma, which can be deduced from Remark 5.2 and
Lemma 2.2.

Lemma 6.7. Identifyinga € Q" with1 ® a € Q*(d) = H ® Q", we have

(620) 6*9=—<6+80®1)®H9,
2N
(6.21) exw=—(e+h®)rw—Y (%0h®1) @y (0 A').

i=1

Now take ann € QV(9) and writeda = ©3 + Uy = 0 A 8 + w A . Then, by definition,
d®a = d(a — 6 A ). Using thatd is a homomorphism (see (6.13)), we obtain

ex (d%a) = (([d®id) @y d)(exa—ex (0 AY)) .
Then we find from (6.15) and (6.20) that
ex(ONY)=0N7, Y =exy—(0®@1)@u7.
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On the other hand, using again (6.15), (6.20) and (6.21), we compute
(doid)@g d)(exa) =ex* (da)=ex (OAB) +ex (wWAY)=0AF +wAy
for somes’, where~' is as above. Then
([d®id) @ d¥)(ex @) = (([d®id) @x d) (e x o — O A7),
which coincides withe * (d®«/). This completes the proof of the theorem. O]

6.5. Twisted contact pseudo de Rham complexFor any choice of a finite-dimensionai
modulell, one may apply the twisting functdi; from Section 3.3 to Theorem 6.1 and obtain a
corresponding exact complex &f(9, #)-modules

dn diy

0 — T(ILk,0) <% 7(I, R(m), —1) <% ... 4% 7(11, R(ny), —N) —%

T(IL, R(ny), —N —2) 2% . 2% (1, R(my), —2N — 1) 4% T(I1, k, —2N — 2),

where we used the notatialy; = T1;(d) anddl = T (d®). In the rest of the paper, we will
suppress the referencellip and writed instead ofl;; andd™ instead ofl} whenever there is no
possibility of confusion. If we set

V) = V(L R(m,),p) = T(I @ Ky ad, R(7,), p — 2N — 2)
V;_INJerp - V(Ha R(WP)7 2N +2— p) - T(H & ktrada R(ﬂ—p)a —p),

for 0 < p < N, whereR(m) = k denotes the trivial representation«fo, then we obtain an
exact sequence df (v, #)-modules

(6.22)

I d .11 d d yo,u  d® |, d d {1 d NI
(6.23) 0= Vonio = Vonyr = - = Yy — Vv — - =V — Vg

The above exact complex will be useful in the study of reducible tensor modules and in the
computation of their singular vectors. We will be using notation (6.22) throughout the rest of the
paper. Notice thav}j_, is not defined.

7. IRREDUCIBILITY OF TENSORMODULES

We will investigate submodules of tensor modules, and prove a criterion for irreducibility of
tensor modules. Throughout the sectidhwill be an irreducible(d @ csp 2)-module with an
action denotegz, andV(R) the corresponding tensor module.

7.1. Coefficients of elements and submoduledNote that every elementc V(R) = H ® R
can be written uniquely in the form

(7.2) v = Z oD @y, v € R.

2N+1
Iezy

Definition 7.1. The nonzero elements; in (7.1) are calleccoefficientsof v € V(R). For
a submoduleM C V(R), we denote bycoeff M the subspace oR linearly spanned by all
coefficients of elements from/.

It will be convenient to introduce the notation
2N
(7.2) Y(u) =Y 0:0;®@pr(f)u, u€R.
i,j=1
Lemma 7.1.If v € V(R) is given by(7.1), then

exv=> (100") @y (v
(7.3) i
+ termsin(k ® 0V H) @y (F* H ® (k4 pr(spd +0)) - v;).

In particular, the coefficient multiplying ® 0¥ equalsy,(v;) moduloF! V(R).
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Proof. We rewrite (5.12) using the fact that
(7.4) Gi@l)@pv=01®1)®ydv—(1®9;) @ v
for anyv € V(R). We obtain:

c(1@u) = (1@1) @y (V) ~ Y 0 @ pr(0)u)

(7.5)

+ terms in(k @ H) @y (3@ (k+ pr(spd)) - u+ k@ (k+ pr(spd +2)) -u)
Then plugging in (7.1) and applying -bilinearity completes the proof. O
Remark7.1 Forwv € sing V(R), we have by (5.18)

2N
(7.6) exv=> (18080;) ®y psng(f’)v + termsin(k ® F' H) @ V(R).

i,j=1
Lemma 7.2. For any nonzero propeK (9, #)-submodulel C V(R), we havecoeff M = R.
Proof. Pick a nonzero element= o) @ v; contained inM/. Then Lemma 7.1 shows that

M contains an element congruenti@v;) moduloF' V(R), thus coefficients of(v;) lie in
coeff M for all I. This proves thasp 6(coeff M) C coeff M. Similarly, one can write

e*v—z (1®oD) ®H( Zak®PR UI)

+ termsin(k ® 0V H) ®p <D ® pr(spo + kv + k@ (k+ pr(spd —1—0))1)1),

showing thapr(9*)v; € coeff M forall I and allk = 1,...,2N. Thus,d(coeff M) C coeff M.
However,d generate$ as a Lie algebra, henestabilizescoeff M as well. Thercoeff M is a
nonzero(d & c¢sp 0)-submodule ofk. Irreducibility of R now gives thatoeff M = R. OJ

Corollary 7.1. Let M be a nonzero propeK (9, #)-submodule oV (R). Then for every, € R
there is an element i/ that coincides with)(u) moduloF* V(R).

Proof. As coeff M = R, itis enough to prove the statement for coefficients of elemerts\/.
SinceM is a K (0, 6)-submodule ofV(R), the coefficient multiplyingl ® 99 in (7.3) still lies
in M and it equals)(v;) moduloF! V(R). O

7.2. An irreducibility criterion. The results of the previous subsection make it possible to
prove a sufficient condition for irreducibility of( R) when thesp d-action onR is nontrivial.
We first need the following lemma.

Lemma 7.3. Assume thés (0, f)-tensor modulé’(R) contains a nonzero proper submodule.
Then thesp 9-action onR satisfies

(7.7) D U u)=0, uweR,
forall 1 < a,b,c,d < 2N, where the sum is over all permutationsab, ¢, d.

Proof. Let M be a nonzero propéx (0, §)-submodule of/(R) andv € M be an element equal
to ¢ (u) moduloF! V(R) (see Corollary 7.1). Let us expressuv in the form} ", (10 0) @ u;
using (5.12) and (7.4). Iff| > 4 thenu; = 0; moreover if|/| = 4 thenu; liesink ® R. By
Lemma 5.2 these coefficients must cancel with each other, and they give exactly (7.7)

Now we can prove the main result of this section.

Theorem 7.1. If the K (9, #)-tensor module/(I1, U, ¢) is not irreducible, therlJ is either the
trivial representation ofsp 0 or is isomorphic toR(r;) forsomei = 1,..., N.
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Proof. Lowering indices in (7.7) gives the following equivalent identity:

(fafd + facf* + FLf2 4+ F2f8 A+ P fae + f1Q) - u =0,
forall1 <a,b, c,d < 2N andu € R. Specializing tar = b = ¢ = d = i we obtain:
Afifi+ faf"+ 1 fi=0.
Recalling that elements (2.30) form a stand&ketriple, this can be rewritten as
hi —eifi — fie; = 0.

As h? is a linear combination of? — (e, f; + fie;) = 0 and the Casimir element ¢¢;, h;, f;) ~
sl,, it acts on any irreduciblel,-submodulelV C U as a scalar, which forcdsg to be equal
either0 or 1. Then the eigenvalue of the action/af= —2f; on a highest weight vector i is
also eithe or 1.

When the basié,, .. ., 9. of 0 is symplectic with respect to, elements; = ¢! — e%iﬁ form
a basis of the diagonal Cartan subalgebrapaf (see (2.32)). LetV = R()\) be an irreducible
representation afp o with highest weight\ = >, \;m;. For the standard choice of simple roots,
the eigenvalue ofi; = e} — e on the highest weight vectoris Y, A; < 1 (cf. [FH, Lecture
16]). Since); are non-negative integers must bed or one of the fundamental weights. [

Remark7.2 The module/(I1, U, ¢) is always irreducible if thep 9-modulel is infinite-dimensional
irreducible. In order to show this, it suffices to prove that the factdr @p o) by the ideal gen-
erated by relations (7.7) is finite-dimensional. It is enough to prove this for the associated graded
algebraS(sp0): lettinga = b = ¢ = d in (7.7), we get f**)? = 0; then letting in (7.7n = b,

c = d, we get(f®)?2 = —4ff% hence(f®)* = 0 for all a,b, proving the claim (we are
grateful to C. De Concini for this argument). Similarly, the tensor modules for Lie pseudoalge-
bras ofli andS types in [BDK1] are irreducible if the corresponding modulgéare irreducible
infinite-dimensional.

We are left with investigating irreducibility of all tensor modules for whi¢lis isomorphic to
someR(m;) or to the trivial representatioR(m,) = k. We will do so by explicitly constructing
all singular vectors contained in nonzero proper submodul®g1éf U, ¢), and thus determining
conditions on the scalar valuef the action ofl’. A central tool for the classification of singular
vectors is the following proposition, which enables us to bound the degree of singular vectors.

Proposition 7.1. Letv € V(R) be a singular vector contained in a nonzero proge(o, 6)-
submodulel/, and assume that the d-action onR is nontrivial. Thenv is of degree at most
two in the contact filtration, i.e., it is of the form

2N 2N
(78) ’UZZ@(%@’UM—FZ&C@U}@—Fl@%}.

ij=1 k=0
Proof. Write v = _,0Y) ® v;. Then Lemma 7.1, together with (7.6), shows thét;) = 0
whenevelI|' > 2. As thesp d-action onR is nontrivial,y)(v;) = 0 impliesv; = 0. O

Our next goal is to characterize singular vectors of degree at most two in all modules that do
not satisfy the irreducibility criterion given in Theorem 7.1, and thus to obtain a classification of
reducible tensor modules.

8. COMPUTATION OF SINGULAR VECTORS

In this section, we will be concerned with tensor modules of the f(ii, U, c¢), wherell is
an irreducible finite-dimensional representatiorpandU is either the trivialsp 9-module or
one the fundamental representations. Our final result states that such a tensor module contains
singular vectors if and only if it shows up in a twist of the contact pseudo de Rham complex, and
that in such cases singular vectors may be described in terms of the differentials.
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8.1. Singular vectors in V(I k, ¢). Here we treat separately the cd$e~ k. Since thesp 0-
action is trivial, now (5.12) can be rewritten as
2N
ex(l®@u)= Z(@k ®1) @ (0" ®u—1® pr(d0*)u)
k=1
+ (O ®1) @y (1®cu/2) — (101) @y (G ®u— 18 pr(do)u) .
Using (5.13), we can also write
2N
ex(1@u) ==Y (100) @y (0" ®u—1& pr(*)u)
k=1
—(1®0) ®@u (1®cu/2)+ termsin(k ® k) @y F' V(R).
Proposition 8.1. We have
(i) sing V(I k, ¢) = F* V(I1, k, ¢) for ¢ # 0;
(i) sing V(IT, k, 0) = F"' V(I1, k, 0);
(iii) V(R) = V(IL, k, ¢) is irreducible if and only ifc # 0.

Proof. (i) Letv = 3", 09 ® v; € V(R) be a singular vector, and assume thag 0 for somel
with |I| > 0. If n is the maximal value off| for suchi, choose among all = (i, i1, ..., i2n)
with |I| = n one with largest possiblg. If we use (8.2) to computex v and express the result
in the form

(8.3) Y (1@d)@yus,  us€V(R),

J
then the coefficient multiplying @ 9*=0) equals— (i, + 1)cv;/2. Sincev is singular, this must
vanish if| /| > 0, andc # 0 gives a contradiction with; # 0.

(i) In the same way as in part (i), we show thatig V(II,k,0) ¢ F' V(IL, k,0). Indeed,
computing the coefficient multiplying @ 0/+<*), we see that/| > 1 impliesv; = 0. Now,
constant vectors are clearly singular, and using 0; ® v; (i # 0) in (8.1) easily shows to
be singular for all choices af; € R. We are left with showing thal, ® v (vy # 0) is never a
singular vector. Once again, substituting this in (8.1) and expressing the result as in (8.3) gives
nonzero terms multiplying,0, ® 1 for all & # 0.

(iii) If ¢ # 0, thenV(IL, k, ¢) has no nonconstant singular vectors, hence it is irreducible by
Corollary 5.4. As far a®’(I1, k, 0) is concerned, direct inspection of (8.1) shows that elements
0®@u—1® pr(d)u (0 € 9,u € R) generate oveH a properk (0, §)-submodule o (11, k, 0).

[

(8.1)

(8.2)

Corollary 8.1. We havesing VI = FO VIl + d FO V1L

Proof. The (2 @ csp 0)-submodulel F® VI! C sing VI contains nonconstant elements, so it has
a nonzero projection tgr'! V1. However, Corollary 5.5 shows that this is isomorphid¢it& v,
whence it is irreducible. O]

We will now separately classify singular vectors of degree one and two in all other cases.

8.2. Classification of singular vectors of degree oneOur setting is the following:V =
V(R) = H® Ris a reduciblek (v, §) tensor moduleR is isomorphic tdIX U as a(d ¢ csp 0)-
module, where botil and U are irreducible, and/ = R(w,) as ansp 9-module for some
1 <n < N. We are also given a honzero proper submodule- V. Note that by assumption
U is not the trivialsp d-representation. We look for singular vectors of degree one, i.e., of the
form

2N

(8.4) V=) 9@V +187,
i=0
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which are contained id/. Note that every such singular vector is uniquely determined by its
degree one part. Indeed,ifandv’ are two such vectors agreeing in degree one, then' is a
singular vector contained it/ N (k ® R) = {0} (see Lemma 5.2).

Lemma 8.1.If v € M is a singular vector written as i(8.4), theny, = 0.

Proof. Computee * v using (5.12). Then if we writex v = Y, (0Y) ® 1) ®x vy, the coefficient

multiplying 9,0,0; ® 1 for i < jis pr(f“)vo € M N (k ® R), up to a nonzero multiplicative

constant. Hencgg(f*“)v, = 0 for all i, j, which impliesv, = 0 as thesp d-action is nontrivial.
O

Proposition 8.2. Letv, v" be nonzero singular vectors of degree one contained in nonzero proper
submodules/, M’ of a tensor modul®’(R) = V(I1, U, ¢), as above. Ifv = v' mod F°V(R),
thenv = v'.

Proof. By Lemma 8.1 and Corollary 5.3/ acts on(sing V(R) N F* V(R))/ F° V(R) via multi-
plication byc + 1, and it obviously acts of® V(R) via multiplication byc. Thensing V(R) N
F!' V(R) is isomorphic to the direct sum of the}- 1 andc eigenspaces with respectto

Any K-submodule of is in particular stable under the action Bf so it contains thd’-
eigenspace components of all of its singular vectors. However, a nonzero proper subfiiodule
cannot contain constant singular vectors. Thus, singular vectors must lieda-theigenspace,
and their constant coefficient part is determined by their degree one part, independently on the

choice of the submodul®/. O

So far, we have showed that singular vectors of degree one also have degree one in the contact
filtration, and that those contained in a nonzero submodule must be homogeneous (i.e. eigenvec-
tors) with respect to the action 6f. Notice that since all constant vectors are singular, a singular
vector of degree one stays singular if we alter or suppress its constant part.

Lemma 8.2. A nonzero element = 7Y 9, ® v, € H ® R is a singular vector in)(R) =
V(I1, U, ¢) for at most one value of

Proof. Computee xv = 3~ ,(0") ® 1) @4 vy using (5.12). Fok # 0, the coefficient multiplying
000, ® 1 equals—1/2 ® cvy, plus a linear combination of terms of the form® pr(f¥)v, that
arise from reordering terms multiplying0,0; ® 1; such terms are however independent of the
choice ofc. All such coefficients must vanish whens singular. If this happens for two distinct
values ofc, we obtainu, = 0 for all k£, a contradiction withy #£ 0. O

Theorem 8.1. Assume that the action @ 0 on U is nontrivial. If V' = V(II, U, ¢) contains
singular vectors of degree one, théh= VZ? forsomel < p < 2N +1,p # N + 1. More

preciselysing VIINF' V' = FOVIT 4+ dFO VI

Proof. By Theorem 7.1Y(R) = V(I1, U, ¢) is irreducible unles§ = R(r,) for somel < p <

N. Lemma 8.1 and Corollary 5.5 show that singular vectors of degree one in a nonzero proper
K (9,6)-submoduleV/ project faithfully to a(d @ csp 0)-submodule ofr’* V(R) isomorphic to

X (0 ® U, c+ 1). We can explicitly decompose® U as a direct sum of irreducibles using
Lemma 2.4. One has:

0® R(m) ~ R(2m) @ k& R(m),

0® R(m,) ~ R(mp + m1) ® R(mp—1) ® R(mps1), fl<p<N,

0® R(nmn) ~ R(ry +m) @ R(my_1).
For all values ofl < p < N, thespd-moduleR(r, + m) satisfies the irreducibility criterion
stated in Theorem 7.1, and its dimension is larger thanR(r,). We can therefore proceed as

in [BDK1, Lemma 7.8] to conclude that no singular vectors will have a nonzero projection to
this summand.
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However, by the construction of the contact pseudo de Rham complex, the tensor module
V(II, R(m,), ¢) contains singular vectors projecting to the summaid,,,) whenc = p and to
the summand?(r,_,) if ¢ = 2N + 2 — p. Lemma 8.2 shows now that these are the only values
of ¢ for which there are singular vectors projecting to such components, whereas Proposition 8.2
implies that those are the only homogeneous singular vectors. O

8.3. Classification of singular vectors of degree twon all of this section)’(R) = V(I1, U, ¢)
will be a tensor module containing a singular veetaf degree two. Due to Proposition 7.1, we
may assume that

2N 2N
ij=1 i=0

wherev;; = vy; for all i, j. We already know by Proposition 5.4 thé{R) is reducible, hence

U = R(m,) for somep by Theorem 7.1 and Proposition 8.1. Our goal is to describe all possible
v’s, and show that the only tensor modules possessing thamlisR(wy), N). Recall the
definition of (u) given by (7.2).

Lemma 8.3. We havef*’(v) = ¢(va3) mod F'V(R).
Proof. Use (7.5) to compute x v and compare it with (7.6). O

This shows that for some € R there exists a singular vector coinciding wifitz) modulo
F' V(R), since ifv is a singular vector of degree two, thery # 0 for some choice ofy, 3.

Lemma 8.4. Let v,v’ be singular vectors of degree two W(R), and assume that = o'

mod F'V(R). Thenv, = v},

Proof. Apply Lemma 8.1 to the singular vector of degree one v'. OJ
Note that sincd’ acts on singular vectors, the projection operatoof V(R) = V(I1, U, ¢) to

thec + 2 eigenspace with respect tomapssing V(R) N F2 V(R) to itself. If a nonzero proper

submodulel/ of V(R) contains a singular vecterof degree two, then it also contaipsy. We
will say thatp,v is ahomogeneousingular vector of degree two.

Lemma 8.5. For everyu € R there exists a unique homogeneous singular vector

(8.6) d(u) = (u) mod F'V(R).

Elements)(u) depend linearly on. and satisfy

(8.7) F(0(u) = o(f*F(u)

(8.8) 0 p(u) = ¢(0 - u).

Moreover, ifv is a homogeneous singular vector of degree two &8.8), then
(8.9) F*(v) = ¢(vag)

Proof. We know that for somé # « € R we can find a singular vecterequal toy)(u) modulo
F'V(R). Then its projectiom,v to thec + 2-eigenspace of’ is still singular and coincides
with v up to lower degree terms. If we are able to show that (8.7) and (8.8) hold whenever both
sides make sense, then the set ofuatt R for which ¢(u) is defined is a nonzer@ @ csp d)-
submodule of?, hence all of it by irreducibility.

So, sayp(u) is an element as above. By Lemma 8.3, we know 44t ¢(u)) coincides with
»(f*?(u)) up to lower degree terms. Moreover, BEommutes withsp 9, the vectorf**(¢(u))
is still homogeneous, thus showing (8.7). The proof of (8.9) is completely analogous. Similarly,
Lemma 5.4 implies (8.8), as the actionifcommutes with that of. OJ

Corollary 8.2. The mapy: R — sing V(R) is a well-defined injectivéd®sp 0)-homomorphism,
and the action ofp @ mapsp, sing V(R) to the image ofp.
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Proof. Since we are assuming that the actiompd on R is nontrivial, the map): R — V(R)
is injective. Then, by (8.6} is also injective. O

Corollary 8.3. The space. sing V(R) does not contain triviatp 9-summands.

Proof. If v € p,sing V(R) lies in a trivial summand, theh= £ (v) = ¢(v,s) for all o, 5. But
¢ is injective, hence,z = 0 for all «, 3, a contradiction withy being of degree two. Therefore
v =0. ]

The above results can be summarized as follows.

Theorem 8.2. The mapp: R — pysing V(R) is an isomorphism ofd @ sp 0)-modules. The
action of I’ on p, sing V(R) is via scalar multiplication by + 2. All homogeneous singular
vectors of degree two iV(R) are of the formp(u) for u € R.

A classification of singular vectors of degree two will now follow by computing the action
of e € K(0,0) on vectors of the formp(u). In the computations we will need some identities,
which hold in any associative algebra. We will denotehyy| = xy — yx the usual commutator
and by

1
{z1,.. 2.} = p Z To(1) - - - To(n)

’ O'ESn
the complete symmetrization of the product.

Lemma 8.6. For any elements, b, ¢, d in an associative algebra, we have

abe = {a,b,c} + 5 (1o, .} + (b, o, ) + e, [o,0)) + é([a, b,cl] + [[a,8], ),

abed = {a, b, c,d}
+ %({a, b [e.d)} + {a,c, [b.d]} + {a.d, [b,c]}

+{bcla, )} + {b,d. [0, ]} + {c.d, [a,1]})

45 (00,8, ey + {la ), b, )} + {fa, ) b, ]})
+ < (o e,y + o 1.l + 40, e, dll} + 40, [l ] )
+ {er o, b, dll} + {e, [, 8] ]} + {d o, b, ]} + 1, [[o, 8], ]}
+ < (le, ., 0] = [, o] o]
+ 2 (Ml 8] e, d) + [l ], b,d)]) + [la, ), . d])

Proof. Itis a lengthy but standard computation. The authors have checked it using Maple.

Now let us write
2N

(8.10) pu) =P(u) +> v +1®T, uweR,
k=0

for somev,, v € R, which may depend on.
Lemma 8.7. If the above vectop(u) is singular, thery, = (¢/2 — N — 1)u.

Proof. We use (5.12) to computex ¢(u) = >0V ® 1) @y v;. If 0 < a < b, then the
coefficient multiplyingd,0,9, ® 1 equalsl’ - f*°(u) — 2% (vy)+ commutators that are obtained
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from reordering terms of the for#,0,0,0, in the associative algebid = U(d). These can be
computed using Lemma 8.6, leading to

2N
=2f%(vo) + I+ [ () +2 ) wylf* SN (w) = f (I u— 200 — (2N + 2)u) ,
ij=1
where} " wi;[f*, f¥] = —(N + 1) f** due to (2.28).
Since¢(u) is a singular vector, this coefficient must vanish forak b, and a similar com-
putation can be done when = b. Since thesp d-action onR is nontrivial, we obtain that
I' w—2vy — (2N + 2)u = 0. To finish the proof, observe thét- v = cu for all u € R. O

Lemma 8.8. If ¢(u) is singular, then

2N
(8.11) vy = Z fanf(u) .

a,b=1

Proof. Compute the coefficient multiplying? @ 1 as in Lemma 8.7, using Lemma 8.6 in order
to explicitly compute commutators arising from terty®),0;, which cancel, and;0,;0,0,. The
final result is

2N

1 1 ij pkl 1 1 kl

—51/'1104—5. Z wirwii [ f (U):—gll'vo+52fklf (u),
i,4,k,0=1 kil

which is a constant element, and must therefore vanish. O

Corollary 8.4. If ¢(u) is singular for0 # v € R = II X (R(m,),c), thenc equals either
2N + 2 — por p. In other words, the only tensor modules that may possess singular vectors of
degree2 are of the formV! or Vijy .

Proof. Substitute Lemma 8.7 into Lemma 8.8, to obtain

2N
1
§c2u — (N+1)cu — ;1 fanf®(u) =0.
Recall by Lemmas 2.3 and 2.4 thatZZszl fa f equals the Casimir element gf 0 and acts
on R(m,) via multiplication byp(2N + 2 — p)/2. Hence we obtain

¢ — (2N +2)c+p(2N +2 —p) =0,
whose only solutions are= p andc = 2N + 2 — p. O

Corollary 8.5. Let U be a nontrivial irreduciblesp 0-module. Then a tensor modulé =
V(II, U, ¢) is reducible if and only if it is of the fori®)' for somel < p <2N +1,p # N + 1.

Proof. The image of differentials constitute proper submodules of each tensor module showing
up in the contact pseudo de Rham complex (6.23). Conversely, Theorem 8.1 and Corollary 8.4
show that there are no other tensor modules possessing honconstant singular vectors(]

Theorem 8.3. The only tensor modules ovéf(d, ) possessing singular vectors of degree two
are those of the fornwl.

Proof. If V(R) = V(II, R(m,), c) has singular vectors of degree two, then we have a nonzero
homomorphism

V(II, R(my), ¢+ 2) — V(II, R(m,), ¢) .
However, if V(II, R(m,), ¢ + 2) is irreducible, then this map is injective, and its image has the
same rank a¥(R). Hence, it is a proper cotorsion submodie~ V(II, R(r,), c+2) in V(R),
and the action of< (0, ) on V(R)/M is trivial by Remark 3.1. This means that V(R) C
(H ® H) ®y M. But a direct inspection of (5.12) shows that V(R) = (H ® H) @y V(R),
which is a contradiction.
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We conclude thav(Il, R(7,), c + 2) andV(1I, R(m,), ¢) are both reducible. By Corollary 8.5
and (6.22)¢ andc+2 must add up t@ N+2. Henceg = p = N andV(R) = V(II, R(7y), N) =
Vi. O

9. CLASSIFICATION OF IRREDUCIBLE FINITE K(9,6)-MODULES

We already know that alK (2, 6)-modules belonging to the exact complex (6.23) are re-
ducible, as the image of each differential provides a nonzero submodule. Further, Corollary 8.5
shows that these are the only reducible tensor modu{éy, when R is an irreducible finite-
dimensional representation of®d csp 0. However, by Proposition 5.2 and Theorem 5.1, every
finite irreducibleK (v, #)-module is a quotient of someé(R), whereR is an irreducible finite-
dimensional® & csp 0)-module. Thus, classifying irreducible quotients of all (reducible) tensor
modulesV(R) will yield a classification of all irreducible finité& (v, §)-modules.

Remarl9.1 By Theorems 8.1 and 8.3, each of the reducible tensor modules from (6.23) contains
a unique irreducibléd & csp 9)-summand of nonconstant singular vectors.

Lemma 9.1. Let VV and W be K (9, #)-modules, and assunié is generated over{ by its
singular vectors. Iff: V. — W is a K(0,6)-homomorphism, theri(V) is also H-linearly
generated by its singular vectors.

Proof. This follows immediately frony (sing V') C sing V. O

Theorem 9.1. The image module$*Vy,, anddV}! ,, where0 < p <2N +1,p# N, N + 1
are the unique nonzero propéf (9, ¢)-submodules oVy and V', respectively.

Proof. We first claim that these submodules are irreducible, hence minimal. By Proposition 5.2
and Remark 9.1, itis enough to show that theyHré&nearly generated by their singular vectors.
This follows from Lemma 9.1.

To prove that there are no other nonzero proper submodules, it is enough to show that these
minimal submodules are also maximal. Equivalently, the quotigkts1*Vy, , andVI'/dVIL
are irreducible, which follows from exactness of the complex (6.23).

The above results lead to the main theorem of the paper.

Theorem 9.2. A complete list of non-isomorphic finite irreducitig, 6)-modules is as follows

(i) Tensor module¥(I1, U) wherell is an irreducible finite-dimensional representationf
and U is a nontrivial irreducible finite-dimensionakp d-module not isomorphic toR(r,), p)
or (R(m,),2N +2 —p)with1 <p < N,

(i) Images of differentials in the twisted contact pseudo de Rham cort23) namely
d®Vi,, anddV wherel <n < 2N +1,n # N + 1, N + 2. HereIl is again an irreducible
finite-dimensionab-module.

Remark9.2 The imagedeHN+2 of the first member of the complex (6.23) is isomorphic to
ViNio = V(II, R(m), 2N + 2) and it is included in part (i) of the above theorem.

Recall that representations of the Lie pseudoalgéha ¢) are in one-to-one correspondence
with conformal representations of the extended annihilation algéb{@e [BDK] and Proposi-
tion 3.2). The latter is a direct sum of Lie algebfés= d & K whered ~ d andX is isomorphic
to the Lie—Cartan algebr&,y 1 (See Propositions 4.1 and 4.2). Thus, from our classification
of finite irreducible K (9, #)-modules we can deduce a classification of irreducible conformal
Ksn1-modules. In this way we recover the results of I.A. Kostrikin, which were stated in [KO0]
without proof.

In order to state the results, we first need to set up some notatio® ket finite-dimensional
representation ofsp 9. Using thatcsp 0 ~ K} /K}, we endowR with an action ofK{, such that
K acts trivially (see Proposition 4.3). We also vidwas a § & csp 0)-module with a trivial
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action ofo, and as before we writ® = (U,c). Then, by Remark 5.3 and Proposition 4.2,
the inducedC-moduIeInd’C6 R is isomorphic to the tensdk (9, #)-moduleV(R) = V(k, U, ¢).
Finally, let us recall th&-grading ofV” introduced in the proof of Proposition 5.4. In this setting,
Theorems 9.1 and 9.2 along with Remark 7.2 imply the following.

Corollary 9.1. (i) [Ko]. Every nonconstant homogeneous singular vectdf ia V(k, U, ¢) has
degreel or 2. The spaces of such singular vectors is ap 0-module, and the quotient df by
the -submodule generated Isyis an irreducibleC-module. All singular vectors of degreéen
V are listed in case§a), (b)below, while all singular vectors of degréeare listed in(c):

(@) U=R(r,), c=p, S=R(mp1), 0<p<N-1.
(b) U=R(mp), c¢c=2N+2—-p, S=R(mp_1), 1<p<N.
(c) U:R(’/TN), c=N, S:R<7TN)

(i) [Ko]. If the sp0-moduleU is infinite-dimensional irreducible, thevi(k, U, ¢) does not
contain nonconstant singular vectors.

(iii) If a -moduleV(k, U, ¢) is not irreducible, then itgunique irreducible quotient is iso-
morphic to the topological dual of the kernel of the differential of a member of the Rumin complex
over formal power series.

REFERENCES

[BDK] B. Bakalov, A. D’Andrea, and V. G. KacTheory of finite pseudoalgebrasdv. Math.162(2001), 1-140.

[BDK1] B. Bakalov, A. D’Andrea, and V. G. Kadrreducible modules over finite simple Lie pseudoalgebras I.
Primitive pseudoalgebras of typ& and S, Adv. Math.204(2006), 278-306.

[BD] A. Beilinson and V. Drinfeld,Chiral algebras AMS Colloquium Publications, vol. 51, American Math.
Society, Providence, RI, 2004.

[DK]  A.D’Andrea and V. G. Kac Structure theory of finite conformal algebr&electa Math. (N.S4 (1998),
377-418.

[FH] W. Fulton and J. HarrisRepresentation theory. A first courgeraduate Texts in Mathematics, 129, Read-
ings in Mathematics, Springer—Verlag, New York, 1991.

K] V. G. Kac, Vertex algebras for beginnergJniversity Lecture Series, vol. 10, American Math. Society,
Providence, RI, 1996. 2nd edition, 1998.

[Ko] I. A. Kostrikin, Representations of heighof infinite-dimensional Lie algebras of the seri€s, (Russian)
Uspekhi Mat. Nauk34 (1979), no. 1(205), 229-230. English translation in Russ. Math. Sdr{1979),
no. 1, 225-226.

[OV] A.L.Onishchik and E. B. Vinberd..ie groups and algebraic groupSpringer Series in Soviet Mathemat-
ics, Springer—\Verlag, Berlin, 1990.

[Ru] M. Rumin, Formes diférentielles sur les vagitts de contac¢tl. Differ. Geom39 (1994), 281-330.

[Sw] M. SweedlerHopf algebrasMath. Lecture Note Series, W. A. Benjamin, Inc., New York, 1969.

DEPARTMENT OFMATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, Box 8205, RALEIGH, NC 27695,
USA

E-mail addressbojko _bakalov@ncsu.edu

DIPARTIMENTO DI MATEMATICA, ISTITUTO“GUIDO CASTELNUOVO”, UNIVERSITA DI ROMA “L A SAPIENZA”,
00185 POME, ITALY
E-mail addressdandrea@mat.uniromal.it

DEPARTMENT OFMATHEMATICS, MIT, CAMBRIDGE, MA 02139, USA
E-mail addresskac@math.mit.edu



