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ABSTRACT. In this paper, we give a characterization of digraphs Q, |Q| ≤ 4 such that the
associated Hecke-Kiselman monoid HQ is finite. In general, a necessary condition for HQ to
be a finite monoid is that Q is acyclic and its Coxeter components are Dynkin diagram. We
show, by constructing examples, that such conditions are not sufficient.
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1. INTRODUCTION

Let Q be a digraph, i.e., a graph having at most one connection (side) between each pair
of distinct vertices; sides can be either oriented (arrows) or non-oriented (edges). In [4],
Ganyushkin and Mazorchuk associate with Q a semigroup HQ generated by idempotents ai
indexed by vertices of Q, subject to the following relations

• aia j = a jai, if i and j are not connected;
• aia jai = a jaia j, if ( i j ) ∈ Q, i.e., i and j are connected by a side;

• aia j = aia jai = a jaia j, if ( i // j ) ∈ Q, i.e., i and j are connected by an arrow from
i to j.

HQ is the Hecke-Kiselman monoid attached to Q.
In [2], Forsberg proves faithfulness of certain representations of Hecke-Kiselman monoids

and constructs some classes of such representations. Hecke-Kiselman monoids also appear
in the works [3] and [11] of Grensing, where she studies projection functors PS attached to
simple modules S of a finite dimensional algebra, which satisfy the above defining relations.

The two extremal type of digraphs are graphs, where all sides are edges, and oriented
graphs, in which all sides are arrows. When Q is the full graph on {1,2, . . . ,n} with the
natural order, then the corresponding Hecke-Kiselman monoid is Kiselman’s monoid Kn from
[6, 7]. Kn is known to be finite [7, Theorem 3] for all n. If a digraph Q only has arrows, but
possesses no oriented cycles, then HQ is isomorphic to a quotient of K|Q|, hence it is finite.

If a digraph Q has no arrows — in particular, when it is a finite simply laced Coxeter graph
— then HQ is the Springer-Richardson, 0-Hecke, or Coxeter monoid attached to Q. Monoid
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algebras over 0-Hecke monoids were studied by Norton [10] in the finite-dimensional case:
this corresponds to requiring that Q is a Dynkin diagram. Notice that finite Coxeter monoids
also appear in the work [12] of Springer and Richardson on the combinatorics of Schubert
subvarieties of flag manifolds. In [1] and in [4], the results of Norton were interpreted and
studied within the framework of J-trivial semigroups. In particular, finite 0-Hecke monoids
and Kiselman monoids, along with their quotients, are examples of J-trivial monoids (see [8,
Chapter IV, Section 5]).

The problem of determining finiteness of the Hecke-Kiselman monoid associated to a di-
graph Q with both edges and arrows, appears to be combinatorially involved and is, to the
best of our knowledge, unsettled. In this paper we give some conditions on a digraph Q for
HQ to be finite. We produce a complete classification of finite HQ when |Q| ≤ 4.

It is easy to see that if HQ is a finite monoid, then Q is acyclic (see Definition 2.4) and
the Coxeter graph C obtained from Q by removing all arrows is necessarily a Dynkin dia-
gram (Corollary 2.2). The main observation in this paper is that these two properties do not
provide a characterization of digraphs of finite type, as the combinatorics of arrows plays a
fundamental role in determining the finiteness character of HQ.

2. CYCLES IN HECKE-KISELMAN MONOIDS

We will say that a digraph Q is of finite type whenever the monoid HQ is finite. A digraph Q
and the digraph Qop, obtained from Q by reversing each arrow, yield anti-isomorphic Hecke-
Kinselman monoids. As a consequence, Q is of finite type if and only if Qop is.

Lemma 2.1. Let Q be a digraph of finite type. If Q′ is obtained from Q by orienting an edge,
or removing an arrow, then Q′ is of finite type.

Proof. It follows from [4, Proposition 14]. �

Corollary 2.2.
• Let C be a Dynkin diagram, Q an oriented graph obtained from C by choosing an

orientation of every edge. Then HQ is finite.
• Let Q be a digraph of finite type, C be the graph obtained from Q by removing every

arrow. Then C is a Dynkin diagram.

Proof. A simply laced Coxeter graph is of finite type if and only if it is a Dynkin diagram. �

As an example, in the case of Kiselman’s monoid Kn, removing all arrows yields a disjoint
union of n components of type A1. It is important to notice that removing sources or sinks1

from a digraph does not affect its finiteness character.

Proposition 2.3. Let Q be a digraph. If a ∈ Q is a source (reps. sink) vertex, then axa = ax
(resp. axa = xa) for every x ∈ HQ. In particular, if Q′ is obtained from Q by removing a and
every edge connected to a, then Q′ is of finite type if and only if Q is.

Proof. It follows from [7, Lemma 1]. �

1Recall that a vertex of a digraph is a source (resp. a sink) if all sides touching it are outgoing (resp. incoming)
arrows.



HECKE-KISELMAN MONOIDS OF SMALL CARDINALITY 3

Definition 2.4. Let Q be a digraph. A cycle in Q is a sequence {ai, i ∈ Z/nZ},n ≥ 3, of
vertices of Q such that there exists in Q an edge or an arrow going from ai to ai+1. A cycle
only composed of arrows is an oriented cycle. We say that a digraph is acyclic if it contains
no cycles.

Example 2.5. The following are both cycles:

• // •

• •oo

• // •

��
•

OO

•oo

However, only the latter is an oriented cycle.

Let a1, . . . ,an be generators of HQ. If Q is an oriented graph, we set ai > a j whenever there
is an arrow connecting ai to a j and we take the transitive closure of this relation. When Q is
acyclic, we obtain a partial ordering on Q, that we may always refine to a (non necessarily
unique) total order.

Lemma 2.6. The n-cycle

a2 // ai−1

""DD
DD

D

Q = a1

>>}}}}}
ai

||zzz
zz

an

``AAAAA
ai+1oo

is not of finite type.

Proof. The collection Maps(Zn) of all maps f : Zn→ Zn is a semigroup under composition.
Our strategy is to construct a semigroup homomorphism ρ : HQ→Maps(Zn) and show that
its image is infinite. Notice that, due to the presentation of HQ, ρ is given as soon as we
choose images ui = ρ(ai), i = 1, . . . ,n satisfying the defining relations of HQ. Let ui : Z→
Z, i = 1, . . . ,n be defined as follows:

• ui(m1, . . . ,mn) = (m1, . . . ,mi−1,mi+1,mi+1, . . . ,mn), if i = 1, . . . ,n−1;
• un(m1, . . . ,mn) = (m1, . . . ,mn−1,m1 +1).

A straightforward check shows that ui satisfy the defining relations. However,

(u1 . . .un)(m1, . . . ,mn) = (m1 +1,m1 +1, . . . ,m1 +1),

showing that all powers of u1 . . .un are distinct. We conclude that the image of ρ is infinite,
hence HQ is too. �

Theorem 2.7. A digraph of finite type is acyclic.

Proof. Assume that Q contains a cycle, and denote by Q′ the digraph obtained from Q by
removing all connections not belonging to the cycle, and orienting the remaining edges so as
to form an oriented cycle. Then Q′ is of infinite type by Proposition 2.3 and Lemma 2.6. �

Let Q be a finite digraph and Q′ be obtained from Q by removing all arrows. Then Q′

is a disjoint union of (finitely many) uniquely determined connected graphs, called Coxeter
components of Q. We have already seen in Corollary 2.2 that if Q is of finite type, then all
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of its Coxeter components are of Dynkin type. Absence of cycles in a finite digraph imposes
geometrical constraints on the arrows.

Proposition 2.8. Let Q be an acyclic digraph. Then the set of Coxeter components of Q can
be totally ordered in such a way that an arrow connects a vertex in the Coxeter component C
to a vertex in the Coxeter component C′ only if C >C′.

Proof. We are going to show the existence of a Coxeter component C with only outgoing
arrows. The statement then follows by setting C to be maximal, and using induction to
determine the total order on remaining components.

Assume by contradiction that Q has no maximal Coxeter component. Then, every Coxeter
component C of Q has an incoming arrow and we can find C′ 6=C such that there is an arrow
from C′ to C. We can thus build a sequence C0,C1, . . . ,Cn of Coxeter components of arbitrary
length, so that there is an arrow from Ci+1 to Ci for every i. Due to finiteness of Q, there can
only be finitely many Coxeter components. As each Coxeter component is connected, there
must exist a cycle in Q. �

A total order as above may fail to be unique. For instance, every total order on a totally
disconnected digraph satisfies the requirements of Proposition 2.8.

3. DIGRAPHS OF SMALL CARDINALITY

The tools we have developed so far allow one to classify digraphs of finite type of very
small cardinality. When addressing digraphs of larger cardinality, we encounter more com-
plicated combinatorial issues. In this section we will be dealing only with acyclic digraphs.
Recall that if all Coxeter components of a digraph Q are of type A1, i.e., they are isolated
points, then Q is a quotient of a Kiselman monoid, hence it is of finite type.

Theorem 3.1. Every acyclic digraph of cardinality at most three is of finite type.

Proof. If Q has no arrows, then it is of Dynkin type, and the corresponding monoid is finite. If
Q has more than one Coxeter component, then it must have either a sink or a source, whence
we may apply an easy induction. �

Let now Q be an acyclic digraph with |Q| = 4. If Q is not connected, then it is a disjoint
union of digraphs of smaller cardinality and it is of finite type by Theorem 3.1. So, assume
Q to be connected.

If Q has no arrows, then Q is of Dynkin type D4 or A4, hence it is of finite type. If Q has at
least a Coxeter component of type A1, then it is of finite type by Proposition 2.3 and Theorem
3.1. Thus, we only need to understand the case where Q has exactly two Coxeter components
of type A2. In all that follows, K will denote the digraph

a //

��@
@@

@@
@@

c

b //

??~~~~~~~~
d.

Let Htail, Hhead denote the submonoids of HK generated by {a,b},{c,d} respectively. Notice
that both Htail and Hhead are isomorphic images of HA2 , as HK projects to HA2 by collapsing
either {a,b} or {c,d} to 1. If w ∈ HK , let l(w) denote the length of a reduced expression of
w as a products of elements a,b,c,d.
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Lemma 3.2. Let w ∈ HK . Then there exist elements {wi |1≤ i≤ n} ⊆ Htail and {vi |1≤ i≤
n} ⊆ Hhead such that

(1) w = w0vnw1vn−1 . . .v1wnv0

where vi 6= 1,wi 6= 1 for all i 6= 0 and

(i) if l(wi) = 3, then either i = n = 0 or i = n = 1 and w0 = 1;
(ii) if 1 < i < n, then l(wi) = 1;

(iii) if l(wi) = 1, then wi−1wi 6= wi−1 if i 6= 0 and wiwi+1 6= wi+1 if i 6= n. In particular,
wi 6= wi+1 for 1 < i < n;

(iv) if l(wi) = 2, and i 6= 0,n, then i = 1 and w0 = 1. Moreover, if l(wi) = l(wi+1) = 2,
then wi = wi+1;

and similarly,

(i) if l(vi) = 3, then either i = n = 0 or i = n = 1 and v0 = 1;
(ii) if 1 < i < n, then l(vi) = 1;

(iii) if l(vi)= 1, then vivi−1 6= vi−1 if i 6= 0 and vi+1vi 6= vi+1 if i 6= n. In particular, vi 6= vi+1
for 1 < i < n;

(iv) if l(vi) = 2, and i 6= 0,n, then i = 1 and v0 = 1. Moreover, if l(vi) = l(vi+1) = 2, then
vi = vi+1.

Proof. We will henceforth assume that the product of all nontrivial terms in (1) is a reduced
expression for w in terms of a,b,c,d. We first prove that wi satisfy properties (i)-(iv).

First of all, observe that we may assume that if wi = 1 for some i 6= 0, then we may drop
it, and multiply the two adjacent terms.

(i) If l(wi) = 3 then wi = aba = bab. By Proposition 2.3, we may remove all occurrences
of a and b appearing on the right of wi, and conclude that i = n. Still by Proposition
2.3, xavaba = xavba and xbvbab = xbvab can be further simplified for every v ∈
Hhead. By the reducedness assumption, one has n = 0 or n = 1 and w0 = 1.

(ii) By property (i), we note that l(wi) > 1, with 2 ≤ i ≤ n− 1, implies wi ∈ {ab,ba}.
Say that wi = ab for some i ≥ 2. We want to show that i = n. Indeed, wi−1 6= 1 by
the initial observation, and wi−1 6= a,ba,aba otherwise w may be further simplified
by replacing wi = ab with wi = b. Then, wi−1 equals either b or ab. However, in
this case, wi−1vn−i+1wi = wi−1vn−i+1bab and, as before, we may cancel all w j, j > i.
Reducedness of (1) then implies i = n. The case wi = ba is totally analogous.

(iii) Use again Proposition 2.3. If wi−1wi = wi−1, then canceling wi gives an expression
for w of lower length. If wiwi+1 = wi+1, then wi+1 begins by wi, and one may reduce
w to a shorter expression.

(iv) Assume that i 6= 0 and wi−1 6= 1. If wi−1 has length one, then wi−1wi 6= wi has nec-
essarily length 3; it is easy to check that this also happens if wi−1 has higher length.
Then one may replace wi−1vn−i+1wi with wi−1vn−i+1aba in w and cancel all w j, j > i.
This show that either i = n or wi−1 = 1, which is only possible if i = 1.

As for the last statement, notice that abvba = abva and bavab = bavb by Propo-
sition 2.3, hence we may assume wi = wi+1 by the reducedness assumption.

The proof for the vi is totally analogous. �
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In simple words, Lemma 3.2 says that w0 is the only possibly trivial element among the wi.
Moreover, if aba = bab appears among the wi, then it is the only nontrivial one, and terms
of length two only show up at the beginning and the end of (1); if they are followed (resp.
preceded) by a term of length one, they do not end (resp. begin) by that term; two adjacent
terms of length two are necessarily equal. All remaining wi are of length one, and no two
adjacent ones are equal, so as to avoid possible simplifications. The same description applies
to the vi.

Corollary 3.3. Every element in HK can be expressed as

(2) w(xyzt)nw′,

where n ∈ N, {x,z}= {a,b}, {y, t}= {c,d}, and l(w), l(w′)≤ 10.

Proof. We can certainly group 4n adjacent wi,v j of length one, so that they are preceded
(resp. followed) by at most two wi of length one along with a non trivial wi of different
length, and similarly for the vi. Then the product of the 4n terms is a power of xyzt as in the
statement, and terms preceding and following it have length at most 2(1+1+3) = 10. �

Corollary 3.4. A quotient of K is finite if and only if acbd and adbc have finitely many distinct
powers.

Proof. Follows immediately from Corollary 3.3. �

Lemma 3.5. K is not of finite type.

Proof. We define an action of the generators a, b, c and d of HK on the set of the vertices V
of the infinite graph in Figure 1.

Each generator act on any given vertex according to the arrow originating from the vertex
with the corresponding label, with the understanding that the generator fixes the vertex if
there is no outgoing arrow with that label. A straightforward check shows that a, b, c and d
have idempotent actions of V , and they furthermore satisfy the defining relations:

• aba = bab;
• cdc = dcd;
• ac = aca = cac;
• ad = ada = dad;
• bc = bcb = cbc; and
• bd = bdb = dbd.

We conclude that K is of infinite type, as distinct powers of acbd (resp. adbc) have distinct
actions on the central vertex A0 (resp. the vertex B0). �
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Theorem 3.6. K is the only acyclic digraph of infinite type with four vertices.

Proof. We only need to handle the case when the digraph Q 6=K has two Coxeter components
of type A2. By Lemma 3.5, it suffices to prove that the digraph

Q′ : a //

��?
??

??
??

? c

b // d

is of finite type, since HQ is a quotient of HQ′ .
Let us compute all powers of x = adbc. Notice that adbc = adcb as b and c commute,

and that ay = aya (resp. by = byb) for every y ∈ 〈c,d〉 as ad = ada,ac = aca (resp. bd =
bdb,bc = bcb). Then, x = adcb = adcab, hence

x2 =(adcab)(adcb)= adc(aba)dcb= adc(bab)dcb= adcba(bdcb)= adcba(bdc)= adc(bab)dc,

and

x3 = x2x =adc(aba)dc(adbc) = adcab(adca)dbc = adcab(adc)dbc = adc(aba)dcdbc =

adc(bab)dcdbc = adcba(bdcdb)c = adcba(bdcd)c = adc(bab)(dcdc) = adc(aba)(cdc).

However dc(aba)cdc = (aba)cdc as czc = zc,dzd = zd for all z ∈ 〈a,b〉. It is now easy to
check a,b,c,d act trivially by right multiplication on x3 = abacdc, hence xn = x3 for all n> 3.
Thus x has only finitely many distinct powers.

A similar proof works for acbd, and we conclude that Q′ is of finite type by using Corollary
3.4. �

It is likely that our techniques may be extended to handle the case of two Coxeter compo-
nents of any Dynkin type. However, characterizing the combinatorics of all digraphs of finite
type with three or more Coxeter components appears to be much more difficult.
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