Esame Scritto di Algebra II

Soluzioni

19 Giugno 2017

1) Si dimostri che ogni gruppo di ordine 1463 è ciclico.

 $1463 = 7 \times 11 \times 19$. Ora se n_7 denota il numero di 7 Sylow, dobbiamo avere che $n_7 \equiv 1$ mod 7 e n_7 divide $11 \times 19 = 209$. Ma l'unico intero positivo che soddisfa queste proprietà è 1. Ne segue che G contiene un unico 7 Sylow H che è normale.

Consideriamo l'omomorfismo quoziente $\pi: G \to G/H$. G/H ha ordine 209 e deve contenere un unico gruppo S di ordine 19 normale dato che il numero m_{19} di 19 Sylow in G/H è congruo a 1 modulo 19 e divide 11.

Inoltre deve anche contenere un 11 Sylow T ed dato che 11 e 18 sono coprimi $G/H = S \times T$ è ciclico di ordine 209.

Sia ora $x \in G$ un elemento tale che $\pi(x)$ è un generatore ciclico di G/H. L'ordine di x è divisibile per 209 e divide 1463. Dunque può essere 1463 o 209.

Nel primo caso G è ciclico e siamo a posto.

Nel secondo si consideri l'automorfismo γ_x di H dato $\gamma_x(y) = xyx^{-1}$ per ogni $y \in H$. Ora γ_x ha ordine divisibile per 209 ma anche, essendo un automofismo di H, per 6. Ne segue che $\gamma_x(y) = xyx^{-1} = y$ ovvero xy = yx per ogni $y \in H$. In particolare se y è un generatore ciclico di H, xy ha ordine $7 \times 209 = 1463$ e G è ciclico.

2) Sia G un p-gruppo (p un numero primo). Sia N un sottogruppo normale in G e Z(G) il centro di G. Dimostrare che $|N \cap Z(G)| > 1$.

Dedurne che se G è un p-gruppo non abeliano di ordine p^3 ogni sottogruppo normale contiene il centro.

Dato che N è normale il gruppo G agisce su N per coniugio. Gli elementi di $N \cap Z(G)$ sono quelli la cui orbita contiene un solo elemento. ogni altra orbita ha un numero di elementi che è una potenza di p. Ne segue che $|N \cap Z(G)| \equiv |N| \equiv 0 \mod p$. Dunque $|N \cap Z(G)| > 1$.

Per la seconda parte notiamo che siccome G non è abeliano $Z(G) \subsetneq G$. Dunque Z(G) deve avere p o p^2 elementi. Se ne avesse p^2 , G/Z(G) sarebbe ciclico di ordine p e dunque se $x \notin Z(G)$ ogni elemento di G si scrive come $x^h y$ con $0 \le h \le p-1$, $y \in Z(G)$. Ma allora se $g_1 = x^{h_1}y_1$ e $g_2 = x^{h_2}y_2$ sono elementi di G

$$g_1g_2 = x^{h_1}y_1x^{h_2}y_2 = x^{h_1}x^{h_2}y_1y_2 = x^{h_2}x^{h_1}y_1y_2 = x^{h_2}y_2x^{h_1}y_1 = g_2g_1$$

e G è abeliano, un assurdo. Ne segue che Z(G) ha p elementi e ha solo due sottogruppi, se stesso e l'identità. Ne segue che per ogni sottogruppo normale N di G, $N \cap Z(G) = Z(G)$ per la prima parte.

3) Si determini la decomposizione in fattori irriducibili del polinomio

$$f(x) = x^4 + 9x^3 - 6x + 24 \in K[x]$$

quando $K = \mathbb{Q}$ o $K = \mathbb{F}_2$ o $K = \mathbb{F}_7$. In ciascuno di questi casi se ne calcoli il gruppo di Galois (si può assumere che la risolvente cubica di f(x) in $\mathbb{Q}[x]$ sia irriducibile).

Caso \mathbb{Q} . f(x) è irriducibile per il criterio di Eisenstein applicato per il primo 3. Ora la cubica risolvente di f(x) ìl polinomio $g(x) = x^3 - 150x - 1980$. Essa è irriducibile per il criterio di Eisenstein applicato per il primo 5. Inoltre si vede facilmente che il suo discriminante $\Delta = -4(-150)^3 - 27(-1980)^2$ è negativo e dunque non può essere un quadrato. Quindi il gruppo di Galois di f(x) è S_4 .

Caso \mathbb{F}_2 . In tal caso $f(x) = x^4 + 9x^3 - 6x + 24 = x^3(x+1)$ si spezza in \mathbb{F}_2 e dunque il gruppo di Galois di f(x) è il gruppo con un elemento.

Caso \mathbb{F}_7 . In tal caso $f(x) = x^4 + 2x^3 + x + 3 = (x - 1)(x^3 + 3x^2 + 3x - 3)$. Il polinomio $x^3 + 3x^2 + 3x - 3$ non ha radici in \mathbb{F}_7 , è dunque irriducibile e il gruppo di Galois di f(x) è il gruppo ciclico con 3 elementi.

4) Sia $E = \mathbb{Q}(\alpha)$ dove α è una radice di $f(x) = x^3 + x^2 - 2x - 1$ in \mathbb{C} . Mostrare che $f(\alpha^2 - 2) = 0$. Dimostrare che $E \supset \mathbb{Q}$ è di Galois e calcolare il gruppo di Galois G(E/Q).

Calcolando si ottiene $f(x^2-2) = x^6 - 5x^4 + 6x^2 - 1 = (x^3 + x^2 - 2x - 1)(x^3 - x^2 - 2x + 1) = f(x)h(x)$ con $h(x) = x^3 - x^2 - 2x + 1$. Dunque se $f(\alpha) = 0$ anche $f(\alpha^2 - 2) = f(\alpha)h(\alpha) = 0$.

Ora notiamo che f(x) è irriducibile (per esempio non ha radici modulo 2). Dunque f(x) è il polinomio minimo di α . Inoltre dato che $[E:\mathbb{Q}]=3,\ \alpha^2,\alpha,1$ sono una base di E su \mathbb{Q} . Ne segue che $\alpha^2-2\neq\alpha$ e, visto che f(x) ha due radici in E e la somma delle radici di f(x)=-1, le deve avere tutte in E.

E è dunque il campo di spezzamento di f(x), quindi un'estensione di Galois il cui gruppo gruppo di Galois è il gruppo ciclico con 3 elementi.