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Introduction

As is well known, in recent years string theory has given particular stimu-
lations and new input to algebraic geometry. The idea is to view a particle
as a (possibly closed) vibrating string. Then the motion of a particle de-
termines a surface in the ambient space. Such surfaces, under hypotheses
that physically make sense, can be considered as complex algebraic curves.
The correlators of the theory, called Gromov-Witten invariants, are numbers
that (in some sense) count how many curves pass through a given set of
algebraic cycles in the ambient space. There is a beautiful example of Kont-
sevich [Kon95] in which the ambient space is taken to be the complex pro-
jective plane P2C. If we denote by N(d) the number of rational curves of
degree d passing through 3d − 1 points in general position, then there is
a recursive formula giving these numbers. This formula is a direct conse-
quence of the fact that the generating series of the N(d) determines, via its
third derivatives, a product on H∗(P2) that is commutative, unitary and
associative. There is a general construction of a unitary and associative
product on the cohomology of a projective manifold generalizing this case.
This is quantum cohomology, which is given by taking as structure constants
the third derivatives of the generating function of the genus-0 Gromov-
Witten invariants (i.e. those correlators given by motions of strings that
“sweep” genus-0 Riemann surfaces). Quantum cohomology is associative
and unitary, but in general not commutative: it is super-commutative, which
means that the Z2-grading (even cohomology plus odd cohomology) is
taken into account in the commutation rules: two even classes commute,
two odd classes anticommute and an even class and an odd class com-
mute. This setting allows an important generalization, Frobenius manifolds,
that are super-manifolds endowed with a super-commutative, unitary and
associative product on the tangent sheaf. This concept is due to Dubrovin
[Dub93] in the case of classical manifolds and its generalization to the Z2-
graded case is due to Manin [Man99]. Frobenius manifolds can also be seen
from a formal point of view, and from the point of view of deformation the-
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ory (see [DeV99]). We do not take the latter point of view here. Frobenius
manifolds have many applications both in geometry and in mathematical
physics. For example, mirror symmetry can be seen as a non-trivial iso-
morphism between two Frobenius manifolds associated in different ways
with different projective manifolds (again, we do not treat this case here,
but refer to [DP99] and [dB99]). One peculiarity of quantum cohomology
is that it is often semisimple. This is unusual because cohomology is natu-
rally nilpotent. For example, the cohomology of P2 is H∗(P2) = C[x]=(x3),
whereas the quantum cohomology is (essentially)QH∗(P2) = C[x]=(x3−1).
The semisemplicity of quantum cohomology, or, in general, of a Frobenius
manifold is an important matter, since it ensures the integrability of a hier-
archy of partial differential equations, as proved by Dubrovin and Zhang
in [DZ]. This hierarchy is of central importance since, in many interesting
cases, it is satisfied by the partition function of the theory at hand. Chapter
1 is dedicated to superstructures. Our main result here is the following.

1.1.2 THEOREM Let A be a simple associative supercommutative superalgebra
with unit. Then the odd part A1 of A must be zero.

This is specially important, because it implies (see remark 2.2.1) that a
Frobenius super-manifold must have no odd part in order to be semisimple.
In particular, all projective manifolds with odd cohomology do not have semisim-
ple quantum cohomology.

In chapter 2 we deal with the problem of semisimplicity of Frobenius
manifolds. We first give all the definitions and show the example of Grass-
mannians. We then turn to prove a criterion for semisimplicity, theorems
2.4.1 and 2.4.3.

2.4.1 THEOREM Let M be a Frobenius manifold with Euler vector field E, coor-
dinates x0; : : : ; xn−1, corresponding vector fields @0; : : : ; @n−1, element @0 being
the unit. The following are equivalent:

1. M is semisimple around a point p ∈M ;

2. The operator E : TM → TM defined by E(X) = E ∗ X is diagonalizable
around p, its eigenvectors {ei} form a basis for TM , its eigenvalues {ui} are
a system of functions on M around p such that 0 6= ui(0) 6= uj(0) if i 6= j,
ui = ui − ui(0) is a system of coordinates onM around p and the functions
�i = g(ei; ei) are invertible around p.

2.4.3 THEOREM Let H be a formal Frobenius manifold with metric g and poten-
tial Φ. Suppose that the operator E0 : H → H defined by E0(h) = E(0) ∗0 h has
distinct non zero eigenvalues. Then H is semisimple.
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In the theory of quantum cohomology, this criterion is pontentially use-
ful, because it reduces the problem of understanding whether a manifold
has semisimple quantum cohomology to only three computations:

1. the Poincaré pairing of forms on the manifold;

2. the first Chern class of the manifold;

3. the 3-point Gromov-Witten invariants of the manifold.

The first two are quantities which can usually be calculated with little or no
effort. The 3-point Gromov-Witten invariants are the simplest invariants,
and often the only ones that can be calculated.

The hierarchy of partial differential equations we have cited above is of
central importance. The simplest case is when the Frobenius manifold we
deal with is the quantum cohomology of a point. Then the hierarchy pro-
duced is the KdV hierarchy. This is a family of integrable partial differential
equations that plays an important role in many aspects of mathematics. Its
origins lie in the study of solitonic waves, but it was soon seen also to play
a central role in the study of the eigenvalues of the Schrödinger operator,
in the study of Jacobians of algebraic curves and, more recently, in the so
called Virasoro conjecture for gravitational descendants. A survey of the ge-
ometrical aspects of the theory of KdV equations can be found in [Arb],
and all details of the Virasoro conjecture can be found in [Get99] and in
the original papers of Eguchi, Hori and Xiong [EHX97, EX98]. This con-
jecture states that the generating function of the gravitational descendants
(which are a generalization of Gromov-Witten invariants that play the role
of Mumford-Morita classes on the moduli stacks of stable maps) is anni-
hilated by a family of operators {Lk}k≥=−1 that satisfy the commutation
relation

[Lh; Lk] = (h− k)Lh+k; (1)

thus yielding the positive part of the Virasoro algebra (which is the in-
finite dimensional Lie algebra generated by {Lk}k∈Z satisfying (1)). The
conjecture, once proved, would produce an infinite amount of constraints
the gravitational descendants must satisfy. The conjecture was proven by
Kontsevich [Kon92] in the case of a point, which was the original form of
the conjecture, as proposed by Witten in [Wit91], and partial results were
obtained by various people, including Dubrovin, Zhang (see [DZ]) and
Givental (see [Giv]). Here we concentrate on the approach of Dubrovin
and Zhang, whose main ingredient is a Frobenius manifold (which is of-
ten semisimple) with which they associate a bihamiltonian structure on its
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loop space. The language they use is that of infinite-dimensional calcu-
lus of variations. Our proposal is that a tool which could be alternatively
used is given by conformal Poisson algebras. These are introduced and stud-
ied in chapter 3. The idea comes from previous works of Kac, Bakalov,
Beilinson, D’Andrea and Drinfeld [Kac98, BD, BDK01, DK98], in which al-
gebraic counterparts of various aspect of physical theories are presented
and brought to mathematical maturity. Our starting point is the theory of
Lie pseudo-algebras in [BDK01] and Lie∗-algebras in [BD]. These are Lie alge-
bras over certain categories that have a tensorial structure in a weak sense.
In particular, we are interested in conformal algebras, which can be seen as
C[@]-modules with a family of “Lie-brackets” that depend on a formal pa-
rameter �. We have put quotation marks because the usual anticommuta-
tion and Jacobi identities are replaced by their conformal versions in which
the parameter � plays a vital role. The definition of conformal algebras is
given in definition 3.1. Unfortunately, it does not fully suit our needs as we
need to be able to express the bracket of a function by a product of functions.
We therefore give the definition of a conformal Poisson algebra:

DEFINITION 3.2 A conformal Poisson algebra is a C[@]-module L endowed
with a C-bilinear map (called the �-bracket)

L⊗ L −→ C[@; �]⊗ L

a⊗ b 7−→ {a�b} =
∑
k

�kBk(a; b)

and a commutative and unitary product

L× L −→ L

(a; b) 7−→ ab

such that @ is a derivation with respect to this product and such that

• {@a�b} = −�{a�b},

• {a�@b} = (@ + �){a�b},

• {b�a} = −{a−@−�b},

• {a�{b�c}} = {{a�b}�+�c}+ {b�{a�c}},

• {ab�c} = {a@+�c}b+ {b@+�c}a,

• {a�bc} = b{a�c}+ c{a�b},
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• {@a@+�b}c = {a@+�b}(−@ − �)c,

• {a@+�@b}c = (@ + �)({a@+�b}c).

We point out some of the immediate properties of conformal Poisson al-
gebras in lemmas 3.1.1, 3.1.2 and 3.1.3. Our first result, in this framework,
is theorem 3.1.4, that gives a precise interpretation and meaning to the Lie
structure induced by a conformal algebra L on its quotient C = L=@L. De-
note by

∫
: L→ C the natural projection.

3.1.4 THEOREM The bracket on integrals can be expressed as

[
∫
F;
∫
G] =

∫
{F �G}|�=0:

We then give the definition of a pencil of conformal Poisson structures,
i.e. two conformal Poisson brackets whose linear combinations are again
conformal Poisson. This is very much in the style of the bihamiltonian for-
malism of [Mag78, DZ] and indeed inspired by these papers. This enables
us to construct an infinite family of partial differential equations (3.24) for
any pencil of conformal Poisson brackets. At this point we are able to study
the Dubrovin-Zhang formalism of [DZ] with our new language. With a
Frobenius manifold we associate a pencil of Poisson brackets and make
this explicit for M = QH∗(P1), writing down the equations of the entire
hierarchy of PDEs in formulae (3.37), (3.38) and (3.39):

dx

dtn;1
=

[n+1
2 ]∑

j=1

4j
(
n+ 1

2j

)
(2j − 1)!!2

j
xn+1−2j@xejy+

+
[n+2

2 ]∑
j=1

4j
(
n+ 1
2j − 1

)
(2j − 1)!!2xn+2−2jejy@y;

dy

dtn;1
=(n+ 1)xn@x+

[n2 ]∑
j=1

22j+1

(
n+ 1
2j + 1

)
(2j + 1)!!(2j − 1)

j
xn−2j@xejy+

+
[n+1

2 ]∑
j=1

22j+1

(
n+ 1

2j

)
(2j − 1)!!2xn+1−2jejy@y;

dx

dtn;2
=

dx

dtn−1;1
;

dy

dtn;2
=

dy

dtn−1;1
:
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This is the explicit form of the genus-0 equations found by Eguchi and Yang
in [EY94].

The Lie algebra structure on the integrals is explicitly studied in the
rank 1 case (L = C[u; @u; @2u; : : :]) in section 3.6. This section contains a
series of technical results of purely algebraic interest and is somehow apart
from the rest of the dissertation. The first result we obtain is a theorem on
the existence of an infinite-dimensional abelian sub-algebra.

3.6.5 THEOREM The subalgebraA ⊂ C given by

A = SpanC{
∫

1;
∫
u;
∫
u2;
∫
u3; : : :}

is abelian.

We then prove several formulae: equation (3.45)

[
∫
e�@

iu;

∫
e�@

ju] =
∑
�1∈P j

�2∈P i+1

�r(�2)+1�r(�1)+1N(�1)N(�2)×

×
∫
e�@

iu+�@ju

r(�1)∏
h=1

@�
1
h

+ju

r(�2)∏
k=1

@�
2
k
+iu;

where N(�) is an arithmetic function on partitions, and the following.

3.6.6 THEOREM The following formulae hold true for all m ≥ 3; n ≥ 2

[
∫
um;

∫
(@u)n] = −6

(
m

3

)
(n− 1)

∫
um−3(@u)n+1;

[
∫

(@u)m;
∫

(@u)n] = 4
(
m

2

)(
n

2

)
(m− n)

∫
(@u)m+n−5(@2u)3:

We are only interested in the rank 1 algebra because all the other con-
formal Poisson structures we deal with are (up to a basis change) a direct
product of rank 1 ones.



Chapter 1

Superstructures

1.1 Superalgebras and semisimplicity

DEFINITION 1.1 LetA be an algebra over an integral domainR with unit 1 ∈ R
of characteristic 0. We say that A is a superalgebra if there exists an R-linear
involution � : A→ A. The eigenvalues of � can only be±1, so let us denote byAi

(i ∈ {0; 1}) the eigenspace of eigenvalue (−1)i. We shall refer to the decomposition
A = A0 ⊕ A1 as the Z2-decomposition of A.

We emphasize the fact that the superstructure endows A0 with a struc-
ture of algebra and A1 with a structure of A0-module. A superalgebra is
simple if it has no non-trivial homomorphic images:

DEFINITION 1.2 Let A be a superalgebra. We say that A is simple if and only if
every surjective morphism of superalgebras (i.e. morphism of algebras preserving
Z2-degrees) ' : A→ B 6= 0 is an isomorphism. A superalgebra is semisimple if
and only if it is direct sum of simple superalgebras.

There is also a natural concept of supercommutativity for superalgebras
which corresponds to commutativity: a superalgebra is supercommutative
if, given a ∈ Ai; b ∈ Aj ,

ab = (−1)ijba:

In particular, if A is supercommutative then A0 is commutative.
Notice that the corresponding notion of superideal (i.e. the kernel of a

morphism of superalgebras) is more refined than that of ideal of the under-
lying algebra structure.

11
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EXAMPLE 1.1 Let A = C⊕ C. Define a C-linear involution on A by

� : C⊕ C −→ C⊕ C
(x; y) −→ (y; x):

This yields a commutative superalgebra structure on A. Its Z2-grading A =
A0 ⊕ A1 is given by A0 = {(x; x)|x ∈ C}; A1 = {(x;−x)|x ∈ C}. Let ' :
C⊕C→ C be the projection onto the first factor. The map ' is a morphism
of algebras, but not a morphism of superalgebras. Therefore, J = ker' is an
ideal of A but not a superideal. In fact, A is a simple superalgebra but only
a semisimple algebra.

Let J be an ideal of A. J is also a superideal if and only if �(J) ⊂ J ,
and this occurs if and only if J = (J ∩ A0)⊕ (J ∩ A1) = J0 ⊕ J1. However,
things work out sufficiently well:

1.1.1 PROPOSITION A superalgebra A is semisimple if and only if its un-
derlying algebra structure is semisimple.

Proof. Suppose that A is a semisimple algebra. Let I be a superideal of A.
Then I is also an ideal, and there exists an ideal J ⊂ A such that A = I ⊕ J .
Therefore, the exact sequence

0 −→ J −→ A −→ I −→ 0

endows J with the structure of a superideal. Conversly, suppose that A is
a semisimple superalgebra. Let I be an ideal of A. Then I is defined by a
short exact sequence of algebras

0 −→ I −→ A
'−→ B −→ 0:

Let C = '(A0) ⊕ '(A1). Notice that I is a superideal if and only if C '
B = '(A)0 + '(A1) (i.e. if and only if the latter sum is direct). Then define
a superideal S(I) ⊂ I of A by the exact sequence of superalgebras

0 −→ S(I) −→ A −→ C −→ 0

(I is a superideal if and only if S(I) = I). B is naturally isomorphic to
C=C∩I . From the semisimplicity ofA as a superalgebra, it follows thatC is
(isomorphic to) a superideal J ⊂ A; therefore,A is isomorphic to I⊕J=J∩I .
�
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Throughout what follows we shall always assume that A is associative,
unitary and supercommutative. Let J = J0 ⊕ J1 be a subgroup of the
additive group of A. Thus, the conditions for J to be a superideal are

A0J0 ⊂J0

A1J0 ⊂J1

A0J1 ⊂J1

A1J1 ⊂J0:

(1.1)

In particular J0 is an ideal of A0 and J1 is a sub-A0-module of A1. Notice
that A2

1 ⊕ A1 and A0 ⊕ A0A1 are ideals of A. If A is simple, we must have

A2
1 = A0 and A0A1 = A1:

1.1.2 THEOREM Let A be a simple associative supercommutative superal-
gebra with unit. Then the odd part A1 of A must be zero.

Proof. Let us suppose that the odd part of A does not vanish. We begin by
showing that if A is simple then A0 is a simple algebra and A1 is a simple
A0-module. Let J0 be an ideal of A0 and J1 = A1J0. Then A0J0 ⊂ J0 by hy-
pothesis, whereas A0J1 = A0A1J0, which, by the simplicity of A is equal to
A1J0 = J1. On the other hand,A1J0 = J1 andA1J1 = A1A1J0 = A0J0 ⊂ J0.
Therefore, J = J0 ⊕ J1 is an ideal of A; hence, it must be trivial, so that J0

is either 0 or A0; consequently, A0 is simple. Similar calculations show that
if I1 is a sub-A0-module of A1, then I = A1I1 ⊕ I1 is an ideal of A, and
therefore I1 must be trivial (i.e. either A1 or 0), and thus A1 is a simple A0-
module. Hence, there exists an isomorphism of A0 modules  : A0 → A1.
Now, since A0 is simple, it is generated by an idempotent element e. Call
f =  (e) the image of this element through the A0-module isomorphism
 . Then f generates A1 as an A0-module. However, the supercommuta-
tivity of A implies that f2 = 1

2 [f; f ] = 0, so that A2
1 = 0, contradicting our

hypotheses of simplicity of A and non-triviality of A1. �

1.1.3 REMARK If we omit the hypothesis of supercommutativity in the
theorem above, we are left with a dicotomy: A is a simple superalgebra
if and only if it is either a simple algebra or the direct sum of a simple alge-
bra A0 and a simple A0-module A1.
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1.2 Supermanifolds

In this section we follow the excellent book of Manin [Man99]. We begin
with a very general definition that is intended to fit whatever category one
prefers (real manifolds, complex manifolds, algebraic varieties, etc.).

DEFINITION 1.3 A (real, complex, algebraic, etc.) supermanifoldM is a ringed
space (M;OM ) such that

1. the sheaf OM decomposes OM = OM;0⊕OM;1 (i.e. is a sheaf of superrings);

2. Mred = (M;OM;red = OM=(OM;1)) is a (real, complex, algebraic, etc.)
manifold called the reduced manifold;

3. there exists a free OM;red-sheaf E such that OM is locally isomorphic to the
exterior algebra ∧E.

For a homogeneous element x ∈ OM we shall denote by x ∈ {0; 1} its
degree with respect to the Z2-grading, i.e. x ∈ OM;x. For a given set of
coordinates {xi}, @i = @=@xi has the same degree as xi (we are considering
the tangent sheaf as a sheaf of modules over a superring, and hence giving
it a natural superstructure). We give the opposite degree to forms, i.e. dx
has degree x + 1mod 2. Whenever we have a superalgebra, the symmetric
and exterior powers of the algebra “talk to each other” in a much more in-
tricate way. This is because the symmetric second power of a superalgebra
A is defined by S2A = A ⊗ A=IS , where IS is the ideal generated by (ho-
mogeneous) elements of the form a⊗ b− (−1)abb⊗ a, whereas the exterior
power is ∧2A = A ⊗ A=I∧, where I∧ is the ideal generated by (homoge-
nous) elements of the form a ⊗ b + (−1)abb ⊗ a. This then implies certain
isomorphisms between symmetric and exterior powers of suitable shifts of
the algebra1.

DEFINITION 1.4 An affine flat structure on a supermanifold M is a pair of
OM -sheaves T f

M ⊂ TM such that

1. [T f
M ;T

f
M ] = 0;

2. TM = T f
M ⊗k OM , where k is the field we are working on.

1It is not important here to be more specific, but the interested reader may find an accu-
rate description of the more general Z-graded case in [Gra99].
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The sections of T f
M are referred to as flat vector fiels. This can be thought

of as the existence of a connection ∇ on the tangent sheaf, and T f
M is the

sheaf of vector fields that are flat with respect to ∇. We shall also need the
concept of a Riemannian metric, i.e. a supersymmetric even pairing

g : S2
TM −→ OM (1.2)

which is non-degenerate in the sense that it induces an isomorphism g′ :
T
∗
M → TM . In the presence of an affine flat structure T f

M , a Riemannian
metric is required to be compatible with the affine flat structure, meaning
that, for all X;Y ∈ T f

M , we must have g(X;Y ) ∈ k.
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Chapter 2

Frobenius manifolds

2.1 Definitions and first properties

Let A : S3
TM → OM be an even symmetric tensor. We shall denote by

A′ : S2
TM → T ∗M the partial dualization of A.

DEFINITION 2.1 Let M be a supermanifold endowed with an affine flat struc-
ture T f

M and a compatible Riemannian metric g structure on TM . A structure of
Frobenius manifold on M is a pair consisting of a local function Φ ∈ OM called
the potential and a vector field E ∈ TM such that, letting

A : S3
TM −→ OM

X ⊗ Y ⊗ Z 7−→ XY ZΦ;

1. the product ∗ : S2
TM → TM defined by the composition

S2
TM

A′ //

∗

55T
∗
M

g′ // TM

is unitary and associative;

2. E is an Euler vector field, i.e. satisfies

E(g(X;Y ))− g([E;X]; Y )− g(X; [E; Y ]) = d · g(X;Y ) (2.1)
[E;X ∗ Y ]− [E;X] ∗ Y −X ∗ [E; Y ] = X ∗ Y (2.2)

for all vector fields X;Y and for some constant d called the charge of the
Euler field.

17
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Notice that the definition of the product is equivalent to requiring the
following diagram

S3
TM

1⊗∗
��

∗⊗1 // S2
TM

g

��
S2
TM g

// OM

commutes. Furthermore, the associativity of the product is equivalent to re-
quiring Φ satisfies a set of partial differential equations first devised by Wit-
ten, Dijgraaf, E. Verlinde and H. Verlinde, and hence called WDVV equa-
tions:∑

l;m

Φhilg
lmΦmjk = (−1)xh(xi+xj)

∑
l;m

Φijlg
lmΦmik; ∀h; i; j; k; (2.3)

where all the xa are flat coordinates onM , Φabc denote the third derivatives
@a@b@cΦ and glm is the l-th row and m-th column element of the inverse
matrix to (gab) = (g(@a; @b)).

EXAMPLE 2.1 Let M = C2, with coordinates x and y. Denote by @x and @y
the corresponding vector fields (i.e. @x = @=@x and @y = @=@y) and let

Φ =
x2y

2
+ ey: (2.4)

Moreover, set
E = x@x + 2@y: (2.5)

The product on TC2 is then such that @x is the identity and @y ∗ @y = ey@x.
This Frobenius manifold is in some sense the first (smallest) interesting one.
It is the quantum cohomology of P1 and we shall refer to it throughout what
follows as a nontrivial but simple example. Notice that if we take

e1 =
1
2
@x +

1
2
e−

y
2 @y

e2 =
1
2
@x −

1
2
e−

y
2 @y

(2.6)

as generators of the tangent sheaf, we get a basis of orthogonal idempotents

ei ∗ ej = δijej ; (2.7)

where δij is the Kronecker symbol.
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A problem which is often encountered is that in concrete examples there
is little or no way to know whether the potential is an actual function or
whether it is only a formal expression that comes from some idea (usually
from physics). We therefore will need a formal version of definition 2.1: we
take a free Z2-graded module H (that will play the role of M ) over a super
Q-algebra k. We shall look at H as a formal neighbourhood of the 0 ∈ H,
identifying the functions on H with the formal power series k[[H∨]]. The
affine flat structure will be the tangent space to H, that we shall identify
with H itself, and the tangent sheaf will therefore be H ⊗k k[[H∨]]. The
compatible metric will be an even symmetric pairing g : H ⊗ H → k (i.e.
pairs of flat vectors map under g to constants). We shall also fix a basis {∆i}
ofH (whose relative coordinates we shall call {xi}) and set gij = g(∆i;∆j),
(gij) = (gij)−1. The Frobenius structure will be given by:

1. a formal power series Φ such that the product defined on the basis of
H as

∆i ∗∆j =
∑
h;k

@3Φ
@xi@xj@xh

ghk∆k

and extended linearly to H ⊗k k[[H∨]] is unitary (with identity ∆0)
and associative;

2. a formal power series E =
∑

k Ek(x)∆k that satisfies condition 2 of
definition 2.1, i.e. the conditions are satisfied once we do the opposite
identifications (for example considering E as

∑
k Ek@=@xk).

An important aspect of Frobenius manifolds is that they can be viewed
as manifolds with a pencil of flat connections. Namely, we define for all z ∈ C
a connection ∇(z) : TM → TM ⊗ Ω1(M) by letting the covariant derivative
of a vector field Y with respect to another vector field X be

∇(z)
X Y = ∇XY + zX ∗ Y: (2.8)

A straightforward calculation shows that the flatness of the pencil of con-
nections ([∇X ;∇Y ]Z = ∇[X;Y ]Z) is equivalent to asking the associativity of
∗. Furthermore, we can consider M̂ = M ×C (with z coordinate on C) and
naturally extend the family of connections to a single connection on M̂ by
letting Ê = E − z@z and defining

∇̂XY = ∇(z)
X Y

∇̂
Ê
@z = 0

∇̂
Ê
Y = [Ê; Y ] + �Y;

(2.9)
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where � = 2− d=2.

2.1.1 PROPOSITION The connection ∇̂ is flat.

Proof. We only need to show that

(∇̂
Ê
∇̂@i − ∇̂@i∇̂Ê

)@j = ∇̂
[Ê;@i]

@j

for any choice of @i = @=@xi and @j = @=@xj , where xi and xj are elements
of a local flat coordinate system. Let calculate the left hand side: the first
term is

∇̂
Ê
∇̂@i@j =∇̂

Ê
(z@i ∗ @j) = Ê(z)@i ∗ @j + z∇̂

Ê
(@i ∗ @j) =

=(E − z@z)z@i ∗ @j + z([Ê; @i ∗ @j ] + �@i ∗ @j) =
=z(−@i ∗ @j + [E; @i ∗ @j ] + �@i ∗ @j);

whereas the second is

∇̂@i∇̂Ê
@j =∇̂@i([Ê; @j ] + �@j) = ∇̂@i [E; @j ] + z�@i ∗ @j =

=z(@i ∗ [E; @j ] + �@i ∗ @j):

The difference of these two is then

∇̂
Ê
∇̂@i@j−∇̂@i∇̂Ê

@j =
=z(−@i ∗ @j + [E; @i ∗ @j ] + �@i ∗ @j − @i ∗ [E; @j ] + �@i ∗ @j)
=z[E; @i] ∗ @j :

This is exactly what we wanted, because the term on the right hand side is

∇̂
[Ê;@i]

@j = ∇̂[E;@i]@j = z[E; @i] ∗ @j :

�

2.2 Semisimple Frobenius manifolds

DEFINITION 2.2 A semisimple Frobenius manifold is a Frobenius manifold
such that ∗ endows TM with the structure of a sheaf of semisimple OM -algebras.

It is clear that situations may be found in which the semisimplicity of
the algebra TM is true only on some open subset of M . In fact semisim-
plicity is an open condition and we mentioned above we shall often be
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interested in formal manifolds rather than in geometric ones. It will suffice
to verify, in such a case, the semisimplicity of the algebra given by the fiber
over 0. This algebra we shall denote by H (see the identifications above)
and its product by ∗0:

∆i ∗0 ∆j =
∑
h;k

@3Φ
@xi@xj@xh

∣∣∣∣
x=0

ghk∆k:

2.2.1 REMARK We only consider Frobenius manifolds because the “super”
case does not make much sense. If the definition above is re-read using
supermanifolds and superalgebras instead of manifolds and algebras, then
theorem 1.1.2 guarantees that TM must have no odd part, which means M
must be a classical manifold.

Sunce we are dealing only with torsionless comutative objects, the fol-
lowing proposition is clear:

2.2.2 PROPOSITION A Frobenius manifold M is semisimple if and only if
there exists a local basis {ei} of TM such that ei ∗ ej = δijej .

Notice that the metric is diagonal on this basis:

g(ei; ej) = g(ei ∗ ei; ej) = g(ei; ei ∗ ej) = g(ei; δijej) = δijg(ei; ej):

The book of Manin [Man99] contains a complete review of the basic facts
about semisimple Frobenius manifolds. In order to give a complete picture,
we include, without proof, the main theorem.

2.2.3 THEOREM Let M be a manifold. A structure of semisimple Frobe-
nius manifold on M is given by the following data:

1. a product ∗ on TM ;

2. a basis {ei} such that ei ∗ ej = δijej ;

3. a flat metric g such that g(ei; ej) = δijg(ei; ei) = �ji �j (i.e. g =
∑

i �i�
2
i ,

where �i is dual to ei);

4. a diagonal 3-tensor A with the same coefficients as g: A =
∑

i �i�
3
i ;

5. a set of coordinates {ui} onM (called canonical coordinates) such that
ei = @=@ui and �i = dui;

6. a local function � (called the metric potential) such that �i = ei�.
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The cubic tensor in the theorem is the tensor of third derivatives of the
potential:

A(X;Y; Z) = XY ZΦ:

It is clear that the metric potential � must satisfy certain constraints. These
are called Darboux-Egoroff equations. We do not include them here.

2.3 Quantum cohomology of Grassmannians

Let X be a projective variety. Consider Kontsevich’s moduli stacks of sta-
ble maps Mg;n(X;�). These are suitable compactifications of Mg;n(X;�),
which are the spaces whose points are maps � : C → X from an n-pointed
genus g smooth algebraic curve such that the homology class [�(C)] co-
incides with a given homology class � ∈ H+

2 (X) (where the subscript +
denotes the positive cone generated by algebraic subvarieties od X of di-
mension 1). There is a great deal to say about Mg;n(X;�). Even in very
simple cases they do not behave too well, thus forcing us to consider them
as Deligne-Mumford stacks. One key fact is that their dimension does not
coincide with their so-called expected dimension, which is the dimension ob-
tained by writing down the Riemann-Roch theorem:

D = expdimMg;n(X;�) = 3g − 3 + n+
∫
�

c1(X) + dimX:

However, it can be proved that there exists a virtual fundamental class

[Mg;n(X;�)]v ∈ H2D(Mg;n(X;�))

over which we can integrate and have geometrically useful and significant
objects (see [BF97] for full details and proofs). Define the natural maps

�i :Mg;n(X;�) −→ X

[�;C; p1; : : : ; pn] 7−→ �(pi);

and consider their pullbacks

�∗i : H∗(X) −→ H∗(Mg;n(X;�)):

We are considering cohomology with coefficients in C in order to have al-
gebraic closure. We shall need this later on to give concrete meaning to the
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orthogonal idempotents of semisimple quantum cohomology. Define now
the Gromov-Witten invariants

Ig;n;�(1; : : : ; n) =
∫

[Mg;n(X;�)]v
�∗1(1) ∪ : : : ∪ �∗n(n): (2.10)

There is a naı̈ve way to look at these objects that corresponds to reality in
only very few cases (such as convex varieties whose cohomology is purely
algebraic): Ig;n;�(1; : : : ; n) is the number of curves of genus g and “de-
gree” � that pass through Poincaré duals of the i taken in generic position,
if this number is finite, and is 0 if this number is ∞. To define quantum
cohomology we only need the genus zero invariants. Next, consider the
generating series of these

Φ() =
∑
n≥3

�∈H+
2 (X)

1
n!
I0;n;�(; : : : ; ): (2.11)

Given a basis ∆0 = 1;∆1; : : : ;∆N of H∗(X) such that ∆i ∈ H |∆i|(X) and
the corresponding coordinates x0; x1; : : : ; xN , we can view Φ as a formal
power series in the xi. It is well known that Φ satisfies the WDVV equa-
tions (2.3) and therefore defines a structure of Frobenius manifold on the
tangent space to the domain in which it converges – or, in case we can
say nothing about the convergence, it defines a formal Frobenius struc-
ture on H∗(X). The Riemannian metric in this case is the Poincaré pairing
g(∆i;∆j) =

∫
X

∆i ∪∆j . The Euler field has the form

E =
∑
i

(
1− |∆i|

2

)
xi

@

@xi
+

∑
j:|∆j |=2

rj
@

@xj
;

where the rj are defined by

c1(X) =
∑

j:|∆j |=2

rj∆j :

We shall denote the quantum cohomology of X by QH∗(X). The central
fiber will be denoted by QH∗0(X). Notice that this coincides with H∗(X)
as a vector space, but that its product is different since its structure con-
stants are all the three-point Gromov-Wotten invariants, whereas the usual
product structure constants are only those three-point Gromov-Witten in-
variants calculated for � = 0.
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There is a variant to this construction. Suppose ∆1; : : : ;∆t ∈ H2(X) for
some t ≤ N . Then we can define

Ψ() = Φ(x0; x1; : : : ; xt; 0; : : : ; 0):

This gives us another structure, called the small quantum cohomology. The
basic properties of Gromov-Witten invariants (see [FP97] for full details)
show that the product is completely defined by the whole set of three-point
invariants. Therefore, the central fiber of the small quantum cohomology,
which is defined in the obvious way, coincides with QH∗0(X).

By remark 2.2.1, the only projective varieties whose quantum coho-
molgy can be semisimple are those whose odd cohomology is zero. Pro-
jective spaces, Grassmannians and certain Fano varieties have this prop-
erty. We shall deal here only with the former two. There is a conjecture
of Dubrovin [Dub98] on the nature of the projective varieties whose quan-
tum cohomology is semisimple. A consequence of this conjecture is that
the three types cited above are the only cases.

Next, let us see what this construction yields in the case of Grassman-
nians. The usual cohomology of the Grassmannian Gr(k; n) of k-planes in
n-space is given by

H∗(Gr(k; n)) = C[�1; : : : ; �k]=(Sn−k+1; : : : ; Sn);

where the Sj are defined by the formal power series

(1 + �1t+ �2t
2 + : : :+ �kt

k)−1 =
∑
j≥0

(−1)jSjtj :

The small quantum cohomology of Gr(k; n) is (see [FP97] for a full account)

QH∗s(Gr(k; n)) = C[�1; : : : ; �k][[q]]=(Sn−k+1; : : : ; Sn + (−1)n−kq):

Its central fiber (i.e. the algebra in q = 1) is then given by

QH∗0(Gr(k; n)) = C[�1; : : : ; �k]=(Sn−k+1; : : : ; Sn + (−1)n−k):

Change variables:

�j =
∑

1≤i1<i2<:::<ij≤k
xi1xik : : : xij :

2.3.1 LEMMA In the above variables, Sj(x1; : : : ; xk) is the elementary com-
plete symmetric polynomial in the k variables x1; : : : ; xk.
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Proof. We use induction on j. When j = 1, S1 = �1 =
∑

i xi. So suppose
the lemma is true for all h < j. Take j1; : : : jk ≥ 0 such that

∑
i ji = j. We

want to write down the coefficient of xj11 · : : : · x
jk
k in Sj . By definition, �h

is the sum of
(
h
k

)
monomials, therefore the contribution of �hSj−h to the

coefficient of xj11 · : : : · x
jk
k in Sj is

(
h
k

)
. Then, by the definition of the Si, the

coefficient of xj11 · : : : · x
jk
k in Sj is

k∑
h=1

(−1)h+1

(
h

k

)
= (1− 1)k + 1 = 1:

�

We will be done once we show that the simultaneous equations

Sn−k+1(x1; : : : ; xk) = 0
Sn−k+2(x1; : : : ; xk) = 0
: : :

Sn−1(x1; : : : ; xk) = 0
Sn(x1; : : : ; xk) = ±1:

(2.12)

have solutions that are all distinct and non-zero. Since the Sj have the form
described in the lemma above, we can write

Sn−k+2(x1; : : : ; xk) = x1Sn−k+1(x1; : : : ; xk) + Sn−k+2(x2; : : : ; xk):

The first summand on the right hand side is zero, therefore we can write
the second equation as Sn−k+2(x2; : : : ; xk) = 0. The straightforward gener-
alization of this allows us to write down (2.12) as

Sn−k+1(x1; : : : ; xk) = 0
Sn−k+2(x2; : : : ; xk) = 0
: : :

Sn−k+j(xj ; : : : ; xk) = 0
: : :

Sn−1(xk−1; xk) = 0
Sn(xk) = ±1:

(2.13)

It is easy to see that this implies that x1; : : : ; xk are distinct solutions of
Sn(x) = ±1, i.e. of xn = ±1. Therefore, we see that QH∗0(Gr(k; n)) ∼=
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C[x1; : : : ; xk]=(xnj ), which is semisimple. In the case of the projective space
Pn = Gr(1; n + 1) we can actually construct the basis of orthogonal idem-

potents. Let � = e
2�
√
−1

n+1 . Let ∆i be the generator of H2i(Pn), xi be the
corresponding coordinate and @i = @=@xi. Define q ∈ QH∗(Pn) to be the
(n+1)-st root of @∗(n+1)

1 that satisfies q ≡ e
x1
r+1mod (x2; : : : ; xn). The orthog-

onal idempotents are then given by

ei =
1

n+ 1

n∑
j=0

�−ij(@1 ∗ q−1)∗j :

Notice that in the quantum setting the Plücker embedding implies an alge-
bra isomorphism

QH∗0(Gr(k; n)) ∼= QH∗0(P(nk)−1)

which extends to a (formal) neighbourhood thus yielding

QH∗(Gr(k; n)) ∼= QH∗(P(nk)−1):

2.4 A criterion for semisimplicity

2.4.1 THEOREM Let M be a Frobenius manifold with Euler vector field E,
coordinates x0; : : : ; xn−1, corresponding vector fields @0; : : : ; @n−1, element
@0 being the unit. The following are equivalent:

1. M is semisimple around a point p ∈M ;

2. The operator E : TM → TM defined by E(X) = E ∗ X is diag-
onalizable around p, its eigenvectors {ei} form a basis for TM , its
eigenvalues {ui} form a system of functions onM around p such that
0 6= ui(0) 6= uj(0) if i 6= j, ui = ui − ui(0) is a system of coordinates
on M around p and the functions �i = g(ei; ei) are invertible around
p.

Proof. The fact that 1 implies 2 is straightforward (see [Man99] or [Dub93]).
The other implication is subtler. By the commutativity and associativity of
the product, and since we have fixed notationE∗ei = uiei, we see that if we
take i 6= j then uiei ∗ej = E ∗ei ∗ej = ei ∗E ∗ej = ujei ∗ej . Therefore the ei
are orthogonal. So, let ei ∗ ei =

∑
j �

j
iej . Again, using the associativity, we

find that E ∗ ei ∗ ei is, on the one hand equal to uiei ∗ ei =
∑

j ui�
j
iej , and,

on the other hand, to
∑

j uj�
j
iej . Therefore, for all i and j, ui�

j
i = uj�

j
i ,
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which implies that aji = 0 if i 6= j. Now, uiei = E ∗ ei =
∑

j E
jej ∗ ei,

where the last equality is given by expressing E in terms of the basis {eh}.
Therefore, uiei = Ei�iiei which implies that each �ii is invertible, so that we
can assume �ii = 1. To sum up, we have found ei ∗ ej = δijej . Notice that
we have also found thatE =

∑
i uiei. Being the Euler field of the Frobenius

manifold, E satisfies equation (2.2), which, choosing X = Y = ei reads

[E; ei]− 2[E; ei] ∗ ei = ei;

which we will rewrite as

[E; ei] ∗ (@0 − 2ei) = ei:

Notice however that @0 =
∑

j ej , so that @0 − 2ei = −ei +
∑

j 6=i ej , and this
implies that [E; ei] = −ei. On the other hand, we may choose X = E and
Y = ei in equation (2.2), to get

[E;uiei]− [E;E] ∗ ei − E ∗ [E; ei] = E ∗ ei

which implies that [E;E ∗ ei] = 0. Expanding the left hand side yields

0 = E(ui)ei + uiE(ei)− uiei(E)
= E(ui)ei + ui[E; ei]
= E(ui)ei − uiei;

so that
E(ui) = ui:

Reading this equation on the lines {uj = 0; ∀j 6= h} yields

ei(uj) = δij :

If we now expand the right hand side of −ei = [E; ei], we get

−ei =
∑
h

(uheh(ei)− ei(uh)eh − uhei(eh))

= −ei +
∑
h

uh[eh; ei]:

By calculating this last expression on the lines {uj = 0; ∀j 6= h}, we get

[ei; ej ] = 0;



28 CHAPTER 2. FROBENIUS MANIFOLDS

therefore
ei =

@

@ui
:

To end the proof we need to show that there exists a function � on M
around p such that ei� = �i. To do this we write down the multiplication
in terms of the potential:

δijej = ei ∗ ej =
∑
h;k

eiejehΦ(u)ghkek:

Notice that (gij) is the diagonal matrix with entries �i, so that the last equa-
tion reduces to

δijej =
∑
h

eiejehΦ(u)�−1
h eh;

which we rewrite as
eiejehΦ(u) = δijδjh�h:

In this way we have found

�i = e3
iΦ(u);

which implies that

ei�j = eie
3
jΦ(u) = ejeie

2
jΦ(u) = 0

if i 6= j. In particular, ei�j = ej�i whatever the choices of i and j, and, since
we are around a point p, we have reached our goal. �

Unfortunately, as we already pointed out, it is often difficult to know
the full structure of a Frobenius manifold. For example, in quantum coho-
mology, one might not know how to compute all the Gromov-Witten in-
variants except those calculated on three classes, I0;3;� . Therefore, we look
for a criterion which can be applied to such a situation. Furthermore, in
quantum cohomology, we know from [Man99] that the explicit form of the
Euler field is

E =
∑
i

(
1− |∆i|

2

)
xi

@

@xi
+

∑
j:|∆j |=2

rj
@

@xj
;

where the ∆i are a homogeneous basis for H∗, ∆i ∈ H |∆i|, the xi are the
coordinates corresponding to ∆i and the rj are the coefficients of the first
Chern class of the manifold whose cohomology we are considering, i.e.

c1(X) =
∑

j:|∆j |=2

rj∆j :
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Therefore, E|xi=0 = c1(X). We then have the problem of understanding
what we can say about semisemplicity when we know so little. We shall
first need a lemma which, for the sake of simplicity, we here prove for one
variable only.

2.4.2 LEMMA Let Px(t) = tn+an−1(x)tn−1+: : :+a0(x), ai(x) ∈ C[[x]]. Sup-
pose that P0(t) = tn+an−1(0)tn−1 + : : :+a0(0) has only simple roots. Then
for each simple root t0 there exists a solution t(x; t0) ∈ C[[x]] to Px(t) = 0
such that t(0; t0) = t0.

Proof. Suppose we have a solution mod (xN ). This can be written as
tN−1 = t0 + �1x + : : : + �N−1t

N−1. We want to show that there exists a
solution mod (xN+1), which extends tN−1. We denote tN = tN−1 + �Nx

N

and write down the equation Px(tN ) = 0. We know that the equation is
true mod (xN ), so that we only need to show the existence of an �N such
that the coefficient of xN in Px(tN ) be 0mod (xN ). If we expand Px(tN ) in
its Taylor series, we find that this coefficient is

P ′0(t0)�N + AN (t0; �1; : : : ; �N−1);

where AN is a polynomial which is easy to compute. We have reached our
goal once we set

�N =
AN

P ′0(t0)
;

which is possible because P0 has only simple roots. Therefore, there is a
unique way to extend the solution. Now, since

⋂
r>0(xr) = 0, we see that

t = t0 + �1x+ �2x
2 + : : : is in fact a solution to Px(t) = 0 in C[[x]]. �

2.4.3 THEOREM Let H be a formal Frobenius manifold with metric g and
potential Φ. Suppose that the operator E0 : H → H defined by E0(h) =
E(0) ∗0 h has distinct non zero eigenvalues. Then H is semisimple.

Proof. Denote the eigenvalues and the eigenvectors of E0 by vi and "i,
respectively. By the previous lemma we know that the vi extend to eigen-
values ui of E such that ui(0) = vi. By construction, the ui − vi will be
coordinates on the tangent sheaf, and the corresponding eigenvectors ei of
Ewill be a basis for the tangent sheaf because ei(0) = "i. On the other hand,
�i(0) = g(ei; ei)(0) = g(ei(0); ei(0)) = g("i; "i) which is invertible since the
"i are a basis for H and g is nondegenerate. Therefore we can apply the
theorem above. �
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Chapter 3

Conformal algebras and KdV

3.1 Basic definitions

DEFINITION 3.1 A conformal algebra is a C[@]-module L endowed with a C-
bilinear map (called the �-bracket)

L⊗ L −→ C[@; �]⊗ L

a⊗ b 7−→ {a�b} =
∑
k

�kBk(a; b)

satisfying

• {@a�b} = −�{a�b},

• {a�@b} = (@ + �){a�b},

• {b�a} = −{a−@−�b},

• {a�{b�c}} = {{a�b}�+�c}+ {b�{a�c}}.

Such an algebra can be seen as a Lie algebra over the category of C[@]-
modules, and a whole theory of Lie algebras over appropriate categories
can be built in a very general setting (see [BD, BDK01, DK98]). Our goal is
to define a conformal Poisson structure. For this we need a commutative
and unitary1 product on L

L× L −→ L

(a; b) 7−→ ab
(3.1)

1The existence of a unit is not resctrictive.

31
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that satisfies the Leibniz rule @(ab) = (@a)b + a@b. We also need to specify
how the structure of C[@]-module behaves when both products occur: if we
have {a�b} =

∑
k �

kBk(a; b), with Bk(a; b) ∈ L, we shall write

{a�b}c =
∑
k

(�kc)Bk(a; b) (3.2)

and
c{a�b} = ({a�b})c =

∑
k

(�kBk(a; b))c: (3.3)

In this way we can read {a�b} as {a�b}1 = {a@+�b}1.

DEFINITION 3.2 A conformal Poisson algebra is a conformal algebra L with
a commutative and unitary product (3.1) such that

{ab�c} = {a@+�c}b+ {b@+�c}a
{a�bc} = b{a�c}+ c{a�b}

(3.4)

and

{@a@+�b}c = {a@+�b}(−@ − �)c;
{a@+�@b}c = (@ + �)({a@+�b}c):

(3.5)

A typical case is when we have a conformal algebra L and consider the
conformal Poisson structure on the free algebra generated by L induced by
(3.4) and (3.5). For example, we shall often have a conformal structure on
the free 1-dimensional C[@]-module (call u its generator) L =

⊕
i≥0 C@iu

and use (3.4) and (3.5) to give C[u; @u; @2u; : : :] a conformal Poisson struc-
ture.

The motivation for this definition lies in all the mathematics involved
in the definition of Poisson brackets over infinite dimensional manifolds,
for example loop spaces. In such cases, the Poisson algebra is that of differ-
ential polynomials in functions ui(x), where i ∈ {1; : : : ; r} and x varies
on a compact manifold (S1 in the case of loop spaces), and the bracket
{ui(x); uj(y)} lives only along the diagonal:

{ui(x); uj(y)} =
∑
k

Bijk(u(y))@ky�(x− y): (3.6)

Then, using the Leibniz rule, the bracket extends to all differential polyno-
mials:

{P (x); Q(y)} =
∑
h;k;i;j

@P (x)

@u
(h)
i

@Q(y)

@u
(k)
j

@kx@
h
y {ui(x); uj(y)}: (3.7)
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Therefore,

{PQ;R} =
∑
h;k;i;j

(
P (x)

@Q(x)

@u
(h)
i

+Q(x)
@P (x)

@u
(h)
i

)
@R(y)

@u
(k)
j

@kx@
h
y {ui(x); uj(y)} =

=
∑

h;k;i;j;l

P (x)
@Q(x)

@u
(h)
i

@R(y)

@u
(k)
j

@kx@
h
y (Bijl(y)�(l)(x− y)) + (P ↔ Q) =

=
∑

h;k;i;j;l

@Q(x)

@u
(h)
i

@R(y)

@u
(k)
j

@hy (Bijl(y)P (x)�(l+k)(x− y)) + (P ↔ Q);

where (P ↔ Q) denotes the same summand with P and Q exchanged.
Recalling that

f(x)�(p)(x− y) =
p∑

q=0

(
p

q

)
f (q)(y)�(p−q)(x− y)

and applying the Fourier transform2 �(k)(x− y)→ �k yields formula (3.4).
In particular we shall be interested in the case studied by Dubrovin and

Zhang in [DZ, DZ98b, DZ98a, DZ99]. They consider Poisson brackets of the
form (3.6) on the loop space of a manifold M : L = L(M) = {' : S1 → M}
(M will later need to be a Frobenius manifold). In order to do this they
identify the functions on Lwith elements of the algebra

A = C[u(j)
i ]i=1;:::;n;j≥1 ⊗D;

where D is the space of formal distributions on M . We shall write u′i
for u(1)

i and so on, whenever possible. Also, the (smooth) coefficients co-
efficients of the polynomials (that lie in L by definition) are written as
u(x) = (u1(x); : : : ; un(x)). The derivation with respect to the parameter
of S1 then acts in the natural way: for f ∈ Awe set

@xf =
@f

@x
+

n∑
i=1

@f

@ui
u′i +

n∑
i=1

∑
j≥1

@f

@u
(j)
i

u
(j+1)
i :

In such a setting, given a Poisson structure (3.6), we can define a conformal
Poisson structure on

L = O⊗ C[@jui]i=1;:::;n;j≥1 (3.8)

2See [BDK01] for full details.
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by setting
{ui�uj} =

∑
k

�kBijk(u) (3.9)

and then extending the �-bracket to the whole algebra using (3.4) and (3.5).
Here O denotes the ring of analytic functions of the variables u1; : : : ; un, or,
in case we are working on a formal Frobenius manifold, the ring of formal
power series in the variables u1; : : : ; un. In this procedure we do not lose any
information. This is due to the fact there exists a construction that allows
us to go back to the original Poisson structure. We briefly review it here,
the main reference being [DK98]. The first thing to do is to look at the
conformal algebra on the C[@]-module generated by u1; : : : ; un, R. For any
a; b ∈ R and any non-negative integer n, define the product ·(n)· : R⊗R→
R by

{a�b} =
∑
n≥0

�na(n)b: (3.10)

These products can obviously be easily expressed in terms of the Bijk(u)
above, but it is not essential here. The axioms of conformal algebra translate
into the following set of equations for these products

• a(n)b = 0 for n� 0,

• (@a)(n)b = −na(n−1)b,

• a(n)(@b) = @(a(n)b) + na(n−1)b,

• a(n)b = −
∑
j≥0

(−1)n+j 1
j!
@j(b(n+j)a),

• a(m)(b(n)c)− b(n)(a(m)c) =
m∑
j=0

(
m

j

)
(a(j)b)(m+n−j)c.

It is clear that a set of products satisfying them is equivalent to a structure
of conformal algebra. We can now define

Lie(R) = R[t; t−1]=(@ + @t)R[t; t−1]:

To give Lie(R) a Lie structure, write an for atn and define

[am; bn] =
∑
j∈Z+

(
m

j

)
(a(j)b)m+n−j :
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The family
{a(z) =

∑
n∈Z

anz
−n−1}

spans Lie(R). Now this Lie algebra can be seen to coincide with the Lie
algebra (A; {· ; ·}) defined above, thus showing that there is no information
loss in the passage to the conformal setting.

Another few words must be spent on formula (3.2) to make its meaning
clearer.

3.1.1 LEMMA For all k ≥ 1 and all u ∈ L,

{uk�u} = k{u@+�u}uk−1 (3.11)

holds.

Proof. We use induction. The first step is clear: {u�u} = {u@+�u}1 and
@1 = 0. Next, suppose that {uk−1

�u} = (k − 1){u@+�u}uk−2. We know
from (3.2) that

{uk�u} = {uk−1
@+�u}u+ {u@+lu}uk−1:

We therefore only need to prove that

{uk−1
@+�u}u = (k − 1){u@+�u}uk−1: (3.12)

By setting Bj = Bj(u; u), our inductive hypothesis is∑
h≥0

Bh(uk−1; u)�h = (k − 1)
∑
j≥0

Bj(@ + �)juk−2:

The coefficient Bh(uk−1; u) of �h in this formula is equal to

Bh(uk−1; u) = (k − 1)
∑
a≥h

Ba

(
a

h

)
@a−huk−2:

Formula (3.12) isequivalent to∑
h≥0

Bh(uk−1; u)(@ + �)hu = (k − 1)
∑
j≥0

Bj(@ + �)juk−1: (3.13)

The left hand side is equal to

∑
h≥0

∑
a≥h

Ba

(
a

h

)
@a−huk−2(@ + �)hu =

∑
h≥0

∑
a≥h

h∑
b=0

Ba

(
a

h

)
@a−huk−2@bu�h−b:
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Now, letting c = a− h+ b, we can rewrite this as

∑
a≥0

a∑
c=0

c∑
b=0

Ba

(
a

c

)(
c

b

)
@c−buk−2@bu�a−c =

=
∑
a≥0

a∑
c=0

Ba

(
a

c

)
@cuk−1�a−c

=
∑
a≥0

Ba(@ + �)auk−1

thus proving (3.13). �

We omit the proof of the next two lemmas, since the technicalities in-
volved are slightly more complicated, but of the same nature.

3.1.2 LEMMA For any given a1; : : : ; aN ; b1; : : : ; bM ∈ L,

{
N∏
i=1

ai�

M∏
j=1

b} =
N∑
i=1

M∑
j=1

(
∏
k 6=j

bk){ai@+�bj}(
∏
h 6=i

ah) (3.14)

holds.

Let {ui} be a basis of L as a C[@]-module. Let @i;k be the derivation of L
defined by

@i;k(@huj) =

{
1 if i = j and h = k

0 otherwise.

Notice that @i;k@ = @@i;k + @i;k−1 for all i; k (where @i;−1 = 0).

3.1.3 LEMMA For all F;G ∈ L,

{F �G} =
∑
i;j;h;k

@j;kG(@ + �)k({ui@+�uj}(−@ − �)h@i;hF ) (3.15)

holds.

EXAMPLE 3.1 Take L = C[@] with generator v. Define

{u�u} = � (3.16)

(the right way to write this would be {u�u} = � · c, where c is a non-zero
multiple of the unit 1 ∈ C ⊂ C[@], but we shall omit the c throughout what



3.1. BASIC DEFINITIONS 37

follows as we can rescale u so as to have c = 1). If we consider the Miura
transformation3

v =
1
4
u2 + @u; (3.17)

we can carry out the calculations to write down {v�v}:

{v�v} =
1
16
{u2

�u
2}+

1
4
{u2

�@u}+
1
4
{@u�u2}+ {@u�@u}:

The various terms are:

{u2
�u

2} = 4u{u@+�u}u = 4u(@ + �)u = 4u@u+ 4�u2

{u2
�@u} = 2(@ + �){u@+�u}u = 2(@ + �)2u;

{@u�u2} = 2u{u@+�u}(−@ − �)1 = −2u(@ + �)21 = −2�2u;

{@u�@u} = −�(@ + �)� = −�3:

We then find

{v�v} =
1
4
u@u+

1
4
�2u+

1
2
@2u+ �@u− �3 =

1
2
@v + �v − �3: (3.18)

We emphasize the fact that particular care must be taken in writing down
the parentheses because of the Leibniz rule. This is the meaning of (3.2)
and (3.3).

Let C = L=@L and denote by∫
: L −→ C

the natural projection4. C has a natural Lie algebra structure. To describe it,
we must first introduce variational derivatives: define �i as the differential
operator

�i =
∑
k≥0

(−@)k@i;k:

Then �i@F = 0, because

�i@F =
∑
k≥0

(−@)k@i;k@F =
∑
k≥0

@(−@)k@i;kF+

+
∑
h≥0

(−@)h@i;h−1F = @�iF − @�iF = 0:

3In general a Miura transformation is a map ui 7→
∑

k≥0 F
i
k(u), where F

i
k involves

derivatives up to the k-th order.
4The notation is like this because in practice integrals of rapidly decreasing functions or

integrals over the circle are often to be considered. We shall refer to elements in the quotient
as integrals.
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Let B = (Bij(u; �)) be the matrix with coefficients in L⊗ C[�] given by the
�-bracket, i.e.

{ui�uj} = Bij(u; �):

We can now write down the expression of the Lie bracket on integrals

[· ; ·] : C⊗ C −→ C∫
F ⊗

∫
G 7−→ [

∫
F;
∫
G] =

∫
(B|�=@�F )�G;

(3.19)

where �F denotes the vector whose components are the �iF . In example
3.1, if we choose v as a generator, the Lie structure on itegrals is

[
∫
F (v);

∫
G(v)] =

∫
(@�vF (v))�vG(v):

If we take u as a generator (it is not a generator, since transormation (3.17) is
not invertible, but we shall deal with this problem later), the Lie structure
on itegrals is

[
∫
F (u);

∫
G(u)] =

∫
(1

2@u · �uF (u) + @�uF (u)− @3�uF (u))�uG(u):

3.1.4 THEOREM The bracket on integrals can be expressed as

[
∫
F;
∫
G] =

∫
{F �G}|�=0: (3.20)

Proof. Let {ui}i=1;:::;n be a basis for L. By formula (3.15), we can write

{F �G}|�=0 = {F 0G} =
n∑

i;j=1

∑
h;k≥0

@j;kG@
k({ui@uj}(−@)h@i;hF ):

In the quotient and using integration by parts (which, in our case tells us
that

∫
@FG = −

∫
F@G), we get

∫
{F �G}|�=0 =

∫ n∑
i;j=1

∑
k≥0

(−@)k@j;kG{ui@uj}�iF

=
∫ n∑

i;j=1

�jGBij(u; @)�iF =
∫
�G(B|�=@�F ):

�

3.1.5 PROPOSITION Bracket (3.19) defines a Lie algebra structure on C.
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Proof. The bilinearity is obvious.

[
∫
G;
∫
F ] =

∫
{G0F} = −

∫
{F−@G} = −

∫
{F 0G} = −[

∫
F;
∫
G]

because @ ≡ 0 on C. The Jacobi identity is immediate as well:

[
∫
F; [
∫
G;
∫
H]] = [

∫
F;
∫
{G0H}] =

∫
{F 0{G0H}}

=
∫
{{F 0G}0H}+

∫
{G0{F 0H}}

= [
∫
{F 0G};

∫
H] + [

∫
G;
∫
{F 0H}]

= [[F;G]; H] + [G; [F;H]]:

�

DEFINITION 3.3 A pencil of conformal Poisson structures on a C[@]-module
L is a pair of conformal Poisson structures

{·�·}1; {·�·}2 : L⊗ L −→ L⊗ C[�]

such that for any t ∈ C the map

{·�·}(t) = {·�·}1 − t{·�·}2 (3.21)

yields a conformal Poisson structure on L.

3.1.6 REMARK A pencil of conformal Poisson structures on L clearly de-
scends to a pencil of Lie structures on C.

3.2 Drawing hierarchies with pencils

We give here the construction of an infinite family of partial differential
equations. The procedure we carry out is due to Lenard and Magri (see
[GGKM74] and [Mag78] for the full details). Suppose now that the C[@]-
module L is endowed with a pencil of conformal poisson structures (3.21).
Also suppose that there exist a numberN ≥ 1 andN independent elements
of L c1−1; : : : ; c

N
−1 such that

[
∫
c�−1; ·]1 ≡ 0: (3.22)

Such an element is called a Casimir element (or simply a casimir) of the first
Poisson structure. We can then construct, for all � ∈ {1; : : : ; N}, a family of
elements c�i by imposing

[
∫
c�i ; ·]1 = [

∫
c�i−1; ·]2: (3.23)
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We then write down the associated KdV-type hierarchy by

du

dtk;�
= {c�k�u}1|�=0: (3.24)

EXAMPLE 3.2 Let L = C[@] with generator u. Define the Poisson pencil by

{u�u}1 = �

{u�u}2 =
1
2
@u+ �u− �3:

(3.25)

There exists a unique casimir of the first Poisson structure, namely c−1 = u,
since

[
∫
u;
∫
G]1 =

∫
(�|�=@�u)�G =

∫
(@1)�G = 0

for all G ∈ L. We then find

[
∫
c−1;

∫
G]2 =

∫
(1

2@u�u+ u@�u− @3�u)�g =
∫

1
2u@u�G;

so that, since
[
∫
co;
∫
G]1 =

∫
(@�c0)�G;

we must have
@�c0 =

1
2
@u:

Therefore,

�c0 =
1
2
u

and

c0 =
u2

4
:

In a similar manner we can find

c1 =
1
8
u3 +

1
4

(@u)2

and all the other ci. So, the first two equations of the hierarchy are

du

dt0
= {c0�u}1|�=0 =

1
2
@u;

du

dt1
= {c1�u}1|�=0 =

3u@u
8
− @3u

2
:

(3.26)

The second of these equations is the original KdV equation (modulo some
rescaling). In fact, all the hierarchy of this pencil coincides with the original
KdV hierarchy.
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The case we are interested in is when in a given basis {ui} of L, the first
Poisson structure has the form

{ui�uj}1 = �ij�

for some invertible symmetric matrix (�ij).

3.2.1 REMARK There is a certain freedom in taking the c�i : we can choose
the c�−1 and replace them by a suitable number of linear combinations of
the c�−1. Then, in the recursive procedure, we can add derivatives to the
other c�i because �@ ≡ 0.

3.3 Grading and dispersionless limits

LetA be a free C[@]-module. Let {ui}i=1;:::;n be a basis forA (this is meant
in a broad sense: if A is of finite rank then {ui}i=1;:::;n must naturally be a
C[@]-basis, but if A is not of finite rank, as in the case of (3.8), we require
the ui to generateA in a sense that varies from case to case). Assign degree
0 to each ui and degree 1 to @. Introduce a formal parameter " of degree
−1 and define L to be formal Laurent series with coefficients inA, i.e. L =
A⊗C[["]]["−1]. In order to define a �-bracket on Lwhich makes some sense
from the graded point of view, we need to give � degree 1 and define the
bracket as a bilinear map

L⊗ L −→ (C[�]⊗ L)[−1];

satisfying the conditions of definition 3.1. Here we have denoted by [−1]
the shift on graded vector spaces: given a graded vector space V =

⊕
i∈Z Vi

and an integer a ∈ Z, denote by V [a] the graded vector space whose degree
i part is V [a]i = Vi+a. This definition of grading corresponds to giving
degree k+ 1 to the k-th derivative of the �-function in expressions like (3.6)
and (3.7).

Suppose that we have a Poisson structure on L. We shall write this as a
formal sum

{ui�uj} =
∑
k≥−1

"k{ui�uj}[k]; (3.27)

with each {ui�uj}[k] being a Poisson structure on A such that the polyno-
mials B[k]

ij (u; �) defining the brackets

{ui�uj}[k] = B
[k]
ij (u; �)
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are of degree k + 2.
The Miura transormations are now

ui 7−→
∑
k≥0

"kF i
k(u)

with F i
k of degree k. These transformations can now be inverted. This is

one of the reasons for the introduction of the formal parameter ". The other
reason concerns the hierarchies of PDEs: if we have a pencil of conformal
Poisson structures on L, as before we can write down the hierarchy. Exam-
ple 3.2 would now read

{u�u}1 = �

{u�u}2 =
1
2
@u+ �u− "2�3

and the second equation of the hierarchy would be

du

dt1
=

3u@u
8
− "2@

3u

2

(we are actually rescaling t1 7→ "t1). The dispersionless limit of the hierarchy
is simply the hierarchy itself calculated in " = 0. In this limit, the equation
above becomes

du

dt1
=

3u@u
8

:

After rescaling we find the form in which this equation is usually written

u̇ = uu′:

3.4 From conformal algebras to Lie algebras

There exists another construction of Lie algebras using conformal algebras
as ingredients, which is due to A. D’Andrea but was never published. It
will be of particular interest to us and we therefore include it. Given a
conformal algebra L, and given a ∈ L we can define a� as the �-adjoint of
a, i.e.

a�(b) = {a�b}:
Then, after choosing an additive subgroup G of the additive group of the
field we are working on, we have a natural Lie algebra structure on gG =
{a�|a ∈ L; � ∈ G} given by the Jacobi identity on the conformal algebra:

[a�; b�] = {a�b}�+�:
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Let us show that this actually yields a Lie algebra structure. The bilinearity
is obvious.

[b�; a�] = {b�{a�·}} − {a�{b�·}} = −[a�; b�]

gives us skewcommutativity. To show that the Jacobi identity holds, we
write down the three terms

[a�; [b�; c� ]] ={a�{b�{c� ·}}} − {b�{c�{a�·}}}+
− {a�{c�{b�·}}}+ {c�{b�{a�·}}}

[b�; [a�; c� ]] ={b�{a�{c� ·}}} − {b�{c�{a�·}}}+
− {a�{c�{b�·}}}+ {c�{a�{b�·}}}

[[a�; b�]; c� ] ={a�{b�{c� ·}}} − {b�{a�{c� ·}}}+
− {c�{a�{b�·}}}+ {c�{b�{a�·}}}:

By adding up the second and the third we get the first one, thus obtaining
what we needed.

Let us look at what this construction does for the two conformal struc-
tures of example 3.2. Take the first structure {u�u}1 = �c, where c is the
central element ({c�·} ≡ 0 unless � = 0, in which case it gives a constant
that we call ~). Then we have

[u�; u�]1 = {u�u}�+� = �c�+� = �~δ�;−�:

By choosing G = Z as our group, we get the Heisenberg algebra with central
charge ~. Taking the second structure, {u�u}2 = (1

2@ + �)u, yields

[u�; u�]2 = (
1
2
@u+ �u)�+� =

1
2

(−�− �)u�+� + �u�+� =
1
2

(�− �)u�+�

which, by taking G = Z, is (isomorphic to) the Virasoro algebra with no
central charge.

3.5 The Dubrovin-Zhang framework

We have introduced the algebra studied by Dubrovin and Zhang in (3.8)
above. We now wish to present some of their results from our purely alge-
braic point of view. Let M = Cn be a (possibly be formal) Frobenius man-
ifold, let Φ be its potential, g its metric, {x1; : : : xn} a system of flat coordi-
nates, @k = @=@xk its corresponding flat vector fields and E =

∑n
k=1E

k@k
its Euler field. We fix notation gij = g(@i; @j), (gij) = (gij)−1. We use, as in
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chapter 2, the matrices (gij) and (gij) to raise and lower indices. Define the
matrix

hij =
n∑

h=1

EhΦij
h :

Notice that the entries of this matrix are functions of the xi. Further, define

Γ̂ijk =
n∑

h=1

Φih
k

(
d− 1

2
− ∇̂E

)j
h

;

where d is the charge of the Euler field and ∇̂ is the extended structure con-
nection of (2.9). Consider the differential algebra L of (3.8) (in which we
replace the ui and their derivatives with the xi and the respective detiva-
tives). We then have a pencil of conformal Poisson structures given by

{xi�xj}1 = �gij ;

{xi�xj}2 =
n∑

k=1

Γ̂ijk @xk + �hij(x):
(3.28)

The fact that this is indeed a conformal Poisson structure is a mere calcula-
tion that we do not include here. Under some hypotheses the implication
can be reversed, in the sense that it can be shown (see [DZ] for full details)
that every pencil of conformal Poisson algebras of the form (3.28) satisfying
some integrability conditions comes from a Frobenius manifold or from a
degenerate version of a Frobenius manifold. In [DZ] it is also shown that
the semisimplicity of the Frobenius manifold ensures the integrability of
the hierarchy of PDEs given by (3.24). We shall not treat these topics here,
but plan to consider them in the next future.

Let us now concentrate on a practical case. Let M = QH∗(P1). Recall
from example 2.1 that the multiplication table reads @x ∗ @x = @x, @x ∗ @y =
@y, @y ∗ @y = ey@x. The Euler field is E = x@x + 2@y. The Poincaré pairing is
given by the matrix

(gij) =
(

0 1
1 0

)
:

The pencil of conformal Poisson structures is then given by

{x�x}1 = 0 {x�y}1 = �

{y�x}1 = � {y�y}1 = 0

{x�x}2 = @ey + 2�ey {x�y}2 = �x

{y�x}2 = @x+ �x {y�y}2 = 2�:
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We wish to write the KdV-type kierarchy associated with this pencil. Let �x
and �y denote variational derivatives with respect to x and y, respectively.
The two Lie structures on the integrals are given by

[
∫
F;

∫
G]1 =

∫
�xG@�yF + �yG@�xF

[
∫
F;

∫
G]2 =

∫
�xG((@ey + 2ey@)�xF+

+ x@�yF ) + �yG((@x+ x@)�xF + 2@�yF ):

The casimirs of the first bracket are then c1−1 = x and c2−1 = y. Notice
that [

∫
c2−1; ·] ≡ 0. We can therefore choose c20 = x and get c2n = c1n−1. All

we have to calculate is then cn = c1n starting from c−1 = x. The recursive
relation (3.23) now reads∫

�xG@�ycn+1 + �yG@�xcn+1 =
∫
�xG((@ey + 2ey@)�xcn + x@�ycn)+

+ �yG((@x+ x@)�xcn + 2@�ycn);

so that we must have

@�xcn+1 = (@x+ x@)�xcn + 2@�ycn = @(x�xcn + 2�ycn)

and therefore
�xcn+1 = x�xcn + 2�ycn: (3.29)

From this it follows that degxcn = n+ 2. We also have

@�ycn+1 = (@ey + 2ey@)�xcn + x@�ycn): (3.30)

The leading coefficient in x is given by 1=(n + 2). To show this we use
induction; it is true for c−1, so suppose it is true for cn and use (3.29):

�xcn+1 = xn+3 + lower order terms in x:

On the other hand it can be shown with no greater difficulty that cn can be
written in the form

cn =
xn+2

n+ 2
+

[n+2
2 ]∑

j=1

�jnx
n+2−2jejy: (3.31)
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This allows us to rewrite the left hand side of (3.29) as

�xcn+1 = xn+2 +
[n+2

2 ]∑
j=1

�jn+1(n+ 3− 2j)xn+2−2jejy

and the right hand side as

x�xcn + 2�ycn = xn+2 +
[n+1

2 ]∑
j=1

�jn(n+ 2)xn+2−2jejy +R;

where

R =

{
0 if n is odd

2�
n+2

2
n (n+ 2) if n is even.

We therefore have

[n+2
2 ]∑

j=1

�jn+1(n+ 3− 2j)xn+2−2jejy =
[n+1

2 ]∑
j=1

�jn(n+ 2)xn+2−2jejy +R; (3.32)

which implies that

�jn+1 =
n+ 2

n+ 3− 2j
· �jn: (3.33)

This allows us to write down the actual values of the �jn recursively, but
we need to determine the value of the �jn that has the lowest n with fixed
j. Next, consider the formulae (3.30) and (3.31). The only case in which a
term that does not depend on x appears in the right hand side of (3.29) is
when n is odd, and this term is given by

(@ey + 2ey@)X;

where X is the term of �xcn that does not depend on x, namely,

X = �
n+1

2
n e

n+1
2

y:

Therefore,

(@ey + 2ey@)X =�
n+1

2
n

(
e
n+1

2
yey@y + 2eye

n+1
2

yn+ 1
2

@y

)
=

=�
n+1

2
n (n+ 2)e(

n+1
2

+1)y@y = 2�
n+1

2
n

n+ 2
n+ 3

@e
n+3

2
y:
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On the left hand side of (3.30), the only term independent of x is

@

(
�

n+3
2

n+1�ye
n+3

2
y

)
;

so that we must have

n+ 3
2

�
n+3

2
n+1 = 2�

n+1
2

n
n+ 2
n+ 3

;

that we rewrite as

�
n+3

2
n+1 =

4(n+ 2)
(n+ 3)2

�
n+1

2
n : (3.34)

If we now apply (3.33) to this equation, we get

�
n+3

2
n+1 =

4(n+ 2)(n+ 1)
(n+ 3)2

�
n+1

2
n−1: (3.35)

If we write down an infinite matrix (aij)i;j≥0 whose (i; j)-entry aij is the

scalar part of the coefficient of xj in the expression of ci (i.e. aij = �
i−j+2

2
i if

i− j ≡ 0mod 2 and 0 otherwise), then (3.35) allows us to express any term
in the 0-th coloumn in terms of the one above, whereas (3.33) allows us to
write any entry in terms of the one that is up one place and left another
place. The first row reads 1; 0; 1=2; 0; 0; : : :, so that the whole matrix is de-
scribed by (3.33) and (3.35). Combining the two in order to have a closed
expression yields

�jn = 4j+1

(
n+ 1

n+ 2− 2j

)(
(2j − 1)!!

2j

)2

; (3.36)

where x!! is the product of the numbers not exceeding x that are congruent
to x mod 2. Let us now write down the hierarchies of partial differential
equations. We need to calculate

{cn0x}1

and
{cn0y}1:

First of all,

{ x
n+2

n+ 20x}1 = {x@x}xn+1
1 ≡ 0:



48 CHAPTER 3. CONFORMAL ALGEBRAS AND KDV

Secondly,

{xaeby0x}1 = {x@x}1@x(xaeby) + {y@x}1@y(xaeby) = b@(xaeby)

for all a; b. In particular, when we set a = n+ 2− 2j and b = j, we get

{xn+2−2jejy0x}1 = j(n+ 2− 2j)xn+1−2j@xejy + j2xn+2−2jejy@y

so that

{cn0x}1 =
[n+2

2 ]∑
j=1

4j+1

(
n+ 1

n+ 2− 2j

)
(2j − 1)!!2

4j
×

× ((n+ 2− 2j)xn+1−2j@x+ jxn+2−2j@y)ejy:

Therefore, the first part of the hierarchy is given by

dx

dtn;1
=

[n+1
2 ]∑

j=1

4j
(
n+ 1

2j

)
(2j − 1)!!2

j
xn+1−2j@xejy+

+
[n+2

2 ]∑
j=1

4j
(
n+ 1
2j − 1

)
(2j − 1)!!2xn+2−2jejy@y:

(3.37)

On the other hand,

{ x
n+2

n+ 20y}1 = @xn+1 = (n+ 1)xn@x

and

{xn+2−2jejy0y}1 = (n+ 2− 2j)((n+ 1− 2j)xn−2j@xejy + jxn+1−2jejy@y)

so that

dy

dtn;1
=(n+ 1)xn@x+

[n2 ]∑
j=1

22j+1

(
n+ 1
2j + 1

)
(2j + 1)!!(2j − 1)

j
xn−2j@xejy+

+
[n+1

2 ]∑
j=1

22j+1

(
n+ 1

2j

)
(2j − 1)!!2xn+1−2jejy@y:

(3.38)



3.6. THE LIE ALGEBRA STRUCTURE ON INTEGRALS 49

Since, as we have noticed, c2n = c1n−1 = cn−1 we can write the other half of
the hierarchy as

dx

dtn;2
=

dx

dtn−1;1

dy

dtn;2
=

dy

dtn−1;1
: (3.39)

To summarize, the hierarchy of partial differential equations determined
by the pencil of conformal Poisson structures induced by the quantum co-
homology of P1 is given by (3.37), (3.38) and (3.39).

3.6 The Lie algebra structure on integrals

In this section we want to study the structure of the Lie algebra structure on
integrals C = L=@L in the rank 1 case L = C[u; @u; @2

u; : : :], with {u�u} = �.
We first need a few lemmas. Define, for all m ≥ 1, n ≥ 0,

An
m = SpanC{(a1; : : : ; am)|0 ≤ a1 ≤ : : : ≤ am; a1 + : : :+ am = n}:

We can also allow the existence of empty sequences by letting A0 = C.
Then

A = A0 ⊕
⊕
m≥1
n≥0

An
m:

In what follows, our convention will be An
0 = ∅ unless n = 0, in which case

A0
0 = A0. There is a natural product on A

· : An1
m1
× An2

m2
−→ An1+n2

m1+m2

((a1; : : : ; am1); (b1; : : : ; bm2)) 7−→ (a1; : : : ; am1 ; b1; : : : ; bm2)

where the indices on the right are to be reordered. Notice that this makes
A isomorphic to L as an algebra:

(a1; : : : ; am) 7−→ @a1u · : : : · @amu

and elements in A0 map to the constants. @ then acts on A by

@ : An
m −→ An+1

m

(a1; : : : ; am) 7−→
m∑
i=1

(a1; : : : ; ai + 1; : : : ; am);
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whereas @h acts by

@h : An
m −→ An−h

m−1

(a1; : : : ; am) 7−→
∑
i:ai=h

(a1; : : : ; ai−1; ai+1; : : : ; am):

These are both derivatives with respect to the product above. The varia-
tional derivative is

� =
∑
h≥0

(−@)h@h : An
m −→ An

m−1:

@ is clearly injective as long as we stay outside A0, and @−1An
m = An−1

m .
Therefore,

A=@A = A0 ⊕
⊕
m≥1

A0
m ⊕

⊕
m≥1
n≥1

An
m=@A

n−1
m :

Denote as usual by
∫

: A→ A=@A the projection. The Lie bracket

[
∫
X;
∫
Y ] =

∫
�Y @�X

then behaves in the following way:

[· ; ·] : Ah
m=@A

h−1
m ⊗ Ak

n=@A
k−1
n −→ Ah+k+1

m+n−2=@A
h+k
m+n−2:

To write down the dimensions of theAn
m, we need to make a simple remark.

An m-tuple of non-decreasing numbers that add up to n can be seen as a
pair consisting of its first number a1 and of an (m − 1)-tuple of numbers
that add up to n− a1. If we subtract a1 from each term in the latter, we lose
no information. And this allows us to think of the m-tuple as a1 together
with an (m−1)-tuple whose elements add up to n−ma1. Therefore, letting
a1 vary as much as it may, we can write An

m as a disjoint union

An
m = An

m−1 ∪ An−m
m−1 ∪ : : : ∪ A

n−[ nm ]m
m−1 :

The dimensions anm = dimAn
m then add up:

anm =
[ nm ]∑
j=0

an−jmm−1 :

This enables us to calculate all the dimensions recursively starting from

an1 = 1:
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Another way to calculate these numbers is the classical relation due to Euler
(see [HW78])

�m(x) =
∑
n≥0

anmx
n =

1∏m
j=1(1− xj)

: (3.40)

This enables us to write down anm − an−1
m as the coefficient of xn in

 m(x) = �m(x)− x�m(x) =
1∏m

j=2(1− xj)
: (3.41)

Take (a1; : : : ; am) ∈ A and define the linear map T : A→ A in the following
way: if a1 = : : : = ah−1 = 0 6= ah then

T (0; : : : ; 0; ah; : : : ; am) = (ah − 1; : : : ; am − 1):

Notice that T is injective on the subspace {F |@0F = 0}.

3.6.1 LEMMA For every F ∈ A such that F is not constant and @0F = 0,
the following identities hold:

1. @TF = T@F ;

2. @kTF = T@k+1F for all k ≥ 0.

Proof. Suppose for simplicity that F ∈ An
m. Write

F =
anm∑
i=1

�iFi;

with �i ∈ C and {Fi} the basis of monomials for An
m, Fi = (bi1; : : : ; b

i
m).

Then
0 = @0F =

∑
i:bi1=0

�i]{bij = 0}(bi2; : : : ; bim):

But the (bi2; : : : ; a
i
m) form a basis for An

m−1. Therefore the corresponding �i
must be 0. Thus, we can write

F =
∑

i:@0Fi=0

�iFi:

In this way it is clear that we can assume F to be a monomial

F = (a1; : : : ; am)
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with aj ≥ 1 for all j. Then

@TF =@(a1 − 1; : : : ; am − 1)

=
m∑
i=1

(a1 − 1; : : : ; ai−1 − 1; ai; ai+1 − 1; : : : ; am − 1);

whereas

T@F = T
m∑
i=1

(a1; : : : ; ai−1; ai + 1; ai+1; : : : ; am)

=
m∑
i=1

(a1 − 1; : : : ; ai−1 − 1; ai; ai+1 − 1; : : : ; am − 1);

thus proving 1. On the other hand,

@kTF = @k(a1 − 1; : : : ; am − 1) = ]{ai − 1 = k}(a1 − 1; : : : ; k̂; : : : ; am − 1)

= ]{ai = k + 1}T (a1; : : : ; k̂ + 1; : : : ; am) = @k+1TF;

where by x̂ we have denoted that x must be omitted. �

3.6.2 LEMMA Suppose that @0F = 0. Then �F = 0 if and only if �TF = 0.

Proof.
�TF =

∑
k≥0

(−@)k@kTF = T
∑
k≥0

(−@)k@k+1F

by lemma 3.6.1 above. Then

−@�TF = T
∑
k≥0

T�F − T@0F:

The second term on the right hand side is zero by hypothesis. Therefore,

−@�TF = T�F:

Suppose that T�F = 0. Then @�TF = 0, and, since @ is injective (there
are no constants in this expression), we get �TF = 0. Conversely, suppose
that �TF = 0. Then 0 = −@�TF = T�F . Notice that @0�F = �@0F = 0.
Therefore, T annihilates only the zero, which yields �F = 0. �

3.6.3 PROPOSITION Let F ∈ A. Then �F = 0 if and only if F ∈ @A.
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Proof. The � annihilates derivatives, so that the implication to be proved
is that the � annihilates only derivatives. By lemma 3.6.2 above, we can
assume that @0F 6= 0. Suppose that F ∈ An

m and use induction on n. By
hypothesis,

0 = �F = @0F − @
∑
k≥0

(−@)k@k+1F:

If we let G =
∑

k≥0(−@)k@k+1F , this reads

@0F = @G: (3.42)

Now define

@−1
0 : An

m−1 −→ An
m

(a2; : : : ; am) 7−→ (]{ai = 0}+ 1)−1(0; a2; : : : ; am):

Notice that @−1
0 is right inverse to @0 but not left inverse in general. Consider

H = F − @@−1
0 G. This clearly satisfies �H = 0. Moreover,

@0H = @0F − @0@@
−1
0 G = @0F − @@0@

−1
0 G = @0F − @G = 0;

where the second equality holds because [@0; @] = 0. If n < m then we have
found an element H ∈ An

m that is a linear combination of monomials with
no zeros, and this is impossible unless H = 0. If n ≥ m we use iduction:
we can apply lemma 3.6.2 to get

�T hH = 0;

where we choose h = min{k|@0T
kH 6= 0}. Then T hH ∈ An−hm

m and induc-
tion tells us that T hH = @A. Hence, H = @T−hA, so that

F = H + @@−1
0 G = @(T−hA+ @−1

0 G):

�

This enables us to identify

C = C⊕ L=ker�:

Let P a be the set of partitions of a ∈ Z+

P a = {� = (�1; : : : ; �m)|�1 ≥ : : : ≥ �m ≥ 1;
m∑
i=1

�i = a}:
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Define two functions

r : P a −→ Z
� = (�1; : : : ; �m ≥ 1) 7−→ m

and

N : P a −→ Z

� = (�1; : : : ; �r(�)) 7−→
a!∏m

j=1 �j !
∏�1

i=1 %i!

where %i = ]{�h = i}. N has a natural combinatorial interpretation: it
counts the number of ways in which a setA of a elements can be partitioned
into r(�) disjoint subsets A = A1 ∪ : : :∪Ar(�) such that Ai has �i elements.
For all v ∈ L and for an arbitrary parameter �, denote by e�v the (formal)
power series

e�v =
∑
n≥0

�nvn

n!

(we need exponentials to make faster calulations).

3.6.4 LEMMA For all a ∈ Z+ the following identity holds

@ae�v =
∑
�∈Pa

�r(�)N(�)e�v
r(�)∏
j=1

@�jv: (3.43)

Proof. We use induction on a. The first term is

@e�v = �e�v@v;

which coincides with (3.43) since P 1 = {� = (1)} and r(�) = 1 = N(�) =
�1. Next, suppose that (3.43) holds for a.

@a+1e�v =@(@ae�v) = @

∑
�∈Pa

�r(�)N(�)e�v
r(�)∏
j=1

@�jv


=
∑
�∈Pa

�r(�)+1N(�)e�v@v
r(�)∏
j=1

@�jv+

+
∑
�∈Pa

�r(�)N(�)e�v@

r(�)∏
j=1

@�jv

 :

(3.44)
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Denote byA andB the first and second term on the right hand side, respec-
tively. To study A, introduce a map

·̃ : P a −→ P a+1

� = (�1; : : : ; �m) 7−→ �̃ = (�1; : : : ; �m; 1):

We denote by �̃j the j-th element of �̃ and by

%̃i = ]{�̃j = i} =

{
%i if i 6= 1
%i + 1 if i = 1.

Then r(�̃) = r(�) + 1, �̃r(�̃) = 1 and

N(�̃) =
(a+ 1)!∏r(�̃)

j=1 �j !
∏�̃1

i=1 %i!
= N(�)

a+ 1
%1 + 1

:

Therefore, we can write

A =
∑
�∈Pa

�r(�̃)N(�̃)
%1 + 1
a+ 1

e�v
r(�̃)∏
j=1

@�̃jv:

To study B we need to introduce other maps

·̄ i : P a −→ P a+1

� = (�1; : : : ; �m) 7−→ �̄i = (�1; : : : ; �i−1; �i + 1; �i+1; : : : ; �m)

with i = 1; : : : ;m. Notice that we can possibly look at �̃ as if it were �̄r(�)+1.
With the natural notation, we have �̄ij = �j + δij , %̄i�i = %�i − 1, %̄i�i+1 =
%�i+1

+ 1 and %̄ij = %j for all other j. Hence,

N(�̄i) = N(�)
(a+ 1)%�i

(�i + 1)(%�i+1 + 1)
:

Notice also that r(�̄) = r(�). We can then write

B =
∑
�∈Pa

r(�)∑
i=1

ar(�)N(�)e�v@�i+1v
∏
j 6=i

@�jv

=
∑
�∈Pa

r(�)∑
i=1

�r(�̄i)N(�̄i)
(�i + 1)(%�i+1 + 1)

%�i(a+ 1)
e�v

r(�̄i)∏
j=1

@�̄
i
j
v:
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Observe that {�̃|� ∈ P a} = {� ∈ P a+1|�r(�) = 1}, whereas any � ∈ P a+1

can be expressed as (�j)
i

for some �j ∈ P a, as long as �j 6= 1. If we denote
by (1a+1) the partition of a+ 1 consisting of a+ 1 1s, we can write

A+B =
∑

�∈Pa+1

�r(�)=1

�r(�)N(�)
%1

a+ 1

r(�)∏
j=1

@�jv+

+
∑

�∈Pa+1

� 6=(1a+1)

 ∑
1≤i≤r(�)
�i 6=1

�i%�i
%�i−1

+ 1

 1
a+ 1

�r(�)N(�)
r(�)∏
j=1

@�jv

=�a+1e�v(@v)a+1 +
∑

�∈Pa+1\{(1a+1)}
�r(�)=1

C��
r(�)N(�)

r(�)∏
j=1

@�jv+

+
∑

�∈Pa+1

�%(�) 6=1

D��
r(�)N(�)

r(�)∏
j=1

@�jv;

where

C� =
1

a+ 1

%1

∑
1≤i≤r
�i 6=1

�i%�i
%�i−1 + 1


and

D� =
1

a+ 1

r(�)∑
i=1

�i%�i
%�i−1 + 1

:

It is easy to verify that both these constants are equal to 1 for all � ∈ P a+1,
which proves the statement. �

This enables us to write down the Lie bracket of the generating func-
tions:

[
∫
e�@

iu;

∫
e�@

ju] =
∑
�1∈P j

�2∈P i+1

�r(�2)+1�r(�1)+1N(�1)N(�2)×

×
∫
e�@

iu+�@ju

r(�1)∏
h=1

@�
1
h

+ju

r(�2)∏
k=1

@�
2
k
+iu:

(3.45)
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3.6.5 THEOREM The subalgebraA ⊂ C given by

A = SpanC{
∫

1;
∫
u;
∫
u2;
∫
u3; : : :}

is abelian.

Proof. Apply formula (3.45) above to the case i = j = 0. We have then only
one term, because P 0 is empty and P 1 has only one element. Thus,

[
∫
e�u;

∫
e�u] = ��2

∫
e(�+�)u@u =

��2

�+ �

∫
@e(�+�)u = 0:

Looking at the coefficients of �m�n, for m;n ≥ 0, yields

[
∫
um

m!
;

∫
un

n!
] = 0

�

3.6.6 THEOREM The following formulae hold true for all m ≥ 3; n ≥ 2

[
∫
um;

∫
(@u)n] = −6

(
m

3

)
(n− 1)

∫
um−3(@u)n+1;

[
∫

(@u)m;
∫

(@u)n] = 4
(
m

2

)(
n

2

)
(m− n)

∫
(@u)m+n−5(@2u)3:

Proof. To prove both formulae we use (3.45).

[
∫
e�u;

∫
e�@u] =�2�2

∫
e�u+�@u@2u@u

=
∑
k≥0

k∑
h=0

�h+2�k−h+2

(
k

h

)
1
k!

∫
uh(@u)k−h+1@2u:

Therefore

[
∫
um;

∫
un] =m!n!

(
m+ n− 4
m− 2

)
1

(m+ n− 4)!

∫
um−2(@u)n−1@2u

=−m(m− 1)(n− 1)
∫
@um−2(@u)n

=− 6
(
m

3

)
(n− 1)

∫
um−3(@u)n − 1;
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which is the first identity we wished to prove. To prove the second one,
write

[
∫
e�@u;

∫
e�@u] =�3�2

∫
e(�+�)@u(@2u)3 + �2�2

∫
e(�+�)@u@2u@3u

=�3�2

∫
e(�+�)@u(@2u)3 − �2�2

2

∫
@e(�+�)@u(@2u)2)

=
�2�2(�− �)

2

∫
e(�+�)@u(@2u)3

=
∑
k≥0

k∑
h=0

1
2

1
k!

(
k

h

)
(�h+3�k−h+2 − �h+2�k−h+3)×

×
∫

(@u)k(@2u)3:

Consequently,

[
∫

(@u)m;
∫

(@u)n] =m!n!
1
2

(
1

(m− 3)!(n− 2)!
− 1

(m− 2)!(n− 3)!

)
×

×
∫

(@u)m+n−5(@2u)3 =

=4
(
m

2

)(
n

2

)
(m− n)

∫
(@u)m+n−5(@2u)3:

�
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