Istituzioni di Analisi Superiore

Laurea Magistrale in Matematica & Matematica per le Applicazioni

Registro Didattico a.a. 2016/2017

9 gennaio 2017

Lezione 1-2 (3 ottobre 2016) Introduzione al corso. Teoria della misura: cosa vuol dire "misurare" e quali sono le principali problematiche. Controesempio di Vitali (insieme non misurabile in \mathbb{R}). Misura di Peano-Jordan in \mathbb{R}^N : definizione e sue proprietà.

Lezione 3-4 (4 ottobre 2016) Insiemi non misurabili secondo Peano–Jordan. Connessione con l'integrale di Riemann: integrale di Darboux. Esercizio svolto: equivalenza tra la misurabilità secondo PJ di un insieme e l'integrabilità secondo Darboux della sua funzione caratteristica.

Lezione 5-6 (6 ottobre 2016) Proprietà di una misura: monotonia, subadditività numerabile, continuità dall'alto e dal basso. Misure complete e completamento di un misura (Teorema).

Lezione 7-8 (10 ottobre 2016) Misure esterne: definizione, costruzione di una misura esterna. Nozione di misurabilità (alla Caratheodory) rispetto ad una misura esterna. Teorema di Caratheodory.

Lezione 9-10 (11 ottobre 2016) Definizione di premisura. Costruzione di una misura esterna a partire da una premisura e sue proprietà.

Lezione 11-12 (12 ottobre 2016) La misura di Lebesgue su \mathbb{R}^N : dimostrazione che la misura elementare dei plurirettangoli costituisce una premisura. Derivazione della misura di Lebesgue e sue proprietà dai risultati astratti. Regolarità interna ed esterna della misura di Lebesgue.

Lezione 11-12 (17 ottobre 2016) Conseguenze della regolarità esterna e interna della misura di Lebesgue: $(\mathcal{L}(\mathbb{R}^N), \mathcal{L}^N)$ è il completamento di $(\mathscr{B}(\mathbb{R}^N), \mathcal{L}^N)$; confronto tra la misura di Lebesgue e quella di Peano–Jordan e caratterizzazione degli insiemi PJ–misurabili (vedi esercizi). Esempi: l'insieme $\mathbb{Q} \cap [0,1]$ è misurabile secondo Lebesgue (ma non secondo Peano–Jordan); i razionali gonfiati (esempio di aperto non limitato e denso in \mathbb{R} di misura piccola a piacere); l'insieme di Cantor e sue proprietá.

Lezione 13-14 (18 ottobre 2016) Esempio di insieme non misurabile secondo Lebesgue. Esercizio: ogni insieme di misura esterna positiva contiene un insieme non misurabile. Esercizio: un insieme limitato in \mathbb{R}^N è PJ-misurabile se e solo se è Lebesgue misurabile e ∂E ha misura di Lebesgue nulla.

Lezione 15-16 (20 ottobre 2016) Teoria dell'integrazione: definizione di funzione $(\mathcal{M}, \mathcal{N})$ -misurabile tra due spazi misurabili (X, \mathcal{M}) e (Y, \mathcal{N}) ; la composizione di funzioni misurabili è misurabile; una funzione continua tra due spazi topologici X e Y è $(\mathcal{B}(X), \mathcal{B}(Y))$ -misurabile. Caso di $Y = \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ e $\mathcal{N} = \mathcal{B}(\overline{\mathbb{R}})$: somma, prodotto, inf, sup, liminf e limsup di funzioni misurabili è misurabile; le parti positiva e negativa di una funzione misurabile sono misurabili; definizione di funzione semplice. Teorema: approssimazione di una funzione misurabile non negativa con funzioni semplici.

Lezione 17-18 (24 ottobre 2016) Definizione di integrale di una funzione semplice e sue proprietà. Definizione di integrale di una funzione misurabile non negativa. Teorema della convergenza monotona.

Lezione 19-20 (25 ottobre 2016) Additività dell'integrale. Proposizione: l'integrale di una funzione non negativa f è zero se e solo se f=0 quasi ovunque. Lemma di Fatou. Definizione di integrale per funzioni di segno variabile. Definizione di funzione integrabile. Lo spazio delle funzioni a valori reali integrabili è uno spazio vettoriale e l'integrale è un funzionale lineare.

Lezione 21-22 (27 ottobre 2016) Varie proprietà dell'integrale: modulo dell'integrale è minore o uguale all'integrale del modulo; indipendenza dell'integrale da modifiche della funzione integranda su insiemi di misura nulla. Generalizzazione del Teorema della Convergenza Monotona e del Lemma di Fatou: basta che le condizioni e/o le convergenze puntuali valgano quasi ovunque. Cenni all'integrazione delle funzioni complesse. Spazio $L^1(X)$. Teorema della convergenza dominata. Scambio tra integrale e serie (teorema).

Lezione 23-24 (3 novembre 2016) Derivazione sotto il segno di integrale. Funzione di Cantor-Vitali (o scala del Diavolo) e derivati: esempio di funzione continua che manda un insieme di misura nulla in un insieme di misura positiva; esempio di funzione continua tale che la controimmagine di un insieme Lebesgue misurabile è non misurabile; esempio di insieme Lebesgue misurabile non Boreliano.

Lezione 25-26 (7 novembre 2016) Relazione tra integrabilità secondo Riemann e secondo Lebesgue e caratterizzazione delle funzioni Riemann-integrabili (con dimostrazione). Addemdum: integrale di Lebesgue-Stieltjes in \mathbb{R} . Relazioni tra i vari tipi di convergenze per funzioni L^1 : convergenza uniforme, quasi ovunque, in $L^1(X)$. Teorema: una successione di funzioni convergente in $L^1(X)$ ammette una estratta convergente quasi ovunque. Generalità su spazi vettoriali normati: definizione di norma e di spazio di Banach; caratterizzazione della completezza tramite serie.

Lezione 27-28 (8 novembre 2016) Definizione di prodotto scalare complesso; disuguaglianza di Schwartz; il prodotto scalare induce una norma; identità del parallelogramma; definizioni di spazi di Banach e di Hilbert. Spazi $L^p(X,\mu)$: introduzione; $\|\cdot\|_p$ non è una norma su $L^p(X,\mu)$ per 0 . Disuguaglianza di Hölder, disuguaglianza di Minkowski.

Lezione 29-30 (10 novembre 2016) Norma $\|\cdot\|_{\infty}$ e spazio $L^{\infty}(X)$; $L^{p}(X)$ è uno spazio di Banach per $1 \leq p \leq +\infty$. Relazioni tra spazi $L^{p}(X)$ al variare di p; disuguaglianza di interpolazione; caso $\mu(X) < +\infty$.

Lezione 31-32 (21 novembre 2016) Spazi prodotto, σ -algebre prodotto, misure prodotto.

Lezione 33-34 (22 novembre 2016) Teorema di Fubini-Tonelli.

Lezione 35-36 (24 novembre 2016) Teorema di Fubini–Tonelli: esempi e controesempi. Teorema di Fubini-Tonelli per il completamento di $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$. Applicazioni: relazione tra integrale di una funzione e sua funzione di distribuzione; convoluzioni.

Lezione 37-38 (28 novembre 2016) Misure con segno: definizione, osservazioni ed esempi. Continuità dall'alto e dal basso di una funzione con segno.

Lezione 39-40 (29 novembre 2016) Insieme positivo, negativo e nullo per una misura con segno. Teorema di decomposizione di Hahn. Misure mutualmente singolari: definizione ed esempi.

Lezione 41-42 (1 dicembre 2016) Teorema di decomposizione di Jordan. Definizione di variazione positiva, negativa, totale di una misura. Definizione di assoluta continuità di una misura e teorema relativo.

Lezione 43-44 (5 dicembre 2016) Teorema di Radon-Nikodym. Teorema di decomposizione di Lebesgue.

Lezione 45-46 (6 dicembre 2016) Separabilità di $L^p(X,\mu)$ per $1 \leq p < +\infty$: teorema generale; dimostrazione nel caso X aperto di \mathbb{R}^N e μ misura di Lebesgue. Densità di $C_c(\Omega)$ in $L^p(\Omega)$ per $1 \leq p < +\infty$. Non separabilità di $L^\infty(X)$: teorema generale; dimostrazione nel caso di $L^\infty(\Omega)$ e ℓ^∞ .

Lezione 47-48 (6 dicembre 2016) Convoluzione f * g di due funzioni f, g: caso $f \in L^1$ e $g \in L^p$; caso $f \in C_c(\mathbb{R}^N)$ e $g \in L^1_{loc}(\mathbb{R}^N)$; definizione generalizzata di supporto di una funzione; supporto di f * g; caso $f \in C_c^k(\mathbb{R}^N)$ e $g \in L^1_{loc}(\mathbb{R}^N)$ (solo enunciato). Mollificatori e regolarizzazione. Convergenza di $\rho_n * f$ a f: convergenza locale uniforme nel caso $f \in C(\mathbb{R}^N)$; convergenza in $L^p(\mathbb{R}^N)$ nel caso $f \in L^p(\mathbb{R}^N)$.

Lezione 49-50 (12 dicembre 2016) Corollari: densità di $C_c^{\infty}(\Omega)$ in $L^p(\Omega)$ per $1 \leq p < +\infty$; se $u \in L^1_{loc}(\Omega)$, la relazione $\int_{\Omega} u(x) \varphi(x) dx = 0$ per ogni $\varphi \in C_c^{\infty}(\Omega)$ implica u = 0 q.o. in Ω . Funzionali lineari su spazi vettoriali normati: funzionali lineari, funzionali lineari continui, funzionali lineari limitati. Duale di uno spazio vettoriale normato, norma duale, proprietà. Relazione tra il duale di $L^p(X)$ e $L^q(X)$ (con $p \in q$ esponenti coniugati).

Lezione 51-52 (13 dicembre 2016) Teorema di rappresentazione di Riesz per il duale di $L^p(X)$ con $1 \leq p < +\infty$ (con dimostrazione). L'inclusione $L^1(X) \subseteq (L^{\infty}(X))'$ è sempre stretta (a parte il caso in cui $L^{\infty}(X)$ sia finito dimensionale): enunciato ed esempio nel caso di $X := \mathbb{R}^N$ con la misura di Lebesgue.

Lezione 53-54 (15 dicembre 2016) Teorema di Riesz: se la palla unitaria di uno spazio vettoriale normato E è compatta, allora E ha dimensione finita. Svolgimento di alcuni degli esercizi proposti su spazi normati e funzionali lineari.

Lezione 55-56 (19 dicembre 2016) Definizione di punto di Lebesgue per una funzione in $u \in L^1_{loc}(\mathbb{R}^N)$ e teorema relativo (solo enunciato). Antiderivata di una funzione $u \in L^1_{loc}(\mathbb{R})$ e sue proprietà. Derivabilità quasi ovunque delle funzioni monotone e cenni alla dimostrazione. Funzioni a variazione limitata: definizione; variazione totale di una funzione su un intervallo e sue proprietà; esempi di funzioni a variazione limitata.

Lezione 57-58 (21 dicembre 2016) Una funzione u a variazione limitata su un intervallo si può scrivere come differenza di due funzioni monotone u_1, u_2 ; relazione tra la variazione totale di u su un intervallo ed u_1, u_2 . Funzioni assolutamente

continue: definizione; una funzione assolutamente continua è a variazione limitata; una funzione assolutamente continua è derivabile quasi ovunque e soddisfa il teorema fondamentale del calcolo integrale.

Lezione 59-60 (9 gennaio 2017) Commenti sulla decomposizione della misura di Lebesgue–Stieltjes associata ad una funzione crescente in parte assolutamente continua, parte di salto e parte Cantoriana. Teorema di Rademacher per funzioni localmente Lipschitziane (solo enunciato). Cenni sulle funzioni convesse: definizione di funzione convessa, definizione di sottodifferenziale di una funzione convessa. Teorema: una funzione reale definita su un aperto convesso è convessa se e solo se il suo sottodifferenziale è non vuoto in ogni punto (solo enunciato). Teorema: una funzione convessa definita su un aperto convesso è localmente Lipschitziana (solo enunciato). Teorema di Jensen, corollario ed esempi.

Referenze bibliografiche: per le lezioni 1–4 si vedano le dispense di T. Tao. Per le lezioni 5–36 e 49–52 si veda G.B. FOLLAND, Real Analysis (capitoli 1, 2, 5, 6, 7). Per le lezioni 35–36, 49–50, 59–60 si veda anche W.RUDIN, Real and Complex Analysis. Per le lezioni 37–44 e 55–58 si veda R.F. BASS, Real Analysis for graduate students. Per le lezioni 45–54 si veda H. BREZIS, Analisi Funzionale.