EXERCISES ON LDS

ANTONIO AGRESTI

1. EXERCISE 1.
Prove that

— 1
lim lim — log (/ er"fd,un> = —00,
b—o0 n—oo Ty f>b

is satisfied if there exists a > 1, such that

1

(1.1) C = sup </ e‘""fdun) " <.

n

Solution: Using Holder inequality with exponent o« > 1 and o' := a/(a —1) €
(1,00), we obtain

/ e du, < (/ eamfd’un) B (b (f > b))ﬁ .
F2b fzb

Applying 1/r, log(-) to both sides, since the map (0,00) 3 ¢t — log ¢ maintains the
monotonicity, we obtain
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in the last inequality we have used the bound (1.1). Now, observe that (sometimes
called Markov type inequalities)

/ eow'nfd’un > earnb/ dun _ earnbu(f > b) )
f=>b f>b

This implies
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another time by (1.1). The previous estimates imply

— 1 : 1 1
lim — log (/ eT"fdun) < —logC+ — (—ab+logC)
f>b « «

n—oor,
e

=logC - —b— —0,
!

for b — oo.

2. EXERCISE 2.
Consider the following game. Let S, be the number of tails you get when you

flip n times a fair coin. Determine the asymptotic of E[3%"].

Solution: Observe that

E[Ssn} _ E[esn logS] _ / ens,,—:llog?, dP
Q

_ / entlog3d/in(t) )
R

Here (Q,F,P) is the probability space and pu, is the law of S, /n. Since S, /n €
{0,1/n,...,1} then the support of u, is contained in [0,1] C R for each n € N.

More precisely, we have
Hn = = . 51 5
2” ]:0 j n

since P(S,/n=j/n) = (?)(1/2)" for j =0,...,n. Furthermore, define x = R and
f(z) :=xlog3, z eR.

Then the previous identity becomes
E[35+] = / O (b).
X

Since f is not bounded by above, we have to use the extended version of Varadhan’s
Lemma as quoted in the exercises.
We may use Exercise 1 and shows that, for some o > 1, we have

1

(2.1) C :=sup (/ e"afdun> " <.
n X

Now, with easy computations

1 n S ] 1 n B ‘ ]
naf E na E n—jaoaj
/X e dpn 2n £ 3 (n> 2n £ 1 3 <n)
7=0 7=0

1
Toon
in particular (2.1) follows with C' = (3% + 1)/2 for all a > 1.
Combining the extended Varadhan’s Theorem with Theorem 7.3 in F. den Hollan-
der, we obtain

B*+1",

lim llogIE[?)S"] =sup{f(z) —log2 —zlogx — (1 —x)log(l —z) : z €[0,1]}.

n—oo N
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since I(z) = oo for all z ¢ [0,1] (we use the same notation of Theorem I.3 in den
Hollander).

It is easy to see that, the function g(z) := f(z) —log2 — xlogx — (1 — z) log(1 — z)
has a local maximum in z = 3/4. Simple computations, show that x = 3/4 is
indeed a maximum on [0, 1] for g, so

1 3
lim —logE[3°"] =g (4) =log?2.

n—oo N
Therefore, E[3Sn] — 9on(l+o(1))

Comments 2.1. One can avoid the use of extended Varadhan’s Theorem, using
contraction principle, with Y = [—1,2] and T : x — Y, defined as follows: T'(x) = x
on [—1,2], T(z) =2 for x > 2 and T'(z) = —1 for z < —1.

3. EXERCISE 3.

Let Zy be iid. with P(Zx = 1) = P(Z), = 2) = 1/2. Let W, := Z1Zo - -+ - Z.
(a) Show that E[W,,] = (3/2)"™ .
(b) Show that, given € > 0, lim,, .o P((2—)" < W, < (2+¢)")) = 1.

Solution:
(a) Tt is easy to see
1 1
IE[Z,;]:/ ZidP+/ ZidIP’:17+2,:§’
{Z;=1} (Z;=2} 2 2 2
for all ¢ € N. By independence of Z;, we have

3

E[W,] = II"_,E[Z;] = (2>n .

(b) For alli € N, define Y; :=log Z;. Then Y;’s are i.i.d since Z;’s are so, furthermore

1
JE[Yi]z/ YidP‘F/ Y;dP = = log2 = log V2.
{vi=1} {vi=2} 2

Then by the weak law of large numbers, for all ¢’ > 0, we have

. IR )

(3.1) nlggoponzn—mm <g>_1.
Note that

1 n N 1
(3.2) ﬁ;Yi:log(Zl-u--Zn)i = log W7 .
Furthermore

1 & 1
3.3 ’f Y, —E[Y}]| = [log W7 —1log v2| < ¢,
(3.3) n; V]| = |log og V2| <e

or equivalently

(3.4) log V2 — ¢’ < log Wy < log V2 + & & (V2e ™) < W, < (V25 ).
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For any € > 0, one can choose a ¢’ > 0 sufficiently small, such that e > 1—(¢/v/2)
and e < 1+ (¢/4/2). With this choice (3.2)-(3.4) imply
< s’} :

Combining the previous observations with (3.1), the claim follows.

((VE-oy < Wy < (Va4 ey o {23 v B

4. EXERCISE 4.

Let S be a Polish space. Let X, be a sequence of i.i.d. S-valued random variables
with common distribution A and let ¢ : S — R? be a continuous function. Assume
that

Ele®*] < o0, Va > 0.

Prove by contraction from Sanov’s theorem that

Sp 1

D B COF
i=1

satisfies a LDP with speed n and good and convex rate function I : R — [0, oo]

given by

I(z) == inf{H(v[A) : v(¢) = 2} = f;lﬂ@{z -0log Me? )} .

For simplicity suppose that ¢ is bounded.

Solution: a) Set LX =1/n " 6x,; then LX : Q — M;(S) is an M (S)-valued
random variable.
By Sanov’s Theorem, the law £(L:X) of LX satisfies a LDP on M;(S) with rate
function I(v) = H(v|)\).
If ¢ : S — R%is bounded and continuous, then automatically satisfies E[e?l¢(X1)] <
oo for all @ > 0. Furthermore, consider the following continuous map

T: ./\/11(5) — Rd,

vis (oY), ..., v(eY),

where ¢’ are the component of ¢; further we set v(¢) := (v(¢!),...,v(¢?)).
To see the continuity, recall that by definition of product topology, a map f with

value R? is continuous if and only if p;(f) is continuous for all i = 1,...,d; here p;
is the projection on the i-th component. So T is continuous if and only if the maps
v v(oh)

are continuous for all i = 1,...,d; since ¢! € Cy(S) by hypothesis, this clear follows
by definition of weak topology on M;j(S).
By Contraction principle, we have that £(L:X) o T~ satisfy a LDP with speed n
and rate function

I(z) = inf H(v|\) = inf H(v|A).

veMq(S),T(v)=x veEM1(S),v(¢p)=z

It remains to show that £L(LX) o T~! = £(S,/n).
Indeed, let B € B(R?) be a Borel set, then it is enough to show that

(4.1) (LX e T7Y(B)} = {S,/n € B}.
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If w € {L¥ € T71(B)}, then LX(w) = v for some v € T~!(B); in other words
T(LX(w)) € B. A straightforward computation shows that

T(Ly (w) =

since dx, () (¢’) = ¢’ (Xi(w)) for all i € N, w € Q and j = 1,...,d. This proves
that {LX € T~Y(B)} C {S,./n € B}, reversing the argument just performed one
obtain the opposite inclusion, this implies the equality in (4.1).

2) Converity. Fix e > 0 small and x,y € R%, then there exists v§,v5 such that

(4.2) I()+2> HW ), v(vf) =z,
I(y) += > HOAN), v(5) = y.

Note that v = tv§ + (1 — t)v§ verifies v°(¢) =tz + (1 — t)y. So,

dv* dv*
- <
Itz + (1 t)y)_/s N log N d\
= H(V%|\)

<tH(vi|A) + (1 —t)H(V5|A)
<t(I(x)4+e)+ (1 —-t){(z)+e),

where we have used the convexity of the relative entropy H(-|\) and (4.2)-(4.3);
sending € \, 0 one obtains the claim.

3) Legendre Transform. Note that

O=r {Z verms (B, gy TV )}

= sup ( sup {ZG_H(VP‘)})

z€R? \veMa(S),v(¢)==

z€RI \veM 1 (S),v(p)==2

= sup ( Sup {v(o-0) - H(V|/\)}>

sup (y(¢> ) — H(V|)\)) .

U€M1(S)
4) We know that H(v|\) = supsec, (s){v(f) — log(A(ef))}. Then

I"(0) = (H(v[\)" (¢ - 0)
=) (¢-0) =p(g-0);

where in the last equality we have used the Fenchel-Moreau Theorem.
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5) Note that

I(z) = (I")"(2)
= sup{z-0—-I"(0)}

OcRd

= sup{z -0 —p(¢-0)}
OeRd

= sup {z -6 —log \(e®?)}.
0eRd

5. EXERCISE 5.

Solve Exercise 2.16 in [2].

Solution:
a) Let G be an open subset of £, then for § > 0 define

Gs ={z € G : dist(z,0G) > 6}
={z e & : dist(z,0G) >} NG.
Then G5 C G is an open subset of £.

Fix ¢ > 0, then by hypothesis there exists ng € N such that d(&,(w), n,(w)) < ¢ for
all n > ng and w € . Then

(5.1) {n, € G} D {&, € Gs}, Vn > ng.
This implies
1 1
liminf — logP(n,, € G) > liminf — logP(¢,, € Gs) > — inf I(x);
n—oo T, n—oo T, z€Gys

where the first inequality follows by (5.1) and the second by the hypothesis on &,.
In particular, we have

1
liminf — logP(n, € G) > —liminf inf I(x);

n—oo T, n—oo zeGs,,

where J,, is any sequence of positive real numbers such that 6, \, 0.
By this, it is enough to show that

liminf inf I(x) < inf I(z).

n—oo z€Gs,, z€G

To prove this, consider (x,,), a sequence such that I(z,) N\, inf e I(z). Then, for
0, sufficiently small, x € G5, and

(5.2) o I@) < I(z).

Taking the liminf, _, o, to both sides of (5.2), we obtain the claim.

b) Let F' be a closed subset of £, then for 6 > 0 define
Fo ={z €& : dist(x, F) < 6}.

Then F° O F is a closed subset of £.
Fix § > 0, then by hypothesis there exists ng € N such that d(&,(w),n,(w)) < 0 for
all n > ng and w € Q. Then

(5.3) {meFC{&€eF}, Vn>ng.
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This implies
1 1
lim sup — log P(n,, € F) < limsup — logP(§,, € F°) < — inf I(z);
n—oo I'm n—oo I'm rEF?

where the first inequality follows by (5.3) and the second by the hypothesis on &,.
As before, it is sufficient to prove that

A4 liminf inf I(z) > inf I(z);
(54) hnint il (o) > Jel 1)
for some (8,,)n, such that §, N\, 0. If I # +oo on F? (otherwise the inequality in
(5.4) is trivial), then we can assume F is compact; since we can replace F° with
Fon{I < I(z)} for some 2 € F°® such that I(x) < oo (recall that I is good by
assumption).
Note that, for each n € N there exists x,, € F°» such that

(5.5) Ian) — 2 < inf I(z).

n zEF%n
By compactness of F, there exists a subsequence of (x,,),, which converges in € to
an element & € F; we still denote (z,,), this subsequence.
So infyep I(x) < I(Z), but for the lower semicontinuity of the rate function I, we
have

2\ < Tim e .
1(z) < lgglg(l}f](zn) < hnnigf melr}?f;n I(x);

where in the last inequality follows by (5.5). This conclude the proof of (5.4).

6. EXERCISE 6.

Solve Exercise 5.20 in [2].

Solution:
a) Since p*(z) < oo there exists p € M;(S) such that ¢ := H(p|\) < oo. Further-
more, the map

My (S) 3 v— E"[H],
is continuous for the weak topology, so for each z € R, the set {v € My(S) :
EY[H] = z} is closed.
Since {v € M1(S) : H(v|\) < ¢} is compact, then the set

Z:={rveMi(S): Hv|A) <c}n{ve Mi(S) : E'[H] =z},
is compact. It is easy to see that

inf{Hw|\) : EY[H]=2,v e My(S)} =inf{Hv|\) : v Z}.
Let {v;}r C Z be a minimizing sequence, i.e.
(6.1) H(ve|A) \inf{H(v|\) : v € Z}, as k oo.

By the compactness of Z, there exists a subsequence {1}, }; C Z and v, € M;(S)
such that vy, — v, € M1(S). By lower semicontinuity of the map v +— H(v|)), we
obtain

H(v,\) < 1ijn_1>g1fH(ykj\)\) =inf{H(W|A) : ve Z} =p*(2);

where we have used (6.1). Observe that EV=[H] = lim;_, oo E"* [H] = z, then v, € Z
and this concludes the proof of the existence.
For the uniqueness, suppose that there exist vy, v € M;(S) such that H(vi|A) =
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H(vq|A\) = inf{H(v|)\) : v € Z}, then by the strict convexity of H(:|\) (see [2]
Exercise 5.5) we have
1 1 1 1 .
H(§V1 + 51/2|)\) < §H(l/1|>\) + 5H(1/|)\) <inf{H(v|\) : ve Z},

so Ez"1+32[}] = z and H(3v1 + 312|X\) < inf{H(v|\) : E"[H] = z,v € My};
which is clearly an absurd.

b) Recall that p(t) = logE*[et™], then by the chain rule and the interchange of
differentiation and integration theorem, we obtain
H

V() = mw (HetH) = / Hmfm

— [ M =

where the last two equalities follows by the definition of the Gibbs measures.

For the interchange between integral and derivation one can easily see that the
hypothesis i) — i7) of Theorem 3.6.3 in [1] are satisfied and so the interchange is
valid.

The same applies to the second derivative

=4 o]

B /H /HetHE)\ [et?-l] _ et?—LEA [Hetﬂ]
- (]EA[e”"])Q

= B[] — (B [H))°

dA

Now, we prove that lim;_,p'(t) = E*[H]. Indeed, by Lebesgue dominated conver-
gence (recall that H € L>°(S)) we have

/et”HdA — EMH], /emd)\ - EM1]=1;
as t — 0, then the claim follows.

Fix & > 0, by definition of ess sup, we have A({B —e < H < B}) > 0 and

< f{stgygB} He* d <5

- f{B—sSHSB} edx —

(B~ e)

Furthermore,

/ emd/\w/emd/\, ast /oo,
{B—e<H<B}

/ ’Hemd/\w/’Hemd)\, ast oo
{B—e<H<B}

(here f(t) ~ g(t) ast — to iff limy 4, (f(¢)/g(t)) = 1). We prove the first, the other
follows identically.
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Since [ e'*d\ = JiBc<u<n etMd\ + Jonen_a et™d), it is enough to show that

etd\
f{H<B—s} 2o, Moo
f{BfESHSB} etrtdA
Since
e2A\{B — /2 <H < B}) < / SHH—Be) g
{B—c/2<H<B}
< / et(H—B-i-E)d)\ ,
~ J(B-e<H<B)
then

et(H—B+e)d>\ et(H—B+e)d>\

f{H<B—a}

f{H<B—a} <
tH=Bte)d\ ~ ete/2\({B —¢/2 < H < B})

0<

O,

{(B—e<H<B} €

as t /* oo; since f{H<B_E} etM=B+e)g\ \, 0 by Lebesgue dominated convergence
and € > 0.

By the asymptoptic behaviour, we have

[ Het™ dx

7 e HETTAA

(B s)ghglogf Teran <B,
T d\

(B—¢) §limsupr6 < Bj;

t—o00 fetH d\ —

by the arbitrariness of € > 0, one can easily conclude the proof.
Similarly, one can prove that p/(t) = lim;_, ., = A; we omit the details.

¢) Since p'(t) is a smooth function of ¢t € R, then p”(t) > 0 for every t € R,
implies that p’(t) is strictly increasing. So, for each z € (A, B) there exists an
unique 8 = B, such that z = p/'(—0).

Furthermore, by the definition of p* we have

p*(2) = sup{tz —p(t)}.
teR

We will show that the sup on the above RHS is indeed a maximum and it is attained
at t = —f. This would imply that p*(z) = 2(—8) — p(8) = —28 — p(—f) and this
concludes the first part of the point c).

To prove this, for a fixed z € R, set f(t) =tz — p(t). Then

f)y===p'@t), f't)=-p"(t) <0.

Since the equation f/(t) = z — p/(¢t) = 0 admits an unique solution, which we
called —f, then the condition f”(t) < 0 trivially implies the value f(—73) is a local
maximum and since there are not other critical point of f, then —f is indeed a
global maximum.
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For the last part of the point ¢), note that

H(us|\) = / UL dﬂﬂd)\
] o
/ EA[e ﬁﬂ] % EAle77]

1 B _ logEA[e*ﬁH} _
_ BH BH BH
= B /e loge™P"d\ — P /e dA

EN[He 4] A
— _ —BH
=-p A [o—PA] log E*[e™""]
= —Bz—p(t) =p"(2);
where z = p'(—f) and the last equality follows by the first part of point ¢) just
proved. Recall that, by part a) we have that for each z then there exists an unique
v, such that p*(z) = H(v,|A). The uniqueness implies that v, = pg.

7. EXERCISE 7.
Solve Exercise 6.5 in [2].
Solution:

For clarity, we divide the proof in two steps.
Step 1. We assume that g(w) = g(ws) for a fixed k € Z%, i.e. the local function f

depends only on wy € S for w = (w;);eze € 1= SZ° (here d € N).
Let be V,, := (—n,n)? N Z9, define

(7.1) VE={ieV, : k—ieV,}.
Note that for each i € V¥ we have
(Oiw™ ) = wi”; = wi—i = (Biw)i ;

then g((8;w™)5) — g((Bsw)x) = 0 for each i € V*.
This implies that

|R(w, g) — R(w, g)| =

g(0: 1) = g((Bi0)r)|

Ze‘/n
= \ g0 ")) = g((O))|
i€V, \V/F
[V \ Vit
<2 oo Eeee——
< 2lglp(s) AR
this implies
- V, \ VF
(r2) sup | R(w.g) — Rl 0)] < 2lglsow ey V]
weN | ’ﬂ|

Since, |V, \ f/f| ~ c,n? 1l and |V,| ~ ¢,n? as n 7 oo for suitable ¢,,c,, > 0, the
claim follows by (7.2).

Step 2. Here we suppose that

g(w) = g(wil’wi27"'7wik)?
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for iy,...,ix € Z% and k > 1 fixed.

Now, for i € V,,, we can write

g(giw(n)) —g(fiw)
= [9((0:w ™)y, (00 ™ )iy -, B:0™)i,) = g((0i0)iy, (Biw™ )iy, -, (Bi0 ™))
+[9((0:w)iy, (0:0™ )iz, (00T, ) = 9((050)i s (0i0)is - - -5 (0503, )]

+ [9((00) i, (Oiw)ig, - -, (00)5) = g(03)i,, (Oiw)iy, - - -, (Biw)3,)]
k

= Agj(w);
h=1
where, for each h =1,...,k;
Agh (@) = g((iw)iss - -5 (B0 ™) - (i0™)i)
- g((@iw)il, ey (Giw)ih, v (Oiw(”))ik) .
Now, for each i; € Z¢ and j = 1,..., k, with the same notation as in (7.1) we set
Vii={ieV, :ij—icV,}.

Arguing as in Step 1, we have

R(w,9) — R(w,g) = ‘71| > g(Oiwt™) — g(9iw)‘
miev,
k
<2 | T Adiw)
"h=1 icv,
1 k
-3 X Adw)|

k ~ .
[V \ Vit |
< 2|g|L=(q) Z W .
h=1 "

Since k is fixed, the same argument performed at the end of Step 1 completes the
proof.

8. EXERCISE 8.

Solve Exercise 6.10 in [2].

Solution: We will need the following property:
(P) Let a,pp € My(x) and S,v € M1(Y) be probability measures. Then
aRPB<KpuRr < a<py and K.
Furthermore, if f := da/dp and g := dB/dv, then

dla® B)

dpev) 19



12 ANTONIO AGRESTI
We postpone the proof of this fact at the end of the exercise.

Solution:
(a) By property (P), we have only to check the equality under the condition
a® B <K u® v; otherwise

H(a® Blu@v) = oo,
and at least one between the quantities H(«|u), H(B|v) is infinite.

Now under the hypothesis @ ® 8 < u ® v, we obtain by property (P) (and us-
ing that notation for the Radon-Nikodym derivative)

Haefnen = [ yf;(j;gﬂ; mg(jg;';gf;)dwy)

/ Follog f +log g)d(u ® v)

v () o[ s

= H(alp)+ H(Blv),

since [}, gdv=p(Y) =1and [ fdu=a(x)=1.

(b) Now, observe that

d d

H,(pn oz v or ) = H(®iev, 1| @iev, v) Z H(ulv)
i€Vy,

= [Vl H (p|v) -

Here the second equality follows by part (a) and a simple induction argument.
By this, we immediately obtain the claim, since

d d 1 d d .
WS ) = i o Ha (S =) = lim o ‘IV wl H(plv)
= H(ulv)

Proof of Property (P). (+) as before f := da/du and g := df/dv, then for all
A x B such that A € B(x) and B € B()), we have

(a®ﬂ)(AxB):/A Jgdiusn).

Thus define A\(E fE fgd(p @ v) for each E € B(x x )); it is easy to see that is
a measure on the product space x x ). Furthermore, the set

F={EecBxxY)|NE)=(a®pb)(E)},

is a sigma algebra containing all Borel set of the form A x B for A € B(x) and
B e B(Y),then F D o({Ax B|A € B(x), Be B()}) =B(x x)); where the last
equality follows by the definition of product sigma algebra. This implies A = a®
on B(x x V) and this finishes the first part of the proof.
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(—) Let A € B(x) be a Borel and set F :=d(a® 8)/d(u @ v), then

a(4) = a(A)FY) = /A Fduey)

(7)o

so d(a)/d(p) = fy F dv. The statement for § follows in the same manner.

9. EXERCISE 9.

Consider p,v € Mi(x) with v # p. As a consequence, there exists f € Cp(x)
such that u(f) # v(f). Use this observation and Birkhoff’s ergodic theorem to
deduce that u®Zd and v®2" are mutually singular (in agreement with the fact that
different probability measures in My are mutually singular).

Solution: Set Q = XZd, and let f € Cpy(x) be a bounded continuous function
on x such that u(f) # v(f). We may regard f as a function on ,

f(w) = flwo).
Of course f is continuous on €2, since f = f(po), where pg is the projection on the

0-th component of w.
It is easy to see that

/Qfdu‘gzdz/)(fdu:u(f),

and v®%" (f) = v(f). By Exercise B.24 in [2] we have that v®%° ;®2" are ergodic
measures, so Birkhoff’s Theorem applies and we obtain

Ru(w, f) = p®%(f) = u(f), Vwe Q\ A,
Ra(w, f) = v®2'(f) = (), Vw e Q\ B,

with p®%" (A) =0 and @ (B)=0.
Since by assumption v(f) # u(f), the uniqueness of the limit implies
@\A)N(@Q\B)=0,

and the claim follows.
10. EXERCISE 10.
Solve Exercise 8.5 in [2].

Solution: (a) h(-|®) is affine.
By (8.3) in [2] pag. 122. for each v € My(Q), we have

(10.1) h(v|®) = E”[fs] + h(v|\) + P(D).
Since @ is fixed and the assignment
v s B [fa] + Bl
is linear by Proposition 6.8 in [2], then h(:|®) is manifestly affine.

(b) h(:|®) is lower semi-continuous.
Since on Mj(£2) we consider the topology induced by the weak topology according



14 ANTONIO AGRESTI

to the duality (Cp(Q))* = My(Q), then the map v — E”[fs] is continuous since
fo € Cp(2). Moreover, by Proposition 6.8 in [2] then v — h(v|)) is lower semi-
continuous, then by (10.1) we obtain the claim.

(c) h(:|®) has compact level.
It turns out (see (6.4) in Theorem 6.7 in [2]) that the following equality holds
1
h(v|A) = sup = Ha(v|A);
Aer A
where R is the collection of finite rectangles in Z<.
By this, for any ¢ € R, we have

{ve My(Q) : h(v|]A\) <c} = m {v e My(Q) : Hyx(v|\) < c|Al}.
AER
Since Hj(-|A) has compact level (see Proposition 6.8 in [2]) and the fact that an

intersection of compact subsets is compact (recall that we are in an Hausdorff
space), the claim follows.
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