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1. INTRODUCTION

LetG be a connected semisimple (Lie or algebraic) group. ThenG equals its derived subgroup
and it is expected that, in many cases, every element ofG is indeed a commutator. The problem of
understanding under what conditions this claim holds, or at least every element can be expressed
as a product of a uniformly bounded quantity of commutators, has been investigated at length.

The fact that every element in a semisimple compact Lie group is a commutator dates back to
Gotô [7], whereas counterexamples are easy to construct in non compact cases — for instance,
in SL2(R), −id does not arise as a commutator. Later, Thompson [13] provided a classification
of all groups of the form SLn(k), where k is an arbitrary field, containing elements that are not
commutators.

Connected semisimple groups are treated in the complex case in [10], and in [11] over an
algebraically closed field of any characteristic. More recently, D̄oković showed [6], under mild
technical assumptions, that in the real semisimple case every element is a product of at most two
commutators.

Many variations on the topic have also been considered. To name just a few, Brown considered
the analogous statement in the case of simple Lie algebras [4]; Borel studied instead mapsGn →
G induced by nontrivial group words in n letters, showing [2] that they yield dominant maps.

In this paper, we establish a different property of the commutator map in semisimple compact
Lie groups and Lie algebras: its openness at the identity element. We say that a map f between
two topological spaces X and Y is open at a point x ∈ X if for all neighborhoods U of x the
image f(U) is a neighborhood of f(x), so that our claim amounts to showing that elements that
are sufficiently small (i.e., close to the identity element) arise as commutators of prescribedly
small elements. The usual proofs that in a compact semisimple Lie group every element is a
commutator provide little information towards this statement as they proceed by expressing each
element in the group as the commutator between an element lying in a torus and some expression,
which is typically “far” from the identity, depending on a nontrivial Coxeter element chosen in
the associated Weyl group.

In Section 2, we treat the infinitesimal case of compact semisimple Lie algebras: in this setting,
the commutator map is a surjective bilinear map. It was a classical problem answered negatively
by Cohen and Horowitz to establish whether the surjectivity of a bilinear map implies its openess
in zero [5, 8].
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We show that the commutator map of compact semisimple Lie algebras can be inductively
proved to be open by exploiting combinatorial properties of the corresponding root systems. The
basis of induction corresponds to Lie algebras of type A, and needs to be done by hand.

Our next step is to integrate to the group level the knowledge we have gathered for Lie alge-
bras. Once more, this is not totally immediate: indeed, the commutator map for a Lie algebra is
only a second order approximation of the commutator map for the corresponding Lie group, and
we face a scarcity of tools for translating second order information from the infinitesimal level
to the local one.

In Section 3, we solve this technical issue in two steps. First, we integrate half of the commu-
tator map of the Lie algebra g to the map

g× g 3 (x, y) 7→ x− exp(ady)x ∈ g,

and then use techniques from Rouvière [12], related to the Kashiwara-Vergne method, to get to
the group level.

We should stress that our strategy employs more than once the fact that all elements in a
compact Lie group (resp. Lie algebra) lie in a torus, and therefore does not immediately extend
to noncompact structures.

We would like to thank Alessandro Berarducci for drawing our attention to this problem,
which arises from his work on definable groups. Our openness statement is equivalent to the
claim that every element belonging to the infinitesimal neighbourhood of the identity (which is
a perfect subgroup) in the non-standard version of a compact semisimple Lie group is a com-
mutator. This issue was considered by Berarducci, Peterzil and Pillay — see in particular the
comments after [1, Proposition 2.14] — in connection to the question whether a finite central
extension of a group definable in an o-minimal structure M is interpretable in M . A positive
answer to the latter question would also imply that a finite central extension of a compact Lie
group has an induced Lie structure making the extension a topological cover.

2. OPENNESS OF THE COMMUTATOR MAP IN A COMPACT SEMISIMPLE LIE ALGEBRA

Throughout the paper, G will be a semisimple Lie group and g its Lie algebra. On g we
consider the Killing form κg.

In the following Lemma we characterize pairs of maximal toral subalgebras of sun which are
orthogonal to each other with respect to the Killing form. If u1, . . . , un is an orthonormal basis
of Cn then we denote by tu the set of elements in sun which are diagonal with respect to this
basis.

Lemma 2.1. Let u1, . . . , un and v1, . . . , vn be two orthonormal bases of Cn. Then tu is orthog-
onal to tv if and only if

(2.1) |ui · vh| = |uj · vk|,
for all i, j, h, k.

Proof. Define Uij ∈ sun by

Uij(uh) =


√
−1ui if h = i;

−
√
−1uj if h = j;

0 otherwise.

and similarly define Vij using the orthonormal basis vi. Then the operators Uij span tu and the
operators Vij span tv. Easy computations show that

Tr
(
UijVhk

)
= |ui · vk|2 + |uj · vh|2 − |ui · vh|2 − |uj · vk|2.

Hence tu is orthogonal to tv if and only if

|ui · vk|2 + |uj · vh|2 = |ui · vh|2 + |uj · vk|2
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for all i, j, h, k. Hence if Equation 2.1 is verified, then the two subalgebras are orthogonal. Vice
versa, assume they are orthogonal. Then, summing over h, we see that the above equalities imply

|ui · vk|2 = |uj · vk|2

for all i, j and summing over j we get

|ui · vh|2 = |ui · vk|2

proving the claim. �

Lemma 2.2. Let G be compact, t be a maximal toral subalgebra of g. Then there exists a
maximal toral subalgebra of g orthogonal to t.

Proof. We first analyse the case g = sun. Set ζ = e
2πi
n , and let u1, . . . , un be an orthonormal

basis of Cn such that t = tu. For j = 1, . . . , n define

vj =
1√
n

(u1 + ζju2 + ζ2ju2 + · · ·+ ζ(n−1)jun).

Then v1, . . . , vn is an orthonormal basis of Cn and |ui · vj| = 1/
√
n for all i, j. Hence tu is

orthogonal to tv. For g not isomorphic to sun we proceed by induction on the rank of g. If g is
not simple the claim follows immediately by induction, so we assume that g is simple.

Let gC (resp. tC) be the complexification of g (resp. tC), denote by Φ the associated root
system and choose a simple basis ∆ ⊂ Φ. Let ωα, for α ∈ ∆, be the corresponding fundamental
weights, and θ be the highest root of Φ. Since g is not of type A there exists a simple root α such
that θ = ωα or θ = 2ωα, see [3, Planches II-IX]. Let Ψ be the root system generated by ∆ \ {α}.

We can choose a standard Chevalley basis, hα with α ∈ ∆ and xα with α ∈ Φ such that
elements

kα =
√
−1hα uα = xα − x−α and vα =

√
−1(xα + x−α)

are a basis of g, see [9, Theorem 6.11, Formula (6.12)]. Notice that the subspace orthogonal of t
is the linear span of the elements uα and vα. Define

h = 〈kβ, uβ, vβ : β ∈ Ψ〉.
This is the semisimple part of the maximal Levi subalgebra associated to α. In particular the
claim is true for h. Let s be a maximal toral subalgebra orthogonal to the maximal toral subalge-
bra of h given by t ∩ h.

Notice also that we have [uθ, h] = [u−θ, h] = 0. Hence, for dimension reasons,

s⊕ Ruθ
is a maximal toral subalgebra of g orthogonal to t. �

We can now prove the following fact.

Theorem 2.1. Let G be compact. Then the commutator map

commg : g× g 3 (x, y) 7→ [x, y] ∈ g

is open at (0, 0).

Proof. We need to prove that if U is neighbourhood of 0 then commg(U × U) contains a neigh-
bourhood of 0. Notice first that being G compact we can assume that U is G-stable under the
adjoint action.

Choose now a regular element x ∈ U (an element is said to be regular if its centralizer is a
toral subalgebra) and let t be its centralizer. Let m be the orthogonal of t. Then

adx : m−→m

is a linear isomorphism. Hence there exists a G-stable neighbourhood V of G such that adx(m∩
U) ⊃ m ∩ V .
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Consider now ψ : G × (m ∩ U) given by ψ(g, y) = Adg[x, y]. It is clear that the image of
ψ is contained in commg(U × U) and that the image of ψ contains G · (V ∩ m). Finally from
the previous Lemma we have that G · (V ∩ m) = V . Hence commg(U × U) ⊃ V proving the
Theorem. �

3. OPENNESS OF THE COMMUTATOR MAP IN A LIE GROUP

We will now show that the commutator map

CommG : G×G 3 (X, Y ) 7→ XYX−1Y −1 ∈ G
is open at (id, id) as soon as the corresponding infinitesimal commutator map commg : g×g→ g
is open at (0, 0).

Lemma 3.1. The map commg is open at (0, 0) if and only if the map

Cg : g× g 3 (x, y) 7→ x− exp(ady)x ∈ g

is so.

Proof. The map

φ : g× g 3 (x, y) 7→
(

exp(ady)− 1

ady
(x), y

)
∈ g× g

is smooth, and has invertible differential in (0, 0), so it is a local diffeomorphism. However, the
composition of commg ◦φ equals Cg. �

In order to deal with openness of the commutator map in a group, we are going to use the
following variant [12, Remarque 4.2], related to the Kashiwara-Vergne method, of the Baker-
Campbell-Hausdorff formula.

Proposition 3.1. There exist, in a neighbourhood of (0, 0) ∈ g× g, analytical functions

P,Q : g× g→ G, P (0, 0) = Q(0, 0) = id,

satisfying
exp(a+ b) = exp(P (a, b).a) exp(Q(a, b).b),

for all a, b.

Theorem 3.1. The group commutator map CommG is open at (id, id) as soon as the infinitesimal
commutator map commg is open at (0, 0).

Proof. Let us apply Proposition 3.1 to a = x, b = − exp(ady)x. Using the notation introduced
above, we set P = P (a, b), Q = Q(a, b) and obtain

exp(x− exp(ady)x) = exp(P.x) exp(−Q. exp(ady)x)

= P exp(x)P−1(Q exp(y)) exp(−x)(Q exp(y))−1

= ABA−1B−1,

where A = P exp(x)P−1, B = Q exp(y)P−1.
Let U be a (G-stable) neighbourhood of 0 ∈ g on which exp restricts to a diffeomorphism.

The map ψ : g× g→ G defined by

(x, y) 7→ Q(x, exp(ady)x) exp(y)P (x, exp(ady)x)−1

is analytical, hence continuous. We may then find a neighbourhood U ′ of 0 ∈ g, which we
assume to be G-stable and contained in U , such that ψ(U ′ × U ′) ⊂ expU . If x, y lie in U ′, then
A and B = ψ(x, y) lie in expU ; moreover, the composition exp ◦Cg maps (x, y) in ABA−1B−1

and is open at (0, 0).
We thus conclude that all elements in a suitable neighbourhood of id ∈ G arise as commutators

of elements from expU . �

Corollary 3.1. If G is a compact semisimple Lie group, then CommG is open at (id, id).
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