ALGEBRA

Esercizi

1. Sia A l'anello delle funzioni reali sull'intervallo (0,1) che siano derivabili. Dimostrare che A è un anello e che non è un dominio.

Dimostrare che le funzioni in A che sono identicamente nulle su $(\frac{1}{2},1)$ sono un ideale.

- 2. a) Provare che $\mathbb{Z}[x]/5\mathbb{Z}[x] \cong \mathbb{Z}_5[x]$.
 - b) Provare che $\mathbb{Z}[x]/x\mathbb{Z}[x] \cong \mathbb{Z}$.
 - c) Descrivere gli ideali di $\mathbb{Z}[x]$ contenenti $x\mathbb{Z}[x]$ e stabilire quali di essi sono massimali.
- 3. Provare che nell'anello dei polinomi K[x], dove K è un campo, se I è l'ideale generato da g(x) allora
 - $I \cap J$ è generato da mcm(f(x), g(x)).
 - I + J è generato da MCD(f(x), g(x)).
- 4. Dimostrare che un dominio d'integrità finito è un campo.
- 5. Consideriamo l'omomorfismo di anelli

$$\phi: \mathbb{Q}[x] \to M_2(\mathbb{Q})$$

definito ponendo

$$\phi(x) = \left(\begin{array}{cc} 0 & 3\\ 2 & 0 \end{array}\right)$$

Trovare $\text{Ker}(\phi)$ e $\text{Im}(\phi)$. Applicando il teorema di omomorfismo, mostrare che $\text{Im}(\phi)$ è un campo.

- 6. Siano R e T due anelli, sia I un ideale di R e J un ideale di T. Mostrare che:
 - a) $I \times J$ è un ideale di $R \times T$.
 - b) $\frac{R \times T}{I \times J} \cong R/I \times T/J$.
 - c) Stabilire se tutti gli ideali di $R \times T$ sono della forma $I \times J$, per qualche ideale I di R e J di T.
- 7. Nell'anello $\mathbb{Z}[i]$ degli interi di Gauss, trovare un quoziente e un resto della divisione euclidea di 5 + 2i per 2 3i.
- 8. Fattorizzare i seguenti elementi di $\mathbb{Z}[i]$ nel prodotto di fattori irriducibili:

$$4+i$$
, $5-3i$, -13 , $7+2i$

9. Nell'anello $\mathbb{Z}[i]$ degli interi di Gauss, trovare il massimo comun divisore di 175 per 4i-3.

10. Sia A un anello commutativo. $I\subset A$ un ideale. Dimostrare che l'insieme delle matrici

$$B = \left(\begin{array}{cc} a & b \\ 0 & c \end{array}\right)$$

- a coefficienti in A è un anello rispetto al prodotto righe per colonne. Dimostrare che il sottoinsime $J \subset B$ degli elementi in cui $a \in I$ è un ideale tale che B/J è isomorfo a A/I.
- 11. Dimostrare che il campo dei quozienti dell'anello $\mathbb{Z}[i]$ degli interi di Gauss è isomorfo al compo $\mathbb{Q}[x]/(x^2+1)$.
- 12. Sia $\alpha = \frac{-1+i\sqrt{3}}{2}$, radice del polinomio x^2+x+1 (notare che $\alpha^3=1$). Si consideri l'insieme

$$\mathbb{Z}[\alpha] = \{n + m\alpha, n, m \in \mathbb{Z}\} \subset \mathbb{C}.$$

- (a) Si dimostri che $Z[\alpha]$ è un sottoanello.
- (b) Sia $v: \mathbb{Z}[\alpha] \to \mathbb{Z}$ definita da $v(n+m\alpha) = n^2 + m^2 nm$. SI dimostri che che v prende valori positivi sugli elementi non nulli.
- (c) Si dimostri che v rende $\mathbb{Z}[\alpha]$ un anello euclideo.
- 13. Si consideri nell'anello $A=\mathbb{Z}[i\sqrt{5}]=\{m+ni\sqrt{5}\ n,m\in\mathbb{Z}\}$ la fattorizzazione

$$6 = (1 + i\sqrt{5})(1 - i\sqrt{5}).$$

Dimostrare che 3 è irriducibile in A ma non divide ne $(1+i\sqrt{5})$ ne $(1-i\sqrt{5})$. A è euclideo?