Calcolo delle Probabilità, Anno Accademico 2013-2014, 18 Giugno 2014

- L'uso di testi, appunti, formulari e gadget elettronici non è autorizzato.
- Motivare chiaramente i procedimenti e i risultati proposti.
- Tempo a disposizione: 2 ore e 30 minuti.
- Quando richiesto di calcolare una valore atteso, una varianza o una probabilità, la soluzione deve essere data come numero frazionario a/b, a meno di indicazione contraria

FORMULARIO

```
Se X è v.a. binomiale di parametri n, p, allora E(X) = np, Var(X) = np(1-p).
```

Se X è v.a. geometrica di parametro p, allora E(X) = 1/p, $Var(X) = (1-p)/p^2$.

Se X è v.a. di Poisson con parametro λ , allora $E(X) = \lambda$, $Var(X) = \lambda$.

Se X è v.a. ipergeometrica di parametri n, N, m (tipo: estraggo senza rimpiazzo n palline da un'urna con m palline bianche e N-m palline nere e X è il numero di palline bianche estratte) allora E(X) = nm/N e $Var(X) = \frac{N-n}{N-1}np(1-p)$ dove p = m/N.

ESERCIZIO 1. Ad un meeting internazionale di economia vi sono 10 Italiani, 10 Tedeschi e 10 Francesi. Si scelgono a caso 10 partecipanti per formare una delegazione che esporrà alla stampa il lavoro svolto durante il meeting.

a) Determinare la probabilità che vi sia almeno una nazione con esattamente 3 partecipanti nella suddetta delegazione (non è necessario svolgere tutti i calcoli).

Tutti i 30 partecipanti del meeting vengono fatti sedere attorno ad un grande tavolo rotondo.

b) Determinare la probabilità che gli Italiani siedano tutti vicino tra loro e che i Tedeschi siedano tutti vicini tra loro e che i Francesi siedano tutti vicini tra loro (non è necessario svolgere tutti i calcoli).

ESERCIZIO 2. Gli studenti del corso di calcolo delle probabilità sostengono il seguente esame orale. La docente pone una domanda, se lo studente risponde correttamente allora la docente pone un'altra domanda e così via fino a quando lo studente risponde non correttamente.

Si supponga che il 40% degli studenti del corso abbia una buona preparazione e il restante 60% abbia una preparazione scarsa. Uno studente con una buona preparazione risponde correttamente ad ogni singola domanda con probabilità 70% (indipendentemente domanda per domanda), mentre uno studente con una preparazione scarsa risponde correttamente ad una singola domanda con probabilità 50% (indipendentemente domanda per domanda).

Viene preso a caso uno studente del corso e viene interrogato.

- a) Determinare la densità discreta del numero di domande a cui lo studente risponde correttamente nell'esame orale.
- b) Sapendo che lo studente ha risposto correttamente ad esattamente 2 domande, calcolare (fare i calcoli) la probabilità che lo studente abbia una buona preparazione.
- c) Calcolare il valore atteso (fare i calcoli) del numero di domande a cui lo studente risponde correttamente nell'esame orale.

ESERCIZIO 3. Si consideri un esagono. I lati vengono colorati nel seguente modo: ciascun lato viene colorato, indipendentemente dagli altri lati, scegliendo a caso un colore tra il giallo, il rosso e il verde.

- a) Determinare valore atteso e varianza del numero di lati colorati di giallo.
- b) Determinare il valore atteso del numero di vertici da cui fuoriescono due lati colorati con lo stesso colore.

TRACCE DELLE SOLUZIONI

Soluzione esercizio 1.

(a) Considero gli eventi I, F, T definiti come "vi sono esattamente 3 Italiani nella delegazione", "vi sono esattamente 3 Francesi nella delegazione", "vi sono esattamente 3 Tedeschi nella delegazione". L'evento E a cui siamo interessati si scrive come $E = I \cup F \cup T$. Per principio di inclusione/esclusione vale

$$P(E) = P(I) + P(F) + P(T) - P(I \cap F) - P(I \cap T) - P(F \cap T) + P(I \cap F \cap T).$$

Abbiamo

$$P(I) = P(F) = P(T) = \frac{\binom{10}{3}\binom{20}{7}}{\binom{30}{10}}$$

(es. per P(I): a numeratore conto in quanti modi posso scegliere 3 Italiani tra 10 disponibili e 7 non Italiani tra i 20 disponibili, mentre a denominatore conto in quanti modi posso scegliere 10 persone tra 30 disponibili). Abbiamo

$$P(I \cap F) = P(I \cap T) = P(F \cap T) = \frac{\binom{10}{3} \binom{10}{3} \binom{10}{4}}{\binom{30}{10}}$$

(es, per $P(I \cap F)$: a numeratore con in quanti modi posso scegliere 3 Italiani tra 10 disponibili, 3 Francesi tra 10 disponibili e 4 Tedeschi tra 10 disponibili, mentre a denominatore conto in quanti modi posso scegliere 10 persone tra 30 disponibili). Notiamo che $I \cap F \cap T = \emptyset$ quindi $P(I \cap F \cap T) = 0$. In conclusione, abbiamo

$$P(E) = 3 \frac{\binom{10}{3}\binom{20}{7}}{\binom{30}{10}} - 3 \frac{\binom{10}{3}\binom{10}{3}\binom{10}{4}}{\binom{30}{10}}.$$

(b) Le configurazioni di 30 persone disposte attorno ad un tavolo a meno di rotazioni sono 30!/20=29!. Quelle compatibili con l'evento F di cui dobbiamo calcolare la probabilità sono 2!10!10!10! (infatti, guardando il gruppo degli italiani e spostandosi in senso orario lungo il tavolo posso avere prima i francesi e poi i tedeschi o viceversa; poi fissata la disposizione dei 3 gruppi per ogni gruppo ho 10! modi per ordinare le persone guardandole in senso orario lungo il tavolo). Dato che le tuttle configurazioni sono equiprobabilii abbiamo

$$P(F) = \frac{2!10!10!10!}{29!} \,.$$

Soluzione esercizio 2.

a) Sia X il numero di domande a cui lo studente scelto risponde correttamente e sia F l'evento che lo studente scelto sia di buona preparazione. X assume valori in $\{0,1,2\dots\}$. Si noti che rispetto a $P(\cdot|F)$ X+1 è variabile aleatoria geometrica di parametro 0.7 mentre rispetto a $P(\cdot|F^c)$ X+1 è variabile aleatoria geometrica di parametro 0.5. In particolare, anche se a priori X puo' assumere valore $+\infty$, in realtà questo avviene con probabilità nulla.

Per la legge delle probabilità totali abbiamo, dato $k = 0, 1, 2, \ldots$

$$p_X(k) = P(X = k) = P(X = k|F)P(F) + P(X = k|F^c)P(F^c)$$
$$= (0,7)^k(0,3)(0,4) + (0,5)^k(0,5)(0,6).$$

b) Per sopra $P(X=2) = (0,7)^2(0,3)(0,4) + (0,5)^2(0,5)(0,6)$. Per il teorema di Bayes

$$P(F|X=2) = \frac{F(X=2|F)P(F)}{P(X=2)} = \frac{(0,7)^2(0,3)(0,4)}{(0,7)^2(0,3)(0,4) + (0,5)^2(0,5)(0,6)}$$
$$= \frac{49 \cdot 12}{49 \cdot 12 + 25 \cdot 30} = \frac{588}{1388}.$$

c) Per a) abbiamo

$$\begin{split} E(X) &= \sum_{k=0}^{\infty} k P(X=k) = (0.4) \left\{ \sum_{k=0}^{\infty} k(0,7)^k(0,3) \right\} + (0,6) \left\{ \sum_{k=0}^{\infty} k(0,5)^k(0,5) \right\} \\ &= (0.4)(0.7) \left\{ \sum_{k=0}^{\infty} k(0,7)^{k-1}(0,3) \right\} + (0,6)(0,5) \left\{ \sum_{k=0}^{\infty} k(0,5)^{k-1}(0,5) \right\} \,. \end{split}$$

Nell'ultima espressione le due serie tra parentesi graffe sono rispettivamente il valore atteso di una geometrica di parametro 0, 3 e di una geometrica di parametro 0, 5, quindi valgono rispettivamente 10/3 e 2. In conclusione E(X) = (0.28)(10/3) + (0.30)2 = 4/7 + 6/5 = 46/30.

Commento. Il suddetto risultato in realtà è piu' generale in quanto vale $E(X) + 1 = E(X+1) = E(X+1|F)P(F) + E(X+1|F^c)P(F) = (10/3)(4/10) + (2)(6/10) = 38/15$ da cui E(X) = 23/15.

Soluzione esercizio 3.

- a) Il numero X di lati colorati di giallo è una v.a. binomiale di parametri n=6, p=1/3. Quindi E(X)=6/3=2 e Var(X)=6(1/3)(1-1/3)=12/9.
- b) Numero i vertici da 1 a 6. Sia Z_i la v.a. che vale 1 se dal vertice i escono due lati colorati dello stesso colore e vale zero altrimenti. Sia Z il numero di vertici da cui escono due lati colorati dello stesso colore. Allora $Z=Z_1+Z_2+\cdots+Z_6$ e quindi, per additivià del valore atteso,

$$E(Z) = E(Z_1) + E(Z_2) + \cdots + E(Z_6)$$
.

Notiamo che $E(Z_i)$ è dato dalla probabilità che dal vertice i escano due lati colorati dello stesso colore. Possiamo avere 2 lati gialli, 2 lati rossi o 2 lati verdi. I tre eventi sono disgiunti e ciascuno ha probabilità (1/3)(1/3) = 1/9 per indipendenza. Quindi $E(Z_i) = 3(1/9) = 1/3$.

$$E(Z) = E(Z_1) + E(Z_2) + \cdots + E(Z_6) = 6/3 = 2$$
.