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1. INTRODUCTION

It has been observed in many instances, see [9] and references therein, that a strong finiteness
condition on a (simple) vertex operator algebra, or VOA, is inherited by subalgebras of invariant
elements under the action of a reductive (possibly finite) group of automorphisms. This amounts
to a quantum version of Hilbert’s basis theorem for finitely generated commutative algebras, but
is typically dealt with, in the relevant examples, by means of invariant theory.

A big issue that needs to be addressed in all attempts towards proving the above statement
in a general setting is its failure in the trivial commutative case. A commutative vertex alge-
bra is nothing but a commutative differential algebra, and it has long been known that both the
noetherianity claim contained in Hilbert’s basis theorem, and the finiteness property of invariant
subalgebras, cannot hold for differential commutative algebras. Counterexamples are easy to
construct, and a great effort has been spent over the years into finding the appropriate generaliza-
tion of differential noetherianity. Every investigation of finiteness of vertex algebras must first
explain the role played by noncommutativity and its algebraic consequences.

In this paper, I announce some results in this direction, and claim that every strongly finitely
generated simple vertex operator algebra satisfies the ascending chain condition on its right
ideals. Here, a VOA is simple if it has no nontrivial quotient VOAs, whereas the right ideals
involved in the ascending chain conditions are subspaces that are stable both under derivation
and right multiplication with respect to the normally ordered product; even a simple VOA may
have very many ideals of this sort, and they are better suited when addressing finiteness condi-
tions. Right noetherianity of simple VOAs is the first algebraic property, as far as I know, that can
be proved on a general level, and explains a first important difference between the commutative
and noncommutative situation.

The paper is structured as follows: in Sections 2 and 3, I rephrase the vertex algebra structure
in the context of left-symmetric algebras, and describe how the normally ordered product and
the singular part of the Operator Product Expansion relate to each other. In Sections 4 and 5, I
recall the concept of strong generators for a VOA, and explain its interaction with Li’s filtration
[8], and its generalization to structures that are weaker than proper VOAs. Section 6 explains the
role of what I call full ideals into proving some version of noetherianity for a VOA. Speculations
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on how to use noetherianity in order to address strong finiteness of invariant subalgebras of a
strongly finitely generated VOA are given in Section 7. I thankfully acknowledge Victor Kac for
his suggestion that Lemma 3.1 might be useful in the study of finiteness of orbifold VOAs.

2. WHAT IS A VERTEX OPERATOR ALGEBRA?

2.1. Left-symmetric algebras. A left-symmetric algebra is a (complex) vector space A en-
dowed with a bilinear product · : A ⊗ A → A which is in general neither commutative nor
associative. The associator (a, b, c) = (ab)c − a(bc) must however satisfy the following left-
symmetry axiom:

(a, b, c) = (b, a, c),

for every choice of a, b, c ∈ A. One may similarly define right-symmetric algebras by requiring
that (a, b, c) = (a, c, b). Clearly, an associative algebra is both left- and right-symmetric.

If A is any (non-commutative, non-associative) algebra, the commutator [a, b] = ab − ba
satisfies

[a, [b, c]] = [[a, b], c] + [b, [a, c]] + (b, a, c)− (a, b, c)− (c, a, b) + (a, c, b) + (c, b, a)− (b, c, a),

for all a, b, c ∈ A. When A is either left- or right-symmetric, this reduces to the ordinary Jacobi
identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]],

and the commutator thus defines a Lie bracket on A. In a left-symmetric algebra, commutativity
implies associativity, as

(2.1) (a, b, c) = [c, a]b+ a[c, b]− [c, ab].

A similar identity holds in the right-symmetric case.

2.2. Differential graded left-symmetric algebras. A differential graded left-symmetric alge-
bra (henceforth, a DGLsA) is a non-negatively graded vector space A = ⊕n≥0An, endowed with
a unital left-symmetric product · : A⊗ A→ A, and a derivation ∂ : A→ A, satisfying:

• 1 ∈ A0;
• Am · An ⊂ Am+n;
• ∂An ⊂ An+1.

Throughout the paper, we will assume all An to be finite-dimensional vector spaces.

Example 2.1. Let A = C[x], and set ∂ = x2d/dx. If we choose x to have degree 1, then A is a
differential graded commutative algebra, hence also a DGLsA.

2.3. Lie conformal algebras. A Lie conformal algebra is a C[∂]-module L endowed with a
λ-bracket

R⊗R 3 a⊗ b 7→ [aλb] ∈ R[λ]

satisfying

• [∂aλb] = −λ[aλb], [aλ∂b] = (∂ + λ)[aλb];
• [aλb] = −[b−∂−λa];
• [aλ[bµc]]− [bµ[aλc]] = [[aλb]λ+µc],

whenever a, b, c ∈ R. Lie conformal algebras have been introduced in [7] and studied in [4]
in order to investigate algebraic properties of local families of formal distributions. This notion,
and its multi-variable generalizations, are deeply related to linearly compact infinite-dimensional
Lie algebras and their representation theory.
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2.4. Vertex algebras. Let V be a complex vector space. A field on V is a formal power series
φ(z) ∈ (EndV )[[z, z−1]] with the property that φ(z)v ∈ V ((z)) = V [[z]][z−1], for every v ∈ V .
In other words, if

φ(z) =
∑
i∈Z

φiz
−i−1

then φn(v) = 0 for sufficiently large n.
A vertex algebra is a (complex) vector space V endowed with a linear state-field correspon-

dence Y : V → (EndV )[[z, z−1]], a vacuum element 1 and a linear (infinitesimal) translation
operator ∂ ∈ EndV satisfying the following properties:

• Y (v, z) is a field for all v ∈ V . (field axiom)
• For every a, b ∈ V one has

(z − w)N [Y (a, z), Y (b, w)] = 0

for sufficiently large N . (locality)
• The vacuum element 1 is such that

Y (1, z) = idV , Y (a, z)1 ≡ a mod zV [[z]],

for all a ∈ V . (vacuum axiom)
• ∂ satisfies

[∂, Y (a, z)] = Y (∂a, z) =
d

dz
Y (a, z),

for all a ∈ V . (translation invariance)
One usually writes

Y (a, z) =
∑
j∈Z

a(j)z
−j−1.

and views the C-bilinear maps a ⊗ b 7→ a(j)b, j ∈ Z, as products describing the vertex algebra
structure. The normally ordered product ab = :ab : = a(−1)b determines all negatively labeled
products as

j! a(−j−1)b = (∂ja)(−1)b.

Non-negatively labeled products can be grouped in a generating series

[aλb] =
∑
n≥0

λn

n!
a(n)b,

which can be showed to define a Lie conformal algebra structure. The compatibility conditions
between the normally ordered product and the λ-bracket are well understood [1, 5], and amount
to imposing quasi-commutativity

(2.2) [a, b] =

∫ 0

−∂
dλ [aλb],

and the noncommutative Wick formula

(2.3) [aλbc] = [aλb]c+ b[aλc] +

∫ λ

0

dµ [[aλb]µc].

As a consequence, the normally ordered product may fail to be associative. The associator
(a, b, c) := (ab)c− a(bc) can be expressed in the form

(2.4) (a, b, c) =

(∫ ∂

0

dλ a

)
[bλc] +

(∫ ∂

0

dλ b

)
[aλc],

hence it satisfies (a, b, c) = (b, a, c). V is therefore a left-symmetric algebra with respect to its
normally ordered product. Because of (2.1) and (2.2), one obtains commutativity and associa-
tivity of the normally ordered product as soon as the λ-bracket vanishes. The operator ∂ is a
derivation of all products. As the normally ordered product is non-associative, we will denote by
: a1a2 . . . an : the product a1(a2(. . . (an−1an) . . . )) obtained by associating on the right.
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2.5. Vertex operator algebras. In this paper, a vertex operator algebra (henceforth, a VOA) is
a non-negatively graded vector space V =

⊕
n≥0 V

n, endowed with a vertex algebra structure
such that

• The normally ordered product and translation operator ∂ make V into a DGLsA;
• Tor (V ) = V 0 = C1;
• There exists a Virasoro element — i.e., an element ω ∈ V 2 satisfying

[ωλω] = (∂ + 2λ)ω +
c

12
λ31,

for some c ∈ C — such that [ωλa] = (∂ + nλ)a+O(λ2), for all a ∈ V n.
As a consequence, V i

(n)V
j ⊂ V i+j−n−1, ∂V i ⊂ V i+1. By Tor V , I mean the torsion of V when

viewed as a C[∂]-module.

3. INTERACTION BETWEEN NORMALLY ORDERED PRODUCT AND λ-BRACKET

As the structure of a vertex algebra is described by the normally ordered product, along with
the λ-bracket, it is interesting to figure out how much each of the two products determines the
other.

3.1. The normally ordered product of a VOA determines the λ-bracket. We know that the
λ-bracket of a vertex algebra V is polynomial in λ, and determines the commutator of elements
as in (2.2). If we choose elements cj ∈ V so that

[aλb] =
n∑
j=0

λjcj,

then we may compute

[∂ia, b] = (−1)i ·
n∑
j=0

∫ 0

−∂
λi+jcjdλ =

n∑
j=0

(−1)j
∂i+j+1cj
i+ j + 1

,

hence

(3.1) ∂n−i[∂ia, b] =
n∑
j=0

(−1)j

i+ j + 1
· ∂n+j+1cj.

As soon as we are knowledgeable about the normally ordered product of the vertex algebra
V , we are able to compute the left-hand side of (3.1) for every i = 0, . . . , n; as coefficients of
the right-hand sides form a non-degenerate matrix, we can then solve (3.1) as a system of linear
equations, and recover uniquely the values of ∂n+j+1cj, j = 0, . . . , n. In other words, the nor-
mally ordered product determines each coefficient cj up to terms killed by ∂n+j+1.

We have already seen that every VOA is a DGLsA with respect to its normally ordered product.

Theorem 3.1. A DGLsA structure may be lifted to a VOA structure in at most one way.

Proof. It is enough to show that the normally ordered product uniquely determines the λ-bracket.
Let a ∈ V h, b ∈ V k. Then [aλb] is a polynomial in λ of degree at most n = h + k − 1.
Proceeding as above, we may determine all of its coefficients up to terms killed by some power
of ∂. However, Tor V = C1, so [aλb] is determined up to multiples of 1. By (2.4), we have

(a, u, b) =

(∫ ∂

0

dλ a

)
[uλb] +

(∫ ∂

0

dλ u

)
[aλb].

If we choose u so that u, a are C[∂]-linearly independent, we may now determine unknown
central terms in [aλb].
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Such a choice of u is always possible, as we may assume without loss of generality that
a /∈ Tor V , otherwise [aλb] = 0 [4]; we may also assume that V has rank at least two, otherwise,
if a is non-torsion, unknown central terms in [aλa] can be computed using

(a, a, a) = 2

(∫ ∂

0

dλ a

)
[aλa].

The value of [aλa] now uniquely determines the Lie conformal algebra structure. �

3.2. The λ-bracket determines vertex algebra ideals. If A and B are subsets of V , define
products

A ·B = spanC〈a(n)b | a ∈ A, b ∈ B, n ∈ Z},
JA,BK = spanC〈a(n)b | a ∈ A, b ∈ B, n ≥ 0}.

If B is a C[∂]-submodule of V , then A · B, JA,BK are also C[∂]-submodules. If A,B are both
C[∂]-submodules of V , then A · B = B · A, JA,BK = JB,AK. A C[∂]-submodule I ⊂ V is a
vertex algebra ideal if I · V ⊂ I; it is a Lie conformal algebra ideal if JI, V K ⊂ I . An element
a ∈ V is central if Ja, V K = 0.

Lemma 3.1 ([2, 3]). If B,C ⊂ V are C[∂]-submodules, then JA,BK · C ⊂ JA,B · CK. In
particular, if X is a subset of V , then JX, V K is an ideal of V .

This observation has an immediate drawback: every vertex algebra V is in particular a Lie
conformal algebra. If I is an ideal of this Lie conformal algebra structure, then J = JI, V K ⊂ I
is an ideal of the vertex algebra V , which is certainly contained in I . The induced λ-bracket
on the quotient I/J is trivial. We may rephrase this by saying that every Lie conformal algebra
ideal of V sits centrally on a vertex algebra ideal. In the case of a VOA, a stronger statement
holds:

Theorem 3.2. Let V be a VOA. A subspace 1 /∈ I ⊂ V is an ideal for the vertex algebra
structure if and only if it is an ideal of the underlying Lie conformal algebra.

Proof. The grading of V is induced by the Virasoro element ω. As JI, ωK ⊂ JI, V K ⊂ I , I
must contain all homogeneous components of each of its elements. However, if a ∈ V is a
homogeneous element (of nonzero degree), then a ∈ Ja, ωK. This forces I to equal JI, V K, which
is a vertex algebra ideal. �

Remark 3.1. Notice that C1 is always a Lie conformal algebra ideal of V , but is never an ideal
of the vertex operator algebra structure.

3.3. Different notions of ideal in a vertex algebra. A vertex algebra structure is made up of
many ingredients, that may stand by themselves to provide meaningful concepts. In particular,
a vertex algebra is naturally endowed with both a (differential) left-symmetric product, and a
Lie conformal algebra structure, and we may consider ideals with respect to each of the above
structures. To sum it up, we have

• Vertex algebra ideals: ideals of the vertex algebra structure — closed under ∂, : ab :,
[aλb];
• Lie conformal algebra ideals: ideals of the Lie conformal algebra structure — closed

under ∂, [aλb];
• DLs ideals: ideals of the differential left-symmetric structure — closed under ∂, : ab :.

When V is a VOA, we have seen that the first two notions (more or less) coincide. In what
follows, we will mostly be concerned with simple VOAs, i.e., VOAs with no nontrivial vertex
ideals. Notice that even a simple VOA does possess many DLs ideals. Both the normally ordered
product and the differential ∂ increase the grading, so that if a ∈ V h, then the DLs ideal generated
by a is contained in ⊕n≥hV n.



6 A. D’ANDREA

We conclude that the only nontrivial concept in a simple VOA is that of DLs ideal; thus, the
term ideal will henceforth refer to DLs ideals alone. Notice that we may distinguish between left,
right and two-sided ideals, whereas vertex algebra and Lie conformal algebra ideals are always
two-sided.

4. FINITENESS OF VOAS

4.1. Strong generators of a VOA. When dealing with finiteness of vertex algebras, the notion
that has naturally emerged in the (both mathematical and physical) literature depends only on
the (differential) left-symmetric algebra structure. A vertex algebra V is called strongly finitely
generated if there exists a finite set of generators such that normally ordered products of deriva-
tives of the generators C-linearly span V ; this is equivalent to being able to choose finitely many
quantum fields so that every element of V can be obtained from the vacuum state by applying
a suitable polynomial expression in the corresponding creation operators. This definition makes
no reference whatsoever to the λ-bracket; when dealing with finiteness phenomena it is natural
to only resort to concepts that are independent of the Lie conformal algebra structure.

4.2. Hilbert’s Basissatz and the fundamental theorem of invariant theory. If A = ⊕n≥0An
is a finitely generated commutative associative unital graded algebra, and G is a reductive group
acting on A by graded automorphisms, then the subalgebra AG of G-invariants is also finitely
generated. Hilbert’s celebrated proof of this fact uses noetherianity of A in an essential way: if
I is the ideal of A generated by the positive degree part AG+ of AG, then any finite subset of AG+
generating I as an ideal is also a finite set of generators of AG as an algebra.

4.3. Does the orbifold construction preserve finiteness of a VOA?. It is natural to ask whether
Hilbert’s strategy can be extended to the wider setting of VOAs. Indeed, the mathematical and
physical literature provide scattered example of strongly finitely generated (simple) VOAs for
which the invariant subalgebra relative to the action of a reductive group of graded automor-
phisms stays strongly finitely generated. However, no general argument is known that applies to
all examples.

A major difficulty in understanding the general algebraic aspect of the above phenomena de-
pend on its failure in commutative examples. We have seen that a commutative VOA is nothing
but a differential commutative associative algebra. However, it is not difficult to provide exam-
ples of differentially finitely generated commutative associative algebras whose invariant part
with respect to the action of a finite group of graded automorphisms does not stay finitely gener-
ated.

The strongly finite generatedness of invariant subalgebra does therefore depend on noncom-
mutative quantum features, and any attempt to provide a general address must address the prob-
lem of understanding why the commutative case behaves so differently.

4.4. Failure of noetherianity in the differential commutative setting and non-finiteness of
invariant subalgebras. Consider the commutative ring A = C[u(n), n ∈ N] of polynomials in
the countably many indeterminates u(n). Setting ∂u(n) = u(n+1) uniquely extends to a derivation
of A, thus making it into a differential commutative algebra.

Consider now the unique differential automorphism σ of A satisfying σ(u) = −u. Then
clearly σ(u(n)) = −u(n) and σ(u(n1) . . . u(nh)) = (−1)hu(n1) . . . u(nh). It is not difficult to see
that A〈σ〉 = C[u(i)u(j), i, j ∈ N]. However, A〈σ〉 admits no finite set of differential algebra
generators.

Remark 4.1. If we endow A with a trivial λ-bracket, then A is an example of a commutative
vertex algebra. Notice that setting deg(u(n)) = n+ 1 provides A with a grading compatible with
the vertex algebra structure. However, A is not a VOA as there is no Virasoro element inducing
this grading.
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It is easy to adapt Hilbert’s argument to the differential commutative setting once noetherianity
is established. An inevitable consequence of the above counterexample is that the differential
commutative algebra A must fail to satisfy the ascending chain condition on differential ideals.
This fact has long been known [10], and effort has been put into providing some weaker statement
replacing and generalizing noetherianity. We recall the following classical result:

Theorem 4.1 (Ritt). Let A be finitely generated as a differential commutative K-algebra, where
K is a field of characteristic zero. Then A satisfies the ascending chain condition on its radical
differential ideals.

In Ritt’s language, radical differential ideals are perfect, and generators of a perfect ideal as
an ideal (resp. as a perfect ideal) are called strong (resp. weak) generators. The above statement
claims that all perfect ideals have a finite set of weak generators, but they may well fail to have
a finite set of strong generators.

Under a different meaning of weak vs. strong generators, this difference of finiteness property
shows up again in the context of VOAs.

5. AN ABELIANIZING FILTRATION FOR VOAS

The problem of finding strong generators for a VOA can be addressed by using a decreasing
abelianizing filtration introduced1 in [8]. We recall here (a slight variant of) its definition and
some of its main properties. In what follows, if X, Y ⊂ A are subsets, we will set AB =
spanC〈ab|a ∈ A, b ∈ B〉. Notice that AB 6= A ·B, in general.

5.1. Li’s filtration. If A is a DGLsA, set En(A), n ∈ N to be the linear span of all products
(with respect to all possible parenthesizations)

∂d1a1 ∂
d2a2 . . . ∂

dhah,

where ai ∈ A are homogeneous elements, and d1 + . . . dh ≥ n. Also set En(A) = A if n < 0.
The Ei(A), i ∈ N form a decreasing sequence

A = E0(A) ⊃ E1(A) ⊃ · · · ⊃ En(A) ⊃ . . .

of subspaces of A, and clearly satisfy

Ei(A)Ej(A) ⊂ Ei+j(A);(5.1)
∂ Ei(A) ⊂ Ei+1(A).(5.2)

In particular, each Ei(A) is an ideal of A. If a ∈ Ei(A) \ Ei+1(A), then we will say that a has
rank i, and will denote by [a] the element a+ Ei+1(A) ∈ Ei(A)/Ei+1(A).

Lemma 5.1. If V is a VOA, then [Ei(V ), Ej(V )] ⊂ Ei+j+1(V ) for all i, j.

Proof. Follows immediately from (2.2). �

Proposition 5.1. Let V be a VOA. Then [a][b] = [ab], ∂[a] = [∂a] make

grV = ⊕i≥0Ei(V )/Ei+1(V )

into a graded commutative (associative) differential algebra.

Proof. Well definedness of the product is clear. Its commutativity follows from Lemma 5.1. By
(2.1), associativity follows from commutativity and left-symmetry of the product in V . Finally,
∂ is well-defined, and its derivation property descends to the quotient. �

Remark 5.1. Li proves that, if V is a VOA, then grV can be endowed with a Poisson vertex
algebra structure. However, we will not need this fact.

1Li’s setting is more general than ours, as the grading is only assumed to be bounded from below.
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Theorem 5.1 (Li). Let X be a subset of homogeneous elements of a VOA V . Then X strongly
generates V if and only if elements [x], x ∈ X, generate grV as a differential commutative
algebra.

In other words, a VOA V is strongly finitely generated if and only if grV is finitely generated
as a differential commutative algebra.

5.2. Strong generators of ideals. The problem of finding strong generators for a VOA is closely
connected to that of finding nice sets of generators for its ideals.

Recall that, ifA is a DGLsA, I ⊂ A is a (two-sided, right) ideal ofA if it is a (two-sided, right)
homogeneous differential ideal. We denote by (X)) the smallest right ideal of A containing a
given subset X ⊂ A, and similarly, by ((X)), the smallest two-sided ideal containing X . A
subspace U ⊂ A is strongly generated by X ⊂ U if U = (C[∂]X)A. When dealing with
strongly generated ideals, we will henceforth abuse notation and write XA for (C[∂]X)A.

We rephrase another of Li’s results as follows

Theorem 5.2. Let I be a right ideal of a VOA V . Then gr I is a (differential) ideal of grV , and
X ⊂ V strongly generates I if and only if [x], x ∈ X, generate gr I as a differential ideal of
grV .

We can easily apply this statement to elements of Li’s filtration.

Proposition 5.2. LetX be a set of homogeneous generators of a VOA V . ThenEd(V ) is strongly
generated by monomials

: (∂d1x1) (∂d2x2) . . . (∂dh−1xh−1) (∂dhxh) :,

where xi ∈ X , and di > 0 satisfy d1 + · · ·+ dh = d. In particular, if V is finitely generated, then
Ed(V ) is a strongly finitely generated ideal.

Proof. It follows immediately by noticing that En(V )/En+1(V ) is linearly generated by classes
of monomials

: (∂d1x1) (∂d2x2) . . . (∂dh−1xh−1) (∂dhxh) :,

where xi ∈ X , and di ≥ 0 satisfy d1 + · · ·+ dh = n. �

5.3. Weak vertex algebras. In order to construct and use Li’s filtration, we do not need the full
power of VOAs. Indeed, the Ei(A) always constitute a decreasing filtration of the DGLsAA and
satisfy (5.2), (5.2). In order to show that grA is commutative and associative, we also need

(5.3) [Ei(A), Ej(A)] ⊂ Ei+j+1(A).

This certainly holds in VOAs, but stays true under weaker conditions.

Definition 5.1. A weak VOA is a DGLsA A = ⊕i≥0Ai satisfying (5.3).

Example 5.1.
• Every non-negatively graded differential commutative (associative) algebra is a weak

vertex operator algebra.
• Every VOA is a weak vertex operator algebra.
• Let V be a VOA, I ⊂ V a two-sided ideal. Then V/I is a weak vertex operator algebra:

indeed, V/I is a DGLsA and constructing Li’s filtration commutes with the canonical
projection. Notice that V/I fails to be a VOA, unless I is a vertex algebra ideal.

If A is a weak VOA, then ∂dA ⊂ ⊕i≥dAi, hence En(A) ⊂ ⊕i≥nAi. Thus, ∩nEn(A) = (0),
and Ei(A) ∩ Aj = (0) as soon as i > j. Proposition 5.1, 5.2 and Theorems 5.1, 5.2 easily
generalize to the weak VOA setting.

Chains of inclusions between ideals in a weak VOA also behave nicely, due to the following
observation:

Lemma 5.2. Let I ⊂ J be right ideals of a weak VOA A satisfying gr I = gr J . Then I = J .
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Proof. If X ⊂ I generates gr I as an ideal of grA, then it also generates gr J , hence I = J =
XA. �

6. THE ASCENDING CHAIN CONDITION IN A VOA

6.1. Full ideals.

Definition 6.1. Let I be a right ideal of a VOA V . Then I is full if EN(V ) ⊂ I for sufficiently
large values of N .

Full ideals are important because of the following key observation.

Theorem 6.1. Let V be a strongly finitely generated VOA, I ⊂ V a full right ideal. Then I is a
strongly finitely generated ideal.

Proof. As I is full, it contains EN(V ) for some N ≥ 0. Then Ī = I/EN(V ) is an ideal of the
quotient weak VOA V̄ = V/EN(V ).

Notice that if u1, . . . , un are (strong) generators of V , then ū1, . . . , ūn generate V̄ , hence ele-
ments [ūi] generate gr V̄ as a differential commutative associative algebra. However, only finitely
many derivatives of each [ūi] are nonzero. Therefore, gr V̄ is a finitely generated, and not just
differentially finitely generated, commutative algebra. By Hilbert’s basis theorem, the ideal gr Ī
is finitely generated, and we may apply the weak VOA version of Theorem 5.2 to show that I is
strongly finitely generated modulo some EN(V ). However, Proposition 5.2 shows that all ideals
EN(V ) are strongly finitely generated, hence I is so too. �

By using a variant of the argument in Section 3.1, one is able to prove the following statement.

Lemma 6.1. Let I be a right ideal of the VOA V . Then I is full as soon asany one of the following
properties is satisfied

• I is nonzero and V is a simple VOA;
• I contains some derivative of the Virasoro element ω, provided that the central charge is

nonzero;
• I is two-sided, and contains some derivative of the Virasoro element ω.

6.2. Noetherianity.

Proposition 6.1. Let V be a finitely generated VOA. Then V satisfies the ascending chain con-
dition on its full right ideals.

Proof. If
I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ In+1 ⊂ . . .

is an ascending sequence of full right ideals, set I = ∪nIn. Then I is a full ideal, and we may
use Theorem 6.1 to locate a finite X ⊂ I such that I = XV . Due to finiteness of X , one may
find N ≥ 0 such that X ⊂ IN . Then I = XV ⊂ IN . �

All the following statements are now of immediate proof.

Theorem 6.2. Every simple VOA satisfies the ascending chain condition on its right ideals.

Theorem 6.3. Let V be a VOA, X ⊂ V a subset containing ∂iω for some i ≥ 0. Then there
exists a finite subset X0 ⊂ X such that ((X)) = ((X0)).

Theorem 6.4. Let V be a simple VOA, X ⊂ V . Then there exists a finite subset X0 ⊂ X such
that (X)) = (X0)).

We may rephrase Theorem 6.2 by saying that every simple finitely generated VOA is right-
noetherian.
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Remark 6.1. Notice that, unless V is associative (e.g., when V is commutative), subspaces of
the form XV may fail to be right ideals, so the above reasoning does not prove that if

X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ . . .

is an increasing family of subsets, then the corresponding sequence

X1V ⊂ X2V ⊂ · · · ⊂ XnV ⊂ Xn+1V ⊂ . . .

stabilizes. In other words, we do not know whether a simple fintiely generated VOA must satisfy
the ascending chain condition also on its subspaces of the form XV .

Remark 6.2. Finite generation of every right ideal I in a simple finitely generated VOA V is a
strong claim. However, one often needs a stronger statements which may easily fail.

Say that I = (X)) or even I = XV . Then it is true that one may find a finite subset X0 ⊂ I
such that I = X0V , but there is no clear way to force X0 ⊂ X . The standard proof of this fact
would require the ascending chain condition in the stronger form stated above.

7. SPECULATIONS ON HILBERT’S APPROACH TO FINITENESS IN THE
VOA ORBIFOLD SETTING

7.1. Subspaces of the form XV . Let a, b be elements of a VOA V . Then (2.4) shows that
(a, b, c) ∈ aV +bV for every choice of c ∈ V . However, (a, b, c) = (ab)c−a(bc); as a(bc) ∈ aV ,
then (ab)c ∈ aV + bV for all c ∈ V . We can summarize this in the following statement:

Lemma 7.1. Let V be a VOA, X ⊂ V a collection of homogeneous elements not containing 1.
Then XV = 〈X〉+V .

Proof. It is enough to show that if u is a product of (derivatives) of elements from X , then
uV ⊂ XV . This follows from the previous lemma and an easy induction on the number of terms
in the product. �

Proposition 7.1. Let U ⊂ V be VOAs, X ⊂ V a collection of homogeneous elements not
containing 1. Then

X strongly generates U =⇒ U+ ⊂ XV =⇒ U+ ⊂ XV + V X.

The above implications can be reversed for certain classes of subalgebras.

7.2. Split subalgebras. Let U ⊂ V be VOAs.

Definition 7.1. U is a split subalgebra of V if there exists a graded C[∂]-submodule decompo-
sition V = U ⊕M such that UM ⊂M .

Whenever U is a split subalgebra of V , there exists a C[∂]-linear splitting R : V → U
which is a homomorphism of U -modules. The splitting clearly satisfies R2 = R, and R(uv) =
uR(v), R(vu) = vR(u) for every u ∈ U, v ∈ V .

Example 7.1. If G is a reductive group acting on the finitely generated VOA V by graded
automorphisms, then V G is a split subalgebra of V .

Theorem 7.1. Let U be a split subalgebra of the VOA V , X ⊂ U a collection of homogeneous
elements not containing 1. Then

U+ ⊂ XV + V X =⇒ X strongly generates U.

Proof. Let u ∈ U be a homogeneous element of positive degree. As u ∈ U+ ⊂ XV +V X there
exist finitely many nonzero elements rix, s

i
x ∈ V , that we may assume homogeneous without loss

of generality, such that
u =

∑
x∈X,i∈N

rix∂
ix+ ∂ixsix.
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As R(u) = u, then also
u =

∑
x∈X,i∈N

R(rix)∂
ix+ ∂ixR(six).

In order to show that u can be expressed as a linear combination of products of elements from
X , it is enough to notice that R(rix), R(six) are homogeneous elements from U of lesser degree
than u, and proceed by induction on the degree. �

7.3. (Not quite) proving that the VOA orbifold construction preserves finiteness. Let V be
a simple finitely generated VOA, G a reductive group acting on V by automorphisms. Then both
the following statements hold:

• (V G
+ )) = (U)) for some finite set U ⊂ V G

+ ;
• (V G

+ )) = XV for some finite set X ⊂ (V G
+ )).

We are however not able to show none of the following increasingly weaker statements
• (V G

+ )) = XV for some finite set X ⊂ V G
+ ,

• V G
+ V = XV for some finite set X ⊂ V G

+ ,
• V G

+ V + V V G
+ = XV + V X for some finite set X ⊂ V G

+ ,
which would suffice to apply Theorem 7.1 to ensure finiteness of V G. Such statements depend
on a stronger Noetherianity property than we are able to show.

Notice that the above proof of right Noetherianity of a simple finitely generated VOA requires
considering nonzero associators, thus resulting in a strictly noncommutative statement. Non-
commutative VOAs are however typically nonassociative, and this may prevent subspaces of the
form XV from being right ideals.

It is not clear how one should proceed to adapt Hilbert’s strategy to the VOA setting. I would
like to list a few (bad and good) facts one must necessarily cope with.

• XV can fail to be an ideal of V .
• Furthermore, it is easy to construct examples of X ⊂ V such that grXV is not an ideal

of V . The ideal property is likely to fail for subspaces gr(XV + V X) too.
However the proof of many statements does not require the full strenght of ideals:

• A ⊂ B, grA = grB =⇒ A = B holds for subspaces, not just ideals.
• If 1 ∈ Ja, bK, then aV +V b contains some ∂NV . However this does not seem to guarantee

fullness.
• If X ⊂ V is non-empty, then (XV )V may fail to be an ideal, but is however full.
• If A ⊂ V is a subspace such that grA contains grEn(V ), then A contains En(V ).

It is also possible that strong finite generation of subspaces of the form XV may fail in general,
but can be proved in the special case of X = V G

+ .

Problem: understand what conditions ensure that a subspaceXV +V X contain a nonzero ideal.
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DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI ROMA “LA SAPIENZA”, ROMA
E-mail address: dandrea@mat.uniroma1.it


