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ABSTRACT. A Sequential Dynamical System (SDS) is a quadruple (Γ, Si, fi, w) consisting of a
(directed) graph Γ = (V,E), each of whose vertices i ∈ V is endowed with a finite set state Si

and an update function fi :
∏

j,i→j Sj → Si — we call this structure an update system — and
a word w in the free monoid over V , specifying the order in which update functions are to be
performed. Each word induces an evolution of the system and in this paper we are interested in
the dynamics monoid, whose elements are all possible evolutions.

When Γ is a directed acyclic graph, the dynamics monoid of every update system supported on
Γ naturally arises as a quotient of the Hecke-Kiselman monoid associated with Γ. In the special
case where Γ = Γn is the complete oriented acyclic graph on n vertices, we exhibit an update
system whose dynamics monoid coincides with Kiselman’s semigroup Kn, thus showing that the
defining Hecke-Kiselman relations are optimal in this situation. We then speculate on how these
results may extend to the general acyclic case.
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1. INTRODUCTION

In this paper, we show how the recently defined notion of Hecke-Kiselman monoid finds a
natural realization in the combinatorial-computational setting of Sequential Dynamical Systems.

Let Q be a mixed graph, i.e., a simple graph with at most one connection between each pair of
distinct vertices; connections can be either oriented (arrows) or non-oriented (edges). In [GM11],
Ganyushkin and Mazorchuk associated with Q a semigroup HKQ generated by idempotents ai
indexed by vertices of Q, subject to the following relations

• aiaj = ajai, if i and j are not connected;
• aiajai = ajaiaj , if ( i j ) ∈ Q, i.e., i and j are connected by an edge;

• aiaj = aiajai = ajaiaj , if ( i // j ) ∈ Q, i.e., i and j are connected by an arrow from i
to j.

The semigroup HKQ is known as the Hecke-Kiselman monoid attached to Q.
For the two extremal types of mixed graphs — graphs, where all sides are edges, and oriented

graphs, in which all sides are arrows — Hecke-Kiselman monoids are well understood: when
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Q is an oriented graph with n vertices and no oriented cycles, then HKQ is isomorphic to a
quotient of Kiselman’s semigroup Kn [Kis02, KM09], which is known to be finite [KM09].

On the other hand, when Q has only unoriented edges, HKQ is finite if and only if Q is a
(finite) disjoint union of finite simply laced Dynkin diagrams, and the corresponding semigroup
is then variously known as Springer-Richardson, 0-Hecke, or Coxeter monoid attached to Q.
The problem of characterizing mixed graphs inducing a finite Hecke-Kiselman monoid in the
general case seems to be difficult and only very partial results are known [AD13]. The study
of (certain quotients of) Hecke-Kiselman monoids and their representations has also attracted
recent interest, see for instance [For12, Gre12, GM13].

The choice of a simple (i.e., without loops or multiple edges) graph Γ is also one of the essen-
tial ingredients in the definition of a Sequential Dynamical System (SDS). The notion of SDS has
been introduced by Barrett, Mortveit and Reidys [BMR00, BMR01, BR99] in order to construct
a mathematically sound framework for investigating computer simulations; this structure has
found wide applicability in many concrete situations, cf. [MR08] and references therein. SDS
on a directed acyclic graph Γ are related to Hecke-Kiselman monoids in that (see Proposition 2.4
below) the so-called Γ-local functions [MR08] satisfy the relations listed in the presentation of
HKΓ; in other words, the evaluation morphism mapping each word (or update schedule) in the
alphabet V to the corresponding composition of Γ-local functions factors through HKΓ.

One is naturally led to wonder whether HKΓ is the smallest quotient through which all of
the above evaluation morphisms must factor, or additional universal relations among Γ-local
functions may be found. Henceforth, Γn = (V,E) will denote the oriented graph where V =
{1, . . . , n} and (i, j) ∈ E if and only if i < j. In this paper, we show that HKΓ is optimal
in the special case Γ = Γn, by proving Theorem 6.3, which immediately implies the following
statement.

Theorem. There exists an update scheme S?
n = (Γn, Si, fi) such that the associated evaluation

morphism factors through no nontrivial quotient of HKΓn .

We believe that the same claim holds for every finite directed acyclic graph and mention in
Section 8 some evidence in support of this conjecture.

The paper is structured as follows. In Section 2 we recall the definition of SDS, define the
dynamics monoid of an update system supported on an oriented graph Γ, and show that it is a
quotient of the Hecke-Kiselman monoid HKΓ as soon as Γ has no oriented cycles. In Sections
3 and 4 we list the results on Kiselman’s semigroup Kn that are contained in [KM09] and draw
some useful consequences. Section 5 introduces the join operation, which is the key ingredient
in the definition of the update system S?

n, which is given in Section 6. The rest of the paper is
devoted to the proof of Theorem 6.3.

2. SEQUENTIAL DYNAMICAL SYSTEMS

An update system is a triple S = (Γ, (Si)i∈V , (fi)i∈V ) consisting of
(1) a base graph Γ = (V,E), which is a finite directed graph, with V as vertex set and

E ⊆ V × V as edge set; we will write i → j for (i, j) ∈ E. The vertex neighbourhood
of a given vertex i ∈ V is the subset

x[i] = {j : i→ j}.
(2) a collection Si, i ∈ V, of finite sets of states. We denote by S =

∏
i∈V Si the family of

all the possible system states, i.e., n-tuples s = (si)i∈V , where si belongs to Si for each
vertex i. The state neighbourhood of i ∈ V is S[i] =

∏
j∈x[i] Sj , and the restriction of

s = (sj)j∈V to x[i] is denoted by

s[i] = (sj)j∈x[i] ∈ S[i].

(3) for every vertex i, a vertex (update) function

fi : S[i] → Si,
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computes the new state value on vertex i as a function of its state neighbourhood. In
particular, if x[i] is empty, then fi is a constant t ∈ Si and we will write fi ≡ t. Each
vertex function fi can be incorporated into a Γ-local function Fi : S → S defined as

Fi(s) = t = (tj)j∈V , where tj =

{
sj, if i 6= j

fi(s[i]), if i = j

An SDS is an update system S endowed with
(4) an update schedule, i.e., a word w = i1i2 . . . ik in the free monoid F(V ) over the alphabet

V (from now on, we will often abuse the notation denoting both the alphabet and the
vertex set with the same letter V , and both letters and vertices with the same symbols).
The update schedule w induces a dynamical system map (SDS map), or an evolution of
S, Fw : S → S, defined as

Fw = Fi1 Fi2 . . .Fik .

Remark 2.1. As the graph Γ sets up a dependence relation between nodes under the action of
update functions, it makes sense to allow Γ to possess self-loops, and arrows connecting the
same vertices but going in opposite directions. However, we exclude the possibility of multiple
edges between any two given vertices. Notice, however, that all SDS of interest in this paper will
be supported on directed acyclic graphs, thus excluding in particular the possibility of self-loops.

Denote by End(S) the set of all maps S → S, with the monoid structure given by composition.
Then, the Γ-local functions Fi, i ∈ V, generate a submonoid of S which we denote by D(S).
The monoid D(S) is the image of the natural homomorphism

F : F(V ) → End(S)

w 7→ Fw .

mapping each update schedule w to the corresponding evolution Fw; in particular, we denote by
F? the identity map, induced by the empty word ?.

Once an underlying update system has been chosen, our goal is to understand the monoid
structure of D(S).

Example 2.2. Let Γ = ({i}, ∅) be a Dynkin graph of type A1. It has only one vertex i, so there
is only one vertex function fi, which is constant as there are no arrows starting in i. The system
dynamics monoid D(S) = {F?,Fi} contains exactly two elements, as soon as |Si| > 1. If
|Si| = 1, then D(S) = {F?}.

Example 2.3. Let Γ be the graph
i // j

Let us consider Si = {0, 1, 2}, Sj = {0, 1}. Set up an update system on Γ by requiring that
fi : S[i] = Sj → Si acts as fi(s) = s + 1 and that fj ≡ 1 . Evolutions induced by words ?
(the empty word), i, j, ij and ji on S = Si × Sj all differ from each other, as they take different
values on (0, 0):

F?(0, 0) = (0, 0)

Fi(0, 0) = (1, 0)

Fj(0, 0) = (0, 1)

Fij(0, 0) = FiFj(0, 0) = Fi(0, 1) = (2, 1)

Fji(0, 0) = Fj Fi(0, 0) = Fj(1, 0) = (1, 1).

Both Fi and Fj are idempotent. Moreover, it is easy to see that

Fiji = Fjij = Fij,
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as Fi Fj Fi = Fj Fi Fj = Fi Fj , so that Fi 7→ a1,Fj 7→ a2 extends to an isomorphism from
D(S) to Kiselman’s semigroup K2

K2 = 〈a1, a2 | a2
1 = a1, a

2
2 = a2, a1a2a1 = a2a1a2 = a1a2〉.

These examples are instances of the following statement.

Proposition 2.4. Let S = (Γ, Si, fi) be an update system defined on a directed acyclic graph Γ.
Then the Γ-local functions Fi satisfy:

(i) F2
i = Fi, for every i ∈ V ;

(ii) Fi Fj Fi = Fj Fi Fj = Fi Fj , if i→ j (and hence, j 9 i);
(iii) Fi Fj = Fj Fi, if i and j are not connected.

Proof. Every Γ-local function Fi only affects the vertex state si. As Fi(s) only depends on s[i],
and i /∈ x[i], then each Fi is idempotent.

For the same reason, it is enough to check (ii) and (iii) on a graph with two vertices i 6= j. If
they are not connected, then both fi and fj are constant, hence Fi and Fj trivially commute. If
there is an arrow i→ j, then Fi(ai, aj) = (fi(aj), ai), whereas Fj(ai, aj) = (ai, t), since fj ≡ t
is a constant. Then it is easy to check that the compositions Fi Fj,Fi Fj Fi,Fj Fi Fj coincide,
as they map every element to (fi(t), t). �

These relations are remindful of those in the presentation of a Hecke-Kiselman monoid.

Definition 2.5. Let Γ = (V,E) be a finite directed acyclic graph. The Hecke-Kiselman monoid
associated with Γ is defined as follows

HKΓ = 〈ai, i ∈ V | a2
i = ai, for every i ∈ V ;

aiajai = ajaiaj = aiaj, for i→ j;(2.1)
aiaj = ajai, for i9 j, and j 9 i〉(2.2)

This structure has been first introduced in [GM11] for a finite mixed graph, i.e., a simple graph
(without loops or multiple edges) in which edges can be either oriented or unoriented: there, an
unoriented edge (i, j) is used to impose the customary braid relation aiajai = ajaiaj .

If S = (Γ, Si, fi) is an update system on a finite directed acyclic graph Γ = (V,E), then
Proposition 2.4 amounts to claiming that the evaluation homomorphism F : F(V ) → End(S)
factors through the Hecke-Kiselman monoid HKΓ.

Our case of interest is when the graph Γ = Γn is the complete graph on n vertices, where
the orientation is set so that i → j if i < j. In this case, the semigroup HKΓn coincides
with Kiselman’s semigroup Kn, as defined in [KM09]. The monoid Kn, however, only reflects
immediate pairwise interactions between vertex functions. One may, in principle, wonder if Kn

is indeed the smallest quotient of F(V ) through which evaluation maps F factor, or additional
identities may be imposed that reflect higher order interactions.

In this paper we will exhibit an update system S?
n, defined on the graph Γn, whose dynamics

monoid is isomorphic to Kn. In other words, we will show that Kn → D(S?
n) is indeed an

isomorphism, once suitable vertex functions have been chosen.

3. COMBINATORIAL DEFINITIONS

Let F(A) be the free monoid over the alphabet A and denote by ? the empty word. Recall that,
for every subset B ⊆ A, the submonoid 〈B〉 ⊆ F(A) is identified with the free monoid F(B).

Definition 3.1. Let w ∈ F(A). We define
• subword of w to be a substring of consecutive letters of w;
• quasi-subword of w to be an ordered substring u of not necessarily consecutive letters of
w.
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We will denote the relation of being a quasi-subword by ≤, so that

v ≤ w

if and only if v is a quasi-subword of w.

Obviously, every subword is a quasi-subword. Also notice that v ≤ w and w ≤ v if and only
if v = w.

Example 3.2. Set w = acaab ∈ F({a, b, c}); then
• aab is a subword (hence a quasi-subword) of w;
• aaa is a quasi-subword of w which is not a subword;
• abc is neither a subword nor a quasi-subword of w.

Trivial examples of subwords of w are the empty word ? and w itself.

Definition 3.3. Let w ∈ F(A). Then
• if w is non-empty, the head of w, denoted h(w) ∈ A, is the leftmost letter in w;
• if a ∈ A, then the a-truncation Taw ∈ F(A) of w is the longest (non-empty) suffix of w

with head a, or the empty word in case a does not occur in w.
Similarly, if I ⊂ A, we denote by TI w the longest (non-empty) suffix of w whose head lies in
I , or the empty word in case no letter from I occurs in w.

The following observations all have trivial proofs.

Remark 3.4.
(i) If w ∈ F(A) does not contain any occurrence of a ∈ A, then

Ta(ww
′) = Ta(w

′),

for every w′ ∈ F(A).
(ii) For every w ∈ F(A) and a ∈ A, one may (uniquely) express w as

w = w′Taw

where w′ ∈ 〈A \ {a}〉.
(iii) If w ∈ F(A) contains some occurrence of a ∈ A, then

Ta(ww
′) = (Taw)w′,

for every w′ ∈ F(A).

Remark 3.5.
(i) If w ∈ F(A), and a, b ∈ A, then either Taw is a suffix of Tbw, or vice versa.

(ii) If Tbw is a suffix of Taw for all b ∈ A , then h(w) = a, hence Taw = w.
(iii) TI w = Taw for some a ∈ I , and Tbw is a suffix of TI w for every b ∈ I .

Definition 3.6. Given I ⊆ A, the deletion morphism is the unique semigroup homomorphism
satisfying

∂I : F(A) → F(A \ I) ⊆ F(A)

ai 7→ ?, for i ∈ I
aj 7→ aj , for j /∈ I.

It associates with any w ∈ F(A) the longest quasi-subword of w containing no occurrence of
letters from I .

Remark 3.7. For every I, J ⊆ A,
∂I ∂J = ∂I∪J
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4. KISELMAN’S SEMIGROUP AND CANONICAL WORDS OVER THE COMPLETE GRAPH

In this section, we recall results from [GM11] and draw some further consequences. Choose
an alphabet A = {ai, 1 ≤ i ≤ n}; Kiselman’s semigroup Kn has the presentation

Kn = 〈ai ∈ A | a2
i = ai for all i; aiajai = ajaiaj = aiaj for i < j〉.

In accordance with [KM09], let

π : F(A)→ Kn

denote the canonical evaluation epimorphism.

Definition 4.1 ([GM11]). Let w ∈ F(A). A subword of w of the form aiuai, where ai ∈ A and
u ∈ F(A), is special if u contains both some aj, j > i, and some ak, k < i.

Remark 4.2. Notice that a subword aiuai cannot be special if i = 1 or i = n.

Let us recall the following fact.

Theorem 4.3 ([KM09]). Let w ∈ F(A). The set π−1π(w) contains a unique element whose only
subwords of the form aiuai are special.

Remark 4.4.
(i) The unique element described in Theorem 4.3 contains at most one occurrence of a1 and

at most one occurrence of an.
(ii) In order to prove Theorem 4.3, the authors of [KM09] define a binary relation→ in F(A)

as follows: w → v if and only if either
( 1→) w = w1aiaiw2, v = w1aiw2, or
( 2→) w = w1aiuaiw2, v = w1aiuw2 and u ∈ 〈ai+1, . . . , an〉, or
( 3→) w = w1aiuaiw2, v = w1uaiw2 and u ∈ 〈a1, . . . , ai−1〉.

It is possible to iterate such simplifications and write (finite) sequences

w → v1 → v2 · · · → vk,(4.1)

so that each word contains exactly one letter less than the previous and they all belong
to the same fiber with respect to π. Moreover, each vi is a quasi-subword of w and of vj ,
for all j < i.

A sequence like (4.1) is called simplifying sequence if vk is not simplifiable any further,
and each vi → vi+1 is called a simplifying step. It should be stressed that a simplifying
step of type 1 can be seen as both of type 2 and of type 3.

(iii) According to Theorem 4.3, every simplifying sequence for w ends on the same word.

We will refer to any word, whose only subwords of the form aiuai are special, as a canon-
ical word, so that the above theorem claims existence of a unique canonical word v in each
π−1π(w), w ∈ F(A). Thus, the assignment w 7→ v is a well defined map Can : F(A) → F(A)
associating with each word its unique canonical form. Notice that w is canonical if and only if
w = Canw.

Remark 4.5.
(i) If w is canonical then all of its subwords are canonical.

(ii) A word u ∈ 〈ai, h ≤ i ≤ k〉 is canonical if and only if, for every j < h or j > k, the
word aju is canonical. Moreover, in such cases,

Can(aju) = aj Canu.

Remark 4.6. More consequences of Theorem 4.3 are that
(i) the canonical form Canw is the word of minimal length in π−1π(w);

(ii) due to Remark 4.4(iii), Canw is the last element in every simplifying sequence starting
from any of the words in π−1π(w);
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(iii) Canw is a quasi-subword of all the words in any simplifying sequence beginning from
w;

(iv) if w contains any given letter, so does Canw.

Lemma 4.7. For every u, v ∈ F(A),

Can(uv) = Can ((Canu)v)

= Can (uCan v)

= Can (CanuCan v)

Proof. Can is constant on fibres of π. �

Definition 4.8. If I ⊆ A, then
CanI w = Can ∂A\Iw,

where w ∈ F(A). In particular CanAw = Canw.

Before proceeding further, we need to make an important observation. Say we have a sequence
of steps leading from a word y to a word x and that each step removes a single letter. The same
procedure can be applied to every subword of y, and again at each step (at most) a single letter is
removed, eventually yielding a subword of x. Every subword of x is obtained in this way from
some (possibly non-unique) subword of y. Notice that in the cases we will deal with, some of
the steps could be simplifications of type 1→ for which there is an ambiguity on which of the two
identical letters is to be removed.

We will say that a subword of x of the form aiuai originates from a subword w of y if w yields
aiuai under the sequence of simplifications and w is of the form aivai. Let us clarify things with
an example. In the following sequence of steps, we have highlighted the letter to remove at each
step:

bdbc d̂ abcdc→ b d̂ bcabcdc→ b̂b cabcdc→ bcabcdc.

Notice that in the last step, there is an ambiguity on which letter is being removed. Then the
subwords bdbcdab, dbcdab, bcdab of bdbcdabcdc all yield bcab; however, bcab originates only
from bdbcdab and bcdab.

Henceforth, we will shorten the notation and denote by ∂i,Ti, . . . the maps ∂ai ,Tai , . . . .

Lemma 4.9. Assume y = Can y and let x = ∂{1,...,k−1}y, where 1 ≤ k ≤ n. Then any subword
aiuai ≤ x is either special or satisfies u ∈ 〈ai, . . . , an〉.

Proof. Let aiuai be a subword of x. Then i ≥ k, as x = ∂{1,...,k−1}y contains no ai, i < k.
The above subword aiuai originates from a subword aivai of y. If aiuai is not special, then

either u ∈ 〈aj, j ≤ i〉, or u ∈ 〈aj, j ≥ i〉. However, the former case does not occur, otherwise
aivai would fail to be special, as x is obtained from y by only removing letters aj, 1 ≤ j < k,
and k ≤ i. This is a contradiction, as y is canonical. �

Lemma 4.10. Assume y = Can y and let x = ∂{1,...,k−1}y, where 1 ≤ k ≤ n. Then any
simplifying sequence

x = ∂{1,...,k−1}y → · · · → Canx = Can{k,...,n} y

is such that all simplifying steps are of type 2→ (possibly of type 1→).

Proof. By Lemma 4.9, any subword aiuai ≤ x is either special or satisfies u ∈ 〈aj, i ≤ j ≤ n〉,
hence the first simplifying step is of type 2→ (and possibly of type 1→).

We want to show that, starting from x = ∂{1,...,k−1}y and applying simplifications of type 2→
or of type 1→, one can never obtain a word admitting a subword aiuai, u 6= ?, on which it is
possible to apply a step of type 3→ (which is not of type 1→).
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Assume therefore by contradiction that aiuai, where ? 6= u ∈ 〈aj, k ≤ j < i〉, occurs
as a subword after having performed some simplifying steps of type 2→ on x. The subword
aiuai originates from a subword aivai of x, which is necessarily special, since v cannot lie in
〈aj, i ≤ j ≤ n〉, as some aj, j < i, occurs in u 6= ?, and u is obtained from v after removing
some letters. This shows that letters aj, j > i, must occur in v, whereas they do not occur in u.

However, a simplifying step of type 2→ that removes a letter from between the two occurrences
of ai either occurs completely between them, or begins on the left of both. In the former case,
it does not change the speciality of the subword, whereas in the latter case a simplification of
type 2→ can only remove a letter aj, j < i, due to the presence of the left ai; we thus obtain a
contradiction. �

Corollary 4.11. If ua1v is canonical, then Can(uv) admits u as a prefix.

Proof. By Lemma 4.10, all simplifying sequences from uv = ∂1(ua1v) to Can(uv) only contain
steps of type 2→ and no such simplifying step does alter u. �

Proposition 4.12. Assume that uajv is canonical, and that u ∈ 〈ai, k ≤ i ≤ n〉, where k > j.
Then uaj Can{k,...,n} v is also canonical.

In particular, if ua1v is canonical, then ua1 Can{k,...,n} v is also canonical.

Proof. We prove the latter claim, as the proof of the former more general statement is completely
analogous.

We know that v is canonical. Then Lemma 4.10 shows that ua1∂{1,...,k−1}v can be simplified
into ua1 Can{k,...,n} v by only using steps of type 2→ on the right of a1.

If ua1 Can{k,...,n} v is not canonical, then we may find a subword aixai that is not special. As
both u and Can{k,...,n} v are canonical, then a1 must occur in x. Say that aixai originates from
the subword aiyai of ua1v. No simplification of type 2→, when performed on the right of a1, can
change the set of letters that appear between the two ai. This yields a contradiction, as aiyai is
special, whereas aixai is not. �

Corollary 4.13. For every choice of u, u′, v, v′ ∈ 〈a3, a4, . . . , an〉,
(i) if ua1va2v

′ is canonical, then ua1 Can(vv′) is canonical;
(ii) if ua2va1v

′ is canonical, then ua2 Can(vv′) is canonical;
(iii) if ua2u

′a1va2v
′ is canonical, then both ua2u

′a1 Can(vv′) and ua2 Can(u′vv′) are canon-
ical.

Proof. (i) follows directly from Proposition 4.12, whereas (iii) follows by applying Proposition
4.12 and then (ii).

However, (ii) is equivalent to (i), as both ua1va2v
′ and ua2va1v

′ contain single occurrences
of a1 and a2, and every simplifying sequence for the former can be turned into a simplifying
sequence for the latter by switching a1 with a2. �

Lemma 4.14. Let w ∈ F(A), 1 ≤ i ≤ n. Then

Ti Can{i,...,n}w = Can{i,...,n}Tiw.

Proof. Once again, we may assume without loss of generality that i = 1. If there are no occur-
rences of a1 in w, then both sides equal the empty word and we are done.

Otherwise, using Remark 3.4(ii), write w = uT1w and Can T1w = a1v. We are asked to
show that

T1 Can(uT1w) = Can(T1w),

which is equivalent, using Lemma 4.7, to

T1 Can(ua1v) = a1v.
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Notice that v is canonical and u ∈ 〈a2, . . . , an〉. The simplifying steps that can occur on a word
of type ua1v may only affect u: indeed, v is canonical, there is an only occurrence of a1 in ua1v,
and the only special words that begin in u and end in v contain an occurrence of a1, thus leading
to a 3→.

An easy induction now shows that Can(ua1v) = u′a1v, where u′ is a quasi-subword of u,
hence T1 Can(ua1v) = a1v. �

Lemma 4.15. Let w ∈ F(A), 1 ≤ k ≤ n. Then
(i) Can{k,...,n}w = Can{k,...,n}Canw;

(ii) Can{k,...,n}w is a quasi-subword of Canw.

Proof. Let k > 1, the case k = 1 being trivial. It is easy to check that Can ◦∂{1,...,k−1} is
constant on fibres of π — it is invariant under all simplifying steps — which takes care of (i).
We may therefore assume in (ii) that w is a canonical word; however Can{k,...,n}w is obviously
a quasi-subword of w. �

5. THE JOIN OPERATION

Given an update system over the complete oriented graph Γn, Proposition 2.4 proves that its
dynamics monoid is an epimorphic image of Kiselman’s semigroup Kn. In next section, we
will exhibit an update system S?

n over Γn whose dynamics monoid is isomorphic to Kn; from a
dynamical point of view, S?

n serves as a universal update system.
We introduce the following operation in order to construct, later, a family of update functions.

Definition 5.1. Take u, v ∈ F(A). The join of u and v, denoted by [u, v], is the shortest word
admitting u as quasi-subword and v as suffix. Namely,

[u, v] = u+v

where u = u+u−, so that u− is the longest suffix of u which is a quasi-subword of v.

Notice that the decomposition u = u+u− strictly depends on the choice of v.

Example 5.2. For instance, consider u = cbadc and v = abdc. Then,

[u, v] = cbabdc.

Remark 5.3.
(i) The empty word ? is a subword of every w ∈ F(A), so that

[?, u] = [u, ?] = u.

(ii) If u is a quasi-subword of v, then [u, v] = v.
(iii) If u is not a quasi-subword of v, then

[wu, v] = wu+v = w[u, v],

for every w ∈ F(A).
(iv) If [u, v] = u+v, then

[u,wv] = [u+, w]v

Indeed, write u = u+u−: u− is the longest suffix of u which is a quasi-subword of v, but
there could be a suffix of u+ which is a quasi-subword of w.

(v) If u, v ∈ F(A) are canonical, [u, v] may fail to be so. For instance, [a1a2, a2a1] = a1a2a1,
which is not canonical.

The following lemma will be used later in the proof of Proposition 6.2.

Lemma 5.4. Let u, x, y ∈ F(A), if ux ≤ uy, then x ≤ y.
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Proof. As ux is a quasi-subword of uy, by Remark 5.3(ii),

[ux, uy] = uy.

Assume that x is not a quasi-subword of y and write it as x = x+x−, where x− is its longest
suffix which is a quasi-subword of y. Using Remark 5.3(iii),

[ux, y] = ux+y.

Finally, using Remark 5.3(iv),
[ux, uy] = [ux+, u]y

However, [ux+, u] = u can hold only if ux+ is not longer than u, i.e., only if x+ = ?, hence x is
a quasi-subword of y. �

6. AN UPDATE SYSTEM WITH UNIVERSAL DYNAMICS

If U, V ⊂ F(A), denote by [U, V ] ⊂ F(A) the subset of all elements [u, v], u ∈ U, v ∈ V .

Definition 6.1. The update system S?
n is the triple (Γn, Si, fi), where

(1) Γn is, as before, the complete oriented graph on n vertices, where i → j if and only if
i < j.

(2) On vertex i, the state set Si ⊂ F(A) is inductively defined as

Si =


{?, an} if i = n,

{?, an−1, an−1an} if i = n− 1,

{?} ∪ ai[Sn, [. . . , [Si+2, Si+1] . . . ]] if 1 ≤ i ≤ n− 2.

(3) On vertex i, the vertex function is

fi : S[i] → Si

(si+1, . . . , sn) 7→ ai[sn, [. . . , [si+2, si+1] . . . ]],

if i ≤ n− 2, whereas fn−1(sn) = an−1sn and fn ≡ an is constant.

We will abuse the notation and denote by ? also the system state (?, . . . , ?) ∈ S. The rest of
the paper will be devoted to the proof of the following

Proposition 6.2. Consider the evaluation morphism F : F(A) → D(S?
n), mapping each word

w ∈ F(A) to the corresponding evolution Fw ∈ D(S?
n). If p = (p1, . . . , pn) = Fw ?, then:

(i) One has pi = (Fw ?)i = Can{i,...,n}Tiw.
(ii) For every choice of k, 1 ≤ k ≤ n, one may find j, 1 ≤ j ≤ k, so that

[pk, [. . . , [p2, p1] . . . ]] = T{1,...,k}Canw.

Our central result then follows immediately.

Theorem 6.3. With the same hypotheses and notation as in Proposition 6.2,
(i) Canw = [pn, [. . . , [p2, p1] . . . ]];

(ii) if u, v ∈ F(A), then Fu = Fv if and only if Canu = Can v;
(iii) Kn is isomorphic to D(S?

n).

Proof.
(i) Use Proposition 6.2(ii) when k = n. Then

[pn, [. . . , [p2, p1] . . . ]] = T{1,...,n}Canw = Canw.

(ii) If Fu = Fv, then they certainly compute the same state on ?. However, by (i), one
may recover both Canu and Can v from this state, hence Canu = Can v. The other
implication follows trivially, as Canu = Can v forces u and v to induce the same element
in Kn, hence the same dynamics on S∗n.
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(iii) This is just a restatement of (ii): distinct elements in Kn have distinct S∗n-actions, since
they act in a different way on the system state ?.

�

Remark 6.4. As an immediate consequence of Proposition 6.2, if j = h(Canw), then Tj Canw =
Canw, hence

[pj, [. . . , [p2, p1] . . . ]] = [pn, [. . . , [p2, p1] . . . ]] = Canw.

We will prove Proposition 6.2 by induction on the number n of vertices. The following tech-
nical fact is needed in the proof of the inductive step, and we assume in its proof that Proposition
6.2 and Theorem 6.3 hold on S?

k , for k < n.

Proposition 6.5. Let u, v ∈ 〈aj+1, aj+2, . . . , an〉 be chosen so that uaj Can v is a canonical
word. Then [Can(uv), v] = uv. In particular, [Can(uv), ajv] = uajv.

Proof. We may assume, without loss of generality, that j = 1.
The statement is easily checked case by case when n = 1 or 2. Notice that u can have at most

one occurrence of a2, whereas v may have many. Let us therefore distinguish four cases:
(1) There is no occurrence of a2 in either u or v.

In this case, we can use inductive assumption, after removing the vertex indexed by 2.
(2) There is a single occurrence of a2 in u.

Write u = u′a2u
′′. As u′a2u

′′a1 Can v is canonical, then, using Corollary 4.13(ii) and
Lemma 4.7,

Can(u′a2u
′′v) = Can(u′a2u

′′Can v)

= u′a2 Can(u′′Can v)

= u′a2 Can(u′′v).

Thus, we need to compute [u′a2 Can(u′′v), v]. However, applying Case 1 gives

[Can(u′′v), v] = u′′v,

hence [u′a2 Can(u′′v), v] = u′a2u
′′v follows from Remark 5.3(iii).

(3) a2 occurs in v, but not in u.
Write Can v = v′a2v

′′. As ua1 Can v = ua1v
′a2v

′′ is canonical, then, using Corollary
4.13(i), also ua1 Can(v′v′′) is canonical. However Lemma 4.15 informs us that

Can(v′v′′) = Can ∂2 Can v

= Can{3,...,n}Can v

= Can{3,...,n} v

= Can ∂2v,

so that ua1 Can ∂2v is canonical. We may then use Case 1 to argue that

(6.1) [Can(u∂2v), ∂2v] = u∂2v.

Lemma 4.15 implies that Can(u∂2v) = Can ∂2(uv) is a quasi-subword of Can(uv).
By Corollary 4.11, both Can(uv) and Can(u∂2v) admit u as a prefix, so, using Lemma
5.4, we can write

Can(uv) = uy, Can(u∂2v) = uz, z ≤ y.

We need to show that [Can(uv), v] = uv. Now, applying Corollary 4.13 (ii),

Can(uv) = Can(uv′)a2v
′′ = uxa2v

′′,

where x is some quasi-subword of v′. As

y = xa2v
′′ ≤ v′a2v

′′ = Can v ≤ v,
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then [Can(uv), v] = u+v where u = u+u− and u−y ≤ v. However, this would force

u−z ≤ u−y ≤ v

hence also u−z ≤ ∂2v; and this is only possible if u− = ?, as Equation (6.1) shows.
(4) a2 occurs both in u and in v.

This is similar to the previous case. Write u = u′a2u
′′, Can v = v′a2v

′′. Applying
Corollary 4.13(iii) to the canonical word ua1 Can v = u′a2u

′′a1v
′a2v

′′, we obtain that
both

u′a2u
′′a1 Can ∂2v = u′a2u

′′a1 Can(v′v′′)

and

u′a2 Can(u′′∂2v) = u′a2 Can(u′′Can ∂2v) = u′a2 Can(u′′v′v′′)

are canonical. Similarly,

Can(uv) = Can(u′a2u
′′v′a2v

′′)

= Can(u′a2u
′′v′v′′)

= Can(u′a2 Can(u′′v′v′′))

= u′a2 Can(u′′∂2v).

Now, as u′′a1 Can ∂2v, being a subword of u′a2u
′′a1 Can ∂2v, is canonical, we have

(6.2) [Can(u′′∂2v), ∂2v] = u′′∂2v.

As a consequence,

[Can(u′a2u
′′v′a2v

′′), ∂2v] = [u′a2 Can(u′′∂2v), ∂2v]

= [u′a2, u
′′]∂2v

= u′a2u
′′∂2v,

and one may complete the proof as in Case 3.
�

7. PROOF OF PROPOSITION 6.2

The basis of induction n = 1 being trivial, we assume that Proposition 6.2 and Theorem 6.3
hold for a complete graph on less than n vertices,

Proof of Proposition 6.2. Let us start by proving Part (i).
Let w ∈ F(A). By inductive hypothesis, for a complete graph on n− 1 vertices 2, . . . , n, the

SDS map F∂1w constructs on the ith vertex the state

pi = Can{i,...,n}Ti ∂1w = Can{i,...,n}Tiw,

hence, the statement holds for all vertices i > 1.
As far as vertex 1 is concerned, we need to show that p1 = Can T1w. If w does not contain

the letter a1, then p1 = ? = T1w and there is nothing to prove; otherwise, (Fw)1 = (FT1 w)1. We
know that the state on vertex 1 depends only on the system state (p′2, . . . , p

′
n), which is computed

by ∂1 T1w on the subgraph indexed by {2, . . . , n}, i.e.,

p1 = a1 [p′n, [. . . , [p
′
3, p
′
2] . . . ]] .

However, we may apply induction hypothesis and use Theorem 6.3(i), which yields

p1 = a1 [p′n, [. . . , [p
′
3, p
′
2] . . . ]]

= a1 Can ∂1 T1w

= Can T1w
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As for Part (ii) of Proposition 6.2, we proceed by induction on k. The basis of induction
descends directly from Part (i) and Lemma 4.14, as

p1 = Can T1w

= T1 Canw.

Assume now k > 1. By inductive hypothesis, there exists j < k such that

[pk−1, [. . . , [p2, p1] . . . ]] = T{1,...,k−1}Canw.

Recall that, by Remark 3.5, either Tk Canw is a suffix of T{1,...,k−1}Canw or vice versa. In the
former case, we know by Part (i) and Lemma 4.14, that

pk = Can{k,...,n}Tk w = Tk Can{k,...,n}w.(7.1)

By Lemma 4.15, Can{k,...,n}w is a quasi-subword of Canw, hence pk = Tk Can{k,...,n}w is a
quasi-subword of Tk Canw, which is a suffix of T{1,...,k−1}Canw. Thus,

[pk, [pk−1 [. . . , [p2, p1] . . . ]]] = [pk,T{1,...,k−1}Canw]

= T{1,...,k−1}Canw = T{1,...,k}Canw.

If, instead, T{1,...,k−1}Canw is a suffix of Tk Canw, pick j so that Tj Canw = T{1,...,k−1}Canw
and argue as follows.

Choose u such that Tk Canw = uTj Canw. As u ∈ 〈ai, k ≤ i ≤ n〉, then by Part (i)

pk = Can{k,...,n}(uTj Canw) = Can(u∂{1,...,k−1}Tj Canw).

By Proposition 4.12, as Tk Canw = uTj Canw is canonical, we may argue that the word
uaj Can{k,...,n}Tj Canw is also canonical. Apply now Proposition 6.5 to uaj∂{1,...,k−1}Tj Canw,
to obtain

[pk, aj∂{1,...k−1}Tj Canw] = [Can(u∂{1,...,k−1}Tj Canw), aj∂{1,...,k−1}Tj Canw] =

= uaj∂{1,...,k−1}Tj Canw,

hence a fortiori [pk,Tj Canw] = uTj Canw = Tk Canw, which equals T{1,...,k}Canw.
�

8. CONCLUSIONS AND FURTHER DEVELOPMENTS

If Γ is a finite directed acyclic graph, then any update system S supported on Γ induces a
dynamics monoid D(S) which naturally arises as a quotient of HKΓ. We refer to the smallest
quotient of HKΓ through which all evaluation maps F : F(V ) → D(S) factor as the universal
dynamics monoid D(Γ). In this paper, we have proved that D(Γn) ' HKΓn = Kn.

Conjecture 1. D(Γ) ' HKΓ for every finite directed acyclic graph.

This has been computationally checked for all instances with≤ 4 vertices and on most graphs
on 5 vertices. A conceptual approach to the problem of determining the universal dynamics of a
given graph Γ is by constructing an initial object, if there exists one, in the category of (pointed)
update systems supported on Γ; here “pointed” means that a preferred system state has been
chosen.

Conjecture 2. The pair (S?
n, ?) is an initial object in the category of pointed update systems

supported on Γn.

The dynamics of an initial update system is clearly universal and its elements are told apart by
their action on the marked system state ?: this has been the philosophy underneath the proof of
Theorem 6.3.
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