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ABSTRACT. Results from the forthcoming papers [BDK4, D3] are announced. We introduce a
singular current construction, or base change, for pseudoalgebras which may be used to obtain a
primitive Lie pseudoalgebra of type H from a suitable one of type K. When applied to represen-
tations, it derives the pseudo de Rham complex of type H from that of type K — which is related
to Rumin’s construction from [Ru] — both with standard coefficients and with nontrivial Galois
coefficients. In the latter case, the construction yields exact complexes of modules for the Poisson
linearly compact Lie algebra PN exhibiting a nontrivial central action.

1. INTRODUCTION

The notion of (Lie) pseudoalgebra over a (cocommutative) Hopf algebra was introduced in
[BDK1] as a generalization of Lie conformal algebras, which have proved useful in dealing with
locality of formal distributions and the description of both vertex algebras [K, D1, D2, DM2] and
Poisson vertex algebras [DeK]. However, one of their most natural applications is the study of
discrete representations over linearly compact Lie algebras, as the annihilation algebra functor
may be used to associate with (commutative, associative, Lie) pseudoalgebras the corresponding
linearly compact algebras and representations of the latter can often by lifted to the pseudoalge-
braic language [BDK2, BDK3].

A special role among primitive (i.e., those that cannot be obtained by means of a nontrivial
current construction as in [BDK1, Section 4.2]) Lie pseudoalgebras is played by those of typeH ,
that correspond to the Hamiltonian family in Cartan’s description of simple infinite-dimensional
linearly compact Lie algebras [Ca]. Indeed, Lie pseudoalgebras H(d, χ, ω) are the only finite
primitive ones over U(d), whose annihilation algebra has a non trivial center; this, however, acts
trivially on every irreducible pseudoalgebra representation.

Here, we announce results from the forthcoming paper [D3] which generalize and clarify
[DM1]: we show how to use the concept of representations with coefficients [DM1] so as con-
struct projective representations of L = H(d, χ, ω) that correspond to irreducible discrete repre-
sentations of the annihilation algebra with a nontrivial central action. We show how to set up the
machinery and explain how to construct such modules starting from irreducible reps of a suitably
chosen Lie pseudoalgebra K(d, θ) by means of a singular current construction, or base change.

The distinction between regular and singular tensor modules already observed in [BDK2,
BDK3, BDK4] generalizes to the present setting, as can be shown by explicit computation of
Tor-spaces. As a byproduct of our techniques, we obtain an alternate more conceptual proof of
the non-exactness of the pseudocomplex of de Rham type of the Lie pseudoalgebras H(d, 0, ω).

The present constructions also sheds light on the similarity of type H and type K structures,
especially when reformulated with a pseudoalgebraic language.

2. PRIMITIVE LIE PSEUDOALGEBRAS OF TYPE H AND K

In this paper, definitions and notation concerning pseudoalgebras and Hopf algebras follow
those found in [BDK1].

Henceforth, d 6= 0 will be a finite dimensional Lie algebra and H = U(d) its universal
enveloping algebra. A simple Lie H-pseudoalgebra L is said to be primitive if its annihilation
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Lie algebra L := H∗ ⊗H L is (a central extension of) one of the simple linearly compact Lie
algebras from Cartan’s classification [Ca].

Here, we are interested in primitive Lie pseudoalgebras of type H and K, i.e., those such that
L is isomorphic to either the Poisson Lie algebra PN , which centrally extends HN , or the contact
Lie algebra KN . It is showed in [BDK1] that N must then equal dim d, so that primitive Lie
pseudoalgebras of type H (resp. K) only exist when d is even (resp. odd) dimensional. There are
further constraints that prevent, for instance, d from being abelian in the K-type case.

Proposition 2.1 ([BDK1, Section 8.5]). Let L be a Lie H-pseudoalgebra of type H (resp. K).
Then L = He is a free H-module of rank 1 and

[e ∗ e] = (r + s⊗ 1− 1⊗ s)⊗H e,

where 0 6= r ∈
∧2 d, s ∈ d satisfy

[r,∆(s)] = 0, ([r12, r13] + r12s3) + cyclic permutations = 0,

and
• supp r = d if L is of type H;
• s /∈ supp r and supp r + ks = d in type K,

where supp r ⊂ d denotes the subspace supporting r.

We shall then call (r, s, d) a datum of type H (resp. K).

Example 2.1. If (r, s, d) is a datum of type H, then r is non-degenerate and may be used to
identify d with its dual. Thus r and s translate to a 2-form ω ∈

∧2 d∗ and a trace form χ ∈ d∗

respectively, satisfying
dχ = 0, dω + χ ∧ ω = 0.

This means that ω is a 2-cocycle of d with values in the one-dimensional d-module kχ defined
by χ, yielding an abelian extension

0→ kχ → d′ → d→ 0.

More explicitly, if d′ = d⊕ kc as vector spaces, then

[g, h]′ = [g, h] + ω(g, h)c, [g, c]′ = χ(g)c

extend to a Lie bracket on d′. If χ = 0, then ω is a 2-cocycle of d and d′ is the corresponding
central extension.

By [BDK1, Remark 8.6], if we identify d as a subspace of d′, then (r, s + c, d′) is a datum of
type K. Notice that not all data of type K are obtained by this construction.

3. CURRENTS AND BASE CHANGE

3.1. Rings of coefficients.
Let H be a Hopf algebra over k with comultiplication ∆. A left H-comodule is a vector space C
over k endowed with a k-linear map

Λ : C −→ H ⊗ C
c 7−→ c(1) ⊗ c(2)

such that

(∆⊗ idC) ◦ Λ = (idH ⊗ Λ) ◦ Λ,(3.1)
(ε⊗ idC) ◦ Λ = idC .(3.2)

Λ is called the comodule structure map of C, or simply coaction. Repeated application of Λ
defines the n-fold coaction maps Λn : C → Hn−1 ⊗ C, n > 1. We employ the notation

(3.3) Λ2(c) = (∆⊗ idC) ◦ Λ(c) = (idH ⊗ Λ) ◦ Λ(c) = c(1) ⊗ c(2) ⊗ c(3),
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and similarly Λn−1(c) = c(1) ⊗ . . . ⊗ c(n). Notice that this can be misleading, as only the last
tensor factor c(n) lies in C, whereas all others are elements of H . The (left) counit axiom (3.2)
rewrites as

(3.4) (ε⊗ idC) ◦ Λ(c) = ε(c(1))c(2) = c.

Once again, the map ε can only be applied on elements of H , as no counit is defined on C, hence
no right counit axiom may be required to hold.

An H-comodule algebra is a unital k-algebra D endowed with an algebra homomorphism

Λ : D −→ H ⊗D
d 7−→ d(1) ⊗ d(2),

making D into an H-comodule. From now on we will call an H-comodule algebra D a ring of
coefficients, or simply roc, over H . When D is a roc over H , we will also say that (H,D) is a
roc.

Lemma 3.1. Let φ : H1 −→ H2 be a Hopf algebra homomorphism and D be a roc over H1 with
comodule map Λ1 : D → H1 ⊗D. Then Λ2 = (φ⊗ 1)Λ1 makes (H2, D) into a roc.

Example 3.1. Every Hopf algebra H is a roc over itself, with comodule structure map given by
∆.

Example 3.2. Let H ′ be a Hopf subalgebra of a Hopf algebra H . Since H ′ is a roc over itself
and the inclusion from H ′ to H is a Hopf homomorphism from H ′ to H , then H ′ is a roc over
H . In particular H ′ = k ⊂ H is a roc over H .

Definition 3.1. Let (D1,Λ1) and (D2,Λ2) be rings of coefficients over H1 and H2 respectively.
Let φ : H1 → H2 be a Hopf algebra homomorphism and ψ : D1 → D2 be an algebra homomor-
phism. The pair (φ, ψ) : (H1, D1) −→ (H2, D2) is a roc homomorphism if

(3.5) Λ2(ψ(d)) = (φ⊗ ψ)Λ1(d),

for every d ∈ D1.

Example 3.3. If Λ1,Λ2 are as in Lemma 3.1, then (φ, idD) : (H1, D) 7→ (H2, D) is a roc
homomorphism.

Notice that if (φ, ψ) : (H,D) → (H ′, D′) is a roc homomorphism, then I = kerφ is a Hopf
ideal of H1, and J = kerψ is an algebra ideal of D satisfying Λ(J) ⊂ I ⊗D + H ⊗ J . Every
pair (I, J) ⊂ (H,D) satisfying the above requirement is an ideal of the roc (H,D). Clearly,
whenever (I, J) is an ideal of (H,D), there exists a unique roc structure on (H/I,D/J) making
the natural projection (πI , πJ) into a roc homomorphism.

3.2. Lie pseudoalgebra representations with coefficients. Let (H,D) be a roc, L a Lie H-
pseudoalgebra, M a left D-module. A (left) pseudoaction of L on M with coefficients in D is
an (H ⊗D)-linear map

∗ : L⊗M −→ (H ⊗D)⊗DM
a⊗m 7→ a ∗m.

This pseudoaction defines a Lie pseudoalgebra representation (with coefficients) if

(3.6) [a ∗ b] ∗m = a ∗ (b ∗m)− (b ∗ (a ∗m))σ12 ,

for any a, b ∈ L, m ∈M , where we have extended ∗ to (H⊗(i+j−1) ⊗D)-linear maps

∗ : (H⊗i⊗HL)⊗ ((H⊗(j−1) ⊗D)⊗DM) −→ (H⊗(i+j−1) ⊗D)⊗DM,

by

(3.7) (F⊗Ha) ∗ (G⊗Dm) = (F ⊗G)(∆i−1 ⊗ Λj−1)(a ∗m),

where F ∈ H⊗i, G ∈ H⊗(j−1) ⊗D, a ∈ L,m ∈M , i, j ≥ 1.
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Notice that when D = H the above notion of representation coincides with usual Lie pseu-
doalgebra representations, as considered in [BDK1]. A representation M is finite if it is finitely
generated as a D-module. It is irreducible if the only D-submodules N ⊂ M satisfying
L ∗N ⊂ (H ⊗D)⊗D N are the trivial ones.

3.3. Base change on pseudoalgebras. Let H,H ′ be Hopf algebras, L a Lie H-pseudoalgebra.
Every Hopf algebra homomorphism φ : H −→ H ′ endows H ′ with a right H-module structure
so that we may consider the tensor product L′ = φ∗L := H ′⊗HL, which is a left H ′-module. It
is not difficult to show that the Lie H-pseudoalgebra structure on L induces a corresponding Lie
H ′-pseudoalgebra structure on L′, whose pseudobracket satisfies

(3.8) [(h′⊗Ha) ∗ (k′⊗Hb)] =
∑
i

(h′φ(hi)⊗ k′φ(ki))⊗H′ (1⊗Hei),

if [a ∗ b] =
∑
i

(hi ⊗ ki)⊗Hei, a, b ∈ L.

If φ : H → H ′, and L′ = φ∗L, we will say that L′ is obtained from L by extension of scalars
or base change. Let us see a few examples.

3.3.1. Current construction. Let H ⊂ H ′ be cocommutative Hopf algebras, ι : H → H ′ the
inclusion homomorphism. Then ι∗ coincides with the current construction Cur H

′

H described in
[BDK1, bla]. Clearly, if H = H ′, then ι = idH and ι∗ is canonically isomorphic to the identity
functor.

3.3.2. Algebra of 0-modes. Let A be a Lie conformal algebra, viewed as a Lie pseudoalgebra
overH = k[∂]. Then the counit ε : H → k is a Hopf algebra homomorphism, and ε∗A coincides
with the algebra of Fourier 0-modes of A, see [K].

3.3.3. K(d, θ) and H(d, χ, ω). Let L = He be a primitive Lie pseudoalgebra of type H corre-
sponding to the datum (r, s, d) and χ be the corresponding 1-form. If we set ∂ := ∂+χ(∂), then
the Lie pseudobracket on L may be rewritten as

[e ∗ e] =
∑
i

(∂i ⊗ ∂i)⊗H e.

Consider the datum (r, s, d′ = d ⊕ kc) of type K constructed in Example 2.1. The Lie pseu-
dobracket of the corresponding Lie pseudoalgebra of type K then rewrites as

[e′ ∗ e′] = (
∑
i

∂̄i ⊗ ∂̄i + c⊗ 1− 1⊗ c)⊗H′ e′.

The canonical projection π : d′ � d′/k ' d extends to a Hopf algebra homomorphism
π : H ′ → H mapping c to 0. It is then easy to see that π∗L′ = L. Notice that π is not injective,
so that π∗ cannot, and should not, be understood in terms of the abovementioned standard current
construction.

3.4. Base change on representations. It is possible to change scalars on both a Lie pseudoalge-
bra and its representation (with coefficients), once we make sure to employ a roc homomorphism.

Proposition 3.1. Let (H,D), (H ′, D′) be rocs, Φ = (φ, ψ) : (H,D) → (H ′, D′) a roc homo-
morphism, L a Lie pseudoalgebra over H , M a representation of L with coefficients in D. Then
there exists a natural pseudoalgebra action of L′ = φ∗L on M ′ = ψ∗M := D′ ⊗D M with
coefficients in D′ satisfying

(3.9) (h′⊗Ha) ∗ (d′⊗Dm) =
∑
i

(h′φ(hi)⊗ d′φ(di))⊗D′ (1⊗D ei),

if a ∗m =
∑
i

(hi ⊗ di)⊗Hei, a ∈ L, m ∈M .
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4. GALOIS OBJECTS AND PROJECTIVE REPRESENTATIONS

The possibility of straightening a pseudoalgebra action on the right makes it possible to gen-
eralize many results from [BDK1]. This naturally occurs when the representation takes its coef-
ficients in a Galois roc. Representations of a Lie H-pseudoalgebra with coefficients in a Galois
roc are called projective, in analogy with [Dc].

4.1. Straightening on the right.

Definition 4.1. A roc (H,D) is Galois if D is the Galois map

(4.1) β : D ⊗D −→ H ⊗D
d⊗ d′ 7→ (1⊗ d)∆(d′)

is a linear isomorphism.

The map β factors via D ⊗Dco-H D, where Dco-H = {d ∈ D|∆(d) = 1 ⊗ d}. Therefore,
in order for (H,D) to be Galois, one needs Dco-H = k. This implies that k ⊂ D is a Hopf-
Galois extension, hence D is a Galois object, thus justifying the terminology. Properties of
the inverse map β−1 are well understood. We use a Sweedler-like notation for β by setting
β−1(h⊗ 1) = h[1] ⊗ h[2].

Proposition 4.1. Let g, h ∈ H , d ∈ D. Then:

h[2](1) ⊗ h[1]h[2](2) = h⊗ 1(4.2)

h[1]h[2] = ε(h)1D(4.3)

(gh)[1] ⊗ (gh)[2] = h[1]g[1] ⊗ g[2]h[2](4.4)

d(2)(d(1))
[1] ⊗ (d(1))

[2] = 1⊗ d(4.5)

Proof. Compute β on β−1(h⊗ 1) = h[1] ⊗ h[2] in order to obtain (4.2). Then, applying ε⊗ idD
gives (4.3). Equations (4.4) and (4.5) are proved by applying β, which is invertible, on both
sides. �

Lemma 4.1. Let (H,D) be a Galois roc, let M be a right D-module and N be a left D-module.
Then the map

(4.6)
τR : (H ⊗M)⊗DN −→ M ⊗N

(h⊗m)⊗D n 7−→ mh[1] ⊗ h[2]n,
is a well defined linear isomorphism.

Proof. Using (4.2), the linear map extending m⊗ n 7→ (1⊗m)⊗D n is easily checked to be an
explicit inverse to τR. Thus, we only need to worry about well definedness of τR. However,

(h⊗m)⊗D dn = (h⊗m)∆(d)⊗D n = (hd(1) ⊗md(2))⊗D n
gets mapped to

md(2)(hd(1))
[1] ⊗ (hd(1))

[2]n = md(2)(d(1))
[1]h[1] ⊗ h[2](d(1))[2]n,

due to (4.4), and this equals mh[1] ⊗ h[2]dn thanks to (4.5). �

Corollary 4.1. Let (H,D) be a Galois roc, M be a right D-module, N a left D-module. Then
every element α ∈ (H ⊗M)⊗DN can be expressed as a finite sum

(4.7) α =
∑
i

(1⊗mi)⊗D ni,

where both mi ∈M and ni ∈ N are linearly independent over k, and
∑

im
i ⊗ ni ∈M ⊗N is

uniquely determined by α.

We will refer to (4.7) as to a right-straightened expression in (H ⊗M)⊗DN .
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4.2. Galois rocs and twists: the Weyl roc.
Let H be a cocommutative Hopf algebra, σ : H ⊗ H → k a Hopf 2-cocycle. Then [Sw] the
twisted product Hσ = k#σH is a comodule algebra over H , and a Hopf-Galois extension of k.
All Galois rocs (H,D), where D satisfies the normal basis condition, are obtained in this way;
for instance, when H is pointed, e.g., when it is cocommutative, all Galois objects satisfy the
normal basis condition.

We are going to give an alternate construction of this fact in a special case that is of interest to
us: let (r, s, d) be a datum of type H and (r, s+ c, d′) the corresponding datum of type K as from
Example 2.1. Set H = U(d), H ′ = U(d′). Then kc is an abelian ideal of d′, which is central
when s = 0 — which corresponds to χ = 0. Choose λ ∈ k and set Iλ = H ′ · (c− λ); notice that
c, hence c− λ, is central if and only if χ = 0.

Lemma 4.2.
• I0 is a Hopf ideal of H;
• If χ = 0, then (I0, Iλ) is a roc ideal of (H,H) for all λ ∈ k.

Proof. By construction, [d′, c] ⊂ kc, hence cH ′ ⊂ H ′c, thus showing that I0 = H ′c = cH ′ is
a two-sided ideal of H ′. However, when λχ = 0, c − λ is central in H ′, and all Iλ are also
two-sided ideals. As

∆(c− λ) = c⊗ 1 + 1⊗ (c− λ), S(c) = −c,
then

∆(Iλ) ⊂ I0 ⊗H ′ +H ′ ⊗ Iλ, S(I0) ⊂ I0,

whence both claims follow immediately. �

For every choice of λ ∈ k, let ψλ : H ′ −→ H ′/Iλ := Dλ be the natural projection, and denote
by

Λλ : Dλ = H ′/Iλ → (H ′ ⊗H ′)/(I0 ⊗H ′ +H ′ ⊗ Iλ) = D0 ⊗Dλ

the map induced by ∆. Notice that D0 identifies with H as a Hopf algebra.

Proposition 4.2.
• The Hopf algebra homomorphism φ : H ′ → H induced by the surjection d′ → d coin-

cides with ψ0 : H ′ → D0 ' H .
• The maps Λλ make each Dλ into a roc over H , and all pairs (φ, ψλ), λ ∈ k are roc

homomorphism.

Remark 4.1. Since ∆(Iλ) ⊂ I0⊗H ′+H ′⊗Iλ, the map Λλ : H ′/Iλ → H ′/I0⊗H ′/Iλ induced by
∆ always defines a comodule structure. However, H ′/Iλ carries a compatible algebra structure,
hence is a roc, only when Iλ is two-sided. When λχ 6= 0, the 2-sided ideal of H ′ generated by
Iλ coincides with the whole H ′.

It is not difficult to show that the rocs (H,Dλ) are all Galois. We have already mentioned
that D0 is isomorphic to H . The algebras Dλ, λ 6= 0 are all isomorphic as algebras, and also as
H-comodules, but not as rocs over H . If d is abelian of dimension N = 2n, χ = 0 and ω is
symplectic, thenDλ, λ 6= 0 is isomorphic to the Weyl algebraAn. In all cases,Dλ is a noetherian
domain.

5. AN EXACT SEQUENCE OF PROJECTIVE TENSOR MODULES OF H(d, 0, ω)

Finite irreducible representations (with standard coefficients) of primitive Lie pseudoalgebras
of type W, S, K have been considered in [BDK2, BDK3]. In all cases, one is able to locate a
class of representations called tensor module and to prove that every finite irreducible represen-
tation arises as a quotient of a suitably chosen tensor module. Tensor modules are generically
irreducible, but there are exceptions, called singular that can be put together in exact complexes
of representations; then the image (or equivalently, the kernel) of each morphism in the complex
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provides a maximal and irreducible submodule of the relevant tensor module. Tensor modules
are always free as H-modules.

These exceptional complexes possess a geometrical interpretation: in types W and S they arise
as twists [BDK2, Section 4.2] the pseudification of the de Rham complex, whereas in type K they
are related to the complex [Ru] introduced by Rumin in the context of contact manifolds.

Let us review the type K case more closely. Say (r, s, d′) is a datum of type K corresponding
to the Lie pseudoalgebra K(d′, θ′); here d′ = d + ks and d is the support of r. Tensor modules
for K(d′, θ′) are parametrized by finite dimensional representations of the Lie algebra d′ ⊕ csp d
as in [BDK3, Section 5.2]. For the sake of simplicity, we will ignore here the action of d′, which
can be recovered by applying a twist; then singular K(d′, θ′)-tensor modules occur when the
csp d-action restricts to one of the fundamental representations of sp d ⊂ csp d, for a suitable
choice of the scalar action.

The corresponding exact complex of singular tensor modules [BDK3, Theorem 6.1] is then

(5.1) 0→ Ω0(d′)/I0(d′)
d−→ · · · d−→ ΩN(d′)/IN(d′)

dR−→ JN+1(d′)
d−→ · · · d−→ J2N+1(d′),

where Ωi(d′) are modules of pseudoforms and I i(d′), J i(d′) are suitable submodules related to
Rumin’s construction. The last d morphism is not surjective, as the complex provides a resolution
of k viewed as a trivial H-module via the counit.

Let now (r, 0, d) be a datum of type H, and consider the primitive Lie pseudoalgebra L′ =
K(d′, θ′) = H ′e′ of type K associated with the datum of type K constructed in Example 2.1.
We have seen in Section 3.3.3 that L = H(d, 0, ω) = He coincides with the base change φ∗ L′,
where φ : H ′ → H is the Hopf algebra homomorphism induced by mapping the central element
c ∈ d′ ⊂ H ′ to 0.

As c is central in H ′, it may be specialized to any scalar value; let ψλ : H ′ → H ′/H ′(c−λ) '
Dλ denote the natural projection, so that φ = ψ0. We have already seen in Proposition 4.2 that
each pair (φ, ψλ) : (H ′, H ′) → (H,Dλ) is a roc homomorphism, which we may use to extend
scalars on (5.1) obtaining the following sequence of H(d, 0, ω) = φ∗K(d′, θ′)-modules

0→ ψλ∗ (Ω0(d′)/I0(d′))
ψλ∗ d−−→· · · ψ

λ
∗ d−−→ ψλ∗ (ΩN(d′)/IN(d′))

ψλ∗ d
R

−−−→ ψλ∗ J
N+1(d′)

ψλ∗ d−−→ · · · ψ
λ
∗ d−−→ ψλ∗ J

2N+1(d′),

(5.2)

which is certainly a complex, by functoriality of ψλ∗ .
Recall that (5.1) is a projective resolution of the trivial left H ′-module k, so that the homology

of (5.2) computes TorH
′

• (Dλ,k), which can also be computed by choosing a projective resolution
of the right H ′-module Dλ and tensoring it by k. This is easily done, by noticing that c− λ is a
nonzero divisor in H ′ so that

0→ H ′
·(c−λ)−−−→ H ′

ψλ−→ Dλ → 0

is exact. When λ 6= 0, applying ⊗H′k to the above resolution yields

0→ k
·(−λ)−−−→ k→ 0,

which is manifestly exact. This shows that TorH
′

i (Dλ,k) = 0 for all i > 0, so that (5.2) is an
exact complex of projective H(d, 0, ω)-modules when λ 6= 0; furthermore, the last connecting
homomorphism is surjective as Dλ⊗H′ k = 0. By using right-straightening as from Section 4.1,
one may show that projective H(d, 0, ω)-modules in (5.2) and their twists are the only singular
ones, so that we have a complete analogy with results from [BDK2, BDK3].

The exact sequence (5.2) may be employed to exhibit submodules of reducible projective ten-
sor modules. A classification of their maximal submodules, hence of their irreducible quotients,
will be made explicit in [D3].

One may proceed similarly when L = H(d, χ, ω) and λ = 0, which gives D0 ' H and
yields modules with standard coefficients. In this case, one obtains exactness of the sequence
(5.2) everywhere but at the second to last module. This sequence coincides with the pseudo de
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Rham complex from [BDK4] and keeps being a resolution of the trivial module H ⊗H′ k '
k. This allows one to control the one-dimensional non-exactness of the complex of de Rham
type for primitive Lie pseudoalgebras of type H, thus providing a more conceptual homological
explanation.
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