ESERCIZI DI ANALISI REALE - FOGLIO 7

CORSO DI LAUREA TRIENNALE IN MATEMATICA

A.A. 2017-18

ANDREA DAVINI

SOMMARIO. Eventuali commenti, suggerimenti e segnalazioni di errori sono graditi. Gli esercizi contrassegnati con un asterisco sono più difficili

In questa sezione, se non diversamente specificato, E indicherà uno spazio vettoriale reale normato ed E' lo spazio vettoriale reale dei funzionali lineari e continui da E in \mathbb{R} . Per ogni $T \in E'$, definiamo

$$||T||_{E'} := \sup_{x \in E, ||x|| \le 1} |T(x)|.$$

Esercizio 1. Sia $x_n \to x$ in E. Verificare che $||x_n|| \to ||x||$.

Esercizio 2. Verificare i fatti seguenti:

- $\circ \qquad \|T\|_{E'} = \sup_{\|x\| \leqslant 1} T(x) = \sup_{\|x\| = 1} |T(x)| = \sup_{x \neq 0} \frac{|T(x)|}{\|x\|};$
- \circ $||T||_{E'}$ è la più piccola costante $C \geqslant 0$ tale che

$$|T(x)| \leq C||x||$$
 per ogni $x \in E$.

Esercizio 3. Dimostrare che $\|\cdot\|_{E'}$ è una norma su E'.

Esercizio 4. Dimostrare che E' dotato della norma $\|\cdot\|_{E'}$ è uno spazio di Banach (anche se E non è completo).

Due norme $\|\cdot\|_a$ e $\|\cdot\|_b$ su uno spazio vettoriale reale E si dicono equivalenti se esistono costanti reali $\alpha, \beta > 0$ tali che

$$\alpha \|x\|_a \leqslant \|x\|_b \leqslant \beta \|x\|_a$$
 per ogni $x \in E$.

Esercizio 5. Su \mathbb{R}^d , $d \in \mathbb{N}$, consideriamo la norma

$$||x||_1 := |x_1| + \dots + |x_d|$$
 per $x = (x_1, \dots, x_d) \in \mathbb{R}^d$.

Dimostrare che la palla unitaria $B := \{x \in \mathbb{R}^d : ||x||_1 \leq 1\}$ è compatta.

Esercizio 6. Su \mathbb{R}^d , $d \in \mathbb{N}$, consideriamo la norma

$$||x||_1 := |x_1| + \dots + |x_d|$$
 per $x = (x_1, \dots, x_d) \in \mathbb{R}^d$.

Sia $\|\cdot\|$ un'altra norma su \mathbb{R}^d .

Date: 6 gennaio 2018.

(a) Dimostrare che esiste una costante $\beta > 0$ tale che

$$||x|| \le \beta ||x||_1$$
 per ogni $x \in \mathbb{R}^d$.

In particolare, $x \mapsto ||x||$ è continua in $(\mathbb{R}^d, ||\cdot||_1)$.

(b) Dimostrare che esiste una costante $\alpha > 0$ tale che

$$\alpha \|x\|_1 \leqslant \|x\|$$
 per ogni $x \in \mathbb{R}^d$.

(c) Concludere che tutte le norme sono equivalenti in \mathbb{R}^d .

Esercizio 7. Sia E uno spazio vettoriale reale di dimensione d finita e sia $\|\cdot\|_E$ una norma su E.

- (a) Dimostrare che esiste una norma $\|\cdot\|$ su \mathbb{R}^d ed una applicazione lineare bigettiva $T: \mathbb{R}^d \to E$ tale che $\|T(x)\|_E = \|x\|$ per ogni $x \in \mathbb{R}^d$. (1)
- (b) Dedurre che tutte le norme su E sono equivalenti.

Esercizio 8. Sia E uno spazio vettoriale reale normato ed F un sottospazio di E di dimensione finita. Dimostrare che F è chiuso in E.

[Suggerimento: sfruttare l'esercizio 7.]

Esercizio 9. Siano E, F due spazi di Banach e sia $T: E \to F$ una isometria, cioè una mappa lineare tale che $||Tx||_F = ||x||_E$ per ogni $x \in E$. Dimostrare che T(E) è un sottospazio vettoriale chiuso di F.

Esercizio 10. Sia E uno spazio di Banach e sia V un suo sottospazio vettoriale chiuso. Sia $z_0 \notin V$ e poniamo

$$F := V + \mathbb{R}z_0 = \{x + tz_0 : x \in V, \ t \in \mathbb{R} \}.$$

Vogliamo dimostrare che F è chiuso in E.

- (a) Sia $(x_n)_n$ e $(t_n)_n$ successioni in V ed \mathbb{R} , rispettivamente, tali che $x_n+t_nz_0 \to y$ in E. Dimostrare che $(t_n)_n$ è limitata.
- (b) Dedurre che $y \in F$.

Esercizio 11. Sia E uno spazio vettoriale reale e normato di dimensione finita. Dimostrare che ogni funzionale lineare $L: E \to \mathbb{R}$ è continuo.

Esercizio 12. Sia E uno spazio vettoriale reale e normato di dimensione finita. Dimostrare che E ha dimensione finita se e solo se E' ha dimensione finita e in tal caso si ha $\dim(E) = \dim(E')$.

¹ Una tale mappa T si chiama isomorfismo isometrico.

Esercizio 13. Sia $E:=\{x=(x_n)_n\in\ell^\infty:x_n\neq 0 \text{ solo per un numero finito di indici}\}$ dotato della norma $\|x\|:=\sup_n|x_n|$. Sia $T:E\to\mathbb{R}$ il funzionale definito come

$$T(x) := \sum_{n=1}^{+\infty} n \, x_n.$$

Verificare che T è lineare ma non è continuo.

Esercizio 14. Dare un esempio di uno spazio vettoriale normato E e di un funzionale $T \in E'$ tale che il sup nella definizione di $||T||_{E'}$ non è atteso, o, equivalentemente, che

$$|T(x)| < ||T||_{E'}$$
 per ogni $||x|| = 1$.

Esercizio 15. Sia $E := \{x = (x_n)_n \in \ell^{\infty} : \lim_n x_n = 0\}$ dotato della norma $||x|| := \sup_n |x_n|$. Sia $T : E \to \mathbb{R}$ il funzionale definito come

$$T(x) := \sum_{n=1}^{+\infty} \frac{1}{2^n} x_n.$$

- \circ Verificare che $T \in E'$ e calcolare $||T||_{E'}$.
- o Dire se esiste un elemento $x \in E$ tale che $||x||_{\infty} = 1$ e $T(x) = ||T||_{E'}$.
- $\circ\,$ Dire se E è uno spazio di Banach.

Esercizio 16. Sia $E:=\{u\in C([0,1]):u(0)=0\}$ dotato della norma usuale $\|u\|:=\max_{x\in[0,1]}|u(x)|$. Sia $T:E\to\mathbb{R}$ il funzionale definito come

$$T(u) := \int_0^1 u(x) \, \mathrm{d}x.$$

- \circ Verificare che $T \in E'$ e calcolare $||T||_{E'}$.
- o Dire se esiste un elemento $u \in E$ tale che ||u|| = 1 e $T(u) = ||T||_{E'}$.
- \circ Dire se E è uno spazio di Banach.