EXERCISES ON LDS

ANTONIO AGRESTI

1. Exercise 1.

Prove that

$$\lim_{b \to \infty} \overline{\lim_{n \to \infty} \frac{1}{r_n}} \log \left(\int_{f \ge b} e^{r_n f} d\mu_n \right) = -\infty \,,$$

is satisfied if there exists $\alpha > 1$, such that

(1.1)
$$C := \sup_{n} \left(\int e^{\alpha r_n f} d\mu_n \right)^{\frac{1}{r_n}} < \infty.$$

Solution: Using Hölder inequality with exponent $\alpha > 1$ and $\alpha' := \alpha/(\alpha - 1) \in (1, \infty)$, we obtain

$$\int_{f\geq b} e^{r_n f} d\mu_n \leq \left(\int_{f\geq b} e^{\alpha r_n f} d\mu_n\right)^{\frac{1}{\alpha}} (\mu_n (f\geq b))^{\frac{1}{\alpha'}}.$$

Applying $1/r_n \log(\cdot)$ to both sides, since the map $(0, \infty) \ni t \mapsto \log t$ maintains the monotonicity, we obtain

$$\begin{split} \frac{1}{r_n} \log \int_{f \ge b} e^{r_n f} d\mu_n &\leq \frac{1}{r_n} \log \left[\left(\int_{f \ge b} e^{\alpha r_n f} d\mu_n \right)^{\frac{1}{\alpha}} \right] + \frac{1}{r_n} \log \left[\left(\mu_n (f \ge b) \right)^{\frac{1}{\alpha'}} \right] \\ &= \frac{1}{\alpha} \log \left[\left(\int_{f \ge b} e^{\alpha r_n f} d\mu_n \right)^{\frac{1}{r_n}} \right] + \frac{1}{\alpha'} \log \left[\left(\mu_n (f \ge b) \right)^{\frac{1}{r_n}} \right] \\ &\leq \frac{1}{\alpha} \log C + \frac{1}{\alpha'} \log \left[\left(\mu_n (f \ge b) \right)^{\frac{1}{r_n}} \right]; \end{split}$$

in the last inequality we have used the bound (1.1). Now, observe that (sometimes called Markov type inequalities)

$$\int_{f\geq b} e^{\alpha r_n f} d\mu_n \geq e^{\alpha r_n b} \int_{f\geq b} d\mu_n = e^{\alpha r_n b} \mu(f\geq b) \,.$$

This implies

$$\begin{split} \log\left[(\mu(f \ge b))^{\frac{1}{r_n}}\right] &\leq \log\left[e^{-\alpha b}\left(\int_{f \ge b} e^{\alpha r_n f} d\mu_n\right)^{\frac{1}{r_n}}\right] \\ &= -\alpha b + \log\left[\left(\int_{f \ge b} e^{\alpha r_n f} d\mu_n\right)^{\frac{1}{r_n}}\right] \\ &\leq -\alpha b + \log C\,; \end{split}$$

another time by (1.1). The previous estimates imply

$$\begin{split} \overline{\lim_{n \to \infty} \frac{1}{r_n} \log \left(\int_{f \ge b} e^{r_n f} d\mu_n \right) &\leq \frac{1}{\alpha} \log C + \frac{1}{\alpha'} (-\alpha b + \log C) \\ &= \log C - \frac{\alpha}{\alpha'} b \to -\infty \,, \end{split}$$

for $b \to \infty$.

2. Exercise 2.

Consider the following game. Let S_n be the number of tails you get when you flip n times a fair coin. Determine the asymptotic of $\mathbb{E}[3^{S_n}]$.

Solution: Observe that

$$\mathbb{E}[3^{S_n}] = \mathbb{E}[e^{S_n \log 3}] = \int_{\Omega} e^{n \frac{S_n}{n} \log 3} d\mathbb{P}$$
$$= \int_{\mathbb{R}} e^{nt \log 3} d\mu_n(t) \,.$$

Here $(\Omega, \mathfrak{F}, \mathbb{P})$ is the probability space and μ_n is the law of S_n/n . Since $S_n/n \in \{0, 1/n, \ldots, 1\}$ then the support of μ_n is contained in $[0, 1] \subset \mathbb{R}$ for each $n \in \mathbb{N}$. More precisely, we have

$$\mu_n = \frac{1}{2^n} \sum_{j=0}^n \binom{n}{j} \delta_{\frac{j}{n}} \,,$$

since $\mathbb{P}(S_n/n = j/n) = {n \choose j} (1/2)^n$ for $j = 0, \dots, n$. Furthermore, define $\chi = \mathbb{R}$ and $f(m) := m \log 2$

$$f(x) := x \log 3, \qquad x \in \mathbb{R}$$

Then the previous identity becomes

$$\mathbb{E}[3^{S_n}] = \int_{\chi} e^{nf(t)} d\mu_n(t) \, .$$

Since f is not bounded by above, we have to use the extended version of Varadhan's Lemma as quoted in the exercises.

We may use Exercise 1 and shows that, for some $\alpha > 1$, we have

(2.1)
$$C := \sup_{n} \left(\int_{\chi} e^{n\alpha f} d\mu_n \right)^{\frac{1}{n}} < \infty \,.$$

Now, with easy computations

$$\int_{\chi} e^{n\alpha f} d\mu_n = \frac{1}{2^n} \sum_{j=0}^n 3^{n \alpha \frac{j}{n}} {j \choose n} = \frac{1}{2^n} \sum_{j=0}^n 1^{n-j} 3^{\alpha j} {j \choose n}$$
$$= \frac{1}{2^n} (3^\alpha + 1)^n,$$

in particular (2.1) follows with $C = (3^{\alpha} + 1)/2$ for all $\alpha > 1$. Combining the extended Varadhan's Theorem with Theorem I.3 in F. den Hollander, we obtain

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}[3^{S_n}] = \sup\{f(x) - \log 2 - x \log x - (1-x) \log(1-x) : x \in [0,1]\}.$$

since $I(x) = \infty$ for all $x \notin [0, 1]$ (we use the same notation of Theorem I.3 in den Hollander).

It is easy to see that, the function $g(x) := f(x) - \log 2 - x \log x - (1-x) \log(1-x)$ has a local maximum in x = 3/4. Simple computations, show that x = 3/4 is indeed a maximum on [0, 1] for g, so

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}[3^{S_n}] = g\left(\frac{3}{4}\right) = \log 2$$

Therefore, $\mathbb{E}[3^{S_n}] = 2^{n(1+o(1))}$.

Comments 2.1. One can avoid the use of extended Varadhan's Theorem, using contraction principle, with $\mathcal{Y} = [-1, 2]$ and $T : \chi \to \mathcal{Y}$, defined as follows: T(x) = xon [-1, 2], T(x) = 2 for x > 2 and T(x) = -1 for x < -1.

3. Exercise 3.

Let Z_k be i.i.d. with $P(Z_k = 1) = P(Z_k = 2) = 1/2$. Let $W_n := Z_1 Z_2 \cdots Z_n$. (a) Show that $\mathbb{E}[W_n] = (3/2)^n$.

(b) Show that, given $\varepsilon > 0$, $\lim_{n \to \infty} \mathbb{P}((2 - \varepsilon)^n < W_n < (2 + \varepsilon)^n)) = 1$.

Solution:

(a) It is easy to see

$$\mathbb{E}[Z_i] = \int_{\{Z_i=1\}} Z_i d\mathbb{P} + \int_{\{Z_i=2\}} Z_i d\mathbb{P} = 1\frac{1}{2} + 2\frac{1}{2} = \frac{3}{2},$$

for all $i \in \mathbb{N}$. By independence of Z_i , we have

$$\mathbb{E}[W_n] = \prod_{i=1}^n \mathbb{E}[Z_i] = \left(\frac{3}{2}\right)^n.$$

(b) For all $i \in \mathbb{N}$, define $Y_i := \log Z_i$. Then Y_i 's are i.i.d since Z_i 's are so, furthermore

$$\mathbb{E}[Y_i] = \int_{\{Y_i=1\}} Y_i d\mathbb{P} + \int_{\{Y_i=2\}} Y_i d\mathbb{P} = \frac{1}{2} \log 2 = \log \sqrt{2}$$

Then by the weak law of large numbers, for all $\varepsilon' > 0$, we have

(3.1)
$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{1}{n} \sum_{i=1}^{n} Y_i - \mathbb{E}[Y_i] \right| < \varepsilon' \right) = 1$$

Note that

(3.2)
$$\frac{1}{n} \sum_{i=1}^{n} Y_i = \log(Z_1 \cdots Z_n)^{\frac{1}{n}} = \log W_n^{\frac{1}{n}}.$$

Furthermore

(3.3)
$$\left|\frac{1}{n}\sum_{i=1}^{n}Y_{i}-\mathbb{E}[Y_{i}]\right|=\left|\log W_{n}^{\frac{1}{n}}-\log\sqrt{2}\right|<\varepsilon',$$

or equivalently

(3.4)
$$\log \sqrt{2} - \varepsilon' < \log W_n^{\frac{1}{n}} < \log \sqrt{2} + \varepsilon' \Leftrightarrow (\sqrt{2}e^{-\varepsilon'})^n < W_n < (\sqrt{2}e^{\varepsilon'})^n.$$

For any $\varepsilon > 0$, one can choose a $\varepsilon' > 0$ sufficiently small, such that $e^{-\varepsilon'} > 1 - (\varepsilon/\sqrt{2})$ and $e^{\varepsilon'} < 1 + (\varepsilon/\sqrt{2})$. With this choice (3.2)-(3.4) imply

$$\left\{ (\sqrt{2} - \varepsilon)^n < W_n < (\sqrt{2} + \varepsilon)^n \right\} \supset \left\{ \left| \frac{1}{n} \sum_{i=1}^n Y_i - \mathbb{E}[Y_i] \right| < \varepsilon' \right\}.$$

Combining the previous observations with (3.1), the claim follows.

4. Exercise 4.

Let S be a Polish space. Let X_n be a sequence of i.i.d. S-valued random variables with common distribution λ and let $\phi : S \to \mathbb{R}^d$ be a continuous function. Assume that

$$\mathbb{E}[e^{a|\phi(X_1)|}] < \infty, \qquad \forall a > 0.$$

Prove by contraction from Sanov's theorem that

$$\frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n \phi(X_i) \,,$$

satisfies a LDP with speed n and good and convex rate function $I : \mathbb{R}^d \to [0, \infty]$ given by

$$I(z) := \inf \{ H(\nu|\lambda) : \nu(\phi) = z \} = \sup_{\theta \in \mathbb{R}^d} \{ z \cdot \theta \log \lambda(e^{\theta \cdot \phi}) \}.$$

For simplicity suppose that ϕ is bounded.

Solution: a) Set $L_n^X = 1/n \sum_{i=1}^n \delta_{X_i}$; then $L_n^X : \Omega \to \mathcal{M}_1(S)$ is an $\mathcal{M}_1(S)$ -valued random variable.

By Sanov's Theorem, the law $\mathcal{L}(L_n^X)$ of L_n^X satisfies a LDP on $\mathcal{M}_1(S)$ with rate function $I(\nu) = H(\nu|\lambda)$.

If $\phi: S \to \mathbb{R}^d$ is bounded and continuous, then automatically satisfies $\mathbb{E}[e^{a|\phi(X_1)|}] < \infty$ for all a > 0. Furthermore, consider the following continuous map

$$T: \mathcal{M}_1(S) \to \mathbb{R}^d,$$

 $\nu \mapsto (\nu(\phi^1), \dots, \nu(\phi^d)).$

where ϕ^i are the component of ϕ ; further we set $\nu(\phi) := (\nu(\phi^1), \dots, \nu(\phi^d))$. To see the continuity, recall that by definition of product topology, a map f with value \mathbb{R}^d is continuous if and only if $p_i(f)$ is continuous for all $i = 1, \dots, d$; here p_i is the projection on the *i*-th component. So T is continuous if and only if the maps

$$\nu \mapsto \nu(\phi^i)$$

are continuous for all i = 1, ..., d; since $\phi^i \in C_b(S)$ by hypothesis, this clear follows by definition of weak topology on $\mathcal{M}_1(S)$.

By Contraction principle, we have that $\mathcal{L}(L_n^X) \circ T^{-1}$ satisfy a LDP with speed n and rate function

$$I(x) = \inf_{\nu \in \mathcal{M}_1(S), T(\nu) = x} H(\nu|\lambda) = \inf_{\nu \in \mathcal{M}_1(S), \nu(\phi) = x} H(\nu|\lambda).$$

It remains to show that $\mathcal{L}(L_n^X) \circ T^{-1} = \mathcal{L}(S_n/n)$. Indeed, let $B \in \mathcal{B}(\mathbb{R}^d)$ be a Borel set, then it is enough to show that

(4.1)
$$\{L_n^X \in T^{-1}(B)\} = \{S_n/n \in B\}.$$

If $\omega \in \{L_n^X \in T^{-1}(B)\}$, then $L_n^X(\omega) = \nu$ for some $\nu \in T^{-1}(B)$; in other words $T(L_n^X(\omega)) \in B$. A straightforward computation shows that

$$T(L_n^X(\omega)) = \frac{1}{n} \sum_{i=1}^n \phi(X_i(\omega)) = \frac{S_n(\omega)}{n};$$

since $\delta_{X_i(\omega)}(\phi^j) = \phi^j(X_i(\omega))$ for all $i \in \mathbb{N}$, $\omega \in \Omega$ and $j = 1, \ldots, d$. This proves that $\{L_n^X \in T^{-1}(B)\} \subset \{S_n/n \in B\}$, reversing the argument just performed one obtain the opposite inclusion, this implies the equality in (4.1).

2) Convexity. Fix $\varepsilon > 0$ small and $x, y \in \mathbb{R}^d$, then there exists $\nu_1^{\varepsilon}, \nu_2^{\varepsilon}$ such that

(4.2)
$$I(x) + \varepsilon \ge H(\nu_1^{\varepsilon}|\lambda), \qquad \nu(\nu_1^{\varepsilon}) = x,$$

(4.3)
$$I(y) + \varepsilon \ge H(\nu_2^{\varepsilon}|\lambda), \qquad \nu(\nu_2^{\varepsilon}) = y.$$

Note that $\nu^{\varepsilon} = t\nu_1^{\varepsilon} + (1-t)\nu_2^{\varepsilon}$ verifies $\nu^{\varepsilon}(\phi) = tx + (1-t)y$. So,

$$\begin{split} I(tx + (1 - t)y) &\leq \int_{S} \frac{d\nu^{\varepsilon}}{d\lambda} \log \frac{d\nu^{\varepsilon}}{d\lambda} \, d\lambda \\ &= H(\nu^{\varepsilon}|\lambda) \\ &\leq tH(\nu_{1}^{\varepsilon}|\lambda) + (1 - t)H(\nu_{2}^{\varepsilon}|\lambda) \\ &\leq t(I(x) + \varepsilon) + (1 - t)(I(x) + \varepsilon) \,, \end{split}$$

where we have used the convexity of the relative entropy $H(\cdot|\lambda)$ and (4.2)-(4.3); sending $\varepsilon \searrow 0$ one obtains the claim.

3) Legendre Transform. Note that

$$I^{*}(\theta) = \sup_{z \in \mathbb{R}^{d}} \left\{ z \cdot \theta - \inf_{\nu \in \mathcal{M}_{1}(S), \nu(\phi) = z} H(\nu|\lambda) \right\}$$
$$= \sup_{z \in \mathbb{R}^{d}} \left(\sup_{\nu \in \mathcal{M}_{1}(S), \nu(\phi) = z} \{ z \cdot \theta - H(\nu|\lambda) \} \right)$$
$$= \sup_{z \in \mathbb{R}^{d}} \left(\sup_{\nu \in \mathcal{M}_{1}(S), \nu(\phi) = z} \{ \nu(\phi \cdot \theta) - H(\nu|\lambda) \} \right)$$
$$= \sup_{\nu \in \mathcal{M}_{1}(S)} \left(\nu(\phi \cdot \theta) - H(\nu|\lambda) \right).$$

4) We know that $H(\nu|\lambda) = \sup_{f \in C_b(S)} \{\nu(f) - \log(\lambda(e^f))\}$. Then

$$I^*(\theta) = (H(\nu|\lambda))^*(\phi \cdot \theta)$$

= $(p^*)^*(\phi \cdot \theta) = p(\phi \cdot \theta);$

where in the last equality we have used the Fenchel-Moreau Theorem.

5) Note that

$$I(z) = (I^*)^*(z)$$

= $\sup_{\theta \in \mathbb{R}^d} \{ z \cdot \theta - I^*(\theta) \}$
= $\sup_{\theta \in \mathbb{R}^d} \{ z \cdot \theta - p(\phi \cdot \theta) \}$
= $\sup_{\theta \in \mathbb{R}^d} \{ z \cdot \theta - \log \lambda(e^{\phi \cdot \theta}) \}.$

Solve Exercise 2.16 in [2].

Solution:

a) Let G be an open subset of \mathcal{E} , then for $\delta > 0$ define

$$G_{\delta} = \{ x \in G : \operatorname{dist}(x, \partial G) > \delta \}$$
$$= \{ x \in \mathcal{E} : \operatorname{dist}(x, \partial G) > \delta \} \cap G.$$

Then $G_{\delta} \subset G$ is an open subset of \mathcal{E} .

Fix $\delta > 0$, then by hypothesis there exists $n_0 \in \mathbb{N}$ such that $d(\xi_n(\omega), \eta_n(\omega)) < \delta$ for all $n > n_0$ and $\omega \in \Omega$. Then

(5.1)
$$\{\eta_n \in G\} \supset \{\xi_n \in G_\delta\}, \quad \forall n > n_0.$$

This implies

$$\liminf_{n \to \infty} \frac{1}{r_n} \log \mathbb{P}(\eta_n \in G) \ge \liminf_{n \to \infty} \frac{1}{r_n} \log \mathbb{P}(\xi_n \in G_{\delta}) \ge -\inf_{x \in G_{\delta}} I(x);$$

where the first inequality follows by (5.1) and the second by the hypothesis on ξ_n . In particular, we have

$$\liminf_{n \to \infty} \frac{1}{r_n} \log \mathbb{P}(\eta_n \in G) \geq - \liminf_{n \to \infty} \inf_{x \in G_{\delta_n}} I(x) \, ;$$

where δ_n is any sequence of positive real numbers such that $\delta_n \searrow 0$. By this, it is enough to show that

$$\liminf_{n \to \infty} \inf_{x \in G_{\delta_n}} I(x) \le \inf_{x \in G} I(x) \, .$$

To prove this, consider $(x_n)_n$ a sequence such that $I(x_n) \searrow \inf_{x \in G} I(x)$. Then, for δ_n sufficiently small, $x \in G_{\delta_n}$ and

(5.2)
$$\inf_{x \in G_{\delta_n}} I(x) \le I(x_n) \,.$$

Taking the $\liminf_{n\to\infty}$ to both sides of (5.2), we obtain the claim.

b) Let F be a closed subset of \mathcal{E} , then for $\delta > 0$ define

$$F^{\delta} = \{x \in \mathcal{E} : \operatorname{dist}(x, F) \le \delta\}$$

Then $F^{\delta} \supset F$ is a closed subset of \mathcal{E} .

Fix $\delta > 0$, then by hypothesis there exists $n_0 \in \mathbb{N}$ such that $d(\xi_n(\omega), \eta_n(\omega)) < \delta$ for all $n > n_0$ and $\omega \in \Omega$. Then

(5.3)
$$\{\eta_n \in F\} \subset \{\xi_n \in F^o\}, \quad \forall n > n_0.$$

 $\mathbf{6}$

EXERCISES ON LDS

This implies

$$\limsup_{n \to \infty} \frac{1}{r_n} \log \mathbb{P}(\eta_n \in F) \le \limsup_{n \to \infty} \frac{1}{r_n} \log \mathbb{P}(\xi_n \in F^{\delta}) \le -\inf_{x \in F^{\delta}} I(x) \le \frac{1}{r_n} \log \mathbb{P}(\xi_n \in F^{\delta}) \le -\inf_{x \in F^{\delta}} I(x) \le \frac{1}{r_n} \log \mathbb{P}(\eta_n \in F) \le \frac{1}{r_n} \log$$

where the first inequality follows by (5.3) and the second by the hypothesis on ξ_n . As before, it is sufficient to prove that

(5.4)
$$\liminf_{n \to \infty} \inf_{F^{\delta_n}} I(x) \ge \inf_{x \in F} I(x);$$

for some $(\delta_n)_n$, such that $\delta_n \searrow 0$. If $I \not\equiv +\infty$ on F^{δ} (otherwise the inequality in (5.4) is trivial), then we can assume F^{δ} is compact; since we can replace F^{δ} with $F^{\delta} \cap \{I \leq I(x)\}$ for some $x \in F^{\delta}$ such that $I(x) < \infty$ (recall that I is good by assumption).

Note that, for each $n \in \mathbb{N}$ there exists $x_n \in F^{\delta_n}$ such that

(5.5)
$$I(x_n) - \frac{1}{n} \le \inf_{x \in F^{\delta_n}} I(x)$$

By compactness of F^{δ} , there exists a subsequence of $(x_n)_n$ which converges in \mathcal{E} to an element $\tilde{x} \in F$; we still denote $(x_n)_n$ this subsequence.

So $\inf_{x \in F} I(x) \leq I(\tilde{x})$, but for the lower semicontinuity of the rate function I, we have

$$I(\tilde{x}) \leq \liminf_{n \to \infty} I(x_n) \leq \liminf_{n \to \infty} \inf_{x \in F^{\delta_n}} I(x);$$

where in the last inequality follows by (5.5). This conclude the proof of (5.4).

6. EXERCISE 6.

Solve Exercise 5.20 in [2].

Solution:

a) Since $p^*(z) < \infty$ there exists $\rho \in \mathcal{M}_1(\mathcal{S})$ such that $c := H(\rho|\lambda) < \infty$. Furthermore, the map

$$\mathcal{M}_1(\mathcal{S}) \ni \nu \mapsto \mathbb{E}^{\nu}[\mathcal{H}],$$

is continuous for the weak topology, so for each $z \in \mathbb{R}$, the set $\{\nu \in \mathcal{M}_1(S) : E^{\nu}[\mathcal{H}] = z\}$ is closed.

Since $\{\nu \in \mathcal{M}_1(\mathcal{S}) : H(\nu|\lambda) \leq c\}$ is compact, then the set

$$Z := \{\nu \in \mathcal{M}_1(\mathcal{S}) : H(\nu|\lambda) \le c\} \cap \{\nu \in \mathcal{M}_1(\mathcal{S}) : E^{\nu}[\mathcal{H}] = z\},\$$

is compact. It is easy to see that

$$\inf\{H(\nu|\lambda) : E^{\nu}[\mathcal{H}] = z, \, \nu \in \mathcal{M}_1(\mathcal{S})\} = \inf\{H(\nu|\lambda) : \nu \in Z\}.$$

Let $\{\nu_k\}_k \subset Z$ be a minimizing sequence, i.e.

(6.1)
$$H(\nu_k|\lambda) \searrow \inf\{H(\nu|\lambda) : \nu \in Z\}, \quad \text{as } k \nearrow \infty$$

By the compactness of Z, there exists a subsequence $\{\nu_{k_j}\}_j \subset Z$ and $\nu_z \in \mathcal{M}_1(\mathcal{S})$ such that $\nu_{k_j} \to \nu_z \in \mathcal{M}_1(\mathcal{S})$. By lower semicontinuity of the map $\nu \mapsto H(\nu|\lambda)$, we obtain

$$H(\nu_z|\lambda) \le \liminf_{i \to \infty} H(\nu_{k_j}|\lambda) = \inf\{H(\nu|\lambda) : \nu \in Z\} = p^*(z)$$

where we have used (6.1). Observe that $\mathbb{E}^{\nu_z}[\mathcal{H}] = \lim_{j \to \infty} \mathbb{E}^{\nu_{k_j}}[\mathcal{H}] = z$, then $\nu_z \in Z$ and this concludes the proof of the existence.

For the uniqueness, suppose that there exist $\nu_1, \nu_2 \in \mathcal{M}_1(\mathcal{S})$ such that $H(\nu_1|\lambda) =$

 $H(\nu_2|\lambda) = \inf\{H(\nu|\lambda) : \nu \in Z\}$, then by the strict convexity of $H(\cdot|\lambda)$ (see [2] Exercise 5.5) we have

$$H(\frac{1}{2}\nu_1 + \frac{1}{2}\nu_2|\lambda) < \frac{1}{2}H(\nu_1|\lambda) + \frac{1}{2}H(\nu|\lambda) \le \inf\{H(\nu|\lambda) : \nu \in Z\},\$$

so $\mathbb{E}^{\frac{1}{2}\nu_1+\frac{1}{2}\nu_2}[\mathcal{H}] = z$ and $H(\frac{1}{2}\nu_1 + \frac{1}{2}\nu_2|\lambda) < \inf\{H(\nu|\lambda) : E^{\nu}[\mathcal{H}] = z, \nu \in \mathcal{M}_1\};$ which is clearly an absurd.

b) Recall that $p(t) = \log \mathbb{E}^{\lambda}[e^{t\mathcal{H}}]$, then by the chain rule and the interchange of differentiation and integration theorem, we obtain

$$p'(t) = \frac{1}{\mathbb{E}^{\lambda}[e^{t\mathcal{H}}]} \mathbb{E}^{\lambda}[\mathcal{H}e^{t\mathcal{H}}] = \int \mathcal{H} \frac{e^{t\mathcal{H}}}{\mathbb{E}^{\lambda}[e^{t\mathcal{H}}]} d\lambda$$
$$= \int \mathcal{H}d\mu_{-t} = \mathbb{E}^{\mu_{-t}}[\mathcal{H}];$$

where the last two equalities follows by the definition of the Gibbs measures. For the interchange between integral and derivation one can easily see that the hypothesis i) -iii) of Theorem 3.6.3 in [1] are satisfied and so the interchange is valid.

The same applies to the second derivative

$$p''(t) = \frac{d}{dt} \left[\int \mathcal{H} \frac{e^{t\mathcal{H}}}{\mathbb{E}^{\lambda}[e^{t\mathcal{H}}]} d\lambda \right]$$

= $\int \mathcal{H} \frac{\mathcal{H}e^{t\mathcal{H}}\mathbb{E}^{\lambda}[e^{t\mathcal{H}}] - e^{t\mathcal{H}}\mathbb{E}^{\lambda}[\mathcal{H}e^{t\mathcal{H}}]}{(\mathbb{E}^{\lambda}[e^{t\mathcal{H}}])^2} d\lambda$
= $\frac{1}{\mathbb{E}^{\lambda}[e^{t\mathcal{H}}]} \int \mathcal{H}^2 e^{t\mathcal{H}} d\lambda - \left(\frac{\mathbb{E}^{\lambda}[\mathcal{H}e^{t\mathcal{H}}]}{\mathbb{E}^{\lambda}[e^{t\mathcal{H}}]}\right)^2$
= $\mathbb{E}^{\mu_{-t}}[\mathcal{H}^2] - (\mathbb{E}^{\mu_{-t}}[\mathcal{H}])^2.$

Now, we prove that $\lim_{t\to 0} p'(t) = \mathbb{E}^{\lambda}[\mathcal{H}]$. Indeed, by Lebesgue dominated convergence (recall that $\mathcal{H} \in L^{\infty}(S)$) we have

$$\int e^{t\mathcal{H}} \mathcal{H} d\lambda \to \mathbb{E}^{\lambda}[\mathcal{H}], \qquad \int e^{t\mathcal{H}} d\lambda \to \mathbb{E}^{\lambda}[1] = 1;$$

as $t \to 0$, then the claim follows.

Fix $\varepsilon > 0$, by definition of ess sup, we have $\lambda(\{B - \varepsilon \le \mathcal{H} \le B\}) > 0$ and

$$(B-\varepsilon) \leq \frac{\int_{\{B-\varepsilon \leq \mathcal{H} \leq B\}} \mathcal{H}e^{t\mathcal{H}} d\lambda}{\int_{\{B-\varepsilon \leq \mathcal{H} \leq B\}} e^{t\mathcal{H}} d\lambda} \leq B.$$

Furthermore,

$$\int_{\{B-\varepsilon \leq \mathcal{H} \leq B\}} e^{t\mathcal{H}} d\lambda \sim \int e^{t\mathcal{H}} d\lambda, \quad \text{as } t \nearrow \infty,$$
$$\int_{\{B-\varepsilon \leq \mathcal{H} \leq B\}} \mathcal{H} e^{t\mathcal{H}} d\lambda \sim \int \mathcal{H} e^{t\mathcal{H}} d\lambda, \quad \text{as } t \nearrow \infty;$$

(here $f(t) \sim g(t)$ as $t \to t_0$ iff $\lim_{t\to t_0} (f(t)/g(t)) = 1$). We prove the first, the other follows identically.

Since $\int e^{t\mathcal{H}} d\lambda = \int_{\{B-\varepsilon \leq \mathcal{H} \leq B\}} e^{t\mathcal{H}} d\lambda + \int_{\{\mathcal{H} < B-\varepsilon\}} e^{t\mathcal{H}} d\lambda$, it is enough to show that

$$\frac{\int_{\{\mathcal{H} < B - \varepsilon\}} e^{t\mathcal{H}} d\lambda}{\int_{\{B - \varepsilon \le \mathcal{H} \le B\}} e^{t\mathcal{H}} d\lambda} \to 0, \qquad t \nearrow \infty.$$

Since

$$e^{t\varepsilon/2}\lambda(\{B-\varepsilon/2\leq \mathcal{H}\leq B\})\leq \int_{\{B-\varepsilon/2\leq \mathcal{H}\leq B\}}e^{t(\mathcal{H}-B+\varepsilon)}d\lambda$$
$$\leq \int_{\{B-\varepsilon\leq \mathcal{H}\leq B\}}e^{t(\mathcal{H}-B+\varepsilon)}d\lambda\,,$$

then

$$0 \leq \frac{\int_{\{\mathcal{H} < B - \varepsilon\}} e^{t(\mathcal{H} - B + \varepsilon)} d\lambda}{\int_{\{B - \varepsilon \leq \mathcal{H} \leq B\}} e^{t(\mathcal{H} - B + \varepsilon)} d\lambda} \leq \frac{\int_{\{\mathcal{H} < B - \varepsilon\}} e^{t(\mathcal{H} - B + \varepsilon)} d\lambda}{e^{t\varepsilon/2} \lambda (\{B - \varepsilon/2 \leq \mathcal{H} \leq B\})} \searrow 0$$

as $t \nearrow \infty$; since $\int_{\{\mathcal{H} < B - \varepsilon\}} e^{t(\mathcal{H} - B + \varepsilon)} d\lambda \searrow 0$ by Lebesgue dominated convergence and $\varepsilon > 0$.

By the asymptoptic behaviour, we have

$$(B - \varepsilon) \leq \liminf_{t \to \infty} \frac{\int \mathcal{H}e^{t\mathcal{H}} d\lambda}{\int e^{t\mathcal{H}} d\lambda} \leq B,$$

$$(B - \varepsilon) \leq \limsup_{t \to \infty} \frac{\int \mathcal{H}e^{t\mathcal{H}} d\lambda}{\int e^{t\mathcal{H}} d\lambda} \leq B;$$

by the arbitrariness of $\varepsilon > 0$, one can easily conclude the proof. Similarly, one can prove that $p'(t) = \lim_{t \to -\infty} = A$; we omit the details.

c) Since p'(t) is a smooth function of $t \in \mathbb{R}$, then p''(t) > 0 for every $t \in \mathbb{R}$, implies that p'(t) is strictly increasing. So, for each $z \in (A, B)$ there exists an unique $\beta = \beta_z$ such that $z = p'(-\beta)$.

Furthermore, by the definition of p^* we have

$$p^*(z) = \sup_{t \in \mathbb{R}} \{ tz - p(t) \}.$$

We will show that the sup on the above RHS is indeed a maximum and it is attained at $t = -\beta$. This would imply that $p^*(z) = z(-\beta) - p(\beta) = -z\beta - p(-\beta)$ and this concludes the first part of the point c).

To prove this, for a fixed $z \in \mathbb{R}$, set f(t) = tz - p(t). Then

$$f'(t) = z - p'(t), \qquad f''(t) = -p''(t) < 0.$$

Since the equation f'(t) = z - p'(t) = 0 admits an *unique* solution, which we called $-\beta$, then the condition f''(t) < 0 trivially implies the value $f(-\beta)$ is a local maximum and since there are not other critical point of f, then $-\beta$ is indeed a global maximum.

For the last part of the point c), note that

$$\begin{split} H(\mu_{\beta}|\lambda) &= \int \frac{d\mu_{\beta}}{d\lambda} \log \frac{d\mu_{\beta}}{d\lambda} d\lambda \\ &= \int \frac{e^{-\beta\mathcal{H}}}{\mathbb{E}^{\lambda}[e^{-\beta\mathcal{H}}]} \log \frac{e^{\beta\mathcal{H}}}{\mathbb{E}^{\lambda}[e^{-\beta\mathcal{H}}]} d\lambda \\ &= \frac{1}{\mathbb{E}^{\lambda}[e^{-\beta\mathcal{H}}]} \int e^{-\beta\mathcal{H}} \log e^{-\beta\mathcal{H}} d\lambda - \frac{\log \mathbb{E}^{\lambda}[e^{-\beta\mathcal{H}}]}{\mathbb{E}^{\lambda}[e^{-\beta\mathcal{H}}]} \int e^{-\beta\mathcal{H}} d\lambda \\ &= -\beta \frac{\mathbb{E}^{\lambda}[\mathcal{H}e^{-\beta\mathcal{H}}]}{\mathbb{E}^{\lambda}[e^{-\beta\mathcal{H}}]} - \log \mathbb{E}^{\lambda}[e^{-\beta\mathcal{H}}] \\ &= -\beta z - p(t) = p^{*}(z) \,; \end{split}$$

where $z = p'(-\beta)$ and the last equality follows by the first part of point c) just proved. Recall that, by part a) we have that for each z then there exists an unique ν_z such that $p^*(z) = H(\nu_z|\lambda)$. The uniqueness implies that $\nu_z = \mu_\beta$.

7. Exercise 7.

Solve Exercise 6.5 in [2].

Solution:

For clarity, we divide the proof in two steps.

Step 1. We assume that $g(\omega) = g(\omega_k)$ for a fixed $k \in \mathbb{Z}^d$, i.e. the local function f depends only on $\omega_k \in S$ for $\omega = (\omega_i)_{i \in \mathbb{Z}^d} \in \Omega := S^{\mathbb{Z}^d}$, (here $d \in \mathbb{N}$). Let be $V_n := (-n, n)^d \cap \mathbb{Z}^d$, define

(7.1)
$$\tilde{V}_n^k := \{ i \in V_n : k - i \in V_n \}$$

Note that for each $i\in \tilde{V}_n^k$ we have

$$(\theta_i \omega^{(n)})_k = \omega_{k-i}^{(n)} = \omega_{k-i} = (\theta_i \omega)_k;$$

then $g((\theta_i \omega^{(n)})_k) - g((\theta_i \omega)_k) = 0$ for each $i \in \tilde{V}_n^k$. This implies that

$$\begin{aligned} |R(\omega,g) - \tilde{R}(\omega,g)| &= \frac{1}{|V_n|} \Big| \sum_{i \in V_n} g((\theta_i \omega^{(n)})_k) - g((\theta_i \omega)_k) \Big| \\ &= \frac{1}{|V_n|} \Big| \sum_{i \in V_n \setminus \tilde{V}_n^k} g((\theta_i \omega^{(n)})_k) - g((\theta_i \omega)_k) \Big| \\ &\leq 2|g|_{L^{\infty}(S)} \frac{|V_n \setminus \tilde{V}_n^k|}{|V_n|} \,; \end{aligned}$$

this implies

(7.2)
$$\sup_{\omega \in \Omega} |R(\omega, g) - \tilde{R}(\omega, g)| \le 2|g|_{L^{\infty}(\Omega)} \frac{|V_n \setminus \tilde{V}_n^k|}{|V_n|}$$

Since, $|V_n \setminus \tilde{V}_n^k| \sim c_n n^{d-1}$ and $|V_n| \sim c'_n n^d$ as $n \nearrow \infty$ for suitable $c_n, c'_n > 0$, the claim follows by (7.2).

Step 2. Here we suppose that

$$g(\omega) = g(\omega_{i_1}, \omega_{i_2}, \dots, \omega_{i_k}),$$

for $i_1, \ldots, i_k \in \mathbb{Z}^d$ and k > 1 fixed. Now, for $i \in V_n$, we can write

$$g(\theta_{i}\omega^{(n)}) - g(\theta_{i}\omega) = [g((\theta_{i}\omega^{(n)})_{i_{1}}, (\theta_{i}\omega^{(n)})_{i_{2}}, \dots, (\theta_{i}\omega^{(n)})_{i_{k}}) - g((\theta_{i}\omega)_{i_{1}}, (\theta_{i}\omega^{(n)})_{i_{2}}, \dots, (\theta_{i}\omega^{(n)})_{i_{k}})] + [g((\theta_{i}\omega)_{i_{1}}, (\theta_{i}\omega^{(n)})_{i_{2}}, \dots, (\theta_{i}\omega^{(n)})_{i_{k}}) - g((\theta_{i}\omega)_{i_{1}}, (\theta_{i}\omega)_{i_{2}}, \dots, (\theta_{i}\omega^{(n)})_{i_{k}})] \dots + [g((\theta_{i}\omega)_{i_{1}}, (\theta_{i}\omega)_{i_{2}}, \dots, (\theta_{i}\omega^{(n)})_{i_{k}}) - g((\theta_{i}\omega)_{i_{1}}, (\theta_{i}\omega)_{i_{2}}, \dots, (\theta_{i}\omega)_{i_{k}})] = \sum_{h=1}^{k} \Delta g_{h}^{i}(\omega);$$

where, for each $h = 1, \ldots, k$;

$$\Delta g_h^i(\omega) := g((\theta_i \omega)_{i_1}, \dots, (\theta_i \omega^{(n)})_{i_h}, \dots, (\theta_i \omega^{(n)})_{i_k}) - g((\theta_i \omega)_{i_1}, \dots, (\theta_i \omega)_{i_h}, \dots, (\theta_i \omega^{(n)})_{i_k}).$$

Now, for each $i_j \in \mathbb{Z}^d$ and $j = 1, \ldots, k$, with the same notation as in (7.1) we set

$$\tilde{V}_n^{i_j} = \{i \in V_n : i_j - i \in V_n\}.$$

Arguing as in **Step 1**, we have

$$\begin{split} R(\omega,g) - \tilde{R}(\omega,g) &= \frac{1}{|V_n|} \Big| \sum_{i \in V_n} g(\theta_i \omega^{(n)}) - g(\theta_i \omega) \Big| \\ &\leq \frac{1}{|V_n|} \sum_{h=1}^k \Big| \sum_{i \in V_n} \Delta g_h^i(\omega) \Big| \\ &= \frac{1}{|V_n|} \sum_{h=1}^k \Big| \sum_{i \in V_n \setminus \tilde{V}_n^{i_h}} \Delta g_h^i(\omega) \Big| \\ &\leq 2|g|_{L^{\infty}(\Omega)} \sum_{h=1}^k \frac{|V_n \setminus \tilde{V}_n^{i_h}|}{|V_n|} \,. \end{split}$$

Since k is fixed, the same argument performed at the end of ${\bf Step 1}$ completes the proof.

8. Exercise 8.

Solve Exercise 6.10 in [2].

Solution: We will need the following property:

(P) Let $\alpha, \mu \in \mathcal{M}_1(\chi)$ and $\beta, \nu \in \mathcal{M}_1(\mathcal{Y})$ be probability measures. Then

$$\alpha \otimes \beta \ll \mu \otimes \nu \quad \leftrightarrow \quad \alpha \ll \mu \quad \text{and} \quad \beta \ll \nu \,.$$

Furthermore, if $f := d\alpha/d\mu$ and $g := d\beta/d\nu$, then

$$\frac{d(\alpha \otimes \beta)}{d(\mu \otimes \nu)} = f g \,.$$

We postpone the proof of this fact at the end of the exercise.

Solution:

(a) By property (P), we have only to check the equality under the condition $\alpha \otimes \beta \ll \mu \otimes \nu$; otherwise

$$H(\alpha \otimes \beta | \mu \otimes \nu) = \infty,$$

and at least one between the quantities $H(\alpha|\mu)$, $H(\beta|\nu)$ is infinite.

Now under the hypothesis $\alpha \otimes \beta \ll \mu \otimes \nu$, we obtain by property (P) (and using that notation for the Radon-Nikodym derivative)

$$\begin{split} H(\alpha \otimes \beta | \mu \otimes \nu) &= \int_{\chi \times \mathcal{Y}} \frac{d(\alpha \otimes \beta)}{d(\mu \otimes \nu)} \log \left(\frac{d(\alpha \otimes \beta)}{d(\mu \otimes \nu)} \right) d(\mu \otimes \nu) \\ &= \int_{\chi \times \mathcal{Y}} f g(\log f + \log g) d(\mu \otimes \nu) \\ &= \int_{\chi} f \log f \left(\int_{\mathcal{Y}} g \, d\nu \right) d\mu + \int_{\mathcal{Y}} g \log g \left(\int_{\chi} f \, d\mu \right) d\nu \\ &= H(\alpha | \mu) + H(\beta | \nu) \,, \end{split}$$

since $\int_{\mathcal{Y}} g \, d\nu = \beta(\mathcal{Y}) = 1$ and $\int_{\chi} f \, d\mu = \alpha(\chi) = 1$.

(b) Now, observe that

$$H_n(\mu^{\otimes \mathbb{Z}^d} | \nu^{\otimes \mathbb{Z}^d}) = H(\otimes_{i \in V_n} \mu | \otimes_{i \in V_n} \nu) = \sum_{i \in V_n} H(\mu | \nu)$$
$$= |V_n| H(\mu | \nu)$$

Here the second equality follows by part (a) and a simple induction argument. By this, we immediately obtain the claim, since

$$h(\mu^{\otimes \mathbb{Z}^d} | \nu^{\otimes \mathbb{Z}^d}) = \lim_{n \to \infty} \frac{1}{|V_n|} H_n(\mu^{\otimes \mathbb{Z}^d} | \nu^{\otimes \mathbb{Z}^d}) = \lim_{n \to \infty} \frac{1}{|V_n|} |V_n| H(\mu|\nu)$$
$$= H(\mu|\nu).$$

Proof of Property (P). (\leftarrow) as before $f := d\alpha/d\mu$ and $g := d\beta/d\nu$, then for all $A \times B$ such that $A \in \mathcal{B}(\chi)$ and $B \in \mathcal{B}(\mathcal{Y})$, we have

$$(\alpha \otimes \beta)(A \times B) = \int_{A \times B} fg \ d(\mu \otimes \nu).$$

Thus define $\lambda(E) := \int_E fgd(\mu \otimes \nu)$ for each $E \in \mathcal{B}(\chi \times \mathcal{Y})$; it is easy to see that is a measure on the product space $\chi \times \mathcal{Y}$. Furthermore, the set

$$\mathcal{F} = \{ E \in \mathcal{B}(\chi \times \mathcal{Y}) \, | \, \lambda(E) = (\alpha \otimes \beta)(E) \}$$

is a sigma algebra containing all Borel set of the form $A \times B$ for $A \in \mathcal{B}(\chi)$ and $B \in \mathcal{B}(\mathcal{Y})$, then $\mathcal{F} \supset \sigma(\{A \times B \mid A \in \mathcal{B}(\chi), B \in \mathcal{B}(\mathcal{Y})\}) = \mathcal{B}(\chi \times \mathcal{Y})$; where the last equality follows by the definition of product sigma algebra. This implies $\lambda = \alpha \otimes \beta$ on $\mathcal{B}(\chi \times \mathcal{Y})$ and this finishes the first part of the proof.

12

 (\rightarrow) Let $A \in \mathcal{B}(\chi)$ be a Borel and set $F := d(\alpha \otimes \beta)/d(\mu \otimes \nu)$, then

$$\begin{aligned} \alpha(A) &= \alpha(A)\beta(\mathcal{Y}) = \int_{A\times Y} F \, d(\mu \otimes \nu) \\ &= \int_A \left(\int_{\mathcal{Y}} F \, d\nu \right) d\mu \,; \end{aligned}$$

so $d(\alpha)/d(\mu) = \int_{\mathcal{V}} F \, d\nu$. The statement for β follows in the same manner.

9. Exercise 9.

Consider $\mu, \nu \in \mathcal{M}_1(\chi)$ with $\nu \neq \mu$. As a consequence, there exists $f \in C_b(\chi)$ such that $\mu(f) \neq \nu(f)$. Use this observation and Birkhoff's ergodic theorem to deduce that $\mu^{\otimes \mathbb{Z}^d}$ and $\nu^{\otimes \mathbb{Z}^d}$ are mutually singular (in agreement with the fact that different probability measures in \mathcal{M}_{θ} are mutually singular).

Solution: Set $\Omega = \chi^{\mathbb{Z}^d}$, and let $f \in C_b(\chi)$ be a bounded continuous function on χ such that $\mu(f) \neq \nu(f)$. We may regard f as a function on Ω ,

$$f(\omega) := f(\omega_0)$$

Of course \tilde{f} is continuous on Ω , since $\tilde{f} = f(p_0)$, where p_0 is the projection on the 0-th component of ω .

It is easy to see that

$$\int_{\Omega} \tilde{f} \, d\mu^{\otimes \mathbb{Z}^d} = \int_{\chi} f \, d\mu = \mu(f) \, ,$$

and $\nu^{\otimes \mathbb{Z}^d}(\tilde{f}) = \nu(f)$. By Exercise B.24 in [2] we have that $\nu^{\otimes \mathbb{Z}^d}, \mu^{\otimes \mathbb{Z}^d}$ are ergodic measures, so Birkhoff's Theorem applies and we obtain

$$\begin{aligned} R_n(\omega, \tilde{f}) &\to \mu^{\otimes \mathbb{Z}^d}(\tilde{f}) = \mu(f) \,, & \forall \omega \in \Omega \setminus A \,, \\ R_n(\omega, \tilde{f}) &\to \nu^{\otimes \mathbb{Z}^d}(\tilde{f}) = \nu(f) \,, & \forall \omega \in \Omega \setminus B \,, \end{aligned}$$

with $\mu^{\otimes \mathbb{Z}^d}(A) = 0$ and $\nu^{\otimes \mathbb{Z}^d}(B) = 0$. Since by assumption $\nu(f) \neq \mu(f)$, the uniqueness of the limit implies

$$(\Omega \setminus A) \cap (\Omega \setminus B) = \emptyset,$$

and the claim follows.

10. Exercise 10.

Solve Exercise 8.5 in [2].

Solution: (a) $h(\cdot | \Phi)$ is affine.

By (8.3) in [2] pag. 122. for each $\nu \in \mathcal{M}_{\theta}(\Omega)$, we have

 $h(\nu|\Phi) = \mathbb{E}^{\nu}[f_{\Phi}] + h(\nu|\lambda) + P(\Phi).$ (10.1)

Since Φ is fixed and the assignment

$$\nu \mapsto \mathbb{E}^{\nu}[f_{\Phi}] + h(\nu|\lambda) \,,$$

is linear by Proposition 6.8 in [2], then $h(\cdot | \Phi)$ is manifestly affine.

(b) $h(\cdot | \Phi)$ is lower semi-continuous.

Since on $\mathcal{M}_{\theta}(\Omega)$ we consider the topology induced by the weak topology according

to the duality $(C_b(\Omega))^* = M_b(\Omega)$, then the map $\nu \mapsto \mathbb{E}^{\nu}[f_{\Phi}]$ is continuous since $f_{\Phi} \in C_b(\Omega)$. Moreover, by Proposition 6.8 in [2] then $\nu \mapsto h(\nu|\lambda)$ is lower semicontinuous, then by (10.1) we obtain the claim.

(c) $h(\cdot | \Phi)$ has compact level.

It turns out (see (6.4) in Theorem 6.7 in [2]) that the following equality holds

$$h(\nu|\lambda) = \sup_{\Lambda \in \mathcal{R}} \frac{1}{|\lambda|} H_{\Lambda}(\nu|\lambda);$$

where \mathcal{R} is the collection of finite rectangles in \mathbb{Z}^d . By this, for any $c \in \mathbb{R}$, we have

$$\{\nu \in \mathcal{M}_{\theta}(\Omega) : h(\nu|\lambda) \le c\} = \bigcap_{\Lambda \in \mathcal{R}} \{\nu \in \mathcal{M}_{\theta}(\Omega) : H_{\Lambda}(\nu|\lambda) \le c|\Lambda|\}.$$

Since $H_{\Lambda}(\cdot|\lambda)$ has compact level (see Proposition 6.8 in [2]) and the fact that an intersection of compact subsets is compact (recall that we are in an Hausdorff space), the claim follows.

References

- Benedetto, John J and Czaja, Wojciech, Integration and modern analysis, Springer Science & Business Media, 2010.
- [2] Rassoul-Agha, Firas and Seppäläinen, Timo, A course on large deviations with an introduction to Gibbs measures, American Mathematical Soc., 2015.