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ABSTRACT. Let L be a Lie pseudoalgebra, a ∈ L. We show that, if a generates a (finite) solvable
subalgebra S = 〈a〉 ⊂ L, then one may find a lifting ā ∈ S of [a] ∈ S/S′ such that 〈ā〉 is
nilpotent.

We then apply this result towards vertex algebras: we show that every finite vertex algebra V
admits a decomposition into a semi-direct product V = UnN , where U is a subalgebra of V
whose underlying Lie conformal algebra ULie is a nilpotent self-normalizing subalgebra of V Lie,
and N = V [∞] is a canonically determined ideal contained in the nilradical NilV .
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1. INTRODUCTION

Let H be a Hopf algebra. One may make [2] the class of left H-modules into a pseudotensor
categoryM∗(H) in a non-standard way; an algebra object inM∗(H) is then a pseudoalgebra
over H .

In [1], the notion of Lie pseudoalgebra over a cocommutative Hopf algebra was introduced
and studied. Not surprisingly, the study of finite Lie pseudoalgebras amounts to investigating
commutator properties of families of pseudolinear endomorphisms. When M is a finite (i.e.,
finitely generated) left H-module, the space of all pseudolinear endomorphisms of M can be
given a natural Lie pseudoalgebra structure, denoted by gcM .

One of the Lie theoretic features of the pseudo-version of linear algebra is that an analogue
of Lie Theorem holds. However, a pseudolinear endomorphism may fail to self-commute; as a
consequence, not all pseudolinear endomorphisms can be made to “stabilize a flag.” This can be
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made precise: if f ∈ gcM , where M is a finite H-module, then f can be put in upper triangular
form if and only if f generates a solvable subalgebra 〈f〉 of the Lie pseudoalgebra gcM ; more-
over, its action decomposes M into a direct sum of generalized eigenspaces if and only if 〈f〉 is
nilpotent. There are examples of f such that 〈f〉 is not solvable. One may also choose f so that
〈f〉 is solvable but not nilpotent.

The first part of this paper is devoted to showing that whenever S = 〈f〉 ⊂ gcM is solvable,
f is not too far from generating a nilpotent subalgebra of gcM . More precisely, one may always
find f̄ ≡ f mod S ′ such that 〈f̄〉 is nilpotent. Therefore, even though f may fail to decom-
pose M into a direct sum of generalized eigenspaces, a (non-unique) suitable modification of f
certainly does. We expect this fact to be useful towards the study of some class of subalgebras
of the Lie pseudoalgebra gcM , where M is a finite H-module, e.g., subalgebras of gcM , all of
whose nonzero subalgebras contain a nonzero self-commuting element.

In the second half of the paper, we employ this fact towards characterizing finite vertex al-
gebras by studying the adjoint representation of the underlying Lie conformal algebra. Vertex
algebras that are of interest in physics are very large objects, and are typically graded vector
spaces of superpolynomial growth. It is well known that finite-dimensional vertex algebras col-
lapse to differential commutative algebra structures; however, infinite-dimensional examples of
low growth are less well understood. One of the authors showed in [4] that all finite vertex
algebras V possess a solvable underlying Lie conformal algebra V Lie, and that all generalized
weight space (of nonzero weight) with respect to the adjoint action of any subalgebra of V Lie are
nil-ideals of the vertex algebra structure.

A more precise description can be obtained by mimicking the root space decomposition tech-
nique in this new setting: if V is a finite vertex algebra, choose a generic element in V Lie, and
modify it so that it generates a nilpotent subalgebra of V Lie. Then, decompose V into direct sum
of generalized weight spaces. All nonzero weights result in abelian vertex ideals, whereas the
generalized 0-weight space is a vertex subalgebra U of V with the property that ULie is nilpotent
and self-normalizing in V Lie, i.e., it is a Cartan subalgebra of V . Then V decomposes into a
semidirect product of U with a canonically determined abelian ideal N ; namely, N is the ideal
of V on which the central series of V Lie stabilizes. Finally, we show by an explicit example that
N may fail to vanish. This shows that there exist finite vertex algebras whose underlying Lie
conformal algebra is not nilpotent.

The general philosophy is that vertex algebras naturally tend to be very large objects. Because
of this, the algebraic requirement that finitely many quantum fields close, up to C[∂]-linear com-
bination, under normally ordered product and λ-bracket, forces some form of nilpotence on the
structure; we describe the exact form of this nilpotence in Theorem 5.1.

2. PRELIMINARIES ON LIE PSEUDOALGEBRAS

In this paper we will work over an algebraically closed field k of zero characteristic. Unless
otherwise specified, all vector spaces, linear maps and tensor product will be considered over k.

2.1. Hopf algebras and Lie pseudoalgebras. LetH be a cocommutative Hopf algebra [9] with
coproduct ∆, ∆(h) = h(1) ⊗ h(2), counit ε and antipode S.

The tensor product H ⊗ H can be made into a right H-module by α.h = α∆(h), where
α ∈ H ⊗ H, h ∈ H . If L is a left H-module, it makes then sense to consider (H ⊗ H)⊗HL,
along with its natural left H ⊗H-module structure.

A Lie pseudoalgebra over H is a (left) H-module L together with a pseudobracket, i.e., an
H ⊗H-linear map

[ ∗ ] : L⊗ L −→ (H ⊗H)⊗HL
a⊗ b 7−→ [a ∗ b]
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satisfying skew-commutativity

[b ∗ a] = −(σ⊗H idL)[a ∗ b],
and the Jacobi identity

(1) [[a ∗ b] ∗ c] = [a ∗ [b ∗ c]]− ((σ ⊗ id)⊗H id)[b ∗ [a ∗ c]],
for all choices of a, b, c ∈ L. Here, σ : H ⊗ H → H ⊗ H denotes the permutation of factors,
σ(h⊗ k) = k⊗ h, and (1) takes place in (H ⊗H ⊗H)⊗HL, once we extend the pseudobracket
so that

[((h⊗ k)⊗Hr) ∗ s] =
∑
i

(h⊗ k ⊗ 1)(∆⊗ id)(f i ⊗ gi)⊗Hti,

[r ∗ ((h⊗ k)⊗Hs)] =
∑
i

(1⊗ h⊗ k)(id⊗∆)(f i ⊗ gi)⊗Hti,

if [r ∗ s] =
∑
i

(f i ⊗ gi)⊗Hti, where f i, gi, h, k ∈ H , r, s, ti ∈ L.

If L,M are Lie pseudoalgebras over H , then an H-linear map f : L → M is a Lie pseu-
doalgebra homomorphism if [f(a) ∗ f(b)] = ((id⊗ id)⊗Hf)[a ∗ b], for all a, b ∈ L. A Lie
pseudoalgebra L is finite if it is finitely generated as an H-module.

Example 2.1. If H = k then H ⊗H ' H and ∆ = id. In this case the notion of Lie pseudoal-
gebra over k is equivalent to the ordinary notion of a Lie algebra.

Example 2.2. Let d = k∂ be a one dimensional Lie algebra. Then H = U(d) = k[∂] has a
standard cocommutative Hopf algebra structure. In this case the axioms of Lie pseudoalgebra
over H are equivalent to the axioms of Lie conformal algebra [7, 8]. The equivalence between
pseudobracket and λ-bracket is given by

[a ∗ b] =
∑
i

Pi(∂ ⊗ 1, 1⊗ ∂)⊗Hci ⇐⇒ [aλb] =
∑
i

Pi(−λ, ∂ + λ)ci.

2.2. Hopf algebra notations. Throughout the rest of the paper d will denote a finite-dimensional
Lie algebra, and H = U(d) its universal enveloping algebra.
H is a Noetherian domain and possesses a standard Hopf algebra structure satisfying

∆(∂) = ∂ ⊗ 1 + 1⊗ ∂, S(∂) = −∂, ∂ ∈ d.

If dim d = N and {∂i}Ni=1 is a basis of d then

∂(I) =
∂1
i1 . . . ∂N

iN

i1! . . . iN !
, I = (i1, . . . , iN) ∈ NN ,

is a k-basis of H , by the Poincarè-Birkoff-Witt Theorem. The coproduct satisfies

(2) ∆(∂(I)) =
∑

J+K=I

∂(J) ⊗ ∂(K).

Recall that H has a canonical increasing filtration given by

F nH = spank{∂(I) | |I| ≤ n}, n = 0, 1, 2, . . .

where |I| = i1 + · · · + iN if I = (i1, . . . , iN). This filtration satisfies F−1H = {0}, F 0H =
k, F 1H = k ⊕ d. We will say that elements in F iH \ F i−1H have degree i. Due to (2),
∆(h)− 1⊗ h ∈ H ⊗ F i−1H if h has degree i.

Remark 2.1. It is easy to check that

h⊗ k = (hS(k(1))⊗ 1) ·∆(k(2)),

for all h, k ∈ H , hence every element of H ⊗H can be expressed in the form
∑

i(hi ⊗ 1)∆(li),
where hi, li ∈ H .
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Similarly, whenever M is an H-module, elements from (H ⊗ H)⊗HM can be straightened
to the form

∑
i(hi ⊗ 1)⊗Hmi. Notice that both the hi and the mi can be chosen to be linearly

independent.

Lemma 2.1. The linear map τM : (H ⊗H)⊗HM → H ⊗M defined by τM((h ⊗ k)⊗Hm) =
hS(k(1))⊗ k(2)m is an isomorphism of vector spaces.

Proof. It is clearly well defined, and h⊗m 7→ (h⊗ 1)⊗Hm is its inverse. �

Remark 2.2. WhenM = H , the above lemma shows invertibility of the map h⊗k 7→ hS(k(1))⊗
k(2). Its inverse F : h ⊗ k 7→ hk(1) ⊗ k(2) is a linear endomorphism of H ⊗ H , called Fourier
transform in [1].

Corollary 2.1. Let M be an H-module, α =
∑

i(f
i ⊗ gi)⊗Hmi ∈ (H ⊗ H)⊗HM , γ ∈

Homk(H,H). Then the element

αγ =
∑
i

γ(f iS(gi(1)))g
i
(2)mi ∈M

is well defined.

Proof. The map τM from the previous lemma maps α ∈ (H ⊗ H)⊗HM to
∑

i f
iS(gi(1))) ⊗

gi(2)mi ∈ H ⊗ M . The element αγ is then obtained by applying µ ◦ (γ ⊗ idM), where µ :
H ⊗M →M is the H-module structure map. �

Elements of the form αγ are called coefficients of α.

Remark 2.3. It is worth noticing that if α =
∑

i(h
i⊗1)⊗Hci, and the hi are linearly independent

over k, then all elements ci can be realized as coefficients of α; namely ci = αγi , where γi(hj) =

δji . In particular, α lies in (H ⊗H)⊗HS, where S is an H-submodule of L, if and only if ci ∈ S
for all i.

Let L be a Lie pseudoalgebra over H . For any choice of A,B ⊂ L, set [A,B] to be the
smallest H-submodule S ⊂ L such that [a ∗ b] ∈ (H ⊗ H)⊗HS for all a ∈ A, b ∈ B. Due to
Remark 2.3, [A,B] is the H-submodule generated by coefficients of all [a ∗ b], a ∈ A, b ∈ B. A
subspace S ⊂ L is a subalgebra of L if [S, S] ⊂ S. If X is a subset of the Lie pseudoalgebra L,
then 〈X〉 denotes the subalgebra generated by X , i.e., the smallest subalgebra of L containing
X .

Define the derived series of L as L(0) = L, L(1) = [L,L], L(n+1) = [L(n), L(n)]. Similarly, the
central series of L is defined by L[0] = L, L[1] = [L,L], L[n+1] = [L,L[n]]. A Lie pseudoalgebra
L is solvable (resp. nilpotent) if L(n) (resp. L[n]) equals (0) for some n; L is abelian if the
derived subalgebra L′ = [L,L] equals (0).

An ideal of a Lie pseudoalgebra L is a subspace I such that [L, I] ⊆ I . The centre Z(L) of
L is the space of all elements z ∈ L such that [z, L] = (0). Every H-submodule of Z(L) is an
ideal. If N is a central ideal of L, then L is nilpotent if and only if L/N is nilpotent.

Lemma 2.2. Let H be a cocommutative Hopf algebra, M an H-module. Assume α ∈ H ⊗ H
and m ∈M is not a torsion element. Then α⊗Hm = 0 if and only if α = 0.

Proof. Let Hm be the cyclic module generated by m. Assuming that m is not torsion is equiv-
alent to requiring that the map φ : H → Hm, φ(h) = hm is an isomorphism of vector spaces.
Let

α =
∑
i

hi ⊗ ki ∈ H ⊗H.

By Lemma 2.1 we have

τM((α⊗Hm)) =
∑
i

hiS(ki(1))⊗ ki(2)m ∈ H ⊗Hm ⊂ H ⊗M.

Applying the invertible map F ◦ (idH ⊗φ−1) : H ⊗Hm → H ⊗H to this element gives back
α. �
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2.3. The general linear pseudoalgebra. Let L be a Lie pseudoalgebra over H . A representa-
tion of L, or L-module, is an H-module V endowed with an H ⊗H-linear action

L⊗ V 3 a⊗ v 7→ a ∗ v ∈ (H ⊗H)⊗HV,

such that, for every a, b ∈ L, v ∈ V ,

[a ∗ b] ∗ v = a ∗ (b ∗ v)− ((σ ⊗ id)⊗H id)(b ∗ (a ∗ v)),

which is understood as in (1). An L-module V is finite if it is finitely generated as an H-module.
Let V be a representation of the Lie pseudoalgebra L. If A ⊂ L,X ⊂ V , then set A ·X to be

the smallest H-submodule N of V such that a ∗ v ∈ (H ⊗ H)⊗HN for all a ∈ A, v ∈ X . By
Remark 2.3, A ·X is the H-submodule of V generated by all coefficients of a∗ v, a ∈ A, v ∈ X .

An H-submodule W ⊂ V is stable under the action of a ∈ L if a · W ⊂ W . It is an L-
submodule of V if L·W ⊂ W . An L-module V is irreducible if it does not contain any nontrivial
L-submodule. If U and V are two L-modules, then a map φ : U −→ V is a homomorphism of
L-modules if it is H-linear and satisfies

a ∗ φ(u) = ((id⊗ id)⊗Hφ)(a ∗ u),

for all a ∈ L, u ∈ U. Let V,W be two H-modules. A map f : V −→ (H ⊗ H)⊗HW is a
pseudolinear map from V to W if it is k-linear and satisfies

f(hv) = (1⊗ h) · f(v), h ∈ H, v ∈ V.

The space Chom(V,W ) of all pseudolinear maps from V to W has a left H-module structure
given by

(hf)(v) = (h⊗ 1) · f(v).

If V = W we set CendV = Chom(V, V ). If V is a finite H-module then there exists a unique
Lie pseudoalgebra structure on CendV making V a representation of CendV via the action
f ∗ v = f(v). This Lie pseudoalgebra is usually denoted by gcV , and making a finite H-module
V into a representation of a Lie pseudoalgebra L is equivalent to giving a Lie pseudoalgebra
homomorphism from L to gcV .

Example 2.3. Any Lie pseudoalgebraL overH is a module over itself via a∗b := [a∗b], a, b ∈ L.
When L is finite, the adjoint action defines a Lie pseudoalgebra homomorphism ad : L→ gcL
whose kernel equals Z(L). Notice that L is nilpotent if and only if L/Z(L) is nilpotent.

Remark 2.4. If f ∈ Chom(V,W ), then f ∗ v = 0 as soon as v ∈ Tor V . The adjoint action
of any given a ∈ L induces an element ad a ∈ Chom(L[n]/L[n+1], L[n+1]/L[n+2]). Assume L is
a finite Lie pseudoalgebra, and L[n], L[n+1] have the same rank. Then the quotient L[n]/L[n+1] is
torsion, whence ad a = 0 for all a ∈ L. This forces L[n+1] = L[n+2], and we conclude that the
central series of any finite Lie pseudoalgebra stabilizes to an ideal, that we denote by L[∞].

2.4. Action of coefficients. If a, b are elements of a Lie pseudoalgebra L over H , it may be
useful to know the action of coefficients [a ∗ b]γ , as defined in Corollary 2.1, on an L-module M .

Lemma 2.3. Let L be a Lie pseudoalgebra over H , M an L-module. Choose a, b ∈ L, and set
α = [a ∗ b]. Assume that

[a ∗ b] ∗ v =
∑
i

(ki ⊗ li ⊗mi)⊗Hvi,

where ki, li,mi,∈ H and vi ∈M . If γ ∈ Homk(H,H), then

(3) αγ ∗ v =
∑
i

(γ(kiS(li(1)))l
i
(2) ⊗mi)⊗Hvi.
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Proof. The assignment k⊗ l⊗m 7→ (γ(kS(l(1)))l(2) ⊗m)⊗Hu extends to a well-defined linear
map φγ : (H ⊗ H ⊗ H)⊗HM → (H ⊗ H) ⊗H M . Moreover, if [a ∗ b] =

∑
i(h

i ⊗ 1) ⊗H ci,
where the hi are linearly independent, and ci ∗ v =

∑
j(k

ij ⊗ lij)⊗Hvij , then

(4) [a ∗ b] ∗ v =
∑
i,j

(hiS(kij(1))⊗ k
ij
(2) ⊗ l

ij)⊗Hvij.

If we choose γi(hj) = δji , which is possible by linear independence of elements hj , then φγi
recovers from (4) the expression (3) for the action of ci = cγi on v. The general statement
follows by H ⊗H-linearity of the pseudobracket. �

3. REPRESENTATIONS OF SOLVABLE AND NILPOTENT LIE PSEUDOALGEBRAS

In the following two sections we recall some results from [1] about representation theory of
solvable and nilpotent Lie pseudoalgebras.

3.1. Weight vectors. Let L be a Lie pseudoalgebra over H and M be an L-module. If φ ∈
HomH(L,H), the weight space Mφ is defined as

Mφ = {v ∈M | a ∗ v = (φ(a)⊗ 1)⊗Hv, for all a ∈ L}.
IfMφ 6= 0, then φ is a weight for the action of L onM . Every nonzero element ofMφ is a weight
vector of weight φ.

Remark 3.1. The weight space M0 is always an H-submodule of M , whereas Mφ, φ 6= 0 is just
a vector subspace. However, in this case, the H-submodule HMφ ⊂M is free over Mφ.

We have the following pseudoalgebraic analogues of Lie’s Theorem:

Theorem 3.1. Let L be a solvable Lie pseudoalgebra over H . Then every finite non-trivial
L-module has a weight vector.

Corollary 3.1. If L is a solvable Lie pseudoalgebra over H and M is a finite L-module then
M has a finite filtration by L-submodules (0) = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M such that each
quotient Mi+1/Mi is generated over H by a weight vector for the action of L.

The length of an L-module M is the minimal length of a filtration as above.

3.2. Generalized weight submodules. LetL be a Lie pseudoalgebra overH , φ ∈ HomH(L,H) =
L∗.

Lemma 3.1. Let M be a finite L-module. If N ⊂ Mφ is a vector subspace, then HN is an
L-submodule of M .

Proof. Let n ∈ N . Then, for any h ∈ H , a ∗ hn = (1 ⊗ h)(a ∗ n) = (φ(a) ⊗ h)⊗Hn ∈
(H ⊗H)⊗HHN. �

We set Mφ
−1 = (0) and inductively

Mφ
i+1 = spanH{m ∈M | a ∗m− (φ(a)⊗ 1)⊗Hm ∈ (H ⊗H)⊗HMφ

i , ∀ a ∈ L}.

Then Mφ
0 = HMφ and Mφ

i+1/M
φ
i = H(M/Mφ

i )φ. The Mφ
i form an increasing sequence of H-

submodules of M . By Noetherianity of M this sequence stabilizes to an H-submodule Mφ =⋃
i

Mφ
i of M , which is called the generalized weight submodule relative to the weight φ.

We will occasionally stress the dependence of Mφ on the choice of the Lie pseudoalgebra
acting on M by writing Mφ

L , or simply Mφ
a when L = 〈a〉 is the subalgebra of gcM generated

by a single element a.

Proposition 3.1. Let N ⊂M be finite L-modules, φ, ψ ∈ L∗. Then
• Mφ is an L-submodule of M , and is a free H-module whenever φ 6= 0.
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• The sum of generalized weight submodules of M is always direct. In particular Mφ ∩
Mψ = (0) if φ 6= ψ.
• N ⊂Mφ if and only if Nφ = N .
• (M/Mφ)φ = (0).
• If N ⊂Mφ, then N = Mφ if and only if (M/N)φ = (0).

Proof. Mφ is an L-submodule by construction. It can be shown to be a free H-module by induc-
tion, using Remark 3.1. All other statements follow easily from their Lie theoretic analogues by
reinterpreting M as a representation of the annihilation Lie algebra L = H∗⊗HL, see [1]. �

Notice that the direct sum
∑
φ∈L∗

Mφ may fail to equal M . Equality, however, always holds

when L is nilpotent.

Theorem 3.2. Let L be a nilpotent Lie pseudoalgebra over H and M be a (faithful) finite L-
module. Then M decomposes as a direct sum of its generalized weight submodules, M =⊕
φ∈L∗

Mφ.

3.3. Nilpotent pseudoalgebras. We aim to show that the converse to Theorem 3.2 also holds, at
least when L is finite. We will first prove the result whenM coincides with one of its generalized
weight spaces with respect to the action of L. The general statement will then follow easily.

Proposition 3.2. Let M be a finite H-module and L ⊂ gcM be a Lie pseudoalgebra, φ ∈ L∗,
and assume that M coincides with its φ-generalized weight space with respect to the action of
L. Then L is a nilpotent Lie pseudoalgebra.

Proof. Let L[0] = L, L[i] = [L,L[i−1]], i ≥ 1, be the the central series of L and {Mk} be an
increasing family of L-submodules of M as in Corollary 3.1.

As a warm up, let us treat the case φ ≡ 0 first. An easy induction shows that L[i] · Mk ⊂
Mk−i−1. Indeed, as M = M0, we have L ·Mk ⊂ Mk−1 by our choice of Mk. Since L[0] = L,
this takes care of the basis of induction i = 0.

Assume now that L[i] ·Mk ⊂Mk−i−1. Then

L[i+1] ·Mk = [L,L[i]] ·Mk = L · (L[i] ·Mk) + L[i] · (L ·Mk)
⊂ L ·Mk−i−1 + L[i] ·Mk−1 ⊂Mk−i−2.

In order to conclude the proof it is enough to observe that if M = Mn then, for i = n, we have
L[n−1] ·Mn ⊂M0 = (0). This implies L[n−1] = 0, i.e., L is a nilpotent Lie pseudoalgebra.

If φ 6≡ 0, the situation is slightly more delicate. For 1 ≤ r ≤ m, let mr denote the cyclic
generators of the quotients Mr/Mr−1. Set

N j
k = {b ∈ L | b ∗mr ∈ (H ⊗ F jH)⊗Hmr−k +Mr−k−1, r = 1, . . . , N},

and Nk =
⋃
j∈N

N j
k , so that N j

k ⊂ Nk+1 if j < 0. Notice that N0 = L,Nn+1 = (0).

We aim to prove, by induction on p, that [L[p], N j
k ] ⊂ N j−p−1

k . Let us start with the basis of
our induction: [L[0], N j

k ] = [L,N j
k ] ⊂ N j−1

k . Let a ∈ L, b ∈ N j
k . We know that

a ∗mr = (φ⊗ 1)⊗Hmr mod Mr−1,

for r = 1, . . . , n. Assume that b ∗mr =
∑
i

(hi ⊗ ki)⊗Hmr−k mod Mr−k−1, where ki ∈ F jH

for all i. Let us compute

[a ∗ b] ∗mr = a ∗ (b ∗mr)− ((σ ⊗ id)⊗H id)(b ∗ (a ∗mr))
= a ∗ (

∑
i

(hi ⊗ ki)⊗Hmr−k)− ((σ ⊗ id)⊗H id)(b ∗ ((φ⊗ 1)⊗Hmr))

=
∑
i

(φ⊗ hi ⊗ ki − φki(1) ⊗ hi ⊗ ki(2))⊗Hmr−k
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up to terms in a · Mr−k−1 + b · Mr−1 ⊂ Mr−k−1. Now recall that, as ki ∈ F jH , then
∆(ki)− 1⊗ ki ∈ H ⊗ F j−1H . We conclude that all coefficients of [a ∗ b] lie in N j−1

k .

As for the inductive step, assume now that [L[p], N j
k ] ⊂ N j−p−1

k . Then we have

[L[p+1], N j
k ] = [[L,L[p]], N j

k ] ⊂ [L, [L[p], N j
k ] + [L[p], [L,N j

k ]]

⊂ [L,N j−p−1
k ] + [L[p], N j−1

k ] ⊂ N j−p−2
k .

Since L is a finite Lie pseudoalgebra, there exists d such that Nk = Nd
k for all k. Then we obtain

[L[d], Nk] ⊂ N−1
k ⊂ Nk+1. As a consequence, L[(n+1)d+1] = [L[(n+1)d], N0] = (0), which proves

that L is a nilpotent Lie pseudoalgebra. �

Theorem 3.3. Let M be a finite faithful module over a finite Lie pseudoalgebra L, and assume
that M =

⊕
φ∈L∗

Mφ. Then L is a nilpotent Lie pseudoalgebra.

Proof. Observe that under the assumption M =
⊕
φ∈L∗

Mφ we have L ⊂
⊕
φ∈L∗

gc(Mφ). By Propo-

sition 3.2, the image Lφ of L in gc(Mφ) is nilpotent for all φ ∈ L∗. As a consequence,
⊕
φ∈L∗

Lφ

is nilpotent as it is a finite sum of nilpotent Lie pseudoalgebras. Finally, L is a nilpotent Lie
pseudoalgebra as it embeds in

⊕
φ∈L∗

Lφ. �

Example 3.1. The finiteness assumption on L in the statement of Theorem 3.3 cannot be re-
moved.

Indeed, let M = Hm1 +Hm2 be a free H-module of rank 2, and choose L ⊂ gcM to be the
Lie pseudoalgebra of all pseudolinear maps A ∈ gcM such that A ∗m1 = (φ(A) ⊗ 1)⊗Hm1,
A∗m2 = (φ(A)⊗ 1)⊗Hm2 mod (H⊗H)⊗Hm1, for some φ(A) ∈ H . Then the central series
of L stabilizes to L′, which contains all A such that φ(A) = 0.

Later on, we will deal with finite vertex algebras, and the following pseudoalgebraic analogue
of Engel’s theorem will turn out to be useful.

Theorem 3.4. Let L be a finite Lie pseudoalgebra over H . Assume that, for every a ∈ L, the
generalized weight submodule L0

a for the adjoint action of 〈a〉 equals L. Then L is a nilpotent
Lie pseudoalgebra.

4. APPROXIMATE NILPOTENCE OF SOLVABLE SUBALGEBRAS OF gcM

In this section we present the following result for 1-generated solvable subalgebras of gcM :

Theorem 4.1. Let M be a finitely generated H-module. If a ∈ gcM generates a solvable
subalgebra S = 〈a〉, then there exists ā ∈ S, ā ≡ a mod S ′, such that the subalgebra 〈ā〉 is
nilpotent.

We will later specialize this result to give a characterization of finite vertex algebras.

4.1. The length 2 case. Let M be a finite H-module and a ∈ gcM an element generating a
solvable Lie pseudoalgebra 〈a〉 = S.
A modification of a ∈ S is an element ā ∈ S such that a ≡ ā mod S ′. It follows by definition
that the subalgebra generated by ā is a subalgebra of S. The same inclusion holds for the corre-
sponding derived subalgebras. As a consequence, a modification of a modification of a is still a
modification of a.

Remark 4.1. Let φ ∈ S∗ be a weight for the action of S = 〈a〉 on M . Then S = Ha + S ′,
and the restriction of φ to S ′ vanishes. This means that φ is uniquely determined by φ(a). As a
consequence, φ(a) = φ(ā) whenever ā is a modification of a.
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Remark 4.2. Let M be a finite H-module, S be a solvable Lie pseudoalgebra generated by
a ∈ gcM and N ⊂ M an S-submodule. Then N is stable under the action of any modification
ā of a, as ā belongs to S.

Proposition 4.1. Let M be a finite H-module and a ∈ gcM such that S = 〈a〉 is a solvable
subalgebra. Assume that M = Hu+Hv, where u ∈M is a φ−weight vector and [v] ∈M/Hu
is a ψ−weight vector for the action of S, for some φ 6= ψ ∈ S∗. Then there exists a lifting
v̄ ∈ M of [v] such that Hv̄ is a complement of Hu in M and is stable under the action of some
modification ā of a.

Lemma 4.1. Under the same hypotheses as above, let b ∈ gcM be such that b ∗ u = 0, b ∗ v =
(β ⊗ k) ⊗H u, where β, k ∈ H , and the degree of k is K. Then some coefficient s of [a ∗ b]
satisfies s ∗ u = 0, s ∗ v = (1⊗ k)⊗H u mod (H ⊗ FK−1H)⊗Hu.

Proof. A direct computation gives

[a ∗ b] ∗ v = (φ(a)⊗ β ⊗ k − ψ(a)k(1) ⊗ β ⊗ k(2))⊗Hu
= (α⊗ β ⊗ k)⊗Hu,

up to terms in (H ⊗ FK−1H)⊗Hu. By Lemma 2.3, we have

[a ∗ b]γ ∗ v = γ(αS(β(1)))β(2) ⊗ k)⊗Hu mod (H ⊗ FK−1H)⊗Hu.
It now suffices to choose γ ∈ Homk(H,H) so that γ(αS(β)) equals 1, and requiring that it
vanish on all terms of lower degree. �

Proof of Proposition 4.1. We know that

a ∗ u = (φ(a)⊗ 1)⊗Hu
a ∗ v = (ψ(a)⊗ 1)⊗Hv mod (H ⊗H)⊗Hu.

We may then find K ∈ N, and linearly independent elements ki ∈ H of degree K, such that

a ∗ v =
∑
i

(hi ⊗ ki)⊗Hu+ (ψ(a)⊗ 1)⊗Hv mod (H ⊗ FK−1H)⊗H u.

We may assume that the hi are linearly independent as well.
By a direct computation we obtain, modulo terms in (H ⊗H ⊗ FK−1H)⊗Hu,

a ∗ (a ∗ u) = (φ(a)⊗ φ(a)⊗ 1)⊗Hu,
a ∗ (a ∗ v) =

∑
i

(φ(a)⊗ hi ⊗ ki)⊗Hu+
∑
i

(hi ⊗ ψ(a)ki(1) ⊗ ki(2))⊗Hu+ (ψ(a)⊗ ψ(a)⊗ 1)⊗Hv

=
∑
i

(φ(a)⊗ hi ⊗ ki)⊗Hu+
∑
i

(hi ⊗ ψ(a)⊗ ki)⊗Hu+ (ψ(a)⊗ ψ(a)⊗ 1)⊗Hv,

so that [a ∗ a] ∗ u = 0 and

[a ∗ a] ∗ v =
∑
i

(α⊗ hi ⊗ ki − hi ⊗ α⊗ ki)⊗Hu mod (H ⊗H ⊗ FK−1H)⊗Hu,

where α = φ(a) − ψ(a) ∈ H is a nonzero element of degree N . Let D be the maximal degree
of the hi.

We now proceed by induction on K, on D and on the rank of
∑

i hi ⊗ ki ∈ H ⊗ H . We
distinguish three cases:

(1) D > N . Then we may choose γ ∈ Homk(H,H) such that γ(α) = 1 and obtain

[a ∗ a]γ ∗ v =
∑

i(γ(αS(hi(1)))h
i
(2) ⊗ ki − γ(hiS(α(1))α(2) ⊗ ki)⊗H u,

=
∑

i(h
i ⊗ ki)⊗Hu

modulo terms in (FN−1H ⊗FKH +H ⊗FK−1H)⊗H u. The modification a− [a ∗ a]γ
then leads to a coefficient

∑
i h

i ⊗ ki of lower degree in the first tensor factor.
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(2) N ≥ D and α /∈ spank〈hi〉. Choose γi such that γi(hi) = −δji , γ(α) = 0. Then

[a ∗ a]γi ∗ v =
∑

i(γ(αS(hi(1)))h
i
(2) ⊗ ki − γ(hiS(α(1)))α(2) ⊗ ki)⊗H u,

= (α⊗ ki)⊗H u,

modulo terms in (FNH ⊗ ki + H ⊗ FK−1)⊗Hu. This shows that some coefficient b of
[a ∗ a] acts on v so that

b ∗ v = (β ⊗ ki)⊗H u mod (H ⊗ FK−1H)⊗Hu,
for some nonzero β ∈ H . By Lemma 4.1 we may then find, for each i, some element
si ∈ S ′ such that

si ∗ v = (1⊗ ki)⊗Hu mod (H ⊗ FK−1H)⊗Hu.
The element a−

∑
i h

isi is then a modification of a leading to a lower value of K.

(3) N ≥ D and α ∈ spank〈hi〉. In this case we can find ci ∈ k such that α =
∑

i cih
i.

Choose j so that cj 6= 0, and set v′ = v − c−1
j kju. Then

a ∗ v′ = −(φ(a)⊗ c−1
j kj)⊗Hu+

∑
i

(hi ⊗ ki)⊗Hu+ (ψ(a)⊗ 1)⊗Hv

= (−φ(a)⊗ c−1
j kj +

∑
i

hi ⊗ ki)⊗Hu+ (ψ(a)⊗ 1)⊗H(c−1
j kju) + (ψ(a)⊗ 1)⊗Hv′

= (−c−1
j φ(a)⊗ kj +

∑
i

hi ⊗ ki)⊗Hu+ (c−1
j ψ(a)kj(1) ⊗ k

j
(2))⊗Hu+ (ψ(a)⊗ 1)⊗Hv′

= ((hj − c−1
j α)⊗ kj +

∑
i 6=j

(hi ⊗ ki))⊗Hu+ (ψ(a)⊗ 1)⊗Hv′,

modulo terms in (H ⊗ FK−1H)⊗Hu. The element hj − c−1
j α is a linear combination of

the hi, i 6= j, and so the rank of the H ⊗ H-coefficient multiplying u is lower than that
of
∑

i h
i ⊗ ki.

We may now apply induction. �

Remark 4.3. Notice that, in the above proof, the coefficient
∑

i h
i ⊗ ki is not uniquely deter-

mined, in case u is a torsion element of M . However, the proof works equally well for any given
choice of such a coefficient.

4.2. Proof of the general statement.

Proposition 4.2. Let M be a finite H-module and a ∈ gcM such that S = 〈a〉 is a solvable
subalgebra. Assume that φ 6= ψ ∈ S∗ are such that M/Mφ = (M/Mφ)

ψ. Then there exists an
H-submodule M ⊂ M which is a complement to Mφ and is stable under some modification of
a.

Proof. We start by considering the case when the length of the S-module M/Mφ is 1, and pro-
ceed by induction on the length n ofMφ. The basis of induction n = 1 is provided by Proposition
4.1, so we assume that the length of Mφ equals n > 1.

Choose u ∈ Mφ such that Mφ/Hu has length n − 1. We use induction on the S-module
M/Hu to find a complement N/Hu to Mφ/Hu = (M/Hu)φ which is stable under the ac-
tion of some modification ã of a. Notice that Nφ = N ∩ Mφ = Hu and that N/Hu is iso-
morphic to (M/Hu)/(Mφ/Hu) ' M/Mφ, hence we may apply Proposition 4.1 to N and
find a complement M ′ ⊂ N to Hu which is stable under some modification ā of ã. Now,
Mφ +M ′ = Mφ +Hu+M ′ = Mφ +N = M ; moreover Mφ ∩M ′ ⊂Mφ ∩N = Hu so that
Mφ ∩M ′ ⊂ M ′ ∩Hu = (0). We conclude that M ′ is a complement of Mφ in M that is stable
under the action of ā, which is a modification of a.

We proceed now with proving the statement when the length m of M/Mφ is greater than
1. Choose N = N/Mφ ⊂ M/Mφ of length m − 1 so that M/N has length 1; as M/Mφ =
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(M/Mφ)ψ, then N = N
ψ

. Since Nφ = N ∩ Mφ = Mφ, we may use induction to find an
H-submodule N ′ ⊂ N which is a complement to Mφ and is stable under some modification a′

of a.
Consider now the quotient M ′ = M/N ′. Then (M ′)φ certainly contains the image (Mφ +

N ′)/N ′ of Mφ under the canonical projection π : M → M/N ′. Moreover, (M/N ′)/((Mφ +
N ′)/N ′) is isomorphic to M/(Mφ +N ′) and is therefore a quotient of M/Mφ, which equals its
ψ-generalized weight space. As ψ 6= φ, we conclude that (M ′)φ = (Mφ + N ′)/N ′, and that
M ′/(M ′)φ 'M/(Mφ+N ′) = M/N has length one. We may then find a complement M/N ′ of
(M ′)φ in M ′ which is stable under some modification ā of a′. We claim that M is a complement
of Mφ in M .

Indeed, M/N ′ + (M ′)φ = M ′, hence M + (Mφ + N ′) = M ; as N ′ ⊂ M , we conclude that
M = M +Mφ. On the other hand, M ∩Mφ = N ′, hence M ∩Mφ ⊂ N ′ ∩Mφ = (0). �

We are now ready to prove our central result.

Proposition 4.3. Let M be a finite H-module and S be a solvable Lie pseudoalgebra generated
by a ∈ gcM . Then there exists a modification ā of a such that M decomposes as a direct sum of
generalized weight modules with respect to S = 〈ā〉.

Proof. By induction on the length of M . If the length equals 1, then M = Mφ for some φ and
there is nothing to prove.

Let us assume that the length of M is n > 1. We may find a weight vector u ∈ Mφ such
that N = M/Hu has length n − 1. By inductive assumption, N decomposes as a direct sum
Nφ1 ⊕ · · · ⊕ Nφr of (non trivial) generalized weight modules with respect to the subalgebra
S̃ ⊂ S generated by some modification ã of a. Let N i be the preimage of Nφi under the
canonical projection π : M →M/Hu, and reorder indices so that φi 6= φ for all i 6= r.

As long as φk 6= φ, we may repeatedly apply Proposition 4.2 to obtain complements M i to
(N i)φ = Hu in N i so that the sum M1 + · · · + Mk is direct and all summands are invariant
with respect to some iterated modification of a. If φr 6= φ holds as well, we end up with
M = M1 ⊕ · · · ⊕M r−1 ⊕M r ⊕ Hu; if instead φr = φ, then M = M1 ⊕ · · · ⊕M r−1 ⊕ N r.
In both cases, all summands are generalized weight spaces by construction, and are stable with
respect to some modification ā of a. �

In the light of Theorem 3.3, we see that Theorem 4.1 is just a restatement of Proposition 4.3.

Let ā be a modification of a generating a nilpotent subalgebra of gcM . A natural question
to ask is whether the decomposition M =

⊕
Mφ

ā depends on ā or is instead canonical. This
amounts to asking if all such modifications of a are contained in a single nilpotent subalgebra of
〈a〉. We will answer this in the negative at the very end of the paper.

Corollary 4.1. Let L be a Lie pseudoalgebra over H . If a ∈ L generates a finite solvable
subalgebra, then some modification of a generates a nilpotent subalgebra.

Proof. Let S = 〈a〉. The adjoint action of S gives rise to a homomorphism ad : S → gcS
of pseudoalgebras whose kernel equals the centre Z(S) of S. Moreover, adS is a solvable
subalgebra of gcS generated by ad a. By Theorem 4.1 we may find in adS a modification of
ad a generating a nilpotent subalgebra N of gcS. Such a modification is of the form ad ā, where
ā is a modification of a. Then N is isomorphic to the quotient of S = 〈ā〉 by a central — as it is
contained in Z(S) — ideal. We conclude that S is nilpotent. �

Theorem 4.1 has some interesting consequences.

Proposition 4.4. Let M be a finite H-module, S be a solvable Lie pseudoalgebra acting on M .
If φ ∈ S∗ is nonzero and U ⊂ Mφ is an S-submodule, then there exists an H-linear section
s : M/U →M . In particular:
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• If M is torsion-free, then M/U is torsion-free;
• If M/U is free, then M is free.

Proof. Choose a ∈ S such that φ(a) 6= 0 and 〈a〉 is nilpotent. We may then replace S with 〈a〉,
and assume M = Mφ ⊕Mφ1 ⊕ · · · ⊕Mφr . Then Mφ/U is free as an H-module, and we can
find a section s : Mφ/U → Mφ. This extends to a section s : M/U → M thanks to the direct
sum decomposition. �

Corollary 4.2. Let M be a finite H-module, S be a solvable Lie pseudoalgebra acting on M . If
M is not free, then some quotient of M has a 0-weight vector for the action of S.

5. STRUCTURE OF FINITE VERTEX ALGEBRAS

5.1. Preliminaries on vertex algebras. Let V be a complex vector space. A (quantum) field on
V is a formal power series φ(z) ∈ (EndV )[[z, z−1]] such that φ(z)v ∈ V ((z)) = V [[z]][z−1]. In
other words,

φ(z) =
∑
n∈Z

φ(n)z
−n−1

is a quantum field if and only if, for every choice of v ∈ V , φ(n)v = 0 for (depending on v)
sufficiently high values of n.

A vertex algebra is a complex vector space V , endowed with a vacuum vector 1 ∈ V , an
infinitesimal translation operator T ∈ EndV , and a C-linear state-field correspondence Y :
V → (EndV )[[z, z−1]] mapping each element a ∈ V to some field Y (a, z) on V , satisfying, for
all choices of a, b ∈ V ,

• Y (1, z)a = a, Y (a, z)1 = a mod zV [[z]]; (vacuum axiom)
• Y (Ta, z) = [T, Y (a, z)] = dY (a, z)/dz; (translation invariance)
• (z − w)N [Y (a, z), Y (b, w)] = 0, for some N = N(a, b). (locality)

It is well known that commutators [Y (a, z), Y (b, w)] may be expanded into a linear combination
of the Dirac delta distribution

δ(z − w) =
∑
n∈Z

wnz−n−1,

and of its derivatives. More precisely, if

Y (a, z) =
∑
n∈Z

a(n)z
−n−1,

then

[Y (a, z), Y (b, w)] =

N(a,b)−1∑
j=0

Y (a(j)b, w)

j!

dj

dwj
δ(z − w).

It is also possible to define the Wick, or normally ordered, product of quantum fields

: Y (a, z)Y (b, z) = Y (a, z)+Y (b, z) + Y (b, z)Y (a, z)−,

where
Y (a, z)− =

∑
n∈N

a(n)z
−n−1, Y (a, z)+ = Y (a, z)− Y (a, z)−.

Then one has

Y (a(−n−1)b, z) =
1

n!
: Y (T na, z)Y (b, z) :,

for all n ≥ 0. One of the consequences of the vertex algebra axioms is the following:

• Y (a, z)b = ezTY (b,−z)a (skew-commutativity)
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for all choices of a, b.
Every vertex algebra has a natural C[T ]-module structure. A vertex algebra V is finite if V is a

finitely generated C[T ]-module. A C[T ]-submodule U ⊂ V is a subalgebra of the vertex algebra
V if 1 ∈ U and a(n)b ∈ U for all a, b ∈ U, n ∈ Z. Similarly, a C[T ]-submodule I ⊂ V is an
ideal if a(n)i ∈ I for all a ∈ V, i ∈ I, n ∈ Z.

A subalgebra U ⊂ V is abelian if Y (a, z)b = 0, or equivalently a(n)b = 0, for all a, b ∈ U, n ∈
Z. It is commutative if [Y (a, z), Y (b, w)] = 0, or equivalently a(n)b = 0, for all a, b ∈ U, n ∈ N.

Let U be a subalgebra, and I an ideal of a vertex algebra V ; we say that V is the semidirect
sum of U and I (denoted V = UnI) if V = U ⊕ I is a direct sum of C[T ]-submodules. Every
vertex algebra becomes a Lie conformal algebra, see [7], after setting ∂ = T and

[aλb] =
∑
n∈N

λn

n!
a(n)b.

We have seen in Example 2.2 that the notion of Lie conformal algebra is equivalent to that of Lie
pseudoalgebra over H = C[∂]. In this setting, the pseudobracket is given by

[a ∗ b] =
∑
n∈N

(
(−∂)n

n!
⊗ 1

)
⊗H a(n)b.

If V is a vertex algebra, we will denote by V Lie the underlying Lie conformal algebra structure.

5.2. The nilradical. In this section, we recall some properties of nilpotent elements in a vertex
algebra. Proofs can be found in [5, 6].

An element a in a vertex algebra V is nilpotent if Y (a, z1)Y (a, z2) . . . Y (a, zn)a = 0 for
sufficiently large values of n. An ideal I ⊂ V is a nil-ideal if all of its elements are nilpotent;
clearly, every abelian ideal of V is a nil-ideal.

Proposition 5.1. Let V be a vertex algebra. Then
• Every nilpotent element of V generates a nil-ideal.
• The set NilV of all nilpotent elements of V is an ideal of V .
• The vertex algebra V/NilV contains no nonzero nilpotent elements.
• If V is finite, then NilV is a nil-ideal of V .

If V is a finite vertex algebra, then V Lie is always a solvable Lie conformal algebra [4]. Re-
call that the central series of V Lie stabilizes, by Remark 2.4, to a vertex ideal V [∞] of V . The
following facts were proved in [4].

Proposition 5.2. Let V be a finite vertex algebra, S ⊂ V Lie a subalgebra. Then V 0
S is a subal-

gebra and V 6=0
S =

∑
φ∈S∗\{0}

V φ
S is an abelian ideal of V .

As a consequence, V 6=0
S ⊂ NilV . If V is finite and NilV = (0), then V Lie is nilpotent; if

moreover V is simple, then it is necessarily commutative.

5.3. Root space decomposition of finite vertex algebras. Let V be a finite vertex algebra,
a ∈ V . The subalgebra S = 〈a〉 ⊂ V Lie is always solvable. The adjoint action of S makes V
into a finite S-module, and we can find submodules (0) = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V as in
Corollary 3.1. The singularity1 of a is then the number of non-torsion quotients Vi/Vi−1 with a
trivial action of S. Notice that the singularity does not change under modifications of a. When
S is nilpotent, then the singularity of a equals the rank of V 0

a as an H-module.

Theorem 5.1. Let V be a finite vertex algebra and N = V [∞]. Then N is an abelian ideal of V ,
and there exists a subalgebra U ⊂ V such that ULie is nilpotent and V = U nN .

1The singularity of an element is, in other words, the multiplicity of the zero eigenvalue of its adjoint action.
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Proof. Choose an element a ∈ V of minimal singularity k. Up to replacing a by a suitable mod-
ification, we may assume that S = 〈a〉 be a nilpotent subalgebra of V Lie. Then, V decomposes
as a direct sum of generalized weight submodules,

V =
⊕
φ∈S∗

V φ
ā = V 0

a ⊕ V 6=0
a .

Then U = V 0
a is a vertex subalgebra of V and N = V 6=0

a is an abelian ideal of V . We want to
show that ULie is nilpotent and N = V [∞].

Say b ∈ U . As U ⊂ V is a subalgebra, then U is stable under the action of b. If the
U0
b 6= U , then some (generic) linear combination of a and b would have lower singularity than a,

a contradiction. Thus, all elements in ULie have a nilpotent adjoint action, hence ULie is nilpotent
by Theorem 3.4.

It remains to prove that N = V [∞]: since N is an ideal such that V Lie/N is nilpotent then
V [∞] ⊂ N . We prove the other inclusion by showing that N ⊂ V [k] by induction on k ∈ N, the
basis of the induction being clear, as N ⊂ V 0 = V . By construction, [a, V φ

a ] = V φ
a if φ 6= 0,

hence [a,N ] = N . Then N ⊂ V k implies N = [a,N ] ⊂ [V, V [k]] = V [k+1]. We conclude that
N ⊂ V [n] for all n, hence that N ⊂ V [∞]. �

Remark 5.1. In the above statement, U is a vertex subalgebra of V with the property that ULie is
a nilpotent and self-normalizing subalgebra of V Lie. As a consequence, the adjoint action of ULie

on V gives a generalized weight submodule decomposition in which the 0-weight component is
U itself. It makes sense to call every such U a Cartan subalgebra of V , and the corresponding
decomposition a root space decomposition.

Notice that N is the smallest nil-ideal of V having a complementary subalgebra U such that
ULie is nilpotent; as N = V [∞], it is canonically determined. If U is a Cartan subalgebra of V ,
then U = V/V [∞], so all Cartan subalgebras of V possess isomorphic vertex algebra structures.

We can be more precise. The identification of any two Cartan subalgebras U,U ′ with V/N
gives an isomorphism φ : U → U ′ which projects to the identity on V/N . If we extend φ to all
of V by setting it to be the identity on N , then we obtain an automorphism of V conjugating U
to U ′. Thus, all Cartan subalgebras of V are conjugated under AutV .

5.4. A counterexample to nilpotence of finite vertex algebras. The statement of Theorem 5.1
suggests how to construct a finite vertex algebra V such that the corresponding Lie conformal
algebra V Lie is not nilpotent. What we need is a vertex algebra U with a nilpotent underlying Lie
conformal algebra ULie, and a suitable action on an C[∂]-module N . The simplest case is when
U is a commutative vertex algebra, i.e., ULie is abelian, and N is a free C[∂]-module of rank 1.

Let U = {a(t) ∈ C[[t]][t−1]}. U is a differential commutative associative algebra with 1, with
derivation ∂ = d/dt. Hence U has a commutative vertex algebra structure given by

(5) Y (a(t), z)b(t) = (ez∂a(t))b(t) = i|z|<|t|a(t+ z)b(t),

where a(t), b(t) ∈ U and i|z|<|t| (see [8]) indicates that one should expand a(t+ z) in the domain
|z| < |t|, i.e., using positive powers of z/t.

Let N = C[∂]n be a free C[∂]-module of rank 1. We set:

(6) Y (n, z)n = 0,

and define an action of U on N by setting

(7) Y (a(t), z)n = a(z)n,

where a(t) ∈ U .

Theorem 5.2. There exists a unique vertex algebra structure on the C[∂]-module V = U ⊕ N
such that (5), (6), (7) are satisfied. Moreover, the central series of V Lie stabilizes to N .
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Proof. The unit element 1 ∈ U satisfies the vacuum axiom, and all Y (v, z), v ∈ V are fields by
definition. Locality and translation invariance require some more effort. The skew-commutativity
axiom suggests that we set

Y (n, z)a(t) = ez∂Y (a(t),−z)n = a(−z)ez∂n.

If further

Y (a(t), z)∂Kn =
K∑
i=1

(
K

i

)
(−1)ia(i)(z)∂K−in,

then translation invariance is easily checked.
Let us move on to proving locality. First of all, notice that Y (n, z)Y (n,w) maps every element

of V to 0, hence [Y (n, z), Y (n,w)] = 0. Taking derivative with respect to z and w, and using
linearity, we obtain [Y (u, z), Y (u′, w)] = 0 for all u, u′ ∈ N .

Next, let us consider [Y (a(t), z), Y (b(t), w)]. An easy computation gives

Y (a(t), z)(Y (b(t), w) n = Y (a(t), z)b(w)n = b(w)Y (a(t), z)n = a(z)b(w)n,

hence [Y (a(t), z), Y (b(t), w)]n = 0, for all a(t), b(t) ∈ U . As

∂([Y (a(t), z), Y (b(t), w)]u) = [Y (a′(t), z), Y (b(t), w)]u
+ [Y (a(t), z), Y (b′(t), w)]u
+ [Y (a(t), z), Y (b(t), w)] ∂u,

we conclude that [Y (a(t), z), Y (b(t), w)] vanishes on all elements from N . However, it also
vanishes on U , because of its vertex algebra structure.

We are left with showing that [Y (a(t), z), Y (n,w)] is killed by a sufficiently large power of
z − w. Let us compute

Y (a(t), z)(Y (n,w)b(t)) = Y (a(t), z)b(−w)ew∂n = b(−w)Y (a(t), z)ew∂n
= b(−w)ew∂(e−w∂Y (a(t), z)ew∂)n
= ew∂b(−w)Y (a(t), z − w)n
= i|w|<|z|a(z − w)b(−w)ew∂n,

Y (n,w)(Y (a(t), z)b(t)) = Y (n,w)i|z|<|t|a(t+ z)b(t)
= i|z|<|t|Y (n,w)a(t+ z)b(t)
= i|z|<|w|a(z − w)b(−w)ew∂n.

Therefore,

(z − w)N [Y (a(t), z), Y (n,w)]b(t) = (i|w|<|z| − i|z|<|w|)((z − w)Na(z − w)b(−w)ew∂n)

is zero as soon as tNa(t) has no negative powers of t. As [Y (a(t), z), Y (n,w)] maps every ele-
ment of N to zero, locality is then proved.

As for V [∞] = N , let a = a(t) =
∑
n∈Z

ant
−n−1 ∈ U such that a(t) contains some negative

power of t. Then there exists n ≥ 0 such that an 6= 0, hence a(t)(n)n = an · n 6= 0. Therefore
[a,N ] = N , hence N ⊂ V [n] for all n. However, (V/N)Lie is nilpotent, hence V [∞] ⊂ N . �

Let us choose a finite subalgebra of U whose conformal adjoint action on N has nonzero
weights, i.e., containing some element a(t) 6∈ C[[t]].

Example 5.1. M = C[t−1] nN ⊂ U nN is a finite vertex algebra, as it is generated over C[∂]
by t−1, 1 and n. However, MLie is not nilpotent.

We conclude by observing that even though the nil-ideal N in the decomposition stated in
Theorem 5.1 is canonically determined, the subalgebra U need not be. Indeed there may be
several possible choices of U as the following construction shows.
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Let M be as in Example 5.1, and choose u ∈ N . We know that u(0) is a derivation of M , and
as N is an abelian ideal of M , we immediately obtain u2

(0) = 0. Recall that the exponential of
such a nilpotent derivation of a vertex algebra M gives an inner automorphism of M .

If we choose u = kn, k ∈ k, then exp(kn(0))(t
−1) = t−1−kn. Thus, if we set ψ = exp(kn(0)),

we obtain ψ(N) = N , ψ(U) = C[∂](t−1 − kn) ⊕ C1, and ψ(U) ∩ N = ψ(U ∩ N) = 0. We
conclude that ψ(U) is another subalgebra of M which complements N . Notice that in this
example all Cartan subalgebras can be showed to be conjugated by an inner automorphism of V .
It is not clear whether this holds in general.

One final comment is in order: it is easy to show that the Lie conformal subalgebra of MLie

generated by the element a = t−1 + ∂n is solvable and equals C[∂]a + C[∂]n. As [aλa] =
(∂ + 2λ)n, we see that all elements t−1 − kn, k ∈ k are modifications of a, and they generate
nilpotent subalgebras of MLie. However, they C[∂]-linearly span all of 〈a〉, whose Lie conformal
algebra structure is solvable but not nilpotent. As the adjoint homomorphism ad : MLie → gcM
is injective on 〈a〉, we conclude that there is no single nilpotent subalgebra of gcM containing
all of the above modifications of a.
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