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We study the problem of prescribing the Gaussian curvature on surfaces with conical

singularities in supercritical regimes. Using a Morse-theoretical approach, we prove a

general existence theorem on surfaces with positive genus, with a generic multiplicity

result.

1 Introduction

The study of conformal metrics on surfaces with conical singularities dates back at least

to Picard [30] and has been widely discussed in the last decades (see, e.g. [14, 16–19, 26,

32, 34, 39, 43, 44] and the references cited therein). In this paper, we are concerned with

the construction of conformal metrics with prescribed Gaussian curvature on surfaces

with conical singularities. We refer the reader, in particular, to [43] where a systematic

analysis of this problem was initiated.

The above-mentioned results are the singular analog of the prescribed Gaus-

sian curvature and Nirenberg problems (see [1, 3, 7–9, 28] and the references therein for

further details).

Here, and in the rest of this paper, we denote by S a closed two-dimensional

smooth surface without boundary. A conformal metric gs on S is said to have a conical
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2 D. Bartolucci et al.

singularity of order α ∈ (−1,+∞) (or of angle ϑα = 2π(1 + α)) at a given point P0 ∈ S, if

there exist local coordinates z(P ) ∈ Ω ⊂ C and u∈ C 0(Ω) ∩ C 2(Ω \ {P0}) such that z(P0) = 0

and

g̃s(z) = |z|2α eu|dz|2, z∈ Ω,

where g̃s is the local expression of gs. The information concerning finitely many conical

singularities is encoded in a divisor, which is the formal sum

αm =
m∑

j=1

α j P j, m ∈ N, (1.1)

of the orders of the singularities {α1, . . . , αm} times the singular points {P1, . . . , Pm}. In

particular, a metric gs on S is said to represent the divisor αm if it has conical singular-

ities of order α j at point Pj for any j ∈ {1, . . . , m}. We will denote by (S, αm) the singular

surface.

Let K be any Lipschitz function on S. We seek a conformal metric g on (S, αm)

the Gaussian curvature of which is K.

The Euler characteristic of the singular surface (S, αm) (see [43]) is defined by

χ(S, αm) = χ(S) +
m∑

j=1

α j,

where χ(S) is the Euler characteristic of S.

The Trudinger constant of the singular surface (S, αm) (see [15, 43]) is instead

given by

τ(S, αm) = 2 + 2 min
j∈{1,...,m}

min{α j, 0}.

According to the definitions in [43], the singular surface (S, αm) is said to be

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

subcritical if χ(S, αm) < τ(S, αm),

critical if χ(S, αm) = τ(S, αm),

supercritical if χ(S, αm) > τ(S, αm).

As far as one is interested in proving the existence of at least one conformal

metric on (S, αm) with prescribed Gaussian curvature, the subcritical case is well under-

stood. This is mainly due to the fact that on subcritical singular surfaces, the problem

 at S
cuola N

orm
ale S

uperiore. B
iblioteca on F

ebruary 17, 2011
im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Supercritical Conformal Metrics 3

corresponds to minimizing a coercive functional (see [43]). On the contrary, much less is

known concerning critical and supercritical singular surfaces.

We refer the reader to [16, 18, 19, 26, 31, 39, 44], for some positive results in

this direction. In the same spirit of [22], Bartolucci and Tarantello obtained a result

[2, Corollary 6] which, combined with Proposition 1.2, implies that: if (S, αm) is a super-

critical singular surface with α j > 0, j ∈ {1, . . . , m}, χ(S) ≤ 0 and 4πχ(S, αm) ∈ (8π, 16π) \
{8π(1 + α j), j = 1, . . . , m}, then any positive Lipschitz continuous function K on S is the

Gaussian curvature of at least one conformal metric on (S, αm). See also [13] for related

issues.

In this paper, we will obtain a generalization of this result via a Morse-

theoretical approach.

Let

Γ (αm) =
⎧⎨
⎩μ ∈ R

+ | μ = 8πk + 8π

m∑
j=1

(1 + α j)nj, k∈ N ∪ {0}, m ∈ N ∪ {0}, nj ∈ {0, 1}
⎫⎬
⎭ .

Our main result is the following.

Theorem 1.1. Let (S, αm) be a supercritical singular surface with α j > 0, j ∈ {1, . . . , m},
χ(S) ≤ 0 and 4πχ(S, αm) /∈ Γ (αm). Then, any positive Lipschitz continuous function K on

S is the Gaussian curvature of at least one conformal metric on (S, αm). �

We attack this problem by a variational approach as first proposed in [3] and

then pursued by many authors (see, e.g. [1, 16, 28, 43] and the references cited therein).

Proposition 1.2 allows us to reduce the problem to a scalar differential equation on S.

To state it, we need to introduce some notation. Let g0 be any smooth conformal metric

on S, Q ∈ S be a given point and G(P , Q) be the solution of (see [1])

−Δ0G(P , Q) = δQ − 1

|S| in S,

∫
S

G(P , Q) dVg0(P ) = 0,

where δQ denotes the Dirac delta with pole Q, Δ0 the Laplace–Beltrami operator associ-

ated with g0, and |S| the area of S with respect to the volume form dV{g0} induced by g0.

For a given divisor αm, we define

hm(P ) = 4π

m∑
j=1

α jG(P , Pj).
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4 D. Bartolucci et al.

Let us also denote by K0 the (smooth) Gaussian curvature induced by g0. Then we have

the following proposition.

Proposition 1.2. Let α j > 0 for j = 1, . . . , m, K a Hölder continuous function on S, and

suppose that χ(S, αm) > 0. The metric

g = λ
e−hm eu∫

S 2K e−hm eu
g0, with λ = 4πχ(S, αm),

is a conformal metric on (S, αm) with Gaussian curvature K if and only if u is a classical

solution to

− Δ0u= λ
2K e−hm eu∫

S 2K e−hm eu dVg0

− 2K0 − 4π

|S|
m∑

j=1

α j in S. (1.2)

�

The proof of Proposition 1.2 is rather standard and is postponed to the Appendix.

By using it, we are reduced to finding a classical solution of (1.2), that is, by standard

elliptic regularity theory, a critical point u∈ H(S) of

Jλ(u) =
∫

S
|∇u|2 dVg0 − λ log

(∫
S

2K e−hm eu dVg0

)
, (1.3)

where H(S) = {u∈ H1(S) | ∫
S u= 0} and λ satisfies the Gauss–Bonnet constraint

λ =
∫

S
2K e−hm eu dVg0 = 4πχ(S) + 4π

m∑
j=1

α j = 4πχ(S, αm). (1.4)

By means of Proposition 1.2, Theorem 1.1 will follow immediately from the next

result.

Theorem 1.3. Let S be a closed surface of positive genus, K0 ∈ Ls(S) for some s > 1 and

K any positive Lipschitz function on S. Suppose, moreover, that α j ≥ 0 for j ∈ {1, . . . , m}.
Then, for any λ ∈ (8π,+∞) \ Γ (αm), there exists at least one critical point u∈ H(S)

for Jλ. �

Remark 1.4. As a consequence of the results in [30] (see also [29]) and in [2], it is

straightforward to verify that our proof of Theorem 1.3 works whenever K is positive
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Supercritical Conformal Metrics 5

and Hölder continuous in S and Lipschitz continuous in a neighborhood of {P1, . . . , Pm}.
We conclude that the result of Theorem 1.1 holds also under these assumptions on K. �

We notice that in case α j = 0, j ∈ {1, . . . , m}, since Γ (αm) = 8πN, we come up with

another proof of the existence of solutions for the mean field equation (1.2) (see [5]) for

λ ∈ (8π,+∞) \ 8πN, previously obtained in [10] and more recently in [23, 35] (see also

[20, 42]). In the same spirit of [24, 35], other positive results concerning the existence of

solutions for (1.2) have been derived in [37]. Other results, in the same direction of [10],

have been recently announced in [11] (see [12]).

Let us observe, in particular, that if χ(S, αm) ≤ 0, then (S, αm) is subcritical.

Therefore, as far as we are concerned with supercriticality, there is no loss of generality

in assuming χ(S, αm) > 0. We also remark that if χ(S, αm) ≤ 0, a set of much more detailed

results concerning the prescribed Gaussian curvature problem are at hand (see [43]).

We are also able to prove the following generic multiplicity result, where M
stands for the space of all C 2 Riemannian metrics on S equipped with the C 2 norm.

Theorem 1.5. Under the hypotheses of Theorem 1.3, with λ ∈ (8Nπ, 8(N + 1)π) \ Γ (αm),

and (g0, K) in an open and dense subset of M × C 0,1(S), Jλ admits at least
(N+g−1

g−1

) =
(N+g−1)!
N!(g−1)! critical points, where g is the genus of S. �

We prove Theorems 1.3 and 1.5 using a variational and Morse-theoretical

approach, looking at topological changes in the structure of sublevels of Jλ. For the

regular case (with α j = 0, j = 1, . . . , m), it was shown in [36] that for ρ ∈ (8Nπ, 8(N + 1)π),

N ∈ N, high sublevels have trivial topology, while low sublevels are homotopically equiv-

alent to formal barycenters of S of order N. By this, we mean the family of unit measures

which are supported in at most N points of S.

Here we use a related argument: even if we do not completely characterize the

topology of low sublevels, we are still able to retrieve some partial information. In par-

ticular, we embed a bouquet of circles, Bg, in S which does not intersect the singular

points, and we construct a global projection of S onto Bg. The latter map induces a

projection from the barycenters of S onto those of Bg and we show that the latter set

embeds nontrivially into arbitrarily low sublevels of Jλ. More precisely, we prove that

low sublevels are noncontractible, yielding Theorem 1.3 and that their Betti numbers

are comparable to those of the barycenters of the bouquet, which gives Theorem 1.5.

The paper is organized as follows. In Section 2, we recall some preliminary facts

regarding some analytical issues (improved Moser–Trudinger inequalities, compactness
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6 D. Bartolucci et al.

results) and some topological ones (notions in algebraic topology and Morse theory).

Finally in Section 3, we prove our main theorems analyzing the topology of sublevels of

Jλ in terms of the barycenters of Bg, the Betti numbers of which are computed explicitly.

1.1 Notation

For P ∈ S and Q ∈ S, let us denote by d0(P , Q) the geodesic distance induced by g0 and

for any couple of sets ω1 ∈ S and ω2 ∈ S,

dist(ω1, ω2) = inf
P∈ω1, Q∈ω2

d0(P , Q).

For a metric space X and for N ∈ N, we define the following family of probability

measures, known in literature as formal barycenters of X of order N:

XN =
{

N∑
i=1

tiδxi : ti ∈ [0, 1],
N∑

i=1

ti = 1, xi ∈ X

}
. (1.5)

In the rest of this paper, we will denote by
∫

S · the Lebesgue integral with respect to the

volume form induced by g0.

2 Preliminaries

We divide this section into an analytical part and a topological one.

2.1 Analytical preliminaries

We will need the following lemmas whose proofs can be found in [23, Lemma 3.2]. This

kind of “distribution of mass” analysis was introduced in [16].

Lemma 2.1. For any integer � ≥ 1, let ω1, ω2, . . . , ω�+1 be open sets in S satisfying

dist(ωi, ω j) ≥ σ0 > 0 ∀ i �= j,

for some σ0 > 0. For any γ0 ∈ (
0, 1

�+1

)
, and for any ε̃0 > 0, there exist C = C (S, �, σ0, ε̃0, γ0)

such that

log
∫

S
eu ≤ C +

∫
S |∇u|2

16π(� + 1) − ε̃0
, (2.1)
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Supercritical Conformal Metrics 7

for any u∈ H(S) satisfying

∫
ω j

eu∫
S eu

≥ γ0 ∀ j ∈ {1, . . . , � + 1}. �

Using this result and a covering lemma, one can then characterize the concen-

tration properties of the functions in H(S) with low energy (see [23, Lemma 3.4]).

Lemma 2.2. Assuming N ≥ 1 and λ ∈ (8π N, 8π(N + 1)), the following property holds.

For any ε > 0 and any r > 0, there exists a large positive constant L = L(ε, r) such that for

every u∈ H(s) with Jλ(u) ≤ −L, there exist N points {p1,u, p2,u, . . . , pN,u} ⊂ S such that

∫
S\⋃N

i=1 Br(pi,u)

eu∫
S eu

< ε. (2.2)

�

Lemma 2.2 implies that the unit measure eu∫
S eu resembles a finite linear combina-

tion of Dirac deltas with at most N elements: one is then induced to consider the family

of formal barycenters of S of order N (see the Notation). These considerations can be

made rigorous in the sense specified by the following result.

Lemma 2.3. If λ ∈ (8Nπ, 8(N + 1)π) with N ≥ 1, then there exists a continuous projec-

tion Ψ : {Jλ ≤ −L} → SN . �

This is exactly the map Ψ defined in Lemma 4.9 of [23]. On the other hand, for

what concerns the embedding of the space of formal barycenters SN , into arbitrarily low

sublevels, the statement of Proposition 5.1 in [23], cannot be applied as it stands to the

singular case. To state the adapted version, we need to introduce the following family of

test functions.

For δ > 0 small, consider a smooth non-decreasing cut-off function χδ : R
+ → R

satisfying the following properties

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χδ(t) = t, for t ∈ [0, δ]

χδ(t) = 2δ for t ≥ 2δ

χδ(t) ∈ [δ, 2δ], for t ∈ [δ, 2δ].
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8 D. Bartolucci et al.

Then given σ ∈ SN , σ = ∑N
i=1 tiδxi (

∑N
i=1 ti = 1) and μ > 0, we define ϕμ,σ : S → R by

ϕμ,σ (y) = log
N∑

i=1

ti

(
μ

1 + μ2χ2
δ (di(y))

)2

− log(π), (2.3)

where we have set

di(y) = d0(y, xi), xi, y∈ S. (2.4)

We point out that, since the distance is a Lipschitz function, ϕμ,σ (y) is also Lipschitz in

y, and hence it belongs to H1(S). Let us denote by ϕ̃μ,σ the normalized functions ϕμ,σ −
ϕ̄μ,σ ∈ H(S).

By using Lemma 2.2 and by arguing as in [24] we obtain the following result.

Proposition 2.4. Suppose λ ∈ (8Nπ, 8(N + 1)π) with N ≥ 1. Let ϕ̃μ,σ be the functions

defined above and let K be a compact subset of S \ {P1, . . . , Pm}. Then,

eϕ̃μ,σ∫
S eϕ̃μ,σ

⇀ σ and Jλ(ϕ̃μ,σ ) → −∞ uniformly for σ ∈ KN as μ → ∞, (2.5)

where Kn denotes the set of formal barycenters of order N supported in K. �

We will need some compactness properties for (1.2), relying on the following

result (see [2]).

Theorem 2.5 ([2]). Let K be a positive Lipschitz function on S and let h̃= K e−hm . Let ui

solve (1.2) with α j > 0, pj ∈ S, and λ = λi, λi → λ̄. Suppose that
∫

S h̃eui dVg ≤ C1 for some

fixed C1 > 0. Then along a subsequence uik, one of the following alternatives hold:

(i) uik is uniformly bounded from above on S;

(ii) maxS(uik − log
∫

S h̃euik ) → +∞ and there exists a finite blow-up set Σ =
{q1, . . . , ql} ⊂ S such that

(a) for any s ∈ {1, . . . , l}, there exist xs
n → qs such that uik(x

s
n) → +∞ and uik →

−∞ uniformly on the compact sets of S \ Σ ,

(b) λik
h̃euik∫

S h̃euik dVg
⇀

∑l
s=1 βsδqs in the sense of measures, with βs = 8π for qs �=

{p1, . . . , pm}, or βs = 8π(1 + α j) if qs = pj for some j = {1, . . . , m}. In par-

ticular, one has that

λ̄ ∈ Γ (αm). �
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Supercritical Conformal Metrics 9

From the above result, we obtain immediately the following corollary.

Corollary 2.6. Suppose we are in the above situation and that λ �∈ Γ (αm). Then the solu-

tions of (1.2) stay uniformly bounded in C 2(S). �

Corollary 2.6 is a compactness criterion useful to bypass the Palais–Smale con-

dition, which is not known for the functional Jλ. This corollary, combined with the argu-

ments in [33] (proved for the regular case, but adapting in a straightforward way to the

singular one) allows to prove the next alternative.

Lemma 2.7. If λ /∈ Γ (αm) and if Jλ has no critical levels inside some interval [a, b], then

{Jλ ≤ a} is a deformation retract of {Jλ ≤ b}. �

Remark 2.8. As far as we are concerned with the approach presented in this paper,

it seems not easy to remove the hypothesis on the positivity of K. The difficulties are

inherited by the lack of concentration-compactness-quantization results (in the same

spirit of [2, 4, 29]) for solutions of (1.2) with K possibly changing sign or even just non-

negative. Actually, our analysis relies heavily on Theorem 2.5 (see also results in [4, 29])

where this hypothesis is required (see [38] for related issues in the regular case).

However, the necessary condition imposed by the Gauss–Bonnet constraint (1.4)

just reads ∫
S

2K e−hm eu = 4πχ(S, αm),

so that, in principle, there should be no obstructions (as in the regular and subcritical

cases [28, 43]) in finding conformal metrics on supercritical singular surfaces of positive

genus with Gaussian curvature just assumed to be positive somewhere. �

This remark motivates the following question: Is it true that any Lipschitz con-

tinuous function on S can be realized as the Gaussian curvature of a conformal metric

on a supercritical surface satisfying the hypotheses of Theorem 1.1?

2.2 Topological and Morse-theoretical preliminaries

This section is devoted to collect some classical and more recent results concerning

the topological structure of the sublevels of Jλ and of Morse functionals. We will also

give a short review of basic notions of algebraic topology needed to get the multiplicity

estimate.
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10 D. Bartolucci et al.

Throughout, the sign � will refer to homotopy equivalences, while ∼= will refer to

homeomorphisms between topological spaces or isomorphisms between groups. Given

a pair of spaces (X, A), we will denote by Hq(X, A) the relative qth homology group with

coefficient in Z and by H̃q(X) := Hq(X, x0) the reduced homology with coefficient in Z,

where x0 ∈ X. Finally, if X, Y, are two topological spaces and f : X → Y is a continuous

function, we will denote by f∗ : Hq(X) → Hq(Y), for q ∈ N, the pushforward induced by f .

Since the functional Jλ stays uniformly bounded on the solutions of (1.2) (by

Corollary 2.6), the deformation Lemma 2.7 can be used to prove that it is possible

to retract the whole Hilbert space H(S) onto a high sublevel {Jλ ≤ b}, b � 0 (see [36,

Corollary 2.8], for the regular case: also for this issue, only minor changes are required).

More precisely one has the following.

Proposition 2.9. If λ �∈ Γ (αm) and if b is sufficiently large positive, the sublevel {Jλ ≤ b}
is a deformation retract of H(S) and hence is contractible. �

We recall next a classical result in Morse theory: Morse inequalities.

Theorem 2.10 (see, e.g. [6, Theorem 4.3]). Let M be a Hilbert manifold and f ∈ C 2(M; R)

be a Morse function (i.e., all critical points are nondegenerate) satisfying the (P S)-

condition. Let a, b (a< b) be regular values for f and

Cq(a, b) := #{critical points of f in {a≤ f ≤ b} with index q},

βq(a, b) : = rank(Hq({ f ≤ b}, { f ≤ a})).

Then

n∑
q=0

(−1)n−qCq(a, b) ≥
n∑

q=0

(−1)n−qβq(a, b), n= 0, 1, 2, . . . (strong inequalities),

Cq(a, b) ≥ βq(a, b), q = 0, 1, 2, . . . (weak inequalities). �

As already remarked in [21], the (P S)-condition can be replaced by the request

that appropriate deformation lemmas hold true for f . In particular, a flow defined by

Malchiodi [36] allows us to adapt to Jλ the classical deformations lemmas [6, Lemma 3.2

and Theorem 3.2] needed so that Theorem 2.10 can be applied for M = H(S) and f = Jλ,

under the further assumption that all the critical points of Jλ are nondegenerate.
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Supercritical Conformal Metrics 11

To sum up, if Jλ is a Morse functional and a and b are regular values for Jλ,

then the weak and the strong inequalities are verified. For the regular case, De Marchis

showed [21] that it is possible to apply a transversality result due to Saut and Temam

[41] which guarantees that generically all the critical points of the Euler functional are

nondegenerate. In fact, exactly the same procedure allows us to obtain the following

statement (see the proof of [21, Theorem 1.5] for details).

Proposition 2.11. For λ �∈ Γ (αm) and for (g0, K) in an open and dense subset of M ×
C 0,1(S), Jλ is a Morse functional. �

Let now recall some well-known definitions in algebraic topology.

Join. The join of two spaces X and Y is the space of all segments “joining points” in X to

points in Y. It is denoted by X ∗ Y and is the identification space

X ∗ Y := X × [0, 1] × Y/(x, 0, y) ∼ (x′, 0, y), (x, 1, y) ∼ (x, 1, y′) ∀ x, x′ ∈ X, ∀ y, y′ ∈ Y.

Wedge sum. Given spaces X and Y with chosen points x0 ∈ X and y0 ∈ Y, then the wedge

sum X ∨ Y is the quotient of the disjoint union X � Y obtained by identifying x0 and y0 to

a single point. If {x0} (resp. {y0}) is a closed subspace of X (resp. Y), that is, a deformation

retract of some neighborhood in X (resp. Y), then H̃q(X ∨ Y) ∼= H̃q(X)
⊕

H̃q(Y), provided

that the wedge sum is formed at basepoints x0 and y0.

Smash product. Inside a product space X × Y, there are copies of X and Y, namely X ×
{y0} and {x0} × Y for points x0 ∈ X and y0 ∈ Y, respectively. These two copies of X and Y in

X × Y intersect only at the point (x0, y0), so their union can be identified with the wedge

sum X ∨ Y. The smash product X ∧ Y is then defined to be the quotient X × Y/X ∨ Y. For

example, Sn ∧ Sm ∼= Sn+m.

Suspension. The k-fold (unreduced) suspension of X is defined to be Sk−1 ∗ X, while

the k-fold reduced suspension is the smash product Sk ∧ X. A useful property of the

reduced suspension is that, for any q, n≥ 0, H̃q(X) ∼= H̃q+n(Sn ∧ X). It is crucial to note

that reduced and unreduced constructions are homotopically equivalent constructions

for the spaces we will deal with. In the following, we will often use the latter property

for replacing, in some results of [27], the unreduced suspension by the reduced one.
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12 D. Bartolucci et al.

Reduced symmetric product. We denote by SP
k
(X) the kth reduced symmetric product

which is the symmetric smash product X(k)/Sk, where X(k) is the k-fold smash product

of X with itself and Sk is the permutation group. We set SP
0
(X) = S0. A theorem by

Dold [25, Theorem 7.2] implies that the homology of reduced symmetric products only

depends on the homology of the underlying space. Moreover, it has been proved that

SP
k
(X ∨ Y) = ∨

r+s=k SP
r
(X) ∧ SP

s
(Y); finally, in the case of the 2-sphere, SP

k
(S2) ∼= S2k

(see [27, Theorem 1.3 and Corollary 4.3]).

3 Proof of the Theorems

We first make the following claim, the proof of which follows from Propositions 3.1

and 3.2.

Claim. For λ ∈ (8π N, 8π(N + 1)) \ Γ (αm), choosing L sufficiently large positive, one has

that

β2N−1(L ,−L) ≥
(

N + g − 1

g − 1

)
= (N + g − 1)!

N!(g − 1)!
. �

Once the claim is proved, the conclusion of Theorem 1.3 follows from Lemma 2.7.

To prove Theorem 1.5, it is instead sufficient to apply Proposition 2.11 and Theorem 2.10

(using the observations after it) with a= −L and b = L.

Proposition 3.1. There exists L > 0 sufficiently large such that, for any q ∈ N,

βq(L ,−L) ≥ βq(Bg
N), where Bg

N is the space of formal barycenters on a bouquet of g circles,

with g the genus of S. �

We recall that a space Bg is a bouquet of g circles if Bg = ⋃g
j=1 Aj, with Aj home-

omorphic to S1 and Ai ∩ Aj = {P }, and P is called the center of the bouquet. In the above

statement, βq(Bg
N) stands for the qth Betti number of Bg

N , namely the rank of Hq(Bg
N).

Proof. Proposition 2.9 implies that {Jλ ≤ L} is contractible (for L sufficiently large).

Thus, from the exactness of the homology sequence

· · · → H̃q({Jλ ≤ −L}) → H̃q({Jλ ≤ L}) → Hq({Jλ ≤ L}, {Jλ ≤ −L}) → H̃q−1({Jλ ≤ −L}) → · · ·
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Supercritical Conformal Metrics 13

Fig. 1. B̃g embedded in Θ(S) and their projections.

we derive that

Hq+1({Jλ ≤ L}, {Jλ ≤ −L}) ∼= H̃q({Jλ ≤ −L}), q ≥ 0,

H0({Jλ ≤ L}, {Jλ ≤ −L}) = 0.

Now to obtain the thesis, it suffices to construct j : Bg
N → {Jλ ≤ −L} and f : {Jλ ≤ −L} →

Bg
N such that f ◦ j is homotopically equivalent to the Id|Bg

N
. In fact, if this is true, we

have that

f∗ ◦ j∗ = Id|H∗(Bg
N ),

which implies that rank(Hq({Jλ ≤ −L})) ≥ rank(Hq(Bg
N)) = βq(Bg

N).

In order to build these maps, we will regard Bg as an appropriate subset of S:

let us understand how.

Since any two differentiable, compact, orientable surfaces with the same genus

are homeomorphic, we can consider an embedding Θ from S to R
3 (with coordinates z1,

z2, and z3) such that in any hole passes a line parallel to the z3-axis and moreover such

that the projection on the plane {z3 = 0} is a circle with g rounds holes as in Figure 1. Let

us denote by � the map projecting R
3 onto the plane {z3 = 0}.

In Θ(S \ {P1, . . . , Pm}), it is clearly possible to find a bouquet of circles, B̃g, veri-

fying:

• �|B̃g is an homeomorphism,

• �(B̃g) is a bouquet having a hole of �(Θ(S)) in each loop,
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14 D. Bartolucci et al.

• �(B̃g) ∩ �({P1, . . . , Pm}) = ∅.

Then there exists a retraction r : �(Θ(S)) → �(B̃g).

Let us set Bg := Θ−1(B̃g), which is again a bouquet with g loops.

We are, at last, in a position to define the desired maps.

j : Bg
N −→ {Jλ ≤ −L},

σ =
N∑

i=1

tiδbi (bi ∈ Bg) �−→ ϕμ,σ ,

(3.1)

f : {Jλ ≤ −L} Ψ−→ SN
Υ−→ Bg

N,

u �−→ Ψ (u) =
N∑

i=1

tiδxi �−→
N∑

i=1

tiδΘ−1◦�−1◦r◦�◦Θ(xi).

(3.2)

The fact that f ◦ j is homotopically equivalent to the identity on Bg
N follows easily from

Proposition 2.3 and the uniform continuity of Υ on Bg
N . �

Proposition 3.2. β2N−1(Bg
N) = (N+g−1

g−1

) = (N+g−1)!
N!(g−1)! . �

Proof. Theorems 1.1 and 1.3 in [27] imply that for any q ≥ 0,

H̃q(Bg
N) ∼= Hq+1(SP

N
(S1 ∧ Bg)).

Now notice that S1 ∧ Bg has the same homology of
∨g

j=1 S2; hence, since the reduced

symmetric product of a space only depends on its homology, it follows that for any

q ≥ 0,

H̃q((Bg)N) ∼= Hq+1(SP
N
(S1 ∧ Bg))

∼= Hq+1

⎛
⎝SP

N

⎛
⎝ g∨

j=1

S2

⎞
⎠

⎞
⎠

∼= [property of the reduced symmetric product]

∼= Hq+1

⎛
⎝ ∨

n1+···+ng=N

⎛
⎝ g∧

j=1

SP
sj S2

⎞
⎠

⎞
⎠
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Supercritical Conformal Metrics 15

∼= [property of the homology of the wedge sum]

∼=
⊕

n1+···+ng=N

Hq+1

⎛
⎝ g∧

j=1

(SP
sj S2)

⎞
⎠ ∼= [SP

n
(S2) ∼= S2n]

∼=
⊕

n1+···+ng=N

Hq+1(S
2N) ∼=

⎧⎨
⎩Z

s, q = (2N − 1),

0, otherwise.
(3.3)

Here s = (N+g−1
g−1

)
counts the number of tuples (n1, . . . , ng) such that

∑g
j=1 nj = N. The proof

is thereby complete. �
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Appendix

In this section, we prove Proposition 1.2.

Proof of Proposition 1.2. It is well known [28, 43] that g = e2w̃g0 is a conformal metric

on (S, αm) with Gaussian curvature K if and only if

−Δ0w̃ = K e2w̃ − K0 in S \ {P1, . . . , Pm},

1

2π

∫
S

K e2w̃ = χ(S) +
m∑

j=1

α j, (A.1)

w̃(π j(z)) = α j log |z − zj| + O(1), z∈ Br(zj), j ∈ 1, . . . , m,

where π j is a set of local (complex) isothermal coordinates around zj = π−1
j (Pj) (as

induced by the g0 partition of unity construction) and r > 0, a suitably chosen positive

small enough number. Let us define

w(P ) = w̃(P ) + 2π

m∑
j=1

α jG(P , Pj). (A.2)
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16 D. Bartolucci et al.

Then w is a distributional solution of the equation

− Δ0w = K e−hm e2w − K0 − 2π

|S|
m∑

j=1

α j in S \ {P1, . . . , Pm}, (A.3)

which also satisfies
1

2π

∫
S

Ke−hm e2w = χ(S) +
m∑

j=1

α j, (A.4)

and

w(π j(z)) = α j log |z − zj| + 2π

m∑
�=1

α�G(π j(z), π�(z�)) + O(1), z∈ Br(zj), j ∈ 1, . . . , m.

However, it is also well known [1] that

G(P , Pj) = 1

2π
log (d0(P , Pj)) + O(1), P � Pj,

where d0(·, ·) is the geodesic distance defined by g0. In particular, it is not too difficult to

verify that

G(π j(z), π j(zj)) = − 1

2π
log |z − zj| + O(1), z� zj, (A.5)

and we readily conclude that

w(π j(z)) = O(1), z∈ Br(zj), j ∈ 1, . . . , m.

By standard elliptic theory, this condition implies that w is a distributional solution for

(A.3) on S. In particular, by using (A.5) and the explicit expression of hm, we see that e−hm

is Hölder continuous in S, and the standard elliptic regularity theory shows that w is a

classical solution for (A.3).

At this point, we conclude that if u= 2w, then u is a classical solution for

− Δ0u= 2K e−hm eu − 2K0 − 4π

|S|
m∑

j=1

α j in S, (A.6)

and then setting

λ = 4π

⎛
⎝χ(S) +

m∑
j=1

α j

⎞
⎠ ,
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and by using (A.4) we conclude that u is a classical solution for (1.2). Therefore, if

g = e2w̃g0 = e−hm eug0 ≡ λ
e−hm eu∫

S 2K e−hm eu
g0

is a conformal metric on (S, αm) with Gaussian curvature K, then u is a classical solution

for (1.2).

On the other hand, if u is a classical solution for (1.2), then (1.4) holds. Thus, we

can define w by

2w = u+ log λ − log
(∫

S
2K e−hm eu

)
,

and come up with a classical solution for (A.3) on all S. At this point, we can use (A.2) to

define w̃ and conclude that

λ
e−hm eu∫

S 2K e−hm eu
g0 = e−hm e2wg0 = e2w̃g0

is a conformal metric on (S, αm) with Gaussian curvature K. �

Remark A.1. We remark that if αi ∈ (−1, 0) for some i ∈ I ⊆ {1, . . . , m}, then the state-

ment of Proposition 1.2 still holds but for the condition of u being a classical solution,

which should be replaced by u∈ C 2(S \ {∪i∈I Pi}) ∩ C 0(S). �
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