ESERCIZI DI STATISTICA MATEMATICA. a.a. 2017/2018

Nota: gli esercizi del libro "Probabilità e statistica per l'ingegneria e le scienze" di S.M. Ross (casa ed. Apogeo) si riferiscono alla terza edizione italiana. Le altre edizioni vanno pure bene ma va controllata se la numerazione è la stessa.

- (1) Siano X_1, X_2, \ldots, X_n v.a. gaussiane $\mathcal{N}(0, \sigma^2)$ indipendenti, equivalentemente sia $X = (X_1, X_2, \ldots, X_n)$ un vettore gaussiano n-dimensionale di media zero e matrice di covarianza $\sigma^2 \mathbb{I}$. Dati $\alpha \in (0, 1)$ determinare in termini del parametro $\chi^2_{\alpha, n}$ il valore λ tale che $P(|X| > \lambda) = \alpha$
- (2) Sia $X \sim \Gamma(\alpha, \lambda)$. Provare che $cX \sim \Gamma(\alpha, \frac{\lambda}{c})$.
- (3) Sia X v.a. continua con funzione di densità

$$f(x; \alpha, \beta) = \begin{cases} \beta \exp\{-\beta(x - \alpha)\} & \text{se } x \ge \alpha, \\ 0 & \text{altrimenti}, \end{cases}$$

dove $\alpha \in \mathbb{R}$ e $\beta > 0$. Determinare valore atteso, momento primo e momento secondo di X.

- (4) Esercizi 6,8,9,13 cap. 2 del Ross
- (5) Esercizio 45 capitolo 5 del Ross.
- (6) Esercizio 9 capitolo 7 del Ross.
- (7) Esercizi 15,16,17,28,40 cap.7 del ross
- (8) Siano X_1, \ldots, X_n variabili i.i.d. $X_i \sim Exp(\lambda)$. Determinare la distribuzione di \bar{X}_n .
- (9) Determinare con il metodo dei momenti gli stimatori dei parametri incogniti nelle seguenti distribuzioni: Poisson(λ), Uniform(a, b), Bernoulli(p), Gamma(α, λ), Exp (λ).
- (10) Siano X_1, \ldots, X_n v.a. IID con $\mathbb{E}(|X_i|^k) < +\infty$ dove $k \geq 1$. Chiamo $\mu = E(X_i)$. Considerare il momento k-esimo e il momento k-esimo campionario:

$$\mu_k := \mathbb{E}(X_i^k), \qquad M_k^{(n)} = \frac{1}{n} \sum_{i=1}^n X_i^k.$$

Analogamente considerare il momento k—esimo centrato e il momento k—esimo centrato campionario:

$$\mu_k^c := \mathbb{E}((X_i - \mu)^k), \qquad M_k^{c,(n)} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^k.$$

- Dimostrare che $M_k^{(n)}$ è uno stimatore consistente in probabilità di μ_k , i.e. $M_k^{(n)} \to \mu_k$ in probabilità.
- Dimostrare che $M_k^{c,(n)}$ è uno stimatore consistente in probabilità di μ_k^c , i.e. $M_k^{c,(n)} \to \mu_k^c$ in probabilità.

Hint: nel secondo punto, usare il teorema del binomio per sviluppare $M_k^{c,(n)}$.

- (11) Supponiamo che il campione X_1, \ldots, X_n sia tale che $E(X_i^2) < \infty$. Dimostrare che $n(\bar{X}_n \mu)^2$ al variare di n è una successione di variabili aleatorie limitate in probabilità.
- (12) Sia Y_n una successione di v.a. limitate in probabilità e sia Z_n una successione di v.a. convegente a zero in probabilità. Dimostrare che Y_nZ_n converge a zero in probabilità.
- (13) Siano X_1, X_2, \ldots variabili i.i.d. di media μ e varianza σ^2 . Trovare una legge limite di $e^{\bar{X}_n}$ usando il metodo delta.
- (14) Sia $Y_i = X_i^2$ dove $X_i \sim \mathcal{N}(0, \sigma^2)$. Derivare dal CLT le fluttuazioni gaussiane di \bar{Y}_n , trovare una trasformazione f per cui $f(\bar{Y}_n)$ abbia fluttuazioni gaussiane di media zero e

- varianza 1 (cioè trovare una trasformazione che stabilizzi la varianza), e ricavare intervalli di confidenza di σ^2 di dato livello.
- (15) Per stimare p^2 possiamo scegliere tra
 - (a) n prove di tipo successo/insuccesso con probabilità di successo p^2
 - (b) n prove di tipo successo/insuccesso con probabilità di successo p.
 - Per stimare p^2 nel primo caso usiamo X/n dove X è il numero dei successi in (a), e nel secondo caso $(Y/n)^2$ dove Y è il numero dei successi in (b). Determinare, al variare del valore di p, quale metodo sia più accurato. Hint: più accurato puo' essere inteso come "avente fluttuazioni minori"
- (16) Esercizi 3,4 Cap VII, Ross
- (17) Determinare stimatore di massima verosimiglianza di \hat{a} , \hat{b} quando il campione aleatorio è dato da $X_i \sim \text{Unif}(a, b)$
- (18) Determinare score function ed informazione di Fisher quando $X_i \sim \text{Exp}(\lambda)$.
- (19) Verificare che \bar{X}_n è stimatore corretto di minima varianza per il valore medio della distribuzione nei seguenti casi: $X_i \sim \text{Bern}(p)$, $X_i \sim \text{Poisson}(\lambda)$, $X_i \sim \text{Exp}(\lambda)$ (attenzione che la media è qui $1/\lambda$ e quindi bisogna lavorare con il parametro $\theta = 1/\lambda$)
- (20) Considerare la distribuzione di Pareto con parametri a=1 e $\lambda > 2$ (densità $\lambda x^{-\lambda-1}$ per x>0). Calcolare media μ e varianza σ^2 . Verificare se \bar{X}_n è stimatore corretto di minima varianza per μ (attenzione: bisogna calcolare $I(\mu)$ e non $I(\lambda)$).
- minima varianza per μ (attenzione: bisogna calcolare $I(\mu)$ e non $I(\lambda)$). (21) Considerare $X_i \sim \mathcal{N}(\mu, \sigma^2)$ con μ nota. Verificare che $I(\theta) = \frac{1}{2\theta^2}$ con $\theta = \sigma^2$. Considerare gli stimatori corretti di σ^2 dati dalla varianza campionaria e dallo stimatore di massima verosimiglianza (v. esercizio 3, cap.7 del ross) e dire se sono stimatori corretti di minima varianza per σ^2 . Hint: usare la formula generale per la varianza della varianza campionaria a pag. 12 delle note)
- (22) Esercizi 64, 65, 66 del Cap.VII del ross