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Introduction

Sequential Dynamical Systems (or SDS) are a discrete structure that has been developed
during the nineties in order to provide a mathematical basis for the transportation system
developed in the TRANSIMS project in Los Alamos Laboratories ([BR99], [BMR00],
[BMR01] and [BMR03]). In an SDS, the state on each vertex of an undirected graph is
updated according to �xed rules involving neighboring states. The system state evolution
is prescribed by a sequence, often a permutation, of the vertices which induces the order
in which to perform the updates. Generally, the evolution varies according to the chosen
word, but it has been proved that, under speci�c assumptions, aspects of the evolution
are independent on the chosen permutation ([MM09]). Moreover, when the vertex states
are boolean, dynamical aspects of the periodic states can be described by a quotient of
a suitable Coxeter group (see [MM10]).

Object of this work is the study of the dynamics of update systems, which are SDS-like
structure de�ned on a directed acyclic graph: here each vertex state is updated based on
the states on vertices reached by an arrow pointing out from it (the complete de�nition
is in Chapter 2). As idempotence relations and braid relations are naturally realized
in this setting, possible evolutions of the system arise as elements of a monoid which
is a quotient of a Hecke-Kiselman monoid, i.e., a monoid admitting a presentation in
which the above relations occur. In [KM09], a description of elements in the Kiselman
semigroup as words, in a given set of generators, satisfying suitable conditions is given.
This description has been used in [CD13], together with a join operation de�ned on
states, in order to construct an update system whose dynamics is a faithful image of the
Kiselman semigroup.

This work is organized as follows:

• Chapter 1 provides a precise description of SDS, then a short survey of classic
results. Particular attention is devoted to dynamical issues of SDS, which are at
last expressed in terms of a word problem, i.e., which are the di�erent words that
provide the same phase space for an SDS. Coxeter relations occurring in the case
of cycle equivalence of SDS were the motivation for our subsequent research work.

• Chapter 2 introduces the de�nition of update systems. It states the fundamental
result that their dynamics monoid is a quotient of an Hecke-Kiselman monoid,
then it provides the proof of the isomorphism between the two in the case of the
complete graph, via the construction of a particular update system. Finally, some
dynamic properties of this update system are proved.

• Chapter 3 tackles the problem on a generic graph, analyzing the issues that did not
occur when the base graph was complete. It presents our conjecture for a canonical
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element of the Hecke-Kiselman monoid and a possible candidate operation for the
de�nition of a function on states, together with a worked example on a 5 vertices
graph. It is shown that these two tools are su�cient to prove the conjecture on
empty, star and line graph.
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1 Preliminaries

A urban tra�c simulation system, a social network, an epidemiology contact scheme
for people living in the same region, the biological interaction among genes in a DNA
sequence: all these are examples of real world structures whose dynamics is of interest.
However, rather than on a continuous domain, they should be studied on a discrete one:
a (�nite) graph.
In applied mathematics models are often continuous, as they work very well whenever

a large scale representation describes faithfully enough the object of analysis, like in
di�usion processes or �uid �ows problems: the continuous model is discretized only
when it is implemented in a computer simulation. This provides a powerful tool in many
contests, but one inevitably loses the analysis of each agent dynamic.
A discrete model seems natural when the issue involves the study of how di�erent

agents interact with each other: for example, trying to model how long would it take for
a trip in the tra�c, how to implement an e�ective advertisement campaign in a social
network, which is the probability for an individual to become ill in case of the spread of
a disease.
The tra�c simulation scheme TRANSIMS has been developed during the nineties in

Los Alamos Laboratories (see, [NSP+97] for reference1): it aimed to provide a rather
detailed description of the interaction of people, public transportation and cars in a
big transportation network (it has been used to model both Chicago and Dallas areas).
Along with the simulation tool, a mathematical structure has been introduced: is that
of Sequential Dynamical System (SDS), �rst introduced by Barret, Mortveit and Reyds
in [BR99], [BMR00], [BMR01] and [BMR03].
It is easy to see that the continuous model would not work in this setting. Moreover,

unlike in cellular automata, sequential dynamical systems allow the base graph repre-
senting the agents to be generic (rather than a regular lattice); �nally, the state update
of each single element occurs asynchronously, i.e. it considers the updates one after an-
other, thus permitting to obtain the new state in position v at time t + 1 according to
the states of its neighbor vertices n[v] at time t.
This chapter contains no original work of the author: closely following [MR08], we

will go through the classical de�nition of Sequential Dynamical System on a undirected
graph and we will outline the main results involving its dynamics. In the section 1.1, we
will review the TRANSIMS model, as �rst and motivating application. In section 1.2,
we will introduce the concept of Sequential Dynamical System; sections 1.3 will express
the dynamics of an SDS via its phase space, while in section 1.4 we will start look at
the possible permutations inducing an SDS. Section 1.5 will go through several classic

1the source code is freely available on SourceForge under an established open-source license in the
website [Tra14]
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1 Preliminaries

results about stability, introducing three types of equivalence among SDS (and their
phase spaces): functional equivalence, dynamical equivalence and cycle equivalence. In
last sections we follow [MM10] in order to describe the existing analogies between Coxeter
groups and SDS. In section 1.6 we state the word problem for an SDS, in analogy with
the word problem for a Coxeter group. In section 1.7, we describe w-independent SDS,
whose dynamics do not depend on the word inducing the update order. In the sections
1.8 and 1.9 it is shown the connection between Coxeter groups and cycle equivalence, in
order to state that, under suitable hypothesis, the periodic points of the phase space of
a SDS form a group which is a quotient of a Coxeter group: this has been the starting
point for our work, that is described in the next two chapters.

1.1 TRANSIMS

Continuous tra�c models can predict jams as shocks in hyperbolic PDEs. However, when
modeling a urban tra�c network, one is often interested in problems such as choosing
the best travel route between two points on the map. The motivation for SDS was
to introduce a mathematical tool useful to describe a discrete sequential multi agent
interaction, which is the case of tra�c model TRANSIMS.
The given data were a given tra�c road map, a population, and a schedule with times

and location for this person for the duration of the simulation.
Actual simulations were carried out on complicated urban networks (Chicago and

Dallas areas, for example), modeling together walkways, public transportation and car
tra�c. However, for our purposes it is enough to keep in mind a non intersecting road,
where cars either move forward, change line or stop.
The simulation was carried out via a TRANSIMS router and a micro-simulator. The

router translated each schedule into a travel route. Then micro-simulator would execute
all these travel routes, so that each individual activity plan was respected. This sim-
ulation typically led to too many agents on main roads, hence travel times were much
higher than those expected basing on surveys. Hence, the router would run again, redi-
recting otherwise part of the individuals whose travel times were too high, and the micro
simulator would execute the updated travel routes. This process was repeated until the
obtained travel times were acceptable.
The reason behind the need of sequential updates is e�ectively described when mod-

eling the behavior of cars waiting for tra�c lights to turn from red to green. Everyday
experience tells us that the front row (with respect to the tra�c lights) is expected to
move a little earlier than the second, and so on. However,

• a parallel update would show all cars starting to move at the same time;

• a sequential update from front to back would give the same result;

• a sequential update from back to front would represent the expected behavior

This example tells us that parallel and sequential updates are closely connected (as in
some cases they can even perform the same results), while the strength of both can be a
useful tool in order to correctly represent di�erent situations.
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1.2 Preliminary notions and results about SDS

Finally, it is important to stress that sequential updates can be modeled via a syn-
chronous structure. The TRANSIMS micro-simulator was cellular automaton-based: it
performed sequentially these four tasks (for a detailed description, we refer to [MR08]):

1. lane change decision,

2. lane change execution,

3. velocity update (acceleration/deceleration),

4. position update (movement).

In each step, the TRANSIMS micro-simulator updates all cells synchronously: however,
the constrains for each cell update provided the expected back-to-front sequential update
order dynamics, so that overall the implemented model did not work in parallel, but
sequentially.

1.2 Preliminary notions and results about SDS

In the following sections, we will introduce and describe properties of SDS according to
their classical de�nition, as given in [MR08]. In particular, we will assume that the base
graph is undirect2.

Let Γ = (V,E) be an undirected �nite graph, with vertex set V = {0, 1, . . . , n− 1} of
cardinality n and edge set

E = {(i, j) such that i, j ∈ V } .

We will take Γ to be combinatorial, i.e. without loops and multiple edges. The vertex

neighbourhood of a given vertex i ∈ V is the subset

x[i] = {i} ∪ {j : (i, j) ∈ E}.

Fix a graph Γ = (V,E), and for each vertex i ∈ V a �nite set of states Si. The restriction
of s to the vertices in x[i] is referred to as state neighbourhood of i, and is written as

s[i] = {sj : j ∈ x[i]}.

We denote by S =
∏
i∈V Si the family of all the possible system states, i.e., n-tuples

s = (s1, s2, . . . , sn), where si belongs to Si for each vertex i.

Moreover, on each vertex v ∈ V we de�ne a vertex function

fi :
∏
j∈x[i]

Sj → Si

2Our result, described in next chapters, is based on a structure whose base graph is a directed acyclic
graph; like in an SDS each vertex is equipped with a state set and an update function, but there is
not a word prescribing the order in which to perform the updates. We will call it update system.
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1 Preliminaries

This function naturally extends to the Γ-local functions Fi : S → S, which act as the
identity on all vertex states but the i-th, and compute on vertex i the result of fi(s[i]).

Let us consider the alphabet A = {a1, . . . , an}, where each letter ai correspond to a
vertex i ∈ V . Consider a word w = aj1aj2 . . . ajk in the free monoid on F(A). This
induces a Γ-local function

Fw = Faj1 Faj2 . . .Fajk : S → S

which acts on the system state s sequentially applying the update functions Faji in the
order �xed by the word w.

De�nition 1.2.1. A Sequential Dynamical System (or SDS) is the triple (Γ, (fi)i, w).

When w is a permutation on V , i.e., each vertex appears exactly once, we will call it
a permutation-SDS.

Remark 1.2.2. Fixed Y , S and (fi)i, a cellular automaton (or CA) is a uniform SDS

where

• the base graph Γ is a regular �nite or in�nite lattice (e.g. Zk or Circk, for k ≥ 1) ;

• fi = fj and Si = Sj for any vertices i, j ∈ V ;

• all the update functions are performed in parallel (i.e. at the same time).

In the setting of cellular automata, often Si = F2 = {0, 1}.

The following example was worked out in [MR08]. We choose to refer to it along
this introductory chapter on SDS because it holds several interesting properties and it is
possible to work it out by hand.

Example 1.2.3. Let us consider the graph Circ4, with vertex set is V = {0, 1, 2, 3} and
edge set E = {(0, 1), (1, 2), (2, 3), (3, 0)}.

0

1 2

3

Figure 1.1: Circ4.

Here, for instance, the vertex neighbourhood of 0 is {3, 0, 1}.
Let us associate to each vertex a state set F2 and a vertex function

nor : F3
2 → F2, nor(s) = (1 + s1)(1 + s2)(1 + s3).
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1.3 Phase spaces

Hence, the corresponding Γ-local maps are

F0(x) = (nor(x3, x0, x1), x1, x2, x3),

F1(x) = (x0,nor(x0, x1, x2), x2, x3),

F2(x) = (x0, x1, nor(x1, x2, x3), x3),

F3(x) = (x0, x1, x2,nor(x2, x3, x0)).

Consider the system state x = (0, 0, 0, 0). Updating via the word w = (0, 1, 2, 3) we
obtain, for example,

F0(0, 0, 0, 0) = (1, 0, 0, 0),

F1 ◦ F0(0, 0, 0, 0) = (1, 0, 0, 0),

F2 ◦ F1 ◦ F0(0, 0, 0, 0) = (1, 0, 1, 0),

F3 ◦ F2 ◦ F1 ◦ F0(0, 0, 0, 0) = (1, 0, 1, 0),

This is a classical SDS and the standard notation for this type of update functions is

[NorCirc4 , (0, 1, 2, 3)](0, 0, 0, 0) = (1, 0, 1, 0).

Here comes the point where the sequential character of SDS appears: in fact, if we
had applied the update function to (0, 0, 0, 0) in parallel (like we would have done in a
CA), the result would have been (1, 1, 1, 1).

1.3 Phase spaces

The study of dynamical systems has among its major goals that of identify the dynamics
of the system. That is, to decompose the system state family S in

S = Per(S) ∪ Transient(S)

where

Per(S) = {x ∈ S : ∃k ∈ N , F kw(x) = x},
Transient(S) = {x ∈ S : @k ∈ N , F kw(x) = x}.

The �rst set contains the periodic states (i.e. states that can be either �xed or cyclic
under the action of FΓ). The states in the second set are called transient states. Moreover,
for a system state x, it is useful to de�ne its forward orbit of x under the SDS[FΓ, w] as

O+(x) = (x, [FΓ, w](x), [FΓ, w]2(x), . . . ).

De�nition 1.3.1. The phase space of an SDS map [FΓ, w] is the directed graph Γ =
Γ([FΓ, w]) whose vertex set is V = S and whose oriented edges are

E = {(x, y) : x, y ∈ S, y = [FΓ, w](x)}.

11



1 Preliminaries

We will often denote the phase space Γ([FΓ, w]) simply via its SDS-maps [FΓ, w].

Remark 1.3.2. Even if we �x the base graph Γ and the update functions FΓ, di�erent
words can lead to di�erent SDS.

Example 1.3.3. Let us draw the phase space of some SDS who share the same base
graph and update function, and di�er only in the chosen word. The base graph is Circ4,
and update functions are those introduced in Example 1.2.3. Just like in the previous
case, this example was drawn from [MR08].

π = 0123

0000
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0001

0100

0010

1000
01010011

0111

1011

1101

1111

0110

1110

1001

1100

π′ = 1230

0000
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1000

0010
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0100
10101001
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1101

1110
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0011
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1100

0110

π′′ = 2130, π′′′ = 2310

1000
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10100000
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1100

0110 0001 0100 0011

π′′′′ = 0231

0000

1010

0101

0111

1101

1111

0100 0001

1001
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0011
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1110

1100

1000 0010

Figure 1.2: Phase spaces.

It is a trivial observation that the phase space of an SDS consists of disjoint cycles,
with directed trees (transient states) attached. Periodic states form cycles (eventually of
length 1) and transient states form trees.

12



1.4 Adjacent permutations and the update graph

Moreover, for any SDS, all orbits are �nite, as it is the number of possible system
states.

Fixing a word (and, hence, a partial order on the vertex set of graph Γ) provide us the
dynamics of the SDS, which would otherwise be chaotic, in the generic case.

Each permutation π of the vertices in V induces an orientation OΓ(π) of the graph:
for every edge i, j ∈ E, permutation π induces the orientation i→ j if and only if the i
appears on the left of j in π, otherwise j → i is induced.

Therefore, for every combinatorial graph Γ, it is well de�ned the map

f ′Γ : SΓ → Acyc(Γ)

π 7→ OπΓ

which sends each permutation of elements in V to the induced graph orientation.

1.4 Adjacent permutations and the update graph

In this section we introduce some useful de�nitions and results that provides the sim-
plest example of equivalence among SDS. In particular, an equivalence relation on the
symmetric group SΓ leads to a corresponding one between SDS.

De�nition 1.4.1. Let SΓ be the symmetric group over the vertex set V of the combina-
torial graph Γ. An equivalence relation ∼Γ on SΓ is de�ned as follows: two permutations
π = (u1, . . . , un) and π′ = (v1, . . . , vn) are adjacent, and we will write π ∼Γ π′, if and
only if there is an index k such that

1. (uk, uk+1) is not an edge in Γ,

2. uk = vk+1, uk+1 = vk, and

3. ui = vi for i 6= k, k + 1;

This is an equivalence relation on SΓ, and we will denote the equivalence class of π by

[π]Γ = {π′ : π′ ∼Γ π}

and the set of all equivalence classes will be SΓ/ ∼Γ.

De�nition 1.4.2. The update graph on Γ is a combinatorial graph whose vertex set is
SΓ and whose edges are π, π′ whenever π and π′ are adjacent. It will be denoted by
U(Γ).

13



1 Preliminaries

Example 1.4.3. The update graph of Circ4 is the following.

0123 1230

2301 3012

0132 0312

2130 2310

0213 0231

2013 2031

21033210

03211032

12031023

32013021

13201302

31203102

Figure 1.3: The update graph of Circ4.

The following result is a consequence of the stated properties of vertex permutations
and acyclic orientations.

Proposition 1.4.4 ([MR08]). For any combinatorial graph Γ there exists a bijection

fΓ : [SΓ/ ∼Γ] → Acyc(Γ)

i.e., permutations in the same equivalence class with respect to ∼Γ induce the same ori-

entation on Γ.

Remark 1.4.5. A consequence of Proposition 1.4.4 is the permutations inducing the same
acyclic orientation in Γ form a connected components for the update graph U(Γ).

From now on, we will denote the number of acyclic orientations of graph Γ by

α(Γ) = |Acyc(Γ)|

It is a Tutte invariant, as α(Γ) = TΓ(2, 0), hence it satis�es the following recursion
formula: �x an edge e in Γ, let Γ′e be the graph obtained by Γ deleting the edge e, and
Γ′′e be the graph obtained via the contraction of e; then, we have

α(Γ) = α(Γ′e) + α(Γ′′e).

1.5 Dynamical issues for an SDS

This and the following sections deal with the problem of understanding the role of per-
mutations (and words) in the dynamics of an SDS. On classical (undirect) SDS this has
been handled giving di�erent concepts of equivalence, studying the behaviour of di�er-
ent update functions on di�erent graphs. Two main constrain, inherited from cellular
automata, are sometimes requested in this setting:
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1.5 Dynamical issues for an SDS

• vertex states were limited to F = {0, 1};

• all vertex function were asked to coincide.

De�nition 1.5.1. Let us consider two di�erent sequential dynamical systems with SDS-
maps φ, ψ : S → S. Then the SDS are:

1. functionally equivalent if their SDS-maps φ and ψ coincide;

2. dynamically equivalent if φ ◦ h = h ◦ ψ, for some bijection h : S → S;

3. cycle equivalent if φ|Per(φ) ◦h = h◦ψ|Per(ψ) for some bijection h : Per(φ)→ Per(ψ).

In other words, two SDS are functionally equivalent if they have the same phase space,
dynamically equivalent if they coincide as unlabeled graphs, cycle equivalent if their sets
of periodic states coincide (regardless the induced dynamics).

Example 1.5.2. Back to Example 1.3.3:

• [NorCirc 4 , (2130)] and [NorCirc 4 , (2310)] are functionally equivalent: in fact, their
phase spaces coincide.

• [NorCirc 4 , (0123)] and [NorCirc 4 , (1230)] provide an example SDS that are dynam-
ically equivalent, as their phase spaces are the same graph with di�erent vertex
labels;

• [NorCirc 4 , (0231)] is cycle equivalent to [NorCirc 4 , (2130)] (and [NorCirc 4 , (2310)]),
although not cycle functionally equivalent, in fact, discarding labels, their periodical
orbits coincide.

1.5.1 Functional equivalence

Recalling the notion of adjacent permutations, we have some basic results on functionally
equivalent SDS.

Proposition 1.5.3 ([MR08]). Let Γ be a graph, let (Fi)i be a family of Γ-local maps.

Then, adjacent permutations induce the same SDS maps, i.e.,

π ∼Γ π
′ => [FΓ, π] = [FΓ, π

′].

As a consequence, the number of connected components of the update graph U(Γ) is
an upper bound for the number of functionally di�erent SDS that can be generated only
varying the permutation. Now, recall Proposition 1.4.4 in order to state the following
result.

Proposition 1.5.4 ([MR08]). Let Γ be a combinatorial graph, let (Fi)i be a family of

Γ-local functions, then
|{[FΓ, π] : π ∈ SΓ}| ≤ |α(Γ)|,

and the bound is sharp.

15



1 Preliminaries

It is important to stress that not only the number of acyclic orientations gives an upper
bound for the di�erent SDS maps on Γ: for some SDS, any non adjacent permutations
correspond to di�erent dynamics. The result has been extended to general word update
orders in [Rei06].

Example 1.5.5. The update functions nor is used in the proof of sharpness presented in
[MR08]: indeed, what we can see in Examples 1.3.3 and 1.4.3 is that π = 0123, π′ = 1230,
π′′ = 2130 and π′′′′ = 0231, belonging to di�erent connected components in U(Γ), have
di�erent phase spaces.

1.5.2 Dynamic equivalence

As for dynamical equivalence, it can be useful to restate the de�ning relation in terms of
a conjugation. If the update functions are Aut(Γ)-invariant, then it is shown in [MR08]
that two SDS maps over update sequences in the same orbit are conjugate, and the
relation is

γ ◦ [Fv, π] ◦ γ−1 = [Fv, γπ].

This induces an equivalence relation on the permutation group SΓ (and as well on
Acyc(Γ)), which is denoted by ∼α. The number of orbits α(Γ) under the action of
Aut(Γ) on SΓ/ ∼α

α(Γ) : = α(Γ)|/ ∼α |

has been proved to be an upper bound for conjugation classes of SDS maps, hence of
dynamically equivalent SDS-maps.
Burnside's lemma makes it possible to compute α(Γ) via the number of acyclic orien-

tations of the orbit graph of the cyclic group 〈γ〉.

Proposition 1.5.6. Let Γ be a combinatorial graph, and let FΓ be a family of Γ-local
functions induced by symmetric functions. Denote by 〈γ〉 \Γ the orbit graph of the cyclic

group G = 〈γ〉. Then,

α(Γ) ≤ 1

|Aut(Γ)|
∑

γ∈Aut(Γ)

α(〈γ〉 \ Γ)

This bound is proved in [BMR03] to be sharp for some special graphs classes: Circn,
Wheeln, Starn.

Example 1.5.7. Example 1.3.3 pointed out that the two SDS [NorCirc 4 , (0123)] and
[NorCirc 4 , (1230)] were dynamically equivalent. Indeed, applying the conjugation via
element 0,

0π0 = 0(0123)0 = 001230 = 1230 = π′.

In [MM11] it is conjectured that the bound introduced in Proposition 1.5.6 is sharp
for any combinatorial graph.

Remark 1.5.8. When Aut(Γ) is trivial, then α and α coincide, as dynamical equivalence
of SDS only measures the eventual symmetries of the base graph.
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1.5 Dynamical issues for an SDS

1.5.3 Cycle equivalence

Let us de�ne an operation which modi�es the acyclic orientation of a graph: choose
a source (or sink) vertex, and reverse all the orientations of the incident edges. This
operation is called source-to-sink operation, or a click, and was �rst de�ned in [BLS91].
It is easy to see that this operation is well de�ned, as switching a source into a sink

(or vice-versa) does not change the number of cycles in an oriented graph.

De�nition 1.5.9. Two acyclic orientations OΓ and O′Γ will be called click equivalent if
it is possible to obtain one from another applying some click operations.

This induces an equivalence relation both on the set of acyclic orientations α(Γ) and
on the group of permutations SΓ, which is denoted by ∼κ in both cases.
It was shown in [MM09] that if two permutations are click equivalent, then the cor-

responding SDS are cycle equivalent. Therefore, �xed a combinatorial graph Γ and a
family of update functions (Fv)v, the number

κ(Γ) : = |Acyc(Γ)/ ∼κ |

is an upper bound for the possible SDS, up to cycle equivalence.

Example 1.5.10. Back to Example 1.5.2, [NorCirc 4 , (2130)]and [NorCirc 4 , (0213)] are

cycle equivalent. In terms of acyclic orientations, we can go fromO(2130)
Circ 4

to O(0213)
Circ 4

simply
transforming vertex 0 from a source to a sink. In fact, the two induced orientations are

0

1 2

3

π′′ = 2130

0

1 2

3

π′′′′ = 0213

Figure 1.4: The acyclic orientations O(2130)
Circ 4

and O(0213)
Circ 4

.

It was shown that, just like α, also κ is a Tutte invariant.

Remark 1.5.11. As dynamically equivalent maps are in particular cycle equivalent maps,
if Aut(Γ) is nontrivial it is possible to de�ne a stronger equivalence relation ∼κ over
Acyc(Γ). In this case, the number

κ(Γ) : = |Acyc(Γ)/ ∼κ|

is a sharper upper bound for the di�erent SDS, up to cycle equivalence.

Example 1.5.12. Back to Example 1.3.3, there are exactly 2 cycle con�gurations for
the graph Circ4 and update functions Nor: [NorCirc 4 , (0123)] and [NorCirc 4 , (1230)] are in
the �rst cycle con�guration, [NorCirc 4 , (2130)], [NorCirc 4 , (2310)] and [NorCirc 4 , (0213)]
belong to the other.
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1 Preliminaries

1.6 The word problem and functional equivalence

Results in this section are proved in [MM09] and [MM10].
In order to appreciate the interesting analogies between SDS theory and Coxeter theory,

let us recall some background material.

De�nition 1.6.1. A Coxeter system is a pair (W,S), where S = {s1, . . . , sn} is a �nite
set of involutions and W is a Coxeter group de�ned via the following presentation

W = 〈s1, . . . , sn : s2
i = 1, (sisj)

m(si,sj) = 1〉,

where m(si, sj) ≥ 2 for i 6= j.

Let F (S) be the free monoid over S. For each integer m ≥ 0 and distinct generators
s, t,

〈s, t〉m : = stst . . .︸ ︷︷ ︸
m

∈ F (S).

A relation of the form
〈s, t〉m(s,t) = 〈t, s〉m(s,t)

is called a braid relation.
A Coxeter group is an example of �nitely presented group, as it has a �nite set of

generators S and a �nite number of de�ning relations. For this kind of group a classic
question arises.

Question 1. (The word problem for Coxeter groups) Given two words w,w′ ∈ F (S),
when do they correspond to the same group element?

However not being solvable for a generic group, there is a complete answer for Coxeter
groups, given by the following result.

Theorem 1.6.2 (Matsumoto, [Mat64]). Let W be a Coxeter group, then any two reduced

expressions for the same element di�er by braid relations.

Remark 1.6.3. This is equivalent as saying that, going from a reduced expression to
another one, there is no need to apply conjugations (�add letters�) nor of using relations
s2 = 1 (�delete letters�).

The word problem can be considered in SDS setting, too.

Question 2. (The word problem for SDS) Let Γ be a combinatorial graph, let K be
the (�nite) state set on each vertex and let (Fv)v be a list of update rules. Given two
update sequences w,w′ ∈ F (V ), when do the SDS we obtain have identical phase space?
In other words, when two update sequences give rise to functionally equivalent SDS?

As the graph Γ and state sets Si are �nite, this problem can always be solved compu-
tationally. It would be interesting to �nd an equivalent result to Matsumoto Theorem:
however, we now state some results from [MM10], where it is shown how conjugation of
Coxeter elements correspond to cycle equivalence of SDS maps.
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1.7 w-independent SDS

1.7 w-independent SDS

The property of an SDS to be w-independent will be used in the following section, in
order to state an analogy with Coxeter groups. We introduce the notion of Asynchronous
Cellular Automata (ACA) as it has been proved that many of them are examples of w-
independent SDS.

De�nition 1.7.1. A word w ∈ F (V ) is said fair if and only if each element in V do
appear in w at least once.

De�nition 1.7.2. An SDS is w-independent if there exists a subset P ⊂ S such that for
all fair words w,

Per[FΓ, w] = P.

Remark 1.7.3. It is important to stress that, for w-independent words, the phase space
is independent as set from the permutation chosen.

The property of being w-independent is more common than it appears. The following
two examples are presented in [MR08].

Example 1.7.4. For a combinatorial graph Γ and a fair word w, the SDS (Γ,NorΓ, w)
is w-independent. Its dynamic group DG(NorΓ) acts transitively on P = Per[NorΓ, w].

For the combinatorial graph Circn (n ≥ 3), there are exactly 11 symmetric Boolean
functions that induce w-independent SDS. They are

• nor3 and nand3;

• (nor3 + nand3) and (1 + nor3 + nand3);

• 3, or3 and majority3;

• parity3 and (1 + parity3);

• the constant maps 0 and 1.

Example 1.7.5. On function nor3 is w-independent on Circ4: in fact, in example 1.3.3,
all phase spaces have the same periodic points: 0000, 1010, 0001, 0100, 0010, 1000 and
0101.

In [MMM08] it is introduced the notion on Asynchronous Cellular Automata (or ACA),
which is a special case of SDS whose base graph is either a lattice or a graph Circn. Its
de�nition coincides with that of a Cellular Automata (or CA) apart from the application
of update rules, which in ACA is asynchronous, while in CAit is synchronous.
If the vertex sets are K = {0, 1}, then each local function fi calculates the new

state on vertex i taking {xi−1, xi, xi+1} as input. Hence, there are eight possible outputs
a0, a1, ..., a7, one for each of the nine possible inputs 000, 001, ..., 111. Following a notation
introduced in [Wol83], any of the 28 = 256 possible rule can be represented as an integer
r smaller than 256, as

r =
∑

ai2
i.
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1 Preliminaries

The corresponding sequence of local functions is denoted by ECAr and it is called Ele-

mentary Cellular Automata or Wolfram rule r.

It has been proved in [MMM08] that exactly 104 of the 256 possible update rules give
rise to a π-independent SDS. Their dynamics groups are described in [MMM11].

1.8 Coxeter groups and cycle equivalence

Recall that for each Coxeter group it is possible to de�ne a Coxeter graph Γ as follows:
its vertex set correspond to the set of generators S = {s1, . . . , sn}, and there is an edge
(i, j) whenever the corresponding generators si and sj do not commute, its edge label
being m(si, sj).

Each Coxeter element c = s1 . . . sn induces a partial order on the set of its generators S,
hence it induces an acyclic orientation on Γ so that the edge (i, j) assumes the orientation
i→ j if and only if si appears before sj in c.

When we conjugate the element c = s1 . . . sn by its initial letter s1, the result is

s1cs1 = s1(s1 . . . sn)s1 = s2 . . . sns1.

The corresponding acyclic orientations coincide in all edges but those including vertex 1:
indeed, being the �rst on the left in element c, 1 was a source, hence all vertices (1, j)
were oriented 1 → j; now 1 is the rightmost element in s2 . . . sns1, hence it has become
a sink, as the same edges are now oriented j → i.

The following result connects the acyclic orientations on graphs and Coxeter elements.

Theorem 1.8.1 ([EE09]). Let ∼κ be the equivalence relation induced on Acyc(Γ) by the

source-to-sink conversion Then, given two graph orientations OcΓ and Oc′Γ , we have

OcΓ ∼κ Oc
′

Γ if and only if c and c′ are conjugate.

An analogous result involves κ-equivalence of acyclic orientations and cycle equivalence
of permutation SDS.

Theorem 1.8.2 ([MM09]). If two acyclic orientations are cycle equivalent, i.e. OπΓ ∼κ
OσΓ, then the induced SDS maps [FΓ, π] and [FΓ, σ] are cycle equivalent.

1.9 The dynamic group of an SDS

Consider the SDS whose vertex state is S = F2 = {0, 1}, and a sequence of π-independent
local functions F = (F1, . . . ,Fn), i.e. such that Per(Fπ) = Per(Fσ), for all the possible
permutations π, σ ∈ Sn. In particular, each local function permutes the set of periodic
points, and nothing is said about the orbits.

De�nition 1.9.1. The dynamics group of F is the group generated by the local functions
Fi, and it is denoted by DG(F ).
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1.9 The dynamic group of an SDS

Let F?i be the restriction of Fi to the periodic points Per(Fπ). Since Fi eventually
changes only the state of the i-th vertex, and the state set is Si = F2, then

• F?i ◦F?i = IdPer(Fπ);

• (F?i ◦F?j )mij = IdPer(Fπ), where mij = |F?i ◦F?j |.

Hence, it is possible to de�ne a surjective map

〈s1, . . . , sn : s2
i = 1, (sisj)

mij = 1〉 −→ DG(F ).

Here we see that the dynamics group of a generic SDS is naturally a quotient of a Coxeter
group, and it leads to the following question.

Question 3. Give a presentation of the dynamics group of the SDS based on the update
functions.

Update systems, which we de�ne and study in Chapters 2 and 3, can be seen as an
attempt to describe the dynamics of a structure similar to SDS, even if on a directed
acyclic graph, without �xing a given order in which to update the states.
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2 Update systems on the complete graph

The content of this chapter re�ects the preprint [CD13], where the recently de�ned notion
of Hecke-Kiselman monoid �nds a natural realization on the combinatorial-computational
setting of Sequential Dynamical Systems.

Let Q be a mixed graph, i.e., a simple graph with at most one connection between
each pair of distinct vertices; connections can be either oriented (arrows) or non-oriented
(edges). In [GM11], Ganyushkin and Mazorchuk associated with Q a semigroup HKQ,
subject to the following relations

• aiaj = ajai, if i and j are not connected;

• aiajai = ajaiaj , if ( i j ) ∈ Q, i.e., i and j are connected by an edge;

• aiaj = aiajai = ajaiaj , if ( i // j ) ∈ Q, i.e., i and j are connected by an arrow
from i to j.

The semigroup HKQ is known as the Hecke-Kiselman monoid attached to Q.

For the two extremal types of mixed graphs � graphs, where all sides are edges,
and oriented graphs, in which all sides are arrows � Hecke-Kiselman monoids are well
understood: when Q is an oriented graph with n vertices and no directed cycles, then
HKQ is isomorphic to a quotient of Kiselman's semigroup Kn [Kis02, KM09], which is
known to be �nite [KM09].

On the other hand, when Q has only unoriented edges, HKQ is �nite if and only if Q is
a disjoint union of �nite simply laced Dynkin diagrams, and the corresponding semigroup
is then variously known as Springer-Richardson, 0-Hecke, or Coxeter monoid attached
to Q. The problem of characterizing mixed graphs inducing a �nite Hecke-Kiselman
monoid in the general mixed case seems to be di�cult, and only very partial results are
known [AD13]. The study of (certain quotients of) Hecke-Kiselman monoids and their
representations has also attracted recent interest, see for instance [For12, Gre12, GM13].

The choice of a simple (i.e., without loops or multiple edges) graph Γ is also one
of the essential ingredients in the de�nition of a Sequential Dynamical System (SDS),
which are described in the previous chapter. SDS on directed acyclic graphs are related
to Hecke-Kiselman monoids in that the so-called Γ-local functions [MR08] satisfy the
relations listed in the presentation of HKΓ; in other words, the evaluation morphism
mapping each word (or update schedule) in V to the corresponding composition of Γ-
local functions factors through HKΓ.

One is naturally led to wonder whether HKΓ is the smallest quotient through which
the above evaluation morphisms must factor, or additional universal relations among
Γ-local functions may be found. Henceforth, Γn = (V,E) will denote the oriented graph
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2 Update systems on the complete graph

where V = {1, . . . , n} and (i, j) ∈ E if and only if i < j. In this chapter, we show that
HKΓ is optimal in the special case Γ = Γn, by proving the following statement.

Theorem 2.0.2. There exists an update scheme S?n = (Γn, Si, fi) such that the associated
evaluation morphism factors through no nontrivial quotient of HKΓn = Kn.

We believe that the same claim holds for every �nite directed acyclic graph, and
mention Chapter 3 some evidence in support of this conjecture.
This chapter is structured as follows. In Section 2.1 we recall the de�nition of SDS,

de�ne the dynamics monoid of an update system supported on an oriented graph Γ,
and show that it is a quotient of the Hecke-Kiselman monoid HKΓ as soon as Γ has
no oriented cycles. In Sections 2.2 and 2.3 we list the results on Kiselman's semigroup
Kn that are contained in [KM09], and derive some useful consequences. Section 2.4
introduces the join operation, which is the key ingredient in the de�nition of the update
system S?n, which is given in Section 2.5. Sections 2.6 and 2.7 are devoted to the proof of
Theorem 2.6.2, which directly implies the above-mentioned result. Finally, Section 2.8
contains some more results on the dynamics of the SDS on the complete graph

2.1 Sequential dynamical systems

An update system is a triple S = (Γ, (Si)i∈V , (fi)i∈V ) consisting of

1. a base graph Γ = (V,E), which is a �nite directed graph, with V as vertex set and
E ⊆ V ×V as edge set; we will write i→ j for (i, j) ∈ E. The vertex neighbourhood
of a given vertex i ∈ V is the subset

x[i] = {j : i→ j}.

2. a collection Si, i ∈ V of �nite sets of states . We denote by S =
∏
i∈V Si the family

of all the possible system states, i.e., n-tuples s = (si)i∈V , where si belongs to Si
for each vertex i. The state neighbourhood of i ∈ V is S[i] =

∏
j∈x[i] Sj , and the

restriction of s = (sj)j∈V to x[i] is denoted by

s[i] = (sj)j∈x[i] ∈ S[i].

3. for every vertex i, a vertex (update) function

fi : S[i] → Si,

computes the new state value on vertex i as a function of its state neighbourhood.
In particular, if x[i] is empty, then fi is a constant t ∈ Si, and we will write fi ≡ t.
Each vertex function fi is a constant t ∈ Si and we will write fi ≡ t. Each vertex
function can be incorporated into a Γ-local function Fi : S → S de�ned as

Fi(s) = t = (tj)j∈V , where tj =

{
sj , if i 6= j

fi(s[i]), if i = j
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2.1 Sequential dynamical systems

An SDS is an update system S endowed with

4. an update schedule, i.e., a word w = i1i2 . . . ik in the free monoid F(V ) over the
alphabet V (just like we did in the �rst chapter, we will often abuse the notation
denoting both the alphabet and the vertex set with the same letter V , and both
letters and vertices with the same symbols). The update schedule w induces a
dynamical system map (SDS map), or an evolution of S, Fw : S → S, de�ned as

Fw = Fi1 Fi2 . . .Fik .

Remark 2.1.1. As the graph Γ sets up a dependence relation between nodes under the
action of update functions, it makes sense to allow Γ to possess self-loops, and arrows
connecting the same vertices but going in opposite directions. However, we exclude the
possibility of multiple edges between any two given vertices. Notice, �nally, that all
SDS of interest, in this and the following chapter, will be supported on directed acyclic

graphs, thus excluding in particular the possibility of self-loops.

Denote by End(S) the set of all maps S → S, with the monoid structure given by
composition. Then, the Γ-local functions Fi, i ∈ V , generate a submonoid of S which
we denote by D(S). The monoid D(S) is the image of the natural homomorphism

F : F(V ) → End(S)

w 7→ Fw .

mapping each update schedule w to the corresponding evolution Fw; in particular, we
denote by F? the identity map, induced by the empty word ?.
Once an underlying update system has been chosen, our goal is to understand the

monoid structure of D(S).

Example 2.1.2. Let Γ = ({i}, ∅) be a Dynkin graph of type A1. It has only one vertex i,
so there is only one vertex function fi, which is constant, as there are no arrows starting
in i. The system dynamics monoid D(S) = {F?,Fi} contains exactly two elements, as
soon as |Si| > 1.

Example 2.1.3. Let Γ be the graph Let us consider Si = {0, 1, 2}, Sj = {0, 1}. Set up

i j

Figure 2.1: Line2.

an update system on Γ by requiring that fi : S[i] = Sj → Si acts as fi(s) = s + 1, and
fj ≡ 1 . Evolutions induced by words ? (the empty word), i, j, ij and ji on S = Si × Sj
all di�er from each other, as they take di�erent values on (0, 0):

F?(0, 0) = (0, 0)

Fi(0, 0) = (1, 0)

Fj(0, 0) = (0, 1)

Fij(0, 0) = FiFj(0, 0) = Fi(0, 1) = (2, 1)

Fji(0, 0) = Fj Fi(0, 0) = Fj(1, 0) = (1, 1).
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2 Update systems on the complete graph

Both Fi and Fj are idempotent. Moreover, it is easy to see that

Fiji = Fjij = Fij ,

as FiFj Fi = Fj FiFj = FiFj , so that Fi 7→ a1, Fj 7→ a2 extends to an isomorphism
from D(S) to Kiselman's semigroup K2,

K2 = 〈a1, a2 : a2
1 = a1, a2

2 = a2 a1a2a1 = a2a1a2 = a1a2〉.

These examples are instances of the following statement.

Proposition 2.1.4. Let S = (Γ, Si, fi) be an update system de�ned on a directed acyclic

graph Γ. Then the Γ-local functions Fi satisfy:

(i) F2
i = Fi;

(ii) FiFj Fi = Fj FiFj = FiFj, if i→ j (and hence, j 9 i);

(iii) FiFj = Fj Fi, if i and j are not connected.

Proof. Every Γ-local function Fi only a�ects the vertex state si. As Fi(s) only depends
on s[i], and i /∈ x[i], then each Fi is idempotent. For the same reason, it is enough
to check (ii) and (iii) on a graph with two vertices i 6= j. If they are not connected,
then both fi and fj are constant, hence Fi and Fj trivially commute. If there is an
arrow i → j, then Fi(ai, aj) = (fi(aj), ai), whereas Fj(ai, aj) = (ai, t), since fj ≡ t
is a constant. Then it is easy to check that the compositions FiFj , FiFj Fi,Fj FiFj
coincide, as they map every element to (fi(t); t).

These relations are remindful of those in the presentation of a Hecke-Kiselman monoid.

De�nition 2.1.5. Let Γ = (V,E) be a �nite directed acyclic graph. The Hecke-Kiselman

monoid associated with Γ is de�ned as follows

HKΓ = 〈ai, i ∈ V : a2
i = ai, for every i ∈ V ;

aiajai = ajaiaj = aiaj , for i→ j; (2.1.1)

aiaj = ajai, for i9 j, and j 9 i〉 (2.1.2)

This structure has been �rst introduced in [GM11] for a �nite mixed graph, i.e., a
simple graph (without loops or multiple edges) in which edges can be both oriented
and unoriented: there, an unoriented edge (i, j) is used to impose the customary braid
relation aiajai = ajaiaj .
If S = (Γ, Si,Fi) is an update system on a �nite directed acyclic graph Γ = (V,E), then

Proposition 2.1.4 amounts to claiming that the evaluation homomorphism F : F(V ) →
End(S) factors through the Hecke-Kiselman monoid HKΓ.
Our case of interest is when the graph Γ = Γn is the complete graph on n vertices, where

the orientation is set so that i→ j if i < j. In this case, the semigroup HKΓn coincides
with Kiselman's semigroup Kn, as de�ned in [KM09]. The monoid Kn, however, only
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re�ects immediate pairwise interactions between vertex functions. One may, in principle,
wonder if Kn is indeed the largest quotient of F(V ) through which evaluation maps F
factor, or additional identities may be imposed that re�ect higher order interactions.
In section 2.5 we will exhibit an update system S?n, de�ned on the graph Γn, whose

dynamics monoid is isomorphic to Kn. In other words, we will show that Kn → D(S?n)
is indeed an isomorphism, once suitable vertex functions have been chosen.

2.2 Combinatorial de�nitions

Let F(A) be the free monoid over the alphabet A, and denote by ? the empty word.
Recall that, for every subset B ⊆ A, the submonoid 〈B〉 ⊆ F(A) is identi�ed with the
free monoid F(B).

De�nition 2.2.1. Let w ∈ F(A). We de�ne

• subword of w to be a substring of consecutive letters of w;

• quasi-subword of w to be an ordered substring u of not necessarily consecutive
letters of w.

We will denote the relation of being a quasi-subword by ≤, so that

v ≤ w

if and only if v is a quasi-subword of w.

Obviously, every subword is a quasi-subword. Also notice that v ≤ w and w ≤ v if
and only if v = w.

Example 2.2.2. Set w = acaab ∈ F({a, b, c}); then

• aab is a subword (hence a quasi-subword) of w;

• aaa is a quasi-subword of w which is not a subword;

• abc is neither a subword nor a quasi-subword of w.

Trivial examples of subwords of w are the empty word ?, and w itself.

De�nition 2.2.3. Let w ∈ F(A).Then

• if w is non-empty, the head of w, denoted h(w) ∈ A, is the leftmost letter in w;

• if a ∈ A, then the a-truncation Taw ∈ F(A) of w is the longest (non-empty) su�x
of w with head a, or the empty word in case a does not occur in w.

Similarly, if I ⊂ A, we denote by TI w the longest (non-empty) su�x of w whose head
lies in I, or the empty word in case no letter from I occurs in w.

The following observations all have trivial proofs.
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2 Update systems on the complete graph

Remark 2.2.4.

(i) If w ∈ F(A) does not contain any occurrence of a ∈ A, then

Ta(ww
′) = Ta(w

′),

for every w′ ∈ F(A).

(ii) For every w ∈ F(A), and a ∈ A, one may (uniquely) express w as

w = w′Taw

where w′ ∈ 〈A \ {a}〉.

(iii) If w ∈ F(A) contains some occurrence of a ∈ A, then

Ta(ww
′) = (Taw)w′,

for every w′ ∈ F(A).

Remark 2.2.5.

(i) If w ∈ F(A), and a, b ∈ A, then either Taw is a su�x of Tbw, or vice versa.

(ii) If Tbw is a su�x of Taw for all b ∈ A , then h(w) = a, hence Taw = w.

(iii) TI w = Taw for some a ∈ I, and Tbw is a su�x of TI w for every b ∈ I.

De�nition 2.2.6. Given I ⊆ A, the deletion morphism is the unique semigroup homo-
morphism satisfying

∂I : F(A) → F(A \ I) ⊆ F(A)

ai 7→ ?, for i ∈ I
aj 7→ aj , for j /∈ I.

It associates with any w ∈ F(A) the longest quasi-subword of w containing no occurrence
of letters from I.

Remark 2.2.7. For every I, J ⊆ A,

∂I ∂J = ∂I∪J

Lemma 2.2.8. If a /∈ I ⊂ A, then

∂I Taw = Ta ∂Iw

for every w ∈ F(A).
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2.3 Kiselman's semigroup and canonical words over the complete graph

Proof. Write w = w′Taw. Then, by Remark 2.2.4 (i),

Ta ∂Iw = Ta ∂I
(
w′ Taw

)
= Ta

(
∂Iw

′ ∂I Taw
)

= Ta ∂I Taw (2.2.1)

= ∂I Taw (2.2.2)

In (2.2.1) we use that a does not occur in ∂Iw
′, as, by de�nition of w′, a does not occur

in w′; then (2.2.2) holds because either the head of Taw is a or Taw = ?, hence the
same holds after applying ∂I , as a /∈ I.

2.3 Kiselman's semigroup and canonical words over the

complete graph

In this section, we recall results from [GM11], and draw some further consequences.
Henceforth, when h ≤ k are natural numbers, we will denote by [h, k] = {h, h +

1, . . . , k} the corresponding segment. Choose an alphabet A = {ai, i ∈ [1, n]}; Kiselman's
semigroup Kn has the presentation

Kn = 〈ai ∈ A : a2
i = ai for every i, aiajai = ajaiaj = aiaj for i < j〉.

In accordance with [KM09], let

π : F(A)→ Kn

denote the canonical evaluation epimorphism.

De�nition 2.3.1 ([GM11]). Let w ∈ F(A). A subword of w of the form aiuai, where
ai ∈ A and u ∈ F(A), is special if u contains both some aj , with j > i, and some ak,
with k < i.

Remark 2.3.2. Notice that a subword aiuai cannot be special if i = 1 or i = n.

Let us recall the following fact.

Theorem 2.3.3 ([KM09]). Let w ∈ F(A). The set π−1π(w) contains a unique element

whose only subwords of the form aiuai are special.

Remark 2.3.4.

(i) The unique element described in Theorem 2.3.3 contains at most one occurrence
of a1 and at most one occurrence of an.

(ii) In order to prove Theorem 2.3.3, the authors of [KM09] de�ne a binary relation →
in F(A) as follows: w → v if and only if either

(
1→) w = w1aiaiw2, v = w1aiw2, or
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2 Update systems on the complete graph

(
2→) w = w1aiuaiw2, v = w1aiuw2 and u ∈ 〈ai+1, . . . , an〉, or

(
3→) w = w1aiuaiw2, v = w1uaiw2 and u ∈ 〈a1, . . . , ai−1〉.

It is possible to iterate such simpli�cations, and write (�nite) sequences

w → v1 → v2 · · · → vk, (2.3.1)

so that each word contains exactly one letter less than the previous, and they all
belong to the same �ber with respect to π. Moreover, each vi is a quasi-subword
of w and of vj , for all j < i.

A sequence like (2.3.1) is called simplifying sequence if vk is not simpli�able any
further, and each vi → vi+1 is called a simplifying step. It should be stressed that
a simplifying step of type 1 can be seen as both of type 2 and of type 3.

(iii) According to Theorem 2.3.3, every simplifying sequence for w ends on the same
word.

We will refer to any word, whose all subwords of the form aiuai are special, as a
canonical word, so that the above theorem claims existence of a unique canonical word
v in each π−1π(w), w ∈ F(A). Thus, the assignment w 7→ v is a well de�ned map
Can : F(A) → F(A) associating with each word its unique canonical form. Notice that
w is canonical if and only if w = Canw.

Remark 2.3.5.

(i) If w is canonical then all of its subwords are canonical.

(ii) A word u ∈ 〈ai, i ∈ [h, k]〉 is canonical if and only if, for every j < h or j > k, the
word aju is canonical. Moreover,

Can(aju) = aj Canu.

Remark 2.3.6. More consequences of Theorem 2.3.3 are that

(i) the canonical form Canw is the word of minimal length in π−1π(w);

(ii) due to Remark 2.3.4(iii), Canw is the last element in every simplifying sequence
starting from any of the words in π−1π(w);

(iii) Canw is a quasi-subword of all the words in any simplifying sequence beginning
from w;

(iv) if w contains any given letter, so does Canw.

Lemma 2.3.7. For every u, v ∈ F(A),

Can(uv) = Can ((Canu)v)

= Can (uCan v)

= Can (CanuCan v)
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2.3 Kiselman's semigroup and canonical words over the complete graph

Proof. π is a homomorphism, and π(x) = π(Canx).

De�nition 2.3.8. If I ⊆ A, then

CanI w = Can ∂A\Iw,

where w ∈ F(A). In particular CanAw = Canw.

Before proceeding further, we need to make an important observation. Say we have a
sequence of steps leading from a word y to a word x, and that each step removes a single
letter. The same procedure can be applied to every subword of y, and again at each step
(at most) a single letter is removed, eventually yielding a subword of x. Every subword
of x is obtained in this way from some (possibly non-unique) subword of y. Notice that

in the cases we will deal with, some of the steps will be simpli�cations of type
1→ for

which there is an ambiguity on which of the two identical letter is to be removed.
We will say that a subword aiuai of x originates from the subword w of y if w is

maximal among all subwords of y yielding aiuai under the sequence of simpli�cations
that are of the form aivai. Let us clarify things with an example. In the following
sequence of steps, we have highlighted the letter to remove at each step:

bdbcd̂abcdc→ bd̂bcabcdc→ bb̂cabcdc→ bcabcdc.

Notice that, in the last step, there is an ambiguity on which letter is being removed.
Then the subwords bdbcdab, dbcdab, bcdab of bdbcdabcdc all yield bcab; however, bcab
originates only from bdbcdab and bcdab.
Henceforth, we will shorten the notation and denote by ∂i,Ti, . . . the maps ∂ai ,Tai , . . . .

Lemma 2.3.9. Assume y = Can y and let x = ∂[1,k−1]y, where 1 ≤ k ≤ n. Then any

subword aiuai ≤ x is either special or satis�es u ∈ 〈ai, . . . , an〉.

Proof. Let aiuai be a subword of x. Then i ≥ k, as x = ∂[1,k−1]y contains no ai, i < k.
The above subword aiuai originates from a subword aivai of y. If aiuai is not special,

then either u ∈ 〈aj , j ≤ i〉, or u ∈ 〈aj , j ≥ i〉. However, the former case does not occur,
otherwise aivai would fail to be special, as x is obtained from y by only removing letters
aj , 1 ≤ j < k, and k ≤ i. This is a contradiction, as y is canonical.

Lemma 2.3.10. Assume y = Can y and let x = ∂[1,k−1]y, where 1 ≤ k ≤ n. Then any

simplifying sequence

x = ∂[1,k−1]y → · · · → Canx = Can[k,n] y

is such that all simplifying steps are of type
2→ (possibly of type

1→).

Proof. By Lemma 2.3.9, any subword aiuai ≤ x is either special or satis�es u ∈ 〈aj , i ≤
j ≤ n〉, hence the �rst simplifying step is of type

2→ (and possibly of type
1→).

We want to show that, starting from x = ∂[1,k−1]y, no simpli�cations of type
2→ or of

type
1→ can lead to a word admitting a subword aiuai, on which we may then apply a
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2 Update systems on the complete graph

step of type
3→ (and not of type

1→). Notice that in such a case, ? 6= u ∈ 〈aj , k ≤ j < i〉,
so that i > k.
Assume therefore by contradiction that aiuai, where ? 6= u ∈ 〈aj , k ≤ j < i〉, occurs as

a subword after having performed some simplifying steps of type
2→ on x. The subword

aiuai originates from a subword aivai of x, which is necessarily special, since v cannot lie
in 〈aj , i ≤ j ≤ n〉, as it must yields u 6= ? after removing some letters. This shows that
letters aj , j > i, must occur in v, whereas they do not occur in u, after only performing

steps of type
2→.

However, a simplifying step of type
2→ that removes a letter from between the two

occurrences of ai either occurs completely between them, or begins of the left of the left
ai. In the former case, it does not change the speciality of the subword, whereas in the

latter case the simpli�cation cannot be of type
2→, due to the presence of the left ai.

Corollary 2.3.11. If ua1v is canonical, then Can(uv) admits u as a pre�x.

Proof. By Lemma 2.3.10, all simplifying sequences from uv = ∂1(ua1v) to Can(uv) only

contain steps of type
2→, and no such simplifying step does alter u.

Proposition 2.3.12. If ua1v is canonical, then ua1 Can[k,n] v is also canonical.

Proof. We know that v is canonical. Then Lemma 2.3.10 shows that ua1∂[1,k−1]v can be

simpli�ed into ua1 Can[k,n] v by only using steps of type
2→ on the right of a1.

If ua1 Can[k,n] v is not canonical, then we may �nd a subword aixai that is not special.
As both u and Can[k,n] v are canonical, then a1 must occur in x. Say that aixai originates

from the subword aiyai of ua1v. No simpli�cation of type
2→, when performed on the

right of a1, can change the set of letters that appear between the two ai. This yields a
contradiction, as aiyai is special, whereas aixai is not.

Corollary 2.3.13. For every choice of u, u′, v, v′ ∈ 〈a3, a4, . . . , an〉,

(i) if ua1va2v
′ is canonical, then ua1 Can(vv′) is canonical;

(ii) if ua2va1v
′ is canonical, then ua2 Can(vv′) is canonical;

(iii) if ua2u
′a1va2v

′ is canonical, then both ua2u
′a1 Can(vv′) and ua2 Can(u′vv′) are

canonical.

Proof. (i) follows directly from Proposition 2.3.12, and (iii) follows by applying Propo-
sition 2.3.12 and then (ii).
However, (ii) is equivalent to (i), as both ua1va2v

′ and ua2va1v
′ contain single occur-

rences of a1 and a2, and every simplifying sequence for the former can be turned into a
simplifying sequence for the latter by switching a1 with a2.

Lemma 2.3.14. Let w ∈ F(A), i ∈ [1, n]. Then

(i) there is at most one occurrence of ai in Can[i,n]w;
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2.3 Kiselman's semigroup and canonical words over the complete graph

(ii) if such an occurrence exists, then

Can[i,n] Tiw = ai Can[i+1,n] Tiw.

Proof. Without loss of generality, we may assume that i = 1.

(i) Recall Remark 2.3.4(i).

(ii) As Can T1w contains exactly one occurrence of a1, this must be its head as, by
Lemma 2.3.10, every simplifying step removing an ai must necessarily be of type
2→ or

1→. Recalling Remark 2.3.5(ii), and the de�nition of CanI ,

Can T1w = Can(a1∂1 T1w)

= a1 Can(∂1 T1w)

= a1 Can[2,n] T1w.

Lemma 2.3.15. Let w ∈ F(A), i ∈ [1, n]. Then

Ti Can[i,n]w = Can[i,n] Tiw.

Proof. Once again, we may assume without loss of generality that i = 1. If there are no
occurrences of a1 in w, then both sides equal the empty word, and we are done.
Otherwise, using Remark 2.2.4(ii), write w = uT1w, and Can T1w = a1v. We are

asked to show that
T1 Can(uT1w) = Can(T1w),

which is equivalent, using Lemma 2.3.7, to

T1 Can(ua1v) = a1v.

Notice that v is canonical, and u ∈ 〈a2, . . . , an〉. The simplifying steps that can occur
on a word of the type ua1v may only a�ect u: indeed, v is canonical, there is an only
occurrence of a1 in ua1v, and the only special words that begin in u and end in v contain

an occurrence of a1, and thus lead to a
3→.

An easy induction now shows that Can(ua1v) = u′a1v, where u
′ is a quasi-subword of

u, hence T1 Can(ua1v) = a1v.

Lemma 2.3.16. For every u, v ∈ 〈a2, . . . , an〉,

Can(uv) ≤ Can(ua1v)

Proof. We may assume using Lemma 2.3.7 that v is canonical.
Argue as in the previous proof, to show that Can(ua1v) = u′a1v, where u

′ is obtained
by a sequence of simplifying steps that either take place on the left of a1, or are of type
3→. Every such step can be also performed starting with the word uv, as the presence or
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2 Update systems on the complete graph

absence of a1 has no in�uence on steps of type
3→ that begin on u and end on v. Thus,

u′v can be obtained from uv by a simplifying sequence, hence Can(uv) = Can(u′v). Now,

Can(uv) = Can(u′v) ≤ u′v ≤ u′a1v = Can(ua1v),

and we are done.

An immediate consequence of the last lemma is that if w contains only one occurrence
of a1, then Can[2,n]w ≤ Canw. However, this fact holds without the single occurrence
assumption.

Lemma 2.3.17. Let w ∈ F(A). Then Can[2,n]w is a quasi-subword of Canw. As a

consequence, Can[k,n]w is a quasi-subword of Canw for every k ≤ n.

Proof. If w ∈ 〈a2, . . . , an〉, then w = ∂1w, and there is nothing to prove.
Otherwise, using Remark 2.2.4(ii), write w = w′T1w. According to Lemma 2.3.7 and

Lemma 2.3.14(ii),

Canw = Can
(
w′ T1w

)
= Can

(
w′ Can T1w

)
= Can

(
w′ a1 Can[2,n] T1w

)
.

On the other hand, by Remark 2.2.4(ii) and Lemma 2.3.7 (and recalling that here
∂1w

′ = w′),

Can[2,n]w = Can ∂1(w′T1w)

= Can
(
w′ ∂1 T1w

)
= Can

(
w′ Can[2,n] T1w

)
.

We can now apply Lemma 2.3.16. The latter statement is taken care of by an easy
induction.

2.4 The join operation

Given an update system over the complete graph Γn, Proposition 2.1.4 proves that its
dynamics monoid is an epimorphic image of Kiselman's semigroup Kn. In next section,
we will exhibit an update system S?n over Γn whose dynamics monoid is isomorphic to
Kn; from a dynamical point of view, S?n serves as a universal update system.
We introduce the following operation in order to construct, later, a family of update

functions.

De�nition 2.4.1. Take u, v ∈ F(A). The join of u and v, denoted by [u, v], is the
shortest word admitting u as quasi-subword and v as su�x. Namely,

[u, v] = u+v

where u = u+u−, so that u− is the longest su�x of u which is a quasi-subword of v.
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2.4 The join operation

Notice that the decomposition u = u+u− strictly depends on the choice of v.

Example 2.4.2. For instance, consider u = cbadc and v = abdc. Then,

[u, v] = cbabdc.

Remark 2.4.3.

(i) The empty word ? is a subword of every w ∈ F(A), so that

[?, u] = [u, ?] = u.

(ii) If u is a quasi-subword of v, then [u, v] = v.

(iii) If u is not a quasi-subword of v, then

[wu, v] = wu+v = w[u, v],

for every w ∈ F(A).

(iv) If [u, v] = u+v, then

[u,wv] = [u+, w]v

Indeed, write u = u+u−: u− is the longest su�x of u which is a quasi-subword of
v, but there could be a su�x of u+ which is a quasi-subword of w.

(v) If u, v ∈ F(A) are canonical, [u, v] may fail to be so. For instance, [a1a2, a2a1] =
a1a2a1, which is not canonical.

The following lemma will be used later in the proof of Proposition 2.6.1.

Lemma 2.4.4. Let u, x, y ∈ F(A), if ux ≤ uy, then x ≤ y.

Proof. As ux is a quasi-subword of uy, by Remark 2.4.3(ii),

[ux, uy] = uy.

Assume that x is not a quasi-subword of y and write it as x = x+x−, where x− is its
longest su�x which is a quasi-subword of y. Using Remark 2.4.3(iii),

[ux, y] = ux+y.

Finally, using Remark 2.4.3(iv),

[ux, uy] = [ux+, u]y

However, [ux+, u] = u can hold only if ux+ is not longer than u, i.e., only if x+ = ?,
hence x is a quasi-subword of y.
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2.5 An update system with universal dynamics

If U, V ⊂ F(A), denote by [U, V ] ⊂ F(A) the subset of all elements [u, v], u ∈ U, v ∈ V .

De�nition 2.5.1. The update system S?n is the triple (Γn, Si, fi), where

1. Γn is, as before, the complete graph on n vertices, where i→ j if and only if i < j.

2. On vertex i, the state set is

Si =


{?, an} if i = n
{?, an−1, an−1an} if i = n− 1
{?} ∪ ai[Sn, [. . . , [Si+2, Si+1] . . . ]] if 1 ≤ i ≤ n− 2

3. On vertex i, the vertex function is

fi :
n∏

j=i+1

Sj → Si

(si+1, . . . , sn) 7→ ai[sn, [. . . , [si+2, si+1] . . . ]]

if i ≤ n− 2, whereas fn−1(sn) = an−1an and fn ≡ an is a constant.

We will abuse the notation and denote by ? also the system state (?, . . . , ?) ∈ S.

2.6 Statement of the main result and some technical

lemmas

This and next sections will be devoted to the proof of the following

Proposition 2.6.1. Consider the evaluation morphism F : F(A) → D(S?n), mapping

each word w ∈ F(A) to the corresponding evolution Fw ∈ D(S?n). If p = (p1, . . . , pn) =
Fw ?, then:

(i) One has pi = (Fw ?)i = Can[i,n] Tiw.

(ii) For every choice of k, 1 ≤ k ≤ n, one may �nd j ∈ [1, k], so that

[pk, [. . . , [p2, p1] . . . ]] = Tj Canw,

and Ti Canw is a su�x of Tj Canw for all i ≤ k.

Our central result then follows immediately.

Theorem 2.6.2. With the same hypotheses and notation as in Proposition 2.6.1,

(i) Canw = [pn, [. . . , [p2, p1] . . . ]];

(ii) for every u, v ∈ F(A), u ∼ v if and only if Canu = Can v;
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(iii) Kn is isomorphic to D(S?n).

Proof.

(i) Use Part (ii) of Proposition 2.6.1 for k = n. Then [pn, [. . . , [p2, p1] . . . ]] = Tj Canw
for a suitably chosen j. However, Ti Canw is a su�x of Tj Canw for all i, hence,
by Remark 2.2.5(ii), Tj Canw = Canw.

(ii) If u ∼ v, then they compute the same state on ?. However, by (i), one may recover
both Canu and Can v from this state, hence Canu = Can v. The other implication
follows trivially, as Canu = Can v forces u and v to induce the same element in
Kn, hence the same dynamics on S?n.

(iii) This is just a restatement of (ii): distinct elements in Kn have distinct S?n-actions,
since they act in a di�erent way on the system state ?.

Remark 2.6.3. In order to prove Theorem 2.6.2, we have located j ∈ [1, n] such that

Tj Canw = Canw,

whence h(Canw) = aj . Now, there is no occurrence of aj in pj+1, . . . , pn, so that one
necessarily have

[pj , [. . . , [p2, p1] . . . ]] = [pn, [. . . , [p2, p1] . . . ]] = Canw.

We will prove Proposition 2.6.1 by induction on the number n of vertices. We will
divide the proof in several steps, for all of which we will assume by inductive hypothesis
that Proposition 2.6.1, as well as Theorem 2.6.2, hold on S?k , for k < n.

Lemma 2.6.4. For every k, 1 ≤ k ≤ n, w ∈ F(A), one has

Can[k,n] Canw = Can[k,n]w.

Proof. The case k = 1 is trivial.

Say k > 1. We may use the inductive assumption to argue that the action of two words
u, v ∈ F(A) on ? coincide on the subgraph formed by vertices indexed by [k, n], if and
only if Can[k,n] u = Can[k,n] v. However, as u = Canw and v = w have the same action
on the whole graph, they certainly coincide on the subgraph [k, n].

The last technical statement, before proceeding with the proof of Proposition 2.6.1, is
the following.

Proposition 2.6.5. Let u, v ∈ 〈aj+1, aj+2, . . . , an〉 be chosen so that uaj Can v is a

canonical word. Then [Can(uv), v] = uv. In particular, [Can(uv), ajv] = uajv.
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Proof. We may assume, without loss of generality, that j = 1.
The statement is easily checked case by case when n = 1 or 2. Notice that u can have

at most one occurrence of a2, whereas v may have many. Let us therefore distinguish
four cases:

1. There is no occurrence of a2 in either u or v.

In this case, we can use inductive assumption, after removing the vertex indexed
by 2.

2. There is a single occurrence of a2 in u.

Write u = u′a2u
′′. As u′a2u

′′a1 Can v is canonical, then, using Corollary 2.3.13(ii)
and Lemma 2.3.7,

Can(u′a2u
′′v) = Can(u′a2u

′′Can v)

= u′a2 Can(u′′Can v)

= u′a2 Can(u′′v).

Thus, we need to compute [u′a2 Can(u′′v), v]. However, applying Case 1 gives

[Can(u′′v), v] = u′′v,

hence [u′a2 Can(u′′v), v] = u′a2u
′′v follows from Remark 2.4.3(iii).

3. a2 occurs in v, but not in u.

Write Can v = v′a2v
′′. As ua1 Can v = ua1v

′a2v
′′ is canonical, then, using Corollary

2.3.13(i), also ua1 Can(v′v′′) is canonical. However Lemma 2.6.4 informs us that

Can(v′v′′) = Can ∂2 Can v

= Can[3,n] Can v

= Can[3,n] v

= Can ∂2v,

so that ua1 Can ∂2v is canonical. We may then use Case 1 to argue that

[Can(u∂2v), ∂2v] = u∂2v (2.6.1)

Lemma 2.3.17 implies that Can(u∂2v) = Can ∂2(uv) is a quasi-subword of Can(uv).
By Corollary 2.3.11, both Can(uv) and Can(u∂2v) admit u as a pre�x, so, using
Lemma 2.4.4, we can write

Can(uv) = uy, Can(u∂2v) = uz, z ≤ y.

We need to show that [Can(uv), v] = uv. Now, applying Corollary 2.3.13 (ii),

Can(uv) = Can(uv′)a2v
′′ = uxa2v

′′,
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where x is some quasi-subword of v′. As

y = xa2v
′′ ≤ v′a2v

′′ = Can v ≤ v,

then [Can(uv), v] = u+v where u = u+u− and u−y ≤ v. However, this would force

u−z ≤ u−y ≤ v

hence also u−z ≤ ∂2v; and this is only possible if u− = ?, as Equation (2.6.1)
shows.

4. a2 occurs both in u and in v.

This is similar to the previous case. Write u = u′a2u
′′, Can v = v′a2v

′′. Applying
Corollary 2.3.13(iii) to the canonical word ua1 Can v = u′a2u

′′a1v
′a2v

′′, we obtain
that both

u′a2u
′′a1 Can ∂2v = u′a2u

′′a1 Can(v′v′′)

and

u′a2 Can(u′′∂2v) = u′a2 Can(u′′Can ∂2v) = u′a2 Can(u′′v′v′′)

are canonical. Similarly,

Can(uv) = Can(u′a2u
′′v′a2v

′′)

= Can(u′a2u
′′v′v′′)

= Can(u′a2 Can(u′′v′v′′))

= u′a2 Can(u′′∂2v).

Now, as u′′a1 Can ∂2v, being a subword of u′a2u
′′a1 Can ∂2v, is canonical, we use

Case 1 and obtain

[Can(u′′∂2v), ∂2v] = u′′∂2v. (2.6.2)

As a consequence,

[Can(u′a2u
′′v′a2v

′′), ∂2v] = [u′a2 Can(u′′∂2v), ∂2v]

= [u′a2, u
′′]∂2v

= u′a2u
′′∂2v,

and one may complete the proof as in Case 3.

2.7 Proof of Proposition 2.6.1

The basis of induction n = 1 being trivial, we assume that Proposition 2.6.1, hence
Theorem 2.6.2, hold for a complete graph on less than n vertices.
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Proof of Proposition 2.6.1. Let us start by proving Part (i).

Let w ∈ F(A). By inductive hypothesis, for a complete graph on n−1 vertices 2, . . . , n,
the SDS map F∂1w constructs on the ith vertex the state

pi = Can[i,n] Ti ∂1w.

When i > 1, we have

∂1w ∼i w

and we may use induction to argue that pi = Can[i,n] Ti ∂1w. Now, Lemma 2.2.8 allows
us to exchange ∂1 and Ti, so that

pi = Can[i,n] Ti ∂1w

= Can[i,n] ∂1 Tiw

= Can ∂[1,i−1]∂1 Tiw

= Can[i,n] Tiw.

Hence, the statement holds for all vertices i > 1.

As far as vertex 1 is concerned, we need to show that p1 = Can T1w. If w does not
contain the letter a1, then p1 = ? = T1w, and there is nothing to prove; otherwise,
w ∼1 T1w. We know that the state on vertex 1 depends only on the system state
(p′2, . . . , p

′
n), which is computed by ∂1 T1w on the subgraph indexed by [2, n], i.e.,

p1 = a1

[
p′n, [. . . , [p

′
3, p
′
2] . . . ]

]
.

However, we may apply induction hypothesis, and use Theorem 2.6.2(i), which yields

p1 = a1

[
p′n, [. . . , [p

′
3, p
′
2] . . . ]

]
= a1 Can ∂1 T1w

= Can T1w

As for Part (ii) of Proposition 2.6.1, we proceed by induction on k. The basis of
induction descends directly from Part (i), and Lemma 2.3.15, as

p1 = Can T1w

= T1 Canw.

Assume now k > 1. By inductive hypothesis, there exists j < k such that

[pk−1, [. . . , [p2, p1] . . . ]] = Tj Canw.

Recall that, by Remark 2.2.5(i), either Tk Canw is a su�x of Tj Canw or vice versa. In
the former case, we know by Part (i), and Lemma 2.3.15, that

pk = Can[k,n] Tk w = Tk Can[k,n]w. (2.7.1)
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By Lemma 2.3.17, Can[k,n]w is a quasi-subword of Canw, hence pk = Tk Can[k,n]w is a
quasi-subword of Tk Canw, which is a su�x of Tj Canw. Thus,

[pk, [pk−1 [. . . , [p2, p1] . . . ]]] = [pk,Tj Canw]

= Tj Canw.

If, instead, Tj Canw is a su�x of Tk Canw, we argue as follows. Choose u such that
Tk Canw = uTj Canw. As u ∈ 〈ai, k ≤ i ≤ n〉, then by Part (i)

pk = Can[k,n](uTj Canw) = Can(u∂[1,k−1] Tj Canw).

By Proposition 2.3.12, as the word Tk Canw = uTj Canw is canonical, we have that
uaj Can[k,n] Tj Canw is a canonical word. Applying now Proposition 2.6.5 to the word
uaj∂[1,k−1] Tj Canw, one obtains

[pk, aj∂[1,k−1] Tj Canw] = [Can(u∂[1,k−1] Tj Canw), aj∂[1,k−1] Tj Canw] =

= uaj∂[1,k−1] Tj Canw,

hence a fortiori [pk,Tj Canw] = uTj Canw.

2.8 Some more results on the dynamics of the SDS on the

complete graph

In order to study the dynamics monoid D(S?n), it is useful to order its elements according
to their action. Let ? = (?, . . . , ?) ∈ S be the �initial una�ected system state�.

De�nition 2.8.1. Let x, y ∈ F(A). If (Fx ?)i = (Fy ?)i, in S?n, then we say that x and
y compute the same state on vertex i, and write

x ∼i y.

If x ∼i y for every i = 1, . . . , n, then we say that x and y compute the same system state,
and write

x ∼ y.

Remark 2.8.2. Given three words x, y, z ∈ F(A), if y ∼ z, then xy ∼ xz. Indeed, Fxy ? =
Fx(Fy ?) = Fx(Fz ?) = Fxz ?.

We will de�ne the following partial order keeping in mind Green relations, as stated
in [Gre51].

De�nition 2.8.3. For every x, y ∈ F(A), we say that x comes before y, and we write
x � y, if and only if there exists w ∈ F(A) such that

wx ∼ y,

i.e., such that
Fwx ? = Fy ?.

We will also say that y comes after x, and write y � x.
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2 Update systems on the complete graph

Remark 2.8.4. Let us recall the left Green relation ≤L on the dynamics monoid D(S?n):

Fy ≤L Fx if and only if there exists Fu ∈ D(S?n) such that Fy = FuFx .

The relation � is not checked on the whole system state set, but only on the element
?. One of the immediate consequences of Theorem 2.6.2 is that two words induce the
same action on S?n if and only if they have the same action on ?, so that the relation of
�coming before�, de�ned on F(A), projects to the Green relation ≤L through the monoid
morphism F(A)→ D(S?n).

Example 2.8.5. Consider the update system S?2 on two vertices, with initial state ? =
(?, ?). We have that a1a2 � a2a1, as

Fa1a2(?, ?) = (a1a2, a2), Fa2a1(?, ?) = (a1, a2)

and
Fa1(a1, a2) = (a1a2, a2).

More precisely, the only adjacency relations are a1a2 � a2a1 � a1 � ? and a1a2 � a2 � ?,
so that this relation coincides with ≤L, as mentioned before.

Remark 2.8.6. We will see in Proposition 2.8.12 that

x � y and y � x if and only if x ∼ y.

This is a claim of irreversibility in the dynamics of the update system S?n.

Lemma 2.8.7. Let x, y ∈ F(A). Then T1 x ∼1 T1 y if and only if T1 x ∼i T1 y, for all
i ≥ 2.

Proof. Suppose that T1 x ∼1 T1 y. By inductive assumption, the quasi-subwords ∂1 T1 x
and ∂1 T1 y compute the vertex states

pi = Can[i,n] ∂1 T1 x = Can[i,n] T1 x

qi = Can[i,n] ∂1 T1 y = Can[i,n] T1 y

where we used the fact that Can[i,n] ∂1 = Can ∂[1,i−1]∂1 = Can[i,n].
The de�nition of update function on vertex 1 states that

(FT1 x ?)1 = a1[pn, [. . . , [p3, p2] . . . ]]

(FT1 y ?)1 = a1[qn, [. . . , [q3, q2] . . . ]]

Since T1 x ∼1 T1 y, we have (FT1 x ?)1 = (FT1 y ?)1, thus

a1[pn, [. . . , [p3, p2] . . . ]] = a1[qn, [. . . , [q3, q2] . . . ]],

so
[pn, [. . . , [p3, p2] . . . ]] = [qn, [. . . , [q3, q2] . . . ]].
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2.8 Some more results on the dynamics of the SDS on the complete graph

Moreover, none of the pi nor the qi contains a1: hence, it is possible to apply Proposition
2.6.1, which, by inductive hypothesis, holds on the subgraph indexed by [k, n]. Thus we
have,

Can[2,n] T1 x = [pn, [. . . , [p3, p2] . . . ]]

= [qn, [. . . , [q3, q2] . . . ]]

= Can[2,n] T1 y,

so that Can[2,n] T1 x and Can[2,n] T1 y compute the same states pi = qi on each vertex
i ≥ 2. This means that, in particular,

T1 x ∼i T1 y, for all i ≥ 2.

Vice versa, assume that T1 x ∼i T1 y, for all i ≥ 2, i.e., that pi = qi, i ≥ 2. Then, by the
very de�nition, both T1 x and T1 y compute, on vertex 1, the state

p1 = a1[pn, [. . . , [p3, p2] . . . ]],

hence, (FT1 x ?)1 = (FT1 y ?)1, i.e. T1 x ∼1 T1 y.

Corollary 2.8.8. T1 x ∼ T1 y if and only if T1 x ∼1 T1 y if and only if T1 x ∼i T1 y,
for all i > 1.

Lemma 2.8.9. Let x, y ∈ F(A) such that x � y. Then T1 x � T1 y.

Proof. Recall that, since y � x, we can �nd w ∈ F(A) such that y ∼ wx. In particular,
y ∼1 wx, hence

T1 y ∼1 T1(wx)

and, by Corollary 2.8.8, T1 y ∼ T1(wx). If w contains an occurrence of a1, then

T1(wx) = T1(w)x � x � T1 x,

and the claim follows. Otherwise, y ∼1 wx ∼1 x ∼1 T1 x,. Then T1 y ∼1 T1 x, and using
Corollary 2.8.8, T1 y ∼ T1 x, hence T1 y � T1 x.

Corollary 2.8.10. Let x, y ∈ F(A) such that x � y. Then, ∂1 T1 x � ∂1 T1 y.

Proof. Use Corollary 2.8.8.

Corollary 2.8.11. Let y ∈ F(A) a word containing a1, x ∈ 〈a2, . . . , an〉. If x � y, then
x � T1 y and x � ∂1 T1 y.

Proof. Take w ∈ F(A) such that y ∼ wx. Since a1 is the updating of vertex 1 (and
recall that there are no arrows pointing to vertex 1), then y ∼ wa1x, thus, y � a1x.
Then Lemma 2.8.9 gives T1 y � T1(a1x) = a1x � x, and likewise Corollary 2.8.10 gives
∂1 T1 y � x.
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The following statement shows that the evolution of S?n is irreversible.

Proposition 2.8.12. Let x, y ∈ F(A). Then x ∼ y if and only if x � y and y � x.

Proof. We proceed by induction on n = |A|. As for the induction basis, if n = 1, there
is nothing to prove. Assume that n > 1. If x � y � x, then by Corollary 2.8.10,
∂1 T1 x � ∂1 T1 y � ∂1 T1 x. By induction hypothesis, ∂1 T1 x ∼ ∂1 T1 y, hence x ∼1 y.
As for the other vertices, from u � v follows trivially ∂1u � ∂1v. Then ∂1x � ∂1y �

∂1x, and the induction hypothesis shows once again that x ∼i ∂1x ∼ ∂1y ∼i y for all
i ≥ 2. Therefore, the action of x and y coincide on all vertices, and x ∼ y. The converse
implication is trivial.

One of the ingredients in the proof of Proposition 2.6.1 is the fact that if x comes
before y, then their join [y, x] acts as y on the system state ?, under the assumption that
y is in canonical form. The following slightly stronger statement turns out to be more
suitable for a proof by induction.

Proposition 2.8.13. Choose x, y, z ∈ F(A) such that y = Can y, and xz � yz. Then,

[y, x]z ∼ yz.

In particular, if y is canonical and x � y, then [y, x] ∼ y.

Proof. We proceed by induction on the cardinality n = |A|. If n = 1, the veri�cation is
trivial. Assume now that n > 1. We distinguish four cases:

1. Neither x nor y contain occurrences of a1.

If there is not any occurrence of a1 in z, then we may restrict to the subgraph
indexed by [2, n] and use inductive assumption. If, instead, a1 occurs in z, then
[y, x]z ∼1 z ∼1 yz, whereas we may use inductive assumption on the other vertices,
after replacing z by ∂1z.

2. a1 occurs in y but not in x.

As y is canonical, we may write y = ua1v, where a1 occurs neither in u nor in
v. Notice that [y, x] = ua1[v, x], and that as yz � xz, then vz � xz, hence
v∂1z � x∂1z.

Let us �rst show that [y, x]z and yz have the same action on vertex 1. Indeed,

[y, x]z = ua1[v, x]z

∼1 a1[v, x]z

∼1 a1[v, x]∂1z,

whereas

yz = ua1vz

∼1 a1vz

∼1 a1v∂1z.
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In order to check a1[v, x]∂1z ∼1 a1v∂1z, by Remark 2.8.2 it is enough to verify that
[v, x]∂1z ∼ v∂1z, which holds by induction hypothesis.

As for the other vertices, we need to compare actions of u[v, x]∂1z and uv∂1z, which
coincide by induction.

3. a1 occurs in both x and y.

Notice that, up to replacing z with ∂1z, we may assume without loss of generality
that a1 does not occur in z. As y is canonical, we may write y = ua1v, where
a1 occurs neither in u nor in v. We need to compare the actions of yz = ua1vz
and [y, x]z. If [v, ∂1 T1 x] 6= ∂1 T1 x, then [y, x]z = ua1[v, x]z ∼ ua1[v, ∂1 T1 x]z.
However, by Corollary 2.8.10, yz � xz implies

vz = ∂1 T1(yz)

� ∂1 T1(xz)

= ∂1 T1(x)z,

and we may use induction to argue that [v, ∂1 T1 x]z ∼ vz.

If instead [v, ∂1 T1 x] = ∂1 T1 x, write u = u+u−, so that u− is the longest su�x
of u satisfying [u−v, ∂1 T1 x] = ∂1 T1 x. Then [y, x]z = u+a1∂1 T1(x)z, whereas
one knows yz = u+u−a1vz. As yz � xz, then using Corollary 2.8.10 ∂1 T1(yz) �
∂1 T1(xz), that is, vz � ∂1 T1(x)z; then also

Can(u−v)z ∼ (u−v)z

� vz

� ∂1 T1(x)z.

We know that [u−v, ∂1 T1 x] = ∂1 T1 x, and as by Remark 2.3.6 Can(u−v) is a
quasi-subword of u−v, also [Can(u−v), ∂1 T1 x] = ∂1 T1 x. As Can(u−v) and v are
both canonical, we may apply inductive assumption to show

u−vz ∼ Can(u−v)z

∼ [Can(u−v), ∂1 T1 x]z

= ∂1 T1(x)z,

and in the same way, vz ∼ ∂1 T1(x)z.

We conclude now that as vz ∼ u−vz, then a1vz ∼ u−a1vz, and necessarily

[y, x]z = u+a1∂1 T1(x)z

∼ u+a1vz

∼ u+u−a1vz

= yz.
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2 Update systems on the complete graph

4. a1 occurs in x, but not in y.

This cannot happen if a1 does not occur in z, as yz � xz would force at least an
occurrence of a1 in y. Assume then that a1 occurs in z. As yz � xz, then by
Corollary 2.8.10,

∂1 T1 z = ∂1 T1(yz)

� ∂1 T1(xz)

= ∂1(T1(x)z)

� ∂1z

� ∂1 T1 z,

which must, therefore, all possess the same action.

As ∂1 T1(xz) ∼ ∂1 T1 z, then xz ∼1 z, so that ∂1(x)z ∼1 z ∼1 xz. However
∂1(x)z ∼i xz for all i ≥ 2, so that ∂1(x)z ∼ xz. Also, if [y, x] = y+x, then

[y, x]z = y+xz

∼ y+∂1(x)z

= [y, ∂1x]z.

We may then replace x by ∂1x in the statement to prove, thus falling in Case 1.
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graphs.

Most of real world applications of SDS occur on directed graphs which are acyclic but not
complete. For example, a neural network can be usefully represented by such a graph, as
in the brain neural cycles, even if possible, are �rare� and generally involve a very large
number of elements. Hence, it has been a natural step that of trying to generalize our
result on all such possible graphs.

If Γ is a �nite directed acyclic graph, then any update system SΓ supported on Γ induces
a dynamics monoid D(SΓ) which naturally arises as a quotient of HKΓ. We refer to the
smallest quotient of HKΓ through which all evaluation maps F : F(V ) → D(SΓ) factor
as the universal dynamics monoid D(SΓ). In the previous chapter, we showed an update
system S?n such that proved that D(S?n) ∼= HKn = Kn. Such update system was called
universal.

The scope of our work has been to extend or (rather) modify our tools in order to
construct a universal update system for a generic graph, in order to prove the following
conjecture.

Conjecture 4. D(SΓ) ∼= HKΓ for every �nite directed acyclic graph.

We have been able to check it computationally on all graphs up to 5 vertices. Moreover,
we came out with some results on stars graph and line graph, whose undirected versions
have been studied in SDS theory (see, for reference, [MR08]).

From now on, when not otherwise stated, we will assume that we are dealing with a
�nite directed acyclic graph.

In section 3.1 we will show why the given de�nition of canonical form and join operation
does not generally provide a universal update system on a directed acyclic graph. In
section 3.2, we will slightly modify the de�nition of canonical form, trying to satisfy
our statement for a generic graph. A new de�nitions of join operation is introduced in
3.3. In section 3.4 is described the content of a program which tests our conjecture on a
generic graphs. This program run without errors on all graphs up to 5 vertices, and on
many graphs on 6 vertices, plus some special graphs. Immediately after, in section 3.5,
we describe an example on a 5 vertices graph, show some calculations and provide the
full list of its canonical words. In section 3.6, 3.7 and 3.8 we will examine a few special
graphs (empty graph, star graph and line graph). At last, in section 3.9, we outline a
possible direction of our future work.
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3 Update systems on non-complete graphs.

3.1 Why the old tools do not work in the generic case

Let us consider a directed acyclic graph Γ. We proved Theorem 2.6.2 building an update
system S?n such that its dynamics monoid D(S?n) is isomorphic to Kn. Such update
system was called universal on Γn. Similarly, aiming to prove conjecture 4, we try to
construct a universal update system S? over a directed acyclic graph Γ, i.e., such that its
dynamics monoid D(S?) is isomorphic to HKΓ.

In the previous chapter, we de�ned update functions and vertex sets on a complete
graph which could, in theory, be extended to other directed acyclic graphs. However,
generic graphs pose a new issue, which was not there for complete graphs: that of choosing
a total order for its vertices.

De�nition 3.1.1. Let Γ = (V,E) be a directed acyclic graph, let i ∈ V be a vertex. We
call subgraph starting from i the subgraph Γi = (Vi, Ei) such that

• its vertex set Vi ⊂ V contains all vertices j 6= i such that there is a sequence of
edges (i, k1), (k2, k3),. . . , (kn, j) from i to j;

• the edge set Ei ⊂ E contains all edges (j1, j2) such that both j1, j2 ∈ Vi.

For the case of the complete graph, we assumed that the vertices were labeled according
to the orientation of edges, which turned out to be coherent with only one possible vertex
order. Moreover, the induced vertex order on the subgraph starting from i was unique
for all i.

This was a hidden ingredient in the de�nition of the update system S?, as join operation
is not commutative and the update function on i consisted in performing the join of the
states of the vertices in the neighbourhood x[i] in the order induced by the graph.

When Γ is a generic directed acyclic graph, there can be more than one total order for
its vertices, among those induced by the edges orientation. Moreover, for every vertex i,
the subgraph starting in i can have more than one total order, and it is possible that the
closure of the induced order relations does not correspond to a total order for the graph.

Summarizing

1. If Γ is a complete graph, the vertex order of the subgraph starting from each vertex
is uniquely induced by the edges orientation and induces a total order of the graph.

2. The empty graph Emptyn, which is the graph on n vertices without edges, has
a unique vertex order up to isomorphisms, and the subgraph starting from each
vertex is empty.

1

4

5

23

Figure 3.1: Empty5.
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3.1 Why the old tools do not work in the generic case

3. The star graph Starn has a unique sink vertex: just like the empty graphs, there
is only one possible vertex order up to isomorphisms (induced by the edge orien-
tation), and the subgraph starting from each vertex is either trivial (only vertex
n) or empty (that starting from vertex n). The opposite graph Staropn (which has
a unique sink vertex) has a unique orientation, too: the subgraphs starting from
vertex 1 is the empty graph Emptyn−1, all the other are trivial.

8 1

2
3

4

5

6
7

1

2

3

4

5

6

Figure 3.2: Star8 and Starop6 .

4. In some lucky cases, like the line graph Linen, the edge orientation induces a unique
total order both on the graph and on each connected three vertices subgraph: here,
we will see that it is possible to borrow the de�nition of join operation directly
from that of the corresponding complete graph.

1 2 3

Figure 3.3: Line3.

5. But, for most graphs, there are several possible vertex orders which respect the
edges orientations. In this case, the vertex order on the subgraph starting from
vertex 1 is not unique.

3 1 2 4

2 1 3 4

4 1 2 3

Figure 3.4: A graph G where the order induced on the subgraph starting from 1 is not
unique

In the following example we will see that the update system induced by the join
operation is not universal if the base graph is generic.
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Example 3.1.2. Let us consider an update system whose base graph is the last graph
we considered, with vertex states and update functions mutated from those de�ned for
S?n, the universal update system for the complete graph.
In order to make the next example more readable, we will denote by a, b, c, . . . the

letters corresponding to vertices 1, 2, 3, . . . .
We can act on it via the word π = abdc, which was canonical according to the de�nition

given in the previous chapter. Using the join, we are able to calculate the state on each
vertex.

bd acbd c d

Figure 3.5: The system state Fabdc ? on G.

However, the join of all vertices states does not give the starting word.

[d[c, [bd, acbd]]] = [d[c, acbd]] = [d, acbd] = acbd.

Moreover, the action of acbd on the update system is

cd acbd bd d

Figure 3.6: The system state Facbd ? on G.

In this case, the join of these states gives back the word we started from.

[d[cd, [bd, acbd]]] = [d[cd, acbd]] = [d, acbd] = acbd.

3.2 A new de�nition of the canonical form

Let us recall the de�nition of the Hecke-Kiselman monoid HKΓ whose base graph Γ is
an acyclic �nite directed graph.

HKΓ = 〈ai, i ∈ V : a2
i = ai, for every i ∈ V ;

aiajai = ajaiaj = aiaj , for i→ j;

aiaj = ajai, for i9 j, and j 9 i〉

Choose an alphabet A = {ai : i = 1, . . . , n}. Like in the case of the Kiselman monoid, it
is possible to consider the following evaluation morphism

π : F(A)→ HKΓ .

We will often abuse the notation and represent elements in HKΓ via elements in their
�ber with respect to π.
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The old de�nition of canonical form, de�ned in the previous chapter, identi�es each
element in the Kiselman monoid via a unique element in the �ber π−1π(w). We aim to
provide an analogue for the Hecke-Kiselman monoid HKΓ, for Γ acyclic �nite directed
graph.
A de�nition has been introduced in [GM11] in order to identify an analogue of canonical

words for the Hecke-Kiselman monoid on the line graph Linen, via a characterization of
their subwords.

De�nition 3.2.1. A word v ∈ F(A) will be called strongly special if all its subwords
aiuai are such that u contains both ai+1 and ai−1.

Just like in the de�nition of canonical words, the emphasis is on subwords. Hence, we
are going to state what it seems to be a natural extension of this de�nition for an acyclic
�nite directed graph Γ.

De�nition 3.2.2. Let w ∈ F(A). A subword of w of the form aiuai, where ai ∈ A and
u ∈ F(A), is called special (with respect to Γ) if u contains some aj and some ak, such
that i→ j and k → i are edges in Γ.

Whenever two vertices i and j are not connected, the subwords aiaj = ajai correspond
to the same element in HKΓ. As we are willing to �nd a unique representative in
each equivalence class of elements for the Hecke-Kiselman monoid, we introduce another
de�nition, for which we need the graph vertices to be totally ordered, and we require this
order to respect the edge orientation, that is, if i→ j, then i < j.

De�nition 3.2.3. A subword aiuaj of w is called untidy (with respect to Γ) if

• i ≥ j;

• vertex i is not connected to j;

• for each ak ∈ u, vertex j is not connected to k.

If a subword is not untidy, it is called tidy (with respect to Γ).

Example 3.2.4.

1. Consider the empty graph Emptyn. Then a subword aiuaj is untidy if and only if
i ≥ j (as all letters commute).

2. Special subwords are always tidy, as the vertex corresponding to the rightmost
letter does not commute with all the others.

From now on, when not necessary, we will omit to recall the graph with respect to
which a subword is either special, untidy or tidy.

Remark 3.2.5.

1. Any subword aiai is untidy (conventionally, we say that a one letter subword ai is
tidy).

51



3 Update systems on non-complete graphs.

2. A subword aiaj is tidy whenever i < j.

3. A subword aiaj is untidy if and only if i and j are not connected in Γ and i ≥ j.

4. If aiuaj is tidy, u could be untidy (and vice versa).

5. Let uai be a untidy subword of w such that, for all ah ∈ u, both aiah = ahai and
h > i hold. Then, aiu is tidy.

6. If uai is an untidy subword, then aiu comes before uai in alphabetical order.

Lemma 3.2.6. Let u be an untidy word which has no subwords of the form akak. Then,
if we move the rightmost letter in the leftmost position a �nite number of times, we end

up with a tidy word which is in the same �ber of u.

Proof. Recall that u = u′ai is untidy only if its rightmost letter commute with all the
others, i.e., if u′ai = aiu

′ as elements in HKΓ.
These subwords are �nite, hence, after moving the right most letter on the left a �nite

number of times, we would end up with the starting one. As i ≥ j is a total order in Γ,
at least one of the words obtained in this way is tidy (the one ending in the letter aM ,
where M is the maximal element amongst those in in uai).

Remark 3.2.7. Recall that, if ahu
′′ak is the (�rst) tidy equivalent of u = u′ai encountered

via the previous lemma, it is not always true that h < k: it can be that h ≥ k, if ak does
not commute with some of the letters in ahu

′′.

We are ready to state our de�nition of canonical form for a generic graph Γ.

De�nition 3.2.8. A word w ∈ F(A), is called canonical with respect to the graph Γ if
all its subwords are tidy and any subword aiuai is special.

Remark 3.2.9.

1. Notice that a subword aiuai cannot be special if vertex i is a source or a sink.

Hence, words that are canonical with respect to Γ contain, at most, one occurrence
of each letter corresponding to a source or a spring.

2. If aiuaj is a subword of a canonical word such that i > j, then, in order to be tidy,
the subword u must contain a letter ah such that either h→ j or j → h is an edge
for Γ.

In Remark 2.3.4 we recalled that the authors of [KM09] de�ned a binary relation in
order to prove Theorem 2.3.3. We proceed closely following their idea.
Fix an acyclic �nite directed graph Γ. We de�ne the binary relation ⇒ in F(A) as

follows: w ⇒ v if and only if either

(
1⇒) w = w1aiuaiw2, v = w1aiuw2, and aiah = ahai for all ah ∈ u, or

(
2⇒) w = w1aiuaiw2, v = w1aiuw2, where u contains ak such that i→ k and u does not

contain any ah such that h→ i, or
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(
3⇒) w = w1aiuaiw2, v = w1uaiw2, where u contains ah such that h→ i and u does not

contain any ak such that i→ k, or

(
4⇒) w = w1aiuajw2, v = w1ajaiuw2, where for every ah ∈ u, vertex h is not connected

with vertex j in Γ, neither are i and j connected, and i > j.

Relations
1⇒,

2⇒ and
3⇒ are analogous to the binary relations

1→,
2→,

3→ de�ned in

[KM09]. Relation
4⇒ is a direct consequence of Lemma 3.2.6. In particular, if u

4⇒ v,
then v precedes u in alphabetical order and they are equivalent as elements in HKΓ.

Remark 3.2.10. Sequences of the form

w ⇒ v1 ⇒ v2 · · · ⇒ vk, (3.2.1)

are �nite, since either each word contains one letter less than the previous, or it comes
before with respect to the alphabetical order. They all belong to the same �ber with
respect to π, i.e., each vi ∼ w, for all i ∈ [1, k].

Extending the notation given in the case of the complete graph Γn and the Kiselman
monoid Kn, a sequence like (3.2.1) is called simplifying sequence (with respect to Γ) if vk
is not simpli�able any further, and each vi → vi+1 is called a simplifying step.

Remark 3.2.11. The �nal element in each simplifying sequence is a canonical word: in

fact, if it had a non special subword, we could apply either
1⇒,

2⇒ or
3⇒; if it had an

untidy subword, we could apply
4⇒. However, in principle, simplifying sequences starting

from the same element w can end in di�erent canonical words.

Lemma 3.2.12. When Γ = Γn is the complete graph, the new de�nition of canonical

form coincide with the old one.

Proof. For the complete graph, all words are tidy.

In the setting of a non complete graph, we do not have a uniqueness result for the
canonical form. However, computations show that, for Γ directed acyclic graph without
cycles on up to 5 vertices, the universal dynamics monoid for Γ, which, in principle, is
a quotient of the Hecke-Kiselman monoid, coincide with the set of all canonical words
with respect to Γ.
The following conjecture would provide an answer for the open problem 5.4(v), stated

in [GM11].

Conjecture 5. It is possible to represent the elements in HKΓ as canonical words (with
respect to Γ).

Remark 3.2.13. A sketch of the proof could be the following.

1. Prove that
1⇒ can be expressed as a combination of

4⇒ and
1→; as a consequence,

if w
1⇒ u and w

4⇒ v, then there is x such that u
?⇒ x and v

?⇒ x, where
?⇒ is the

re�exive-transitive closure of
i⇒, for i = 1, 2, 3, 4.

53



3 Update systems on non-complete graphs.

2. Observe that, under the right assumptions,

• aiaiuai
2⇒ aiaiu

1→ aiu and aiaiuai
1→ aiuai

2⇒ aiu;

• aiuaiai
2⇒ aiuai

2⇒ aiu and aiuaiai
1→ aiuai

2⇒ aiu;

• aiu1ajaju2ai
2⇒ aiu1ajaju2

1→ aiu1aju2 and aiu1ajaju2ai
1→ aiu1aju2ai

2⇒
aiu1aju2,

and the same holds for
3⇒ and

1→.

3. Prove that, if w
2⇒ u and w

3⇒ v, then there is x such that u
?⇒ x and v

?⇒ x.

4. Prove that if w
4⇒ u and w

i⇒ vi, for i = 1, 2, 3, then there is x such that u
?⇒ x

and vi
?⇒ x.

5. Conclude, applying the Diamond Lemma (see [New42]), that all the simplifying
sequences starting from w end in the same element, which we will call Canw.

6. Recalling Remark 3.2.11, the canonical form of w, as de�ned in 3.2.8, must coincide
with Canw and is unique.

3.3 A generalization of the join operation

When dealing with complete graphs, the unique vertex order induced by the edge orien-
tation is su�cient to describe the dependencies among the states.

The issue we have found with non complete graphs is that a vertex order (which is
not necessarily unique) does not fully describe the dependencies among state vertices. In
fact, relation i < j holds even if vertex j does not belong to the subgraph starting in i:
it only ensures that i does not belong to the subgraph starting in j.

A consequence of Theorem 2.6.2 is that, on canonical words, the join de�ned in Section
2.4 for the complete graph already takes into account the state dependencies. On a generic
directed acyclic graph, however, we need a new de�nition for the join operation which
does not rely only on the vertex order.

Remark 3.3.1. The goal of the new join operation is to replace the old one in the de�nition
of our candidate for the universal update system on a generic graph Γ. We will de�ne the
update system on Γ on n vertices assuming that the de�nition of join is well posed on an
alphabet on n− 1 letters. On the other side, the de�nition of join is given by induction
on the number of letters in the alphabet, and its de�nition for words in the alphabet on
n letters relies on the states calculated on a graph on n vertices.

Let us de�ne the universal update system on a directed acyclic graph Γ.

De�nition 3.3.2. The update system S? is the triple (Γ, Si, fi), where

1. Γ is a directed acyclic graph on n vertices, where the vertices are ordered according
to the edge orientation: i→ j if and only if i < j.
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3.3 A generalization of the join operation

2. On vertex i, the state set is

Si =


{?, an} if i = n
{?, an−1, an−1an} if i = n− 1
{?} ∪ ai JSn, J . . . , JSi+2, Si+1 K . . . K K if 1 ≤ i ≤ n− 2

3. On vertex i, the vertex function is

fi :
∏
j∈x[i]

Sj → Si

s[i] = {sj1 , sj2 . . . sjk : j1 < · · · < jk} 7→ ai J sjk , J . . . , J sj2 , sj1 K . . . K K

if i ≤ n− 2, whereas fn−1(sn) = an−1an and fn ≡ an is a constant.

Observe that in the de�nition just given, the new join operation only involves words
in the alphabet {a2, . . . , an}.
In the following de�nition, ∼ (or ∼k) is the equivalence relation between words that,

starting from the state ? = (?, . . . , ?), calculate the same system state (or the same state
on vertex k).
We write a0 . . . âi . . . an if the letter ai has been deleted from its position in the given

word.

De�nition 3.3.3. Fix a directed acyclic graph Γ, with vertex set V . Let u, v be words
in V , where u = a0a1 . . . an and v = b0b1 . . . bm. Either of the following occurs

1. if v = ?, then Ju, v K = u;

2. if u = ?, then Ju, v K = v;

3. if ai is the rightmost letter in u such that u ∼ uai, where u = a0 . . . âi . . . an, and
v ∼k vai for all k 6= i:

• if v does not contain ai, then

Ju, v K = Ju, v K ai;

• Let bj = ai be the rightmost occurrence of ai in v, and let v = b0 . . . b̂j . . . bm.
If there is k such that the relation v ∼k vai does not hold, then

Ju, v K = Ju, v K ai;

otherwise, if the relation v ∼k vai holds for all k (including k = i), then

Ju, v K = Ju, v K ai;

4. if bj is the rightmost letter in v such that v ∼ ṽbj , where ṽ = b0 . . . b̂j . . . bm, and
u ∼k ubj for all k 6= j:
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3 Update systems on non-complete graphs.

• if u does not contain bj , then

Ju, v K = Ju, ṽ K bj

• Let ai = bj be the rightmost occurrence of bj in u, and let ũ = a0 . . . âi . . . an.
If there is k such that the relation u ∼k ubj does not hold, then

Ju, v K = Ju, ṽ K bj

otherwise, if the relation u ∼k ubj holds for all k (including k = j), then,

Ju, v K = J ũ, ṽ K bj .

If there exist both ai and bj satisfying condition 3 and condition 4, we choose according
to the total order de�ned on the vertices on Γ. If ai = bj , then point 3 and point 4
coincide. If ai < bj we will proceed following point 3, otherwise point 4.
If none of the four above conditions is satis�ed, then Ju, v K = ?.

Remark 3.3.4.

1. For all ai, aj ∈ A such that i 6= j,

J ai, aj K = amax(i,j)amin(i,j).

2. For all words u = u′a, v = v′a in F(A),

Ju, v K = Ju′, v′ K a.

3. Let i be a source vertex of the graph, ai being the corresponding letter, if u, v do
not end in a source, then

Juai, v K = Ju, v K ai = Ju, vai K .

3.4 Computational results

Let S?Γ be the update system de�ned through the new join operation on an acyclic directed
graph Γ.
Consider the evaluation morphism F : F(A) → D(S?Γ), mapping each word w ∈ F(A)

to the corresponding evolution Fw ∈ D(S?Γ). If p = (p1, . . . , pn) = Fw ?, then, for every
vertex i in Γ,

Canw = Can J pn, J . . . , J pi+2, pi+1 K . . . K K .

This would mean thatD(S?Γ) = HKΓ, i.e., that this update system is universal; moreover,
that π−1π(w) contains a unique canonical word, which is Canw.
The �ow chart in next page describes a program we have written in order to test if S?Γ

is universal.
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3.4 Computational results

begin

Take w = Canw

Fw? := p =
(p1, p2, . . . , pn)

E(w) =
J pn, . . . J p2, p1 K K

E(w) = w

Warning 1

Take CanE(w)

CanE(w)
shorter

than E(w)

Warning 2

CanE(w) =
w

Error 1

FE(w)? := q =
(q1, q2, . . . , qn)

p = q

Error 2

end

yes

yes

yes

no

no

no

no
yes

Figure 3.7: Flow chart to test S?Γ, a possible universal update system.
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3 Update systems on non-complete graphs.

The idea is the following:

• we recursively compute a complete list of canonical words.

• for each word w in the list, we perform the update functions in the order prescribed
by w, hence obtaining the system state

Fw ? : = p = (p1, . . . , pn)

• we perform the join of the entries p1, . . . , pn, thus obtained. This yields

E(w) = J pn, J . . . , J p2, p1 K K K

• we print a warning message if either E(w) 6= w or CanE(w) is shorter then E(w).
We print an error message if CanE(w) 6= w.

• we compute

FE(w) ? : = q = (q1, . . . , qn)

If q 6= p, we issue a error message.

Hence, whenever this program ends on graph Γ without error messages,

• it ensures that, for the de�ned update system S?Γ on Γ, D(S?Γ) = HKΓ.

• it provides a tool to calculate the canonical form of each word with respect to Γ,
and a list of canonical words for HKΓ.

So far, this program runs without errors on all graphs on up to 5 vertices and on many
graphs on 6 vertices, plus Emptyn, Starn, and Linen, which we will de�ne and analyze in
following sections.

3.5 An example of the universal update system on a generic

directed acyclic graph

Recall that the adjacency matrix of a directed acyclic graph is an n×n matrixM = (mij)
where the entry mij is 1 if and only if (i, j) is an edge in E, otherwise it is 0.

Remark 3.5.1. Each adjacency matrix corresponds to a total order of the vertices of one of
the directed acyclic graphs on n vertices. We labeled it via the decimal representation of
the binary number given by the entriesmn−1,nmn−2,n−1mn−2,n . . .m1,2. For example, the
graph on 5 vertices in the following picture will be called G811, (as 11001010112 = 81110).

In order to make the next example more readable, we will denote by a, b, c, . . . the
letters corresponding to vertices 1, 2, 3, . . . .
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3.5 An example of the universal update system on a generic directed acyclic graph

1

2

3 4

5

Figure 3.8: Graph G811.

Example 3.5.2. Let us take the word w = dbacedb in the alphabet {a, b, c, d, e} of letters
corresponding to the vertices {1, 2, . . . , 5}. Consider the action Fw = FdFbFaFcFeFdFb
on the initial state ? = (?, ?, . . . , ?).
Recall that each Fi modi�es only the state on vertex i according to the states on the

children vertices. Hence,

(Fb?)2 = b? = b

(Fd(?, b, ?, ?, ?))4 = d? = d

(Fe(?, b, ?, d, ?))5 = e.

This is equivalent as writing

Fedb? = FeFdFb? = FeFd(?, b, ?, ?, ?) = Fe(?, b, ?, d, ?) = (?, b, ?, d, e).

On vertex 3 we simply get (Fc(?, b, ?, d, e))3 = ce.
At this point, the update of vertex 1 calculates, by de�nition, a J e, J ce, b K K. We have

J ce, b K = J c, b K e = bce.

Consider the �rst equality. In theory, both e and b could be in the rightmost position of
the join, as

(Fceb?)i = (Fce?)i for i 6= 2

(Fbe?)i = (Fb?)i for i 6= 5

In this situation, we choose according to the total vertex order and, since 5 > 2, J ce, b K =
J c, b K e. As for the second equality, remark 3.3.4(i) assures that J c, b K = bc, because
vertices 2 and 3 are not connected.
Finally,

J e, J ce, b K K = J e, bce K = bce,
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3 Update systems on non-complete graphs.

hence (Facedb?)1 = abce.
The new update of vertex 2 gives the new state bd, as the actual state on vertex 4 is

d. Hence, (Fb(abce, b, ce, d, e))3 = bd.
In the same way, the state on vertex 4 is de, as it is calculate on a system state where

the state on vertex 5 is e. Hence,

Fdbacedb? = Fd(abce, bd, ce, d, e) = (abce, bd, ce, de, e).

Here it is the system state reached applying Fw to the empty state ?.

w = dbacedb

abce

bd

ce de

e

Figure 3.9: The system state Fdbacedb ? on G811.

Given the system state (abce, bd, ce, de, e), we want to use the join operation in order
to take back the initial word w. Now, let us join the states according to the vertex order
in the graph, from 1 to n.

J bd, abce K = J bd, ace K b (3.5.1)

= J b, ace K db

= J b, ac K edb

= J b, a K cedb

= J b, ? K acedb

= bacedb

J ce, J bd, abce K K = J ce, bacedb K

= J ce, baced K b

= J ce, bace K db

= bacedb
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3.5 An example of the universal update system on a generic directed acyclic graph

J de, J ce, J bd, abce K K K = J de, bacedb K

= J de, baced K b

= J de, bace K db

= J d, bac K edb

= J d, ba K cedb

= J d, b K acedb

= J d, ? K bacedb

= dbacedb

J e, J de, J ce, J bd, abce K K K K = J e, dbacedb K

= J e, dbaced K b

= J e, dbace K db

= J ?, dbac K edb =

= dbacedb.

We have seen in De�nition 3.3.3 that Ju, ? K = J ?, u K = u. In all but one the relations
above, where both u and v where not ?, we wrote Ju, v K = Ju′, v′ K l: either u = u′l and
v′ = v, or v = v′l and u′ = u, or both u = u′l and v = v′l.
The only tricky passage was (3.5.1): there, we had to take b in abce, as it was the only

one letter (in both words)satisfying our conditions. In fact, the following letters do not
satisfy all the requirements

• let us try d in bd: (Fabce?) �i (Fabced?) on some i 6= 4 (speci�cally, on i = 1, 2);

• let us try b in bd: (Fbd?) �2 (Fdb?);

• let us try e in abce: (Fbde?) �4 (Fbd?);

• let us try c in abce: (Fabce?) �3 (Fabec?);

• let us try a in abce: (Fabce?) �1 (Fbcea?);

The occurrence of b in the right side word is not in the rightmost position, however
(Fabce?)i = (Faceb?)i on all vertices i (including i = 2). On the left side word, there is an
occurrence of letter b: however, we have (Fbd?)i = (Fbdb?)i 6= (Fdb?)i. Hence,

J bd, abce K = J bd, ace K b.

There are 244 canonical words on G811: ?, a, b, c, d, e, ba, ca, ad, ea, ab, bc, db, be, ac,
cd, ec, bd, ed, ae, ce, de, bca, dba, bea, cad, eca, bad, ead, cea, dea, cab, adb, eab, abc, cdb,
bec, edb, abe, bce, dbe, bac, acd, eac, bcd, ecd, aec, dec, abd, bed, aed, ced, bae, cae, ade,
ace, cde, bde, cdba, beca, edba, bcea, dbea, bcad, ecad, deca, bead, cead, cdea, bdea, cadb,
ecab, badb, eadb, ceab, deab, acdb, eabc, ecdb, abec, dbec, aedb, cedb, cabe, adbe, abce, cdbe,
dbac, beac, bacd, eacd, ceac, deac, abcd, becd, aecd, baec, caec, adec, bdec, cabd, eabd,
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3 Update systems on non-complete graphs.

abed, bced, dbed, baed, caed, aced, bcae, dbae, cade, bade, bace, acde, bcde, abde, ecdba,
dbeca, cedba, cdbea, becad, bdeca, bcead, dbead, bcdea, bcadb, ecadb, decab, beadb, ceadb,
cdeab, bdeab, bacdb, eacdb, ceabc, deabc, aecdb, cabec, adbec, baedb, caedb, acedb, cadbe,
badbe, acdbe, edbac, bceac, dbeac, beacd, ceacd, cdeac, bdeac, eabcd, abecd, dbecd, baecd,
caecd, bcaec, dbaec, cadec, badec, abdec, ecabd, ceabd, deabd, cabed, adbed, abced, cdbed,
bcaed, dbaed, baced, cdbae, bcade, dbace, bacde, abcde, cabde, dbecad, cdbead, becadb,
bdecab, bceadb, dbeadb, bcdeab, beacdb, ceacdb, cdeabc, bdeabc, baecdb, caecdb, cadbec,
badbec, bcaedb, dbaedb, bacedb, bcadbe, bacdbe, cedbac, cdbeac, bceacd, dbeacd, bcdeac,
ceabcd, deabcd, cabecd, adbecd, bcaecd, dbaecd, cdbaec, bcadec, cabdec, decabd, cdeabd,
bdeabd, cadbed, badbed, acdbed, cdbaed, dbaced, dbecadb, cdbeadb, bceacdb, dbeacdb,
bcdeabc, bcaecdb, dbaecdb, bcadbec, cdbaedb, dbacedb, cdbeacd, cdeabcd, bdeabcd, cadbecd,
badbecd, cdbaecd, bdecabd, bcdeabd, bcadbed, bacdbed, cdbeacdb, cdbaecdb, bcdeabcd,
bcadbecd.

3.6 An update system on the empty graph

The empty graph, also called discrete graph, is the graph without edges. We will denote
it by Emptyn. Let us label its vertices from 1 to n.
A word w cannot admit any special subword with respect to Emptyn. Hence, w is

canonical if and only if all its subwords are tidy. Recalling Remark 3.2.5, this means that
letters in w are in alphabetical order and each letter occurs at most once: this implies
uniqueness for the canonical word on Emptyn.

De�nition 3.6.1. The universal update system S?Emptyn
= (Emptyn, Si, fi) is de�ned as

follows

1. Emptyn is the base graph;

2. on each vertex i, the state set is Si = {?, ai};

3. on each vertex i, the update function is the constant fi ≡ ai.
In this setting, the action of any word w is

(Fw?)i =

{
i, if ai ∈ w
?, if ai /∈ w

As any two letters commute, the join operation [u, v] puts in alphabetical order the
letters occurring either in u or v. Hence, if w = Canw, Fw ? = (p1, p2 . . . , pn), then

[pn, . . . , [p2, p1]] = p1p2 . . . pn,

where, since Si = {?, i}, each pi is either ai or the empty word.
This is enough to prove that the dynamics monoid D(S?Emptyn

) coincide with the Hecke-

Kiselman monoid onHKEmptyn , and their elements correspond uniquely to words in F(A)
whose letter appear (at most once) in alphabetical order. Finally, their cardinality is

|D(S?Emptyn
)| = |HKEmptyn | = 2n. (3.6.1)

as they correspond to the 2n subsets of {a1, . . . , an}.
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3.7 An update system on the star graph

3.7 An update system on the star graph

Consider the star graph Starn, i.e., the directed acyclic graph where the only edges are
of the form i→ n, for all vertices i < n.

Starn = {V = {1, 2, . . . , n};E = {(i, n) for all i ∈ [1, n− 1]}}

The induced subgraph on vertices {1, 2, . . . , n − 1} coincides with the empty graph
Emptyn−1, while vertex n is a child of all the others. Hence, the unique constrain for the
vertex order is that n must be the maximal element and we can label in any order all
the other elements.

Lemma 3.7.1. Canonical words are either u ∈ Can(Emptyn−1), or u1anu2, where u1u2 ∈
Emptyn−1.

Proof. Just as seen for the empty graph, no word can have special subwords, as no vertex
has both a parent and a child vertices: for this reason, canonical words contain at most
one occurrence of any letter, as they all commute.

Remark 3.7.2. In this setting, the join operation is very close to the join on the empty
set.

• If u, v do not contain letter an, then Ju, v KStarn = Ju, v KEmptyn−1
.

• If u do not contain letter an, while v = v1anv2, then

Ju, v KStarn = v1a1 Ju, v2 KEmptyn−1

J v, u KStarn = v1a1 J v2, u KEmptyn−1

and v1 contains the letters in v1 in alphabetical order.

• If u = u1anu2 and v = v1anv2, then

Ju, v KStarn = Ju1, v1 KEmptyn−1
a1 Ju2, v2 KEmptyn−1

We are now ready to build an update system on Starn.

De�nition 3.7.3. The update system Star?n is the triple (Starn, Si,Fi), where

1. Starn is, as before, the star graph on n vertices, where i→ n, for all i < n.

2. The state sets are

Si = {?, ai, aian}, for all i < n,

Sn = {?, an}
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3 Update systems on non-complete graphs.

3. On vertex i,

fi : Sn → Si

sn 7→ aisn.

On vertex n, the vertex function is fn ≡ an.

Lemma 3.7.4. HKStarn is isomorphic to D(Star?n).

Proof. Consider the evaluation morphism F : F(A) → D(S?n), mapping each word w ∈
F(A) to the corresponding evolution Fw ∈ D(S?n). Let w = Canw. If p = (p0, . . . , pn−1) =
Fw ?, then:

• pi = ai for all letters ai that appear in w on the right of an;

• pj = ajan for all letters aj that appear in w on the left of an;

• pk = ? for all ak that does not appear in w.

Applying Remark 3.7.2, we have that

J pn, . . . J p2, p1 K K = w1anw2

where ai ∈ w1 if and only if pi = aian, aj ∈ w2 if and only if pj = aj . Hence, w1anw2 = w,
as w1 and w2 are in alphabetical order.

Lemma 3.7.5. The cardinality of the dynamics monoid of the update system (Starn, Si, fi)
is

|D(Starn)| = |HKStarn | = 2n−1 + 3n−1.

Proof. Let us proceed by induction. When n = 1, we have Star1 = Empty1 and the two
de�nition for the update system coincide.

The star graph Starn consist in an empty graph on n − 1 vertices, and n − 1 edges
from i to n. Recalling Lemma 3.6.1, there are exactly 2n−1 canonical words that do not
contain the letter an. We need to show that there are exactly 3n−1 canonical words that
do contain the letter an.

Assume that the thesis holds for a graph on n− 1 vertices {a2, . . . , an}, i.e. that

|D(Starn−1)| = |HKStarn−1 | = 2n−2 + 3n−2.

In particular, there are exactly 3n−2 canonical words that contain an (the sink vertex).

Now, add the new vertex a1, which is connected to an via the edge (a1, an). Any
canonical word in Starn−1 containing an was of the form uanv, where the letters in u and
v were in anti-alphabetical order. This property holds for canonical words w.r.to Starn,
too. Note that they can contain at most one occurrence of the letter an−1. Hence, uanv
gives rise to three canonical words in Starn: uanv, u

′anv and uanv
′, where u′ and v′ both

contain an−1 and the letters in u and v, respectively. This proves the thesis.
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Finally, what we have seen up to now works not only for Starn, a graph with a unique
�sink� vertex and n − 1 �source� vertices, but also for Staropn , where all the edges are
�ipped, thanks to the following theorem, which was proved in [GM11].

Theorem 3.7.6. For any directed acyclic graph Γ,

HKΓ
∼= HKΓop ,

where Γop is the graph obtained reversing the orientation of all edges in Γ.

3.8 An update system on the line graph

Let us recall the de�nition of strongly special words given in 3.2.1. in [GM11] it is
stated that equivalence classes of strongly special words correspond exactly to short-
braid avoiding permutations in Sn+1, which correspond to the number of 321-avoiding
permutations.

De�nition 3.8.1. The update system Line?n is the triple (Linen, Si,Fi), where

1. Linen is the Dynkin graph An, with the given orientation, for all i ∈ {1, 2, . . . , n−1}.

2. The state set on vertex i is

Si = {?, ai, aiai+1, . . . , aiai+1 . . . an}.

3. On vertex i, the update function is

fi : Si+1 → Si

si+1 7→ aisi + 1.

while fn ≡ an.

Lemma 3.8.2. If si is the state on vertex i, then (Fsi ?)i = si.

Proof. Proceed by induction on the number of vertices n. Id n = 1, the statement is
trivial. If the statement is true on Linen−1, then it is true for states of all vertices i > 1
on Linen−1. State on vertex i follows from the de�nition of f1 and inductive hypothesis
on vertex 2.

The canonical form de�ned in the complete graph does not su�ce anymore, as for
any pair of non connected vertices i < j, the new relation aiaj = ajai is stronger than
aiajai = ajaiaj = aiaj , which held in the complete graph, where each pair of vertices is
connected.

De�nition 3.8.3. For every word w in F (A), CanLinen(w) is the maximal element with
respect to the anti-alphabetical vertex order among the words which are equivalent to
CanΓn(w) modulo the re�exive relations aiaj = ajai, for all non connected pairs i, j.
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This de�nition is well posed, as the anti-alphabetical order is total.

Remark 3.8.4. For any word w,

CanLinen w = CanΓn(CanLinen w).

The following lemma gives us a more detailed description of canonical words with
respect to Linen.

Lemma 3.8.5.

1. For any two-letters subword aiaj in w = CanLinen w we have that either j = i + 1
or j < i.

2. w = CanLinen w = u[l1,l1+m1]u[l2,l2+m2] . . . u[lh,lh+mh], where

• we used a short notation to write the subwords u[li,li+mi] = aliali+1
. . . ali+mi

for all i, and

• for two consecutive subwords u[li,li+mi]u[li+1,li+1+mi+1] of w, we have that li >
li+1 and li +mi > li+1 +mi+1.

Proof.

1. The canonical word cannot contain any subword of the form aiaj , since they com-
mute and we required the anti alphabetical order.

2. It follows from point 1.

Remark 3.8.6.

1. Let w be a word and let us consider its action on Line?n, Fw? = s = (s1, . . . , sn).
For each ai ∈ w,

• ai cannot appear in state si+k, for k > 0.

• ai appears in state si−k only if it appears as well in states si,si−1, . . . , si−k+1.

2. If w is canonical, recalling Lemma 3.8.5 we can express it as w = CanLinen w =
u[l1,l1+m1]u[l2,l2+m2] . . . u[lh,lh+mh]. Then,

• sli = u[li,li+mi] = aliali+1
. . . ali+mi for all vertices li;

• sk = akak+1 . . . ami if the occurrence of k in subword u[li,lh+mi] is the leftmost
in w.

Lemma 3.8.7. HKLinen is isomorphic to D(Line?n).

66



3.8 An update system on the line graph

Proof. Consider the evaluation morphism F : F(A) → D(Line?n), mapping each word
w ∈ F(A) to the corresponding evolution Fw ∈ D(Line?n). Take w = Canw. If p =
(p0, . . . , pn−1) = Fw ?, then consider [pn, [pk+1 . . . [p2, p1]]]. We want to prove that this
join is a canonical word, hence, by Remark 3.8.6(2), it will coincide with w.
We proceed by induction on the number of vertices and on the number of states we are

joining. On Line1 there is nothing to prove. If there is more than one state, the state on
vertex 1 is a canonical word, as it is either the empty state ? or of the form p1 = a1 . . . ak.
As [pk+1 . . . [p2, p1]] is canonical by induction, let us show that [pk, [pk+1 . . . [p2, p1]]]

is canonical as well. Recalling the de�nition of update functions in Line?n, either of the
following holds

• pk = ?;

• pk−1 = akpk;

• pk−1 = ak−1ak . . . ak+h and pk = ak . . . ak+h . . . ak+h+h′ .

If pk = ? or pk = akpk+1, then pk is a quasi subword of [pk−1 . . . [p2, p1]], hence

[pk, [pk−1 . . . [p2, p1]]] = [pk−1 . . . [p2, p1]]

Otherwise, by Remark 3.8.6(1), letter ak+h+h′ , which is the rightmost letter in pk, does
not appear in any of the states pk−1, . . . , p2, p1, so

[pk, [pk−1 . . . [p2, p1]]] = pk[pk−1 . . . [p2, p1]].

Now, consider pk = akak+1 . . . ak+h = u[lk,li+k] and [pk+1 . . . [p2, p1]] which, being
canonical, contains a pre�x of the form u[li,li+m]. Recalling the de�nition of join, li
is among a1, a2, . . . , ak−1, and li+m < ak+h, so pk[pk−1 . . . [p2, p1]] is canonical.

We conclude recalling some de�nitions and results from [GM11], which show that the
cardinality of HKLinen is the Catalan number Cn+1.

De�nition 3.8.8. For i = 1, 2, . . . , n, we denote by Ti the following transformation of
{1, 2, . . . , n}: (

1 2 . . . i− 1 i i+ 1 i+ 2 . . . n n+ 1
1 2 . . . i− 1 i i i+ 2 . . . n n+ 1

)
.

The semigroup of all order-preserving and order-decreasing total transformations of
{1, 2, . . . , n, n+ 1} is denoted by Cn+1.

Proposition 3.8.9.

1. If Γ, as unoriented graph, is a Dynkin diagram of type An, then, |HKΓ | = Cn+1

if and only if An is oriented as Linen, i.e.,

2. The Hecke-Kiselman monoid HKLinen is isomorphic to the monoid Cn+1 of all

order-preserving and order-decreasing total transformations of {1, 2, . . . , n, n + 1}.
Their cardinality is the Catalan number Cn+1.
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3 Update systems on non-complete graphs.

1 2 3 n

Figure 3.10: Linen.

3.9 Further developments

A conceptual approach to the problem of determining the universal dynamics of a given
graph Γ is by constructing an initial object, if there exists one, in the category of (pointed)
update systems based on Γ; here �pointed� means that a preferred system state has been
chosen.

Conjecture 6. The pair (S?n, ?) is an initial object in the category of pointed update
systems based on Γn.

The dynamics of an initial update system is clearly universal, and its elements are
told apart by their action on the marked system state ?: this has been the philosophy
underneath the proof of Theorem 2.6.2.
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