Esercizi di Algebra II

14 Marzo 2017

- 1) Dimostrare che se un gruppo semplice ha n_p p-Sylow, per un fissato primo p, esso è un sottogruppo di S_{n_p} .
- 2) Dimostrare che un gruppo di ordine 1000000 non può essere semplice.
- 3) Si consideri un gruppo G tale che $g^2 = e$ per ogni $g \in G$. Dimostrare che G è abeliano.
- 4) Si consideri il gruppo

$$G = \{ \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right) \},$$

con $a,b,c\in\mathbb{F}_p$ il campo con p elementi, p primo dispari. Dimostrare che $g^p=e$ per ogni $g\in G,$ ma G non è abeliano.

5) Si dimostri che se un gruppo G di ordine nm con MCD(m, n) = 1 contiene esattamente un sottogruppo H di ordine m ed un sottogruppo K di ordine n,

$$G = H \rtimes K$$
.

Se anche K è unico, allora

$$G = H \times K$$
.

6) Sia D_n il gruppo diedrale delle simmetrie di un n-agono regolare. Dimostrare che se n è dispari

$$D_{2n} \simeq D_n \times C_2$$
.

7) Sia D_n il gruppo diedrale delle simmetrie di un n-agono regolare. Dimostrare che

$$D_n \simeq C_n \rtimes C_2$$
.

- 8) Dimostrare che se $C_n \simeq \mathbb{Z}/n$ è il gruppo ciclico con n elementi. $Aut(C_n)$ è il gruppo degli elementi invertibili in \mathbb{Z}/n . In particolare ha $\phi(n)$ elementi (ϕ la funzione di Eulero).
- 9) Dimostrare che $Aut(\mathbb{F}_p \times \mathbb{F}_p)$, p-primo è isomorfo a $Gl(2,\mathbb{F}_p)$ e ha ordine $(p+1)p(p-1)^2$

- 10) Dimostrare che i gruppi S_3 e $Gl(2, \mathbb{F}_2)$ sono isomorfi. Dedurne che $Aut(S_3)$ e $Aut(\mathbb{F}^2 \times \mathbb{F}^2)$ sono entrambi isomorfi a S_3 .
- 11) Sia Q il gruppo delle 8 matrici 2×2 complesse

$$\pm 1 := \pm \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \ \pm i := \pm \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right), \ \pm j := \pm \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), \ \pm k := \pm \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right)$$

- (1) Dimostrare che è un gruppo rispetto al prodotto righe per colonne,
- (2) Calcolarne il centro.
- (3) Dimostrare che non è abeliano e non è isomorfo a D_4 .
- (4) Dimostrare che Q non è prodotto semidiretto di 2 suoi sottogruppi propri.
- (5) Dimostrare che Aut(Q) è isomorfo a S_4 .
- 12) Sia G un gruppo finito e p il minimo primo che divide |G|. Dimostrare che se H < G è un sottogruppo di indice p, H è normale.
- 13) Classificare i gruppi di ordine 99 a meno di isomorfismo.