
EXERCISES ON LDS

ANTONIO AGRESTI

1. Exercise 1.

Prove that

lim
b→∞

lim
n→∞

1

rn
log

(∫
f≥b

ernfdµn

)
= −∞ ,

is satisfied if there exists α > 1, such that

(1.1) C := sup
n

(∫
eαrnfdµn

) 1
rn

<∞ .

Solution: Using Hölder inequality with exponent α > 1 and α′ := α/(α − 1) ∈
(1,∞), we obtain∫

f≥b
ernfdµn ≤

(∫
f≥b

eαrnfdµn

) 1
α

(µn(f ≥ b)) 1
α′ .

Applying 1/rn log(·) to both sides, since the map (0,∞) 3 t 7→ log t maintains the
monotonicity, we obtain

1

rn
log

∫
f≥b

ernfdµn ≤
1

rn
log

[(∫
f≥b

eαrnfdµn

) 1
α

]
+

1

rn
log
[
(µn(f ≥ b)) 1

α′
]

=
1

α
log

[(∫
f≥b

eαrnfdµn

) 1
rn

]
+

1

α′
log
[
(µn(f ≥ b))

1
rn

]
≤ 1

α
logC +

1

α′
log
[
(µn(f ≥ b))

1
rn

]
;

in the last inequality we have used the bound (1.1). Now, observe that (sometimes
called Markov type inequalities)∫

f≥b
eαrnfdµn ≥ eαrnb

∫
f≥b

dµn = eαrnbµ(f ≥ b) .

This implies

log
[
(µ(f ≥ b))

1
rn

]
≤ log

[
e−αb

(∫
f≥b

eαrnfdµn

) 1
rn

]

= −αb+ log

[(∫
f≥b

eαrnfdµn

) 1
rn

]
≤ −αb+ logC ;
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another time by (1.1). The previous estimates imply

lim
n→∞

1

rn
log

(∫
f≥b

ernfdµn

)
≤ 1

α
logC +

1

α′
(−αb+ logC)

= logC − α

α′
b→ −∞ ,

for b→∞.

2. Exercise 2.

Consider the following game. Let Sn be the number of tails you get when you
flip n times a fair coin. Determine the asymptotic of E[3Sn ].

Solution: Observe that

E[3Sn ] = E[eSn log 3] =

∫
Ω

en
Sn
n log 3 dP

=

∫
R
ent log 3dµn(t) .

Here (Ω,F,P) is the probability space and µn is the law of Sn/n. Since Sn/n ∈
{0, 1/n, . . . , 1} then the support of µn is contained in [0, 1] ⊂ R for each n ∈ N.
More precisely, we have

µn =
1

2n

n∑
j=0

(
n

j

)
δ j
n
,

since P(Sn/n = j/n) =
(
n
j

)
(1/2)n for j = 0, . . . , n. Furthermore, define χ = R and

f(x) := x log 3 , x ∈ R .

Then the previous identity becomes

E[3Sn ] =

∫
χ

enf(t)dµn(t) .

Since f is not bounded by above, we have to use the extended version of Varadhan’s
Lemma as quoted in the exercises.
We may use Exercise 1 and shows that, for some α > 1, we have

(2.1) C := sup
n

(∫
χ

enαfdµn

) 1
n

<∞ .

Now, with easy computations∫
χ

enαfdµn =
1

2n

n∑
j=0

3nα
j
n

(
j

n

)
=

1

2n

n∑
j=0

1n−j3α j
(
j

n

)
=

1

2n
(3α + 1)n ,

in particular (2.1) follows with C = (3α + 1)/2 for all α > 1.
Combining the extended Varadhan’s Theorem with Theorem I.3 in F. den Hollan-
der, we obtain

lim
n→∞

1

n
logE[3Sn ] = sup{f(x)− log 2− x log x− (1− x) log(1− x) : x ∈ [0, 1]} .
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since I(x) = ∞ for all x /∈ [0, 1] (we use the same notation of Theorem I.3 in den
Hollander).
It is easy to see that, the function g(x) := f(x)− log 2− x log x− (1− x) log(1− x)
has a local maximum in x = 3/4. Simple computations, show that x = 3/4 is
indeed a maximum on [0, 1] for g, so

lim
n→∞

1

n
logE[3Sn ] = g

(
3

4

)
= log 2 .

Therefore, E[3Sn ] = 2n(1+o(1)).

Comments 2.1. One can avoid the use of extended Varadhan’s Theorem, using
contraction principle, with Y = [−1, 2] and T : χ→ Y, defined as follows: T (x) = x
on [−1, 2], T (x) = 2 for x > 2 and T (x) = −1 for x < −1.

3. Exercise 3.

Let Zk be i.i.d. with P (Zk = 1) = P (Zk = 2) = 1/2. Let Wn := Z1Z2 · · · · · Zn.
(a) Show that E[Wn] = (3/2)n .
(b) Show that, given ε > 0, limn→∞ P((2− ε)n < Wn < (2 + ε)n)) = 1.

Solution:
(a) It is easy to see

E[Zi] =

∫
{Zi=1}

ZidP +

∫
{Zi=2}

ZidP = 1
1

2
+ 2

1

2
=

3

2
,

for all i ∈ N. By independence of Zi, we have

E[Wn] = Πn
i=1E[Zi] =

(
3

2

)n
.

(b) For all i ∈ N, define Yi := logZi. Then Yi’s are i.i.d since Zi’s are so, furthermore

E[Yi] =

∫
{Yi=1}

YidP +

∫
{Yi=2}

YidP =
1

2
log 2 = log

√
2 .

Then by the weak law of large numbers, for all ε′ > 0, we have

(3.1) lim
n→∞

P

(∣∣∣ 1
n

n∑
i=1

Yi − E[Yi]
∣∣∣ < ε′

)
= 1 .

Note that

(3.2)
1

n

n∑
i=1

Yi = log(Z1 · · · · · Zn)
1
n = logW

1
n
n .

Furthermore

(3.3)
∣∣∣ 1
n

n∑
i=1

Yi − E[Yi]
∣∣∣ = | logW

1
n
n − log

√
2| < ε′ ,

or equivalently

(3.4) log
√

2− ε′ < logW
1
n
n < log

√
2 + ε′ ⇔ (

√
2e−ε

′
)n < Wn < (

√
2eε
′
)n .
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For any ε > 0, one can choose a ε′ > 0 sufficiently small, such that e−ε
′
> 1−(ε/

√
2)

and eε
′
< 1 + (ε/

√
2). With this choice (3.2)-(3.4) imply

{(
√

2− ε)n < Wn < (
√

2 + ε)n} ⊃
{∣∣∣ 1
n

n∑
i=1

Yi − E[Yi]
∣∣∣ < ε′

}
.

Combining the previous observations with (3.1), the claim follows.

4. Exercise 4.

Let S be a Polish space. Let Xn be a sequence of i.i.d. S-valued random variables
with common distribution λ and let φ : S → Rd be a continuous function. Assume
that

E[ea|φ(X1)|] <∞ , ∀a > 0 .

Prove by contraction from Sanov’s theorem that

Sn
n

=
1

n

n∑
i=1

φ(Xi) ,

satisfies a LDP with speed n and good and convex rate function I : Rd → [0,∞]
given by

I(z) := inf{H(ν|λ) : ν(φ) = z} = sup
θ∈Rd
{z · θ log λ(eθ·φ)} .

For simplicity suppose that φ is bounded.

Solution: a) Set LXn = 1/n
∑n
i=1 δXi ; then LXn : Ω → M1(S) is an M1(S)-valued

random variable.
By Sanov’s Theorem, the law L(LXn ) of LXn satisfies a LDP on M1(S) with rate
function I(ν) = H(ν|λ).
If φ : S → Rd is bounded and continuous, then automatically satisfies E[ea|φ(X1)|] <
∞ for all a > 0. Furthermore, consider the following continuous map

T :M1(S)→ Rd ,

ν 7→ (ν(φ1), . . . , ν(φd)) ,

where φi are the component of φ; further we set ν(φ) := (ν(φ1), . . . , ν(φd)).
To see the continuity, recall that by definition of product topology, a map f with
value Rd is continuous if and only if pi(f) is continuous for all i = 1, . . . , d; here pi
is the projection on the i-th component. So T is continuous if and only if the maps

ν 7→ ν(φi)

are continuous for all i = 1, . . . , d; since φi ∈ Cb(S) by hypothesis, this clear follows
by definition of weak topology on M1(S).
By Contraction principle, we have that L(LXn ) ◦ T−1 satisfy a LDP with speed n
and rate function

I(x) = inf
ν∈M1(S) , T (ν)=x

H(ν|λ) = inf
ν∈M1(S) , ν(φ)=x

H(ν|λ) .

It remains to show that L(LXn ) ◦ T−1 = L(Sn/n).
Indeed, let B ∈ B(Rd) be a Borel set, then it is enough to show that

(4.1) {LXn ∈ T−1(B)} = {Sn/n ∈ B} .
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If ω ∈ {LXn ∈ T−1(B)}, then LXn (ω) = ν for some ν ∈ T−1(B); in other words
T (LXn (ω)) ∈ B. A straightforward computation shows that

T (LXn (ω)) =
1

n

n∑
i=1

φ(Xi(ω)) =
Sn(ω)

n
;

since δXi(ω)(φ
j) = φj(Xi(ω)) for all i ∈ N, ω ∈ Ω and j = 1, . . . , d. This proves

that {LXn ∈ T−1(B)} ⊂ {Sn/n ∈ B}, reversing the argument just performed one
obtain the opposite inclusion, this implies the equality in (4.1).

2) Convexity. Fix ε > 0 small and x, y ∈ Rd, then there exists νε1 , ν
ε
2 such that

I(x) + ε ≥ H(νε1 |λ) , ν(νε1) = x ,(4.2)

I(y) + ε ≥ H(νε2 |λ) , ν(νε2) = y .(4.3)

Note that νε = tνε1 + (1− t)νε2 verifies νε(φ) = tx+ (1− t)y. So,

I(tx+ (1− t)y) ≤
∫
S

dνε

dλ
log

dνε

dλ
dλ

= H(νε|λ)

≤ tH(νε1 |λ) + (1− t)H(νε2 |λ)

≤ t(I(x) + ε) + (1− t)(I(x) + ε) ,

where we have used the convexity of the relative entropy H(·|λ) and (4.2)-(4.3);
sending ε↘ 0 one obtains the claim.

3) Legendre Transform. Note that

I∗(θ) = sup
z∈Rd

{
z · θ − inf

ν∈M1(S) , ν(φ)=z
H(ν|λ)

}
= sup
z∈Rd

(
sup

ν∈M1(S) , ν(φ)=z

{z · θ −H(ν|λ)}

)

= sup
z∈Rd

(
sup

ν∈M1(S) , ν(φ)=z

{ν(φ · θ)−H(ν|λ)}

)
= sup
ν∈M1(S)

(
ν(φ · θ)−H(ν|λ)

)
.

4) We know that H(ν|λ) = supf∈Cb(S){ν(f)− log(λ(ef ))}. Then

I∗(θ) = (H(ν|λ))∗(φ · θ)
= (p∗)∗(φ · θ) = p(φ · θ) ;

where in the last equality we have used the Fenchel-Moreau Theorem.
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5) Note that

I(z) = (I∗)∗(z)

= sup
θ∈Rd
{z · θ − I∗(θ)}

= sup
θ∈Rd
{z · θ − p(φ · θ)}

= sup
θ∈Rd
{z · θ − log λ(eφ·θ)} .

5. Exercise 5.

Solve Exercise 2.16 in [2].

Solution:
a) Let G be an open subset of E , then for δ > 0 define

Gδ = {x ∈ G : dist(x, ∂G) > δ}
= {x ∈ E : dist(x, ∂G) > δ} ∩G .

Then Gδ ⊂ G is an open subset of E .
Fix δ > 0, then by hypothesis there exists n0 ∈ N such that d(ξn(ω), ηn(ω)) < δ for
all n > n0 and ω ∈ Ω. Then

(5.1) {ηn ∈ G} ⊃ {ξn ∈ Gδ} , ∀n > n0 .

This implies

lim inf
n→∞

1

rn
logP(ηn ∈ G) ≥ lim inf

n→∞

1

rn
logP(ξn ∈ Gδ) ≥ − inf

x∈Gδ
I(x) ;

where the first inequality follows by (5.1) and the second by the hypothesis on ξn.
In particular, we have

lim inf
n→∞

1

rn
logP(ηn ∈ G) ≥ − lim inf

n→∞
inf

x∈Gδn
I(x) ;

where δn is any sequence of positive real numbers such that δn ↘ 0.
By this, it is enough to show that

lim inf
n→∞

inf
x∈Gδn

I(x) ≤ inf
x∈G

I(x) .

To prove this, consider (xn)n a sequence such that I(xn)↘ infx∈G I(x). Then, for
δn sufficiently small, x ∈ Gδn and

(5.2) inf
x∈Gδn

I(x) ≤ I(xn) .

Taking the lim infn→∞ to both sides of (5.2), we obtain the claim.

b) Let F be a closed subset of E , then for δ > 0 define

F δ = {x ∈ E : dist(x, F ) ≤ δ} .

Then F δ ⊃ F is a closed subset of E .
Fix δ > 0, then by hypothesis there exists n0 ∈ N such that d(ξn(ω), ηn(ω)) < δ for
all n > n0 and ω ∈ Ω. Then

(5.3) {ηn ∈ F} ⊂ {ξn ∈ F δ} , ∀ n > n0 .
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This implies

lim sup
n→∞

1

rn
logP(ηn ∈ F ) ≤ lim sup

n→∞

1

rn
logP(ξn ∈ F δ) ≤ − inf

x∈F δ
I(x) ;

where the first inequality follows by (5.3) and the second by the hypothesis on ξn.
As before, it is sufficient to prove that

(5.4) lim inf
n→∞

inf
F δn

I(x) ≥ inf
x∈F

I(x) ;

for some (δn)n, such that δn ↘ 0. If I 6≡ +∞ on F δ (otherwise the inequality in
(5.4) is trivial), then we can assume F δ is compact; since we can replace F δ with
F δ ∩ {I ≤ I(x)} for some x ∈ F δ such that I(x) < ∞ (recall that I is good by
assumption).
Note that, for each n ∈ N there exists xn ∈ F δn such that

(5.5) I(xn)− 1

n
≤ inf
x∈F δn

I(x) .

By compactness of F δ, there exists a subsequence of (xn)n which converges in E to
an element x̃ ∈ F ; we still denote (xn)n this subsequence.
So infx∈F I(x) ≤ I(x̃), but for the lower semicontinuity of the rate function I, we
have

I(x̃) ≤ lim inf
n→∞

I(xn) ≤ lim inf
n→∞

inf
x∈F δn

I(x) ;

where in the last inequality follows by (5.5). This conclude the proof of (5.4).

6. Exercise 6.

Solve Exercise 5.20 in [2].

Solution:
a) Since p∗(z) < ∞ there exists ρ ∈ M1(S) such that c := H(ρ|λ) < ∞. Further-
more, the map

M1(S) 3 ν 7→ Eν [H] ,

is continuous for the weak topology, so for each z ∈ R, the set {ν ∈ M1(S) :
Eν [H] = z} is closed.
Since {ν ∈M1(S) : H(ν|λ) ≤ c} is compact, then the set

Z := {ν ∈M1(S) : H(ν|λ) ≤ c} ∩ {ν ∈M1(S) : Eν [H] = z} ,
is compact. It is easy to see that

inf{H(ν|λ) : Eν [H] = z , ν ∈M1(S)} = inf{H(ν|λ) : ν ∈ Z} .
Let {νk}k ⊂ Z be a minimizing sequence, i.e.

(6.1) H(νk|λ)↘ inf{H(ν|λ) : ν ∈ Z} , as k ↗∞ .

By the compactness of Z, there exists a subsequence {νkj}j ⊂ Z and νz ∈ M1(S)
such that νkj → νz ∈M1(S). By lower semicontinuity of the map ν 7→ H(ν|λ), we
obtain

H(νz|λ) ≤ lim inf
j→∞

H(νkj |λ) = inf{H(ν|λ) : ν ∈ Z} = p∗(z) ;

where we have used (6.1). Observe that Eνz [H] = limj→∞ Eνkj [H] = z, then νz ∈ Z
and this concludes the proof of the existence.
For the uniqueness, suppose that there exist ν1, ν2 ∈ M1(S) such that H(ν1|λ) =
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H(ν2|λ) = inf{H(ν|λ) : ν ∈ Z}, then by the strict convexity of H(·|λ) (see [2]
Exercise 5.5) we have

H(
1

2
ν1 +

1

2
ν2|λ) <

1

2
H(ν1|λ) +

1

2
H(ν|λ) ≤ inf{H(ν|λ) : ν ∈ Z} ,

so E 1
2ν1+ 1

2ν2 [H] = z and H( 1
2ν1 + 1

2ν2|λ) < inf{H(ν|λ) : Eν [H] = z , ν ∈ M1};
which is clearly an absurd.

b) Recall that p(t) = logEλ[etH], then by the chain rule and the interchange of
differentiation and integration theorem, we obtain

p′(t) =
1

Eλ[etH]
Eλ[HetH] =

∫
H etH

Eλ[etH]
dλ

=

∫
Hdµ−t = Eµ−t [H] ;

where the last two equalities follows by the definition of the Gibbs measures.
For the interchange between integral and derivation one can easily see that the
hypothesis i) − iii) of Theorem 3.6.3 in [1] are satisfied and so the interchange is
valid.
The same applies to the second derivative

p′′(t) =
d

dt

[∫
H etH

Eλ[etH]
dλ

]
=

∫
H He

tHEλ[etH]− etHEλ[HetH]

(Eλ[etH])2
dλ

=
1

Eλ[etH]

∫
H2etHdλ−

(
Eλ[HetH]

Eλ[etH]

)2

= Eµ−t [H2]− (Eµ−t [H])2 .

Now, we prove that limt→0 p
′(t) = Eλ[H]. Indeed, by Lebesgue dominated conver-

gence (recall that H ∈ L∞(S)) we have∫
etHHdλ→ Eλ[H] ,

∫
etHdλ→ Eλ[1] = 1 ;

as t→ 0, then the claim follows.

Fix ε > 0, by definition of ess sup, we have λ({B − ε ≤ H ≤ B}) > 0 and

(B − ε) ≤

∫
{B−ε≤H≤B}He

tH dλ∫
{B−ε≤H≤B} e

tH dλ
≤ B .

Furthermore, ∫
{B−ε≤H≤B}

etH dλ ∼
∫
etHdλ , as t↗∞ ,

∫
{B−ε≤H≤B}

HetH dλ ∼
∫
HetHdλ , as t↗∞ ;

(here f(t) ∼ g(t) as t→ t0 iff limt→t0(f(t)/g(t)) = 1). We prove the first, the other
follows identically.
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Since
∫
etHdλ =

∫
{B−ε≤H≤B} e

tHdλ+
∫
{H<B−ε} e

tHdλ, it is enough to show that∫
{H<B−ε} e

tHdλ∫
{B−ε≤H≤B} e

tHdλ
→ 0 , t↗∞ .

Since

etε/2λ({B − ε/2 ≤ H ≤ B}) ≤
∫
{B−ε/2≤H≤B}

et(H−B+ε)dλ

≤
∫
{B−ε≤H≤B}

et(H−B+ε)dλ ,

then

0 ≤

∫
{H<B−ε} e

t(H−B+ε)dλ∫
{B−ε≤H≤B} e

t(H−B+ε)dλ
≤

∫
{H<B−ε} e

t(H−B+ε)dλ

etε/2λ({B − ε/2 ≤ H ≤ B})
↘ 0 ,

as t ↗ ∞; since
∫
{H<B−ε} e

t(H−B+ε)dλ ↘ 0 by Lebesgue dominated convergence

and ε > 0.

By the asymptoptic behaviour, we have

(B − ε) ≤ lim inf
t→∞

∫
HetH dλ∫
etH dλ

≤ B ,

(B − ε) ≤ lim sup
t→∞

∫
HetH dλ∫
etH dλ

≤ B ;

by the arbitrariness of ε > 0, one can easily conclude the proof.
Similarly, one can prove that p′(t) = limt→−∞ = A; we omit the details.

c) Since p′(t) is a smooth function of t ∈ R, then p′′(t) > 0 for every t ∈ R,
implies that p′(t) is strictly increasing. So, for each z ∈ (A,B) there exists an
unique β = βz such that z = p′(−β).
Furthermore, by the definition of p∗ we have

p∗(z) = sup
t∈R
{tz − p(t)} .

We will show that the sup on the above RHS is indeed a maximum and it is attained
at t = −β. This would imply that p∗(z) = z(−β)− p(β) = −zβ − p(−β) and this
concludes the first part of the point c).
To prove this, for a fixed z ∈ R, set f(t) = tz − p(t). Then

f ′(t) = z − p′(t) , f ′′(t) = −p′′(t) < 0 .

Since the equation f ′(t) = z − p′(t) = 0 admits an unique solution, which we
called −β, then the condition f ′′(t) < 0 trivially implies the value f(−β) is a local
maximum and since there are not other critical point of f , then −β is indeed a
global maximum.
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For the last part of the point c), note that

H(µβ |λ) =

∫
dµβ
dλ

log
dµβ
dλ

dλ

=

∫
e−βH

Eλ[e−βH]
log

eβH

Eλ[e−βH]
dλ

=
1

Eλ[e−βH]

∫
e−βH log e−βHdλ− logEλ[e−βH]

Eλ[e−βH]

∫
e−βHdλ

= −βE
λ[He−βH]

Eλ[e−βH]
− logEλ[e−βH]

= −βz − p(t) = p∗(z) ;

where z = p′(−β) and the last equality follows by the first part of point c) just
proved. Recall that, by part a) we have that for each z then there exists an unique
νz such that p∗(z) = H(νz|λ). The uniqueness implies that νz = µβ .

7. Exercise 7.

Solve Exercise 6.5 in [2].

Solution:
For clarity, we divide the proof in two steps.
Step 1. We assume that g(ω) = g(ωk) for a fixed k ∈ Zd, i.e. the local function f

depends only on ωk ∈ S for ω = (ωi)i∈Zd ∈ Ω := SZd , (here d ∈ N).
Let be Vn := (−n, n)d ∩ Zd, define

(7.1) Ṽ kn := {i ∈ Vn : k − i ∈ Vn} .
Note that for each i ∈ Ṽ kn we have

(θiω
(n))k = ω

(n)
k−i = ωk−i = (θiω)k ;

then g((θiω
(n))k)− g((θiω)k) = 0 for each i ∈ Ṽ kn .

This implies that

|R(ω, g)− R̃(ω, g)| = 1

|Vn|

∣∣∣ ∑
i∈Vn

g((θiω
(n))k)− g((θiω)k)

∣∣∣
=

1

|Vn|

∣∣∣ ∑
i∈Vn\Ṽ kn

g((θiω
(n))k)− g((θiω)k)

∣∣∣
≤ 2|g|L∞(S)

|Vn \ Ṽ kn |
|Vn|

;

this implies

(7.2) sup
ω∈Ω
|R(ω, g)− R̃(ω, g)| ≤ 2|g|L∞(Ω)

|Vn \ Ṽ kn |
|Vn|

.

Since, |Vn \ Ṽ kn | ∼ cnn
d−1 and |Vn| ∼ c′nn

d as n ↗ ∞ for suitable cn, c
′
n > 0, the

claim follows by (7.2).

Step 2. Here we suppose that

g(ω) = g(ωi1 , ωi2 , . . . , ωik) ,
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for i1, . . . , ik ∈ Zd and k > 1 fixed.
Now, for i ∈ Vn, we can write

g(θiω
(n))− g(θiω)

= [g((θiω
(n))i1 , (θiω

(n))i2 , . . . , (θiω
(n))ik)− g((θiω)i1 , (θiω

(n))i2 , . . . , (θiω
(n))ik)]

+ [g((θiω)i1 , (θiω
(n))i2 , . . . , (θiω

(n))ik)− g((θiω)i1 , (θiω)i2 , . . . , (θiω
(n))ik)]

. . . . . .

+ [g((θiω)i1 , (θiω)i2 , . . . , (θiω
(n))ik)− g((θiω)i1 , (θiω)i2 , . . . , (θiω)ik)]

=

k∑
h=1

∆gih(ω) ;

where, for each h = 1, . . . , k;

∆gih(ω) := g((θiω)i1 , . . . , (θiω
(n))ih , . . . (θiω

(n))ik)

− g((θiω)i1 , . . . , (θiω)ih , . . . (θiω
(n))ik) .

Now, for each ij ∈ Zd and j = 1, . . . , k, with the same notation as in (7.1) we set

Ṽ ijn = {i ∈ Vn : ij − i ∈ Vn} .

Arguing as in Step 1, we have

R(ω, g)− R̃(ω, g) =
1

|Vn|

∣∣∣ ∑
i∈Vn

g(θiω
(n))− g(θiω)

∣∣∣
≤ 1

|Vn|

k∑
h=1

∣∣∣ ∑
i∈Vn

∆gih(ω)
∣∣∣

=
1

|Vn|

k∑
h=1

∣∣∣ ∑
i∈Vn\Ṽ

ih
n

∆gih(ω)
∣∣∣

≤ 2|g|L∞(Ω)

k∑
h=1

|Vn \ Ṽ ihn |
|Vn|

.

Since k is fixed, the same argument performed at the end of Step 1 completes the
proof.

8. Exercise 8.

Solve Exercise 6.10 in [2].

Solution: We will need the following property:

(P) Let α , µ ∈M1(χ) and β , ν ∈M1(Y) be probability measures. Then

α⊗ β � µ⊗ ν ↔ α� µ and β � ν .

Furthermore, if f := dα/dµ and g := dβ/dν, then

d(α⊗ β)

d(µ⊗ ν)
= f g .
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We postpone the proof of this fact at the end of the exercise.

Solution:
(a) By property (P), we have only to check the equality under the condition
α⊗ β � µ⊗ ν; otherwise

H(α⊗ β|µ⊗ ν) =∞ ,

and at least one between the quantities H(α|µ) , H(β|ν) is infinite.

Now under the hypothesis α ⊗ β � µ ⊗ ν, we obtain by property (P) (and us-
ing that notation for the Radon-Nikodym derivative)

H(α⊗ β|µ⊗ ν) =

∫
χ×Y

d(α⊗ β)

d(µ⊗ ν)
log

(
d(α⊗ β)

d(µ⊗ ν)

)
d(µ⊗ ν)

=

∫
χ×Y

f g(log f + log g)d(µ⊗ ν)

=

∫
χ

f log f

(∫
Y
g dν

)
dµ+

∫
Y
g log g

(∫
χ

f dµ

)
dν

= H(α|µ) +H(β|ν) ,

since
∫
Y g dν = β(Y) = 1 and

∫
χ
f dµ = α(χ) = 1.

(b) Now, observe that

Hn(µ⊗Z
d

|ν⊗Z
d

) = H(⊗i∈Vnµ| ⊗i∈Vn ν) =
∑
i∈Vn

H(µ|ν)

= |Vn|H(µ|ν) .

Here the second equality follows by part (a) and a simple induction argument.
By this, we immediately obtain the claim, since

h(µ⊗Z
d

|ν⊗Z
d

) = lim
n→∞

1

|Vn|
Hn(µ⊗Z

d

|ν⊗Z
d

) = lim
n→∞

1

|Vn|
|Vn| H(µ|ν)

= H(µ|ν) .

Proof of Property (P). (←) as before f := dα/dµ and g := dβ/dν, then for all
A×B such that A ∈ B(χ) and B ∈ B(Y), we have

(α⊗ β)(A×B) =

∫
A×B

fg d(µ⊗ ν) .

Thus define λ(E) :=
∫
E
fgd(µ⊗ ν) for each E ∈ B(χ× Y); it is easy to see that is

a measure on the product space χ× Y. Furthermore, the set

F = {E ∈ B(χ× Y) |λ(E) = (α⊗ β)(E)} ,

is a sigma algebra containing all Borel set of the form A × B for A ∈ B(χ) and
B ∈ B(Y), then F ⊃ σ({A×B |A ∈ B(χ) , B ∈ B(Y)}) = B(χ×Y); where the last
equality follows by the definition of product sigma algebra. This implies λ = α⊗ β
on B(χ× Y) and this finishes the first part of the proof.
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(→) Let A ∈ B(χ) be a Borel and set F := d(α⊗ β)/d(µ⊗ ν), then

α(A) = α(A)β(Y) =

∫
A×Y

F d(µ⊗ ν)

=

∫
A

(∫
Y
F dν

)
dµ ;

so d(α)/d(µ) =
∫
Y F dν. The statement for β follows in the same manner.

9. Exercise 9.

Consider µ, ν ∈ M1(χ) with ν 6= µ. As a consequence, there exists f ∈ Cb(χ)
such that µ(f) 6= ν(f). Use this observation and Birkhoff’s ergodic theorem to

deduce that µ⊗Z
d

and ν⊗Z
d

are mutually singular (in agreement with the fact that
different probability measures in Mθ are mutually singular).

Solution: Set Ω = χZd , and let f ∈ Cb(χ) be a bounded continuous function
on χ such that µ(f) 6= ν(f). We may regard f as a function on Ω,

f̃(ω) := f(ω0) .

Of course f̃ is continuous on Ω, since f̃ = f(p0), where p0 is the projection on the
0-th component of ω.
It is easy to see that ∫

Ω

f̃ dµ⊗Z
d

=

∫
χ

f dµ = µ(f) ,

and ν⊗Z
d

(f̃) = ν(f). By Exercise B.24 in [2] we have that ν⊗Z
d

, µ⊗Z
d

are ergodic
measures, so Birkhoff’s Theorem applies and we obtain

Rn(ω, f̃)→ µ⊗Z
d

(f̃) = µ(f) , ∀ω ∈ Ω \A ,

Rn(ω, f̃)→ ν⊗Z
d

(f̃) = ν(f) , ∀ω ∈ Ω \B ,

with µ⊗Z
d

(A) = 0 and ν⊗Z
d

(B) = 0.
Since by assumption ν(f) 6= µ(f), the uniqueness of the limit implies

(Ω \A) ∩ (Ω \B) = ∅ ,
and the claim follows.

10. Exercise 10.

Solve Exercise 8.5 in [2].

Solution: (a) h(·|Φ) is affine.
By (8.3) in [2] pag. 122. for each ν ∈Mθ(Ω), we have

(10.1) h(ν|Φ) = Eν [fΦ] + h(ν|λ) + P (Φ) .

Since Φ is fixed and the assignment

ν 7→ Eν [fΦ] + h(ν|λ) ,

is linear by Proposition 6.8 in [2], then h(·|Φ) is manifestly affine.

(b) h(·|Φ) is lower semi-continuous.
Since onMθ(Ω) we consider the topology induced by the weak topology according
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to the duality (Cb(Ω))∗ = Mb(Ω), then the map ν 7→ Eν [fΦ] is continuous since
fΦ ∈ Cb(Ω). Moreover, by Proposition 6.8 in [2] then ν 7→ h(ν|λ) is lower semi-
continuous, then by (10.1) we obtain the claim.

(c) h(·|Φ) has compact level.
It turns out (see (6.4) in Theorem 6.7 in [2]) that the following equality holds

h(ν|λ) = sup
Λ∈R

1

|λ|
HΛ(ν|λ) ;

where R is the collection of finite rectangles in Zd.
By this, for any c ∈ R, we have

{ν ∈Mθ(Ω) : h(ν|λ) ≤ c} =
⋂

Λ∈R
{ν ∈Mθ(Ω) : HΛ(ν|λ) ≤ c|Λ|} .

Since HΛ(·|λ) has compact level (see Proposition 6.8 in [2]) and the fact that an
intersection of compact subsets is compact (recall that we are in an Hausdorff
space), the claim follows.
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