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Abstract. We consider the elliptic equation −∆u + u = 0 in a bounded, smooth domain
Ω ⊂ R2 subject to the nonlinear Neumann boundary condition ∂u/∂ν = |u|p−1u on ∂Ω and
study the asymptotic behavior as the exponent p → +∞ of families of positive solutions up

satisfying uniform energy bounds. We prove energy quantization and characterize the boundary
concentration. In particular we describe the local asymptotic profile of the solutions around each
concentration point and get sharp convergence results for the L∞-norm.

1. Introduction

Let Ω be a bounded domain in R2 with smooth boundary ∂Ω. This paper deals with the analysis
of solutions of the boundary value problem

∆u = u in Ω
u > 0 in Ω
∂u
∂ν = up on ∂Ω

(1.1)

where ν denotes the outer unit normal vector to ∂Ω and p > 1. Two dimensional elliptic equa-
tions with nonlinear Neumann boundary conditions arise in many fields (conformal geometry,
corrosion modelling, etc...) see for instance [3, 7, 10, 11, 12, 13, 24, 25, 26, 28, 29, 30, 38] and in
particular, [8, 9, 21, 36] where problem (1.1) is considered.

Observe that solutions to (1.1) correspond to critical points inH1(Ω) of the free energy functional

Ep(u) :=
1

2

ˆ
Ω
(|∇u|2 + u2) dx− 1

p+ 1

ˆ
∂Ω
up+1 dσ,

and by the compact trace and Sobolev embeddings H1(Ω) ↪→ H
1
2 (∂Ω) ↪→ Lp(∂Ω), one can

derive the existence of at least a solution for any fixed exponent p > 1 by standard variational
methods (see for instance [36]). For multiplicity results for p large enough see Castro ([8]) and
for sign-changing solutions see for instance [28].

This paper is devoted to the study of the asymptotic behavior, as p → +∞, of general families
of non-trivial solutions up to (1.1) under a uniform bound of their energy, namely we assume

p

ˆ
Ω
(|∇up|2 + u2p) dx→ β ∈ R, as p→ +∞. (1.2)
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In [36], and later in [9], this analysis has been carried out for the family of least energy solutions.
Note that these solutions satisfy the condition

p

ˆ
Ω
(|∇up|2 + u2p) dx→ 2πe, as p→ +∞,

which is a particular case of (1.2). In [36] it was proved that least energy solutions remain
bounded uniformly in p, and develop one peak on the boundary, whose location is controlled by
the Green’s function G for the Neumann problem{

∆xG(x, y) = G(x, y) in Ω,
∂G
∂νx

(x, y) = δy(x) on ∂Ω,
(1.3)

y ∈ ∂Ω. Indeed the concentration point turns out to satisfy∇τ(x0)R(x0) = 0, where τ(x0) denotes
a tangent vector at the point x0 ∈ ∂Ω and the Robin function is defined as R(x) := H(x, x),
where H is the regular part of G:

H(x, y) := G(x, y)− 1

π
log

1

|x− y|
. (1.4)

Later Castro [9] identified a limit problem by showing that a suitable scaling of the least energy

solutions converges in C1
loc(R2

+) to the regular solution

U(t1, t2) = log

(
4

t21 + (t2 + 2)2

)
(1.5)

of the Liouville problem 
∆U = 0 in R2

+
∂U
∂ν = eU on ∂R2

+´
∂R2

+
eU = 2π and supR2

+
U < +∞.

(1.6)

He also proved that for least energy solutions

∥up∥∞ →
√
e as p→ ∞,

as it had been previously conjectured in [36].

Observe that problem (1.1) also admits families of solutions which develop m boundary peaks
as p→ ∞, for any integer m ≥ 1, as proved in [8] and indeed, recently in [21], it has been proved
that the boundary concentration behavior characterizes any family of solutions to (1.1) which
satisfy the uniform energy bound (1.2) (i.e. not only the least energy ones).

In order to state the results of [21] we define, for a sequence pn → +∞, the blow-up set S of the
sequence pnupn , where upn solves (1.1), to be the subset

S := {x̄ ∈ Ω : ∃ (xn)n ∈ Ω, xn → x̄, with pnupn(xn) → +∞}. (1.7)

We summarize the results in [21] as follows:

Theorem I. Let (up)p be a family of solutions of (1.1) satisfying (1.2). Then there exist

C, c, c̃, C̃ > 0 such that
c ≤ ∥up∥L∞(Ω) ≤ C, for p > 1 (1.8)

c̃ ≤ p

ˆ
∂Ω
uppdσ ≤ C̃, for p large. (1.9)

Furthermore for any sequence pn → +∞, there exists a subsequence (still denoted by pn) such
that the following statements hold true:
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(1) There exists an integer m ≥ 1, a finite collection of m distinct points x̄i ∈ ∂Ω, i =
1, . . . ,m, such that the blow-up set S of the sequence pnupn is given by

S = {x̄1, x̄2, . . . , x̄m}. (1.10)

(2) There exist m positive constants ci > 0, i = 1, . . . ,m, such that

pnu
pn
pn

∗
⇀

m∑
i=1

ciδx̄i in the sense of Radon measures on ∂Ω

and

lim
n→∞

pnupn =

m∑
i=1

ciG(., x̄i) in C1
loc(Ω \ S), Lt(Ω) and Lt(∂Ω), ∀ t ∈ [1,+∞), (1.11)

where G is the Green’s function for the Neumann problem (1.3).
(3) The points x̄i, i = 1, . . . ,m, satisfy

ci∇τ(x̄i)H(x̄i, x̄i) +
∑
h̸=i

ch∇τ(x̄i)G(x̄i, x̄h) = 0, (1.12)

where τ(x̄i) is a tangent vector to ∂Ω at x̄i and H is the regular part of G as defined in
(1.4).

This result shows boundary concentration at a finite number of points in S ⊂ ∂Ω, moreover by
(1.11) and (A.4) it follows that in any compact subset of Ω \ S

pup ≤ C, (1.13)

and so

lim
n→+∞

upn = 0 in C1
loc(Ω \ S). (1.14)

Many questions arise from Theorem I:

• How does upn behave close to the points x̄i?
In particular, what is the asymptotic behavior of ∥upn∥∞?

• Can one compute the constants ci which appear at points (2) and (3 ) in Theorem I?
• What one can say about the total energy of upn?

Looking at the asymptotic results for least energy solutions ([36, 9]) and at the existence results
of solutions with multiple concentrations points ([8]), it was conjectured in [21] that for general
solutions of (1.1) under the uniform energy assumption (1.2) the constants ci’s must be all equal
and that an asymptotic quantization of the energy must occur, more precisely it was conjectured
that:

ci = 2π
√
e, for 1 ≤ i ≤ m, (C1)

pn

ˆ
Ω
(|∇upn |2 + u2pn) dx→ m · 2πe; (C2)

as n→ ∞, and furthermore that

∥up∥L∞(Ω) →
√
e, (C3)

as p→ +∞.

Here we answer these questions, proving in particular (C1), (C2) and (C3).
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Theorem 1.1. Let (up)p be a family of solutions to (1.1) satisfying (1.2) and let pn → +∞, as
n→ +∞, be the subsequence such that the statements in Theorem I hold true. Then

(i)

ci = lim
δ→0

lim
n→+∞

pn

ˆ
Bδ(x̄i)∩∂Ω

upnpndx = 2π
√
e, for 1 ≤ i ≤ m;

(ii)

lim
δ→0

lim
n→∞

∥upn∥L∞(Bδ(x̄i)∩Ω) =
√
e ∀ i = 1, . . . ,m,

where Bδ(x̄i) is a ball of center at x̄i and radius δ > 0;
(iii)

lim
n→∞

pn

ˆ
Ω
(|∇upn |2 + u2pn) dx = m · 2πe;

(iv) let δ > 0 be such that B2δ(x̄i) ∩ B2δ(x̄j) = ∅ for i ̸= j and let (yi,n)n ⊂ Bδ(x̄i) ∩ Ω,
i = 1, . . . ,m, be the sequences of local maxima of upn around xi, namely

upn(yi,n) := ∥upn∥L∞(Bδ(x̄i)∩Ω),

then (yi,n)n ⊂ ∂Ω, limn→+∞ |yi,n−x̄i| = 0 and, setting µi,n :=
(
pnupn(yi,n)

pn−1
)−1

(→ 0),
then

wi,n(t) :=
pn

upn(yi,n)

(
upn
(
Ψ−1

i (bi,n + µi,nt)
)
− upn(yi,n)

)
,

where bi,n = Ψi(yi,n), t ∈ Tn := {t ∈ R2 : bi,n + µi,nt ∈ Ψi(Ω ∩ BRi(x̄i))} and Ψi is
a change of coordinates which flattens ∂Ω near x̄i and Ri > 0 is a suitable radius (see
Subsection 2.1).
Then

lim
n→∞

wi,n = U in C1
loc(R2

+),

where U is the solution (1.5) of the Liouville problem (1.6).

Theorem 1.1 shows that the conjectures (C1) and (C2) are true, furthermore points (ii) and (iv)
provide information on the solutions close to the concentration points x̄i for p large, in particular
we identify the same limit profile U around each concentration point. We stress that in [21] only
the existence of a first bubble U was proved, scaling the solution around the sequence of global
maxima, while the behavior around the other concentration points was unknown. Observe that
U is the same profile describing the least energy solutions (for which m = 1, see [9]), and
indeed our theorem, combined with the results in [21] (Theorem I), extends to general families
of solutions the asymptotic results proved in [36, 9] for least energy solutions, thus giving a
complete characterization of the asymptotic behavior for problem (1.1). We remark that the
number m of concentration points coincides with the maximal number k of bubbles U which
may appear as limit profiles (for details see Proposition 3.3 and (4.33) in Proposition 4.6).
We stress that from (1.12) and point (i) in Theorem 1.1 we also deduce that the concentration
m-tuple (x̄1, . . . , x̄m) ∈ (∂Ω)m is a critical point of the function φm : (∂Ω)m → R

φm(x1, . . . , xm) :=

m∑
i=1

H(xi, xi) +
m∑
i ̸=h

G(xi, xh). (1.15)

We point out that (1.14) and (ii)-Theorem 1.1 clearly imply that also conjecture (C3) holds
true:
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Corollary 1.2. Let (up)p be a family of solutions to (1.1) satisfying (1.2). Then

lim
p→+∞

∥up∥∞ =
√
e. (1.16)

It is worth to remark the interesting analogy between the results here obtained for the Neumann
problem (1.1) and those known for the Lane-Emden equation under Dirichlet boundary condition ∆u = |u|p−1u in Ω

u > 0 in Ω
u = 0 on ∂Ω.

(1.17)

The asymptotic behavior as p→ +∞ of families (up)p of solutions of (1.17), under the assump-
tion that condition (1.2) holds, is well understood after the works [31, 32, 1, 14, 15, 17, 37], and
the results established therein can be tought as the analogs of Theorem I and Theorem 1.1. In
particular it is known that up stays uniformly bounded and that, up to subsequences, peaks-up
as N points in the domain Ω ([14]). Furthermore, it is proved ([15, 17, 37]) that (1.16) holds
and that the concentration appears at a critical point of the functional (1.15), now defined on
Ωm, where G and H are respectively Green’s and Robin’s functions of −∆ in Ω under Dirichlet
boundary conditions. Moreover there is quantization of the energy, since

lim
n→∞

pn

ˆ
Ω
(|∇upn |2 + u2pn) dx = N · 8πe,

and limit profiles are identified.

In this work we perform a blow-up analysis for the solutions of problem (1.1) following the
approach developed in [15, 17] in the framework of the Lane-Emden Dirichlet problem (1.17).
Of course one has to be very careful since now we have a boundary concentration phenomenon
due to the Neumann boundary condition, while the concentration for problem (1.17) is in Ω.

We prove Theorem 1.1 by first performing an exhaustion method which provides a construction
of concentration points. This approach relies on the energy bound assumption (1.2) and comes
with pointwise estimates of the solutions and with the description of the local asymptotic profile
U . Similar methods have been exploited for more general 2D Dirichlet problems (see [18, 14]),
also in higher dimension (see for instance [34, 19]). We have adapted the construction to deal
with the Neumann problem, taking advantage also of the results in [21], this part can be found
in Section 3.

Afterwards, in Section 4, we refine the asymptotic analysis, showing that one can actually scale
the solutions around local maxima and deriving the sharp constants and the energy quanti-
zation. These proofs rely on a detailed local blow-up analysis, in particular we use a local
Pohozaev identity (see the proof of Lemma 4.5), pointwise estimates of the rescaled functions
(see Lemma 4.7) and exploit the Green representation formula for the solutions to (1.1) (see the
proof of Proposition 4.8). Finally, at the end of Section 4, we complete the proof of Theorem 1.1.

We have postponed to Appendix A some technical estimates used throughout the paper.
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2. Notations

We list here some notations used throughout the paper. First the coordinates of a point will be
denoted as follows: x = (x1, x2) ∈ R2.
Next we denote the open ball centered at a point q = (q1, q2) ∈ R2 and radius r > 0 as
Br(q) := {x ∈ R2 : |x− q| < r}. We also define the open half ball as

B+
r (q) := Br(q) ∩ {x ∈ R2 : x2 > q2}, (2.1)

its flat boundary as
Dr(q) := Br(q) ∩ {x ∈ R2 : x2 = q2} (2.2)

and its curved boundary as

Sr(q) := {x ∈ R2 : |x− q| = r, x2 > q2}. (2.3)

Moreover dist(x, ∂Ω) = infy∈∂Ω |x − y|. We stress that C will be a positive constant which can
change from line to line.

2.1. Change of coordinates which straightens out ∂Ω near a point on ∂Ω.
We assume that ∂Ω ∈ C2. We fix a point on ∂Ω that we denote by Q ∈ ∂Ω, in the following the
change of coordinates defined below will be applied around the points in S = {x̄1, . . . , x̄m} (see
Theorem 1.1) and around limit points of suitable special sequences (see Section 3).
It can be proved that there exist R > 0 and a C2 function ρ : R → R such that, up to reordering
the coordinates and reorienting the axis

Ω ∩BR(Q) = {x = (x1, x2) ∈ BR(Q) : x2 > ρ(x1)}
∂Ω ∩BR(Q) = {x = (x1, x2) ∈ BR(Q) : x2 = ρ(x1)}.

Furthermore, up to a suitable translation of the axis we can assume that

Q = (0, 0)

so that
ρ(0) = 0

and, up to a suitable rotation of the axis, we can also assume that

ρ′(0) = 0.

We define the map
y = Ψ(x) (2.4)

defined by {
y1 = x1

y2 = x2 − ρ(x1)

then Ψ is one-to-one and det(JΨ) = 1. Note that Ψ is a C2 function which maps Ω∩BR(Q) into
a subset of the the half-plane, more precisely

ΩQ := Ψ(Ω ∩BR(Q)) ⊂ {y = (y1, y2) : y2 > 0}
∂FΩQ := Ψ(∂Ω ∩BR(Q)) ⊂ {y = (y1, y2) : y2 = 0}

and the point Q = 0 is mapped to the origin.

We define
ũp(y) := up(Ψ

−1(y)), for all y ∈ ΩQ ∪ ∂FΩQ (2.5)
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then (see [21]){
∆ũp − ũp − 2ρ′(y1)

∂2ũp

∂y1∂y2 − ρ′′(y1)
∂ũp

∂y2 + (ρ′(y1))2
∂2ũp

∂(y2)2
= 0 in ΩQ

∂ũp

∂y2

[
−1 + ρ′(y1)− (ρ′(y1))2

]
= ũpp in ∂FΩQ

Let xp ∈ Ω be a family of points such that Q = limp xp and µp :=
(
pup(xp)

p−1
)−1

→ 0.

Hence for p large xp ∈ BR(Q) and so the point

qp := Ψ(xp) ∈ ΩQ ∪ ∂FΩQ

is well defined.
We scale ũp around qp, setting

zp(t) :=
p

ũp(qp)
(ũp(qp + µpt)− ũp(qp)) , for t ∈ TQ,p ∪ ∂FTQ,p

where

TQ,p := {t = (t1, t2) ∈ R2 : qp + µpt ∈ ΩQ} (2.6)

∂FTQ,p := {t = (t1, t2) ∈ R2 : qp + µpt ∈ ∂FΩQ} (2.7)

Let us observe that we can choose R̄ > 0 such that

B R̄
µp

(0) ∩ {t : t2 > −
q2
p

µp
} ⊂ TQ,p (2.8)

and

B R̄
µp

(0) ∩ {t : t2 = −
q2
p

µp
} ⊂ ∂FTQ,p (2.9)

Indeed, let us fix R̄ > 0 so that

B+
2R̄

(0) ⊂ ΩQ

(
and D2R̄(0) := B2R̄(0) ∩ {y2 = 0} ⊂ ∂FΩQ

)
.

Since qp → 0 (because xp → Q) then, for p large, |qp| ≤ R̄/2 hence

BR̄(qp) ∩ {y2 ≥ 0} ⊂ B2R̄(0)
+ ∪D2R̄(0).

(2.8) and (2.9) follow observing that

qp + µpt ∈ BR̄(qp) ∩ {y2 ≥ 0} ⇔

{
|t| ≤ R̄

µp

t2 ≥ − q2p
µp

.

The function zp satisfies
Lpzp − (µp)

2zp = p(µp)
2 in B R̄

µp

(0) ∩ {t : t2 > − q2p
µp
}

Npzp =
(
1 +

zp
p

)p
in B R̄

µp

(0) ∩ {t : t2 = − q2p
µp
}

where, since ρ′(0) = 0 and ρ′′ is continuous:

Lp := ∆− 2ρ′(q1

p + µpt
1)

∂2

∂t1∂t2
− µpρ

′′(q1

p + µpt
1)
∂

∂t2
+ [ρ′(q1

p + µpt
1)]2

∂2

∂(t2)2
−→

p→+∞
∆

and

Np :=
[
−1 + ρ′(q1

p + µpt
1)− [ρ′(q1

p + µpt
1)]2
] ∂

∂t2
−→

p→+∞

∂

∂ν
.

Thanks to these convergences one can restrict to consider the case when ∂Ω is flat near Q, since
the same arguments adapt to the non-flat case (see for instance [21, 9]).
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3. Exhaustion of concentration points

Given a family (up) of solutions of (1.1), for a sequence pn → +∞ we define the concentration

set S̃ of upn as

S̃ :=
{
x ∈ Ω : ∃ (xn)n ∈ Ω, xn → x, with pnu

pn−1
pn (xn) → +∞

}
⊂ Ω. (3.1)

Clearly

S̃ ⊆ S = {x̄1, . . . , x̄m} (⊂ ∂Ω), (3.2)

where S is the blow-up set of the sequence pnupn (see (1.7) for the definition) characterized in

[21] (see Theorem I in the Introduction). Indeed by the definition of S̃, for any x ∈ S̃ there
exists a sequence xn ∈ Ω, xn → x such that

pnu
pn−1
pn (xn) → +∞,

then clearly
pnupn(xn) → +∞,

hence, by the definition of S, x ∈ S and (3.2) is proved.
As a consequence, up to reordering the points in S, there exists N ≤ m such that

S̃ = {x̄1, . . . , x̄N}. (3.3)

In this section we will prove the existence of a maximal number k of concentrating sequences

xn for the set S̃, satisfying specific properties, in particular we get pointwise estimates and a

description of up close to the points of S̃. The main result is contained in Proposition 3.3 below.

We introduce some notation. For l ∈ N \ {0} families of points (xi,p)p ⊂ Ω, i = 1, . . . , l, such
that

pup−1
p (xi,p) → +∞ as p→ +∞, (3.4)

we define the parameters

µi,p :=
(
pup−1

p (xi,p)
)−1

(→ 0, as p→ +∞), (3.5)

and introduce the following properties:

(P l
1) For any i, j ∈ {1, . . . , l}, i ̸= j,

lim
p→+∞

|xi,p − xj,p|
µi,p

= +∞.

(P l
2) For any i ∈ {1, . . . , l},

lim
p→+∞

dist(xi,p, ∂Ω)

µi,p
= 0.

(P l
3) For any i = 1, . . . , l, let Qi ∈ ∂Ω be such that

Qi := lim
p
xi,p,

let Ψi be the change of coordinates which straightens ∂Ω in a neighborhood of Qi of
radius Ri > 0, let qi,p = Ψi(xi,p) and let

zi,p(t) :=
p

up(xi,p)

(
up
(
Ψ−1

i (qi,p + µi,pt)
)
− up(xi,p)

)
for t ∈ Ti,p ∪ ∂FTi,p, (3.6)

where Ti,p := TQi,p, see (2.6)-(2.7) in Section 2 for the notations.
Then

Ti,p ∪ ∂FTi,p → R2
+ and zi,p(t) −→ U(t) in C1

loc(R2
+) as p→ +∞, (3.7)
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where U is the function in (1.5).
(P l

4) There exists C > 0 such that

pRl,p(x)u
p−1
p (x) ≤ C

for all p > 1 and all x ∈ Ω. where Rl,p is the function

Rl,p(x) := min
i=1,...,l

|x− xi,p|, ∀x ∈ Ω. (3.8)

Remark 3.1. If we assume that there exist l ∈ N\{0} families of points (xi,p)p ⊂ Ω, i = 1, . . . , l

which satisfies (3.4) and such that property (P l
4) holds true, then it is clear that the concentration

set defined in (3.1) reduces to

S̃ =

{
lim

p→+∞
xi,p, i = 1, . . . , l

}
.

Lemma 3.2. If there exists l ∈ N \ {0} such that the properties (P l
1), (P l

2) and (P l
3) hold for

families (xi,p)i=1,...,l of points satisfying (3.4), then

p

ˆ
Ω
(|∇up|2 + u2p) dx ≥ 2π

l∑
i=1

α2
i + op(1) as p→ +∞,

where αi := lim infp→+∞ up(xi,p) (≥ 1, by (3.4)).

Proof. Let us fix i ∈ {1, . . . , l}. Since limp→+∞ xi,p = Qi ∈ ∂Ω and limp→+∞ µi,p = 0, then for
any R > 0 and p sufficiently large BRµi,p(xi,p) ∩ ∂Ω is contained in a small ball centered at Qi

where we can straighten the boundary as in Subsection 2.1.
Let us assume w.l.o.g. that Qi = 0. We claim that

(BRµi,p

3

(qi,p) ∩ {y2 = 0}) ⊂ Ψ(BRµi,p(xi,p) ∩ ∂Ω), (3.9)

where qi,p := Ψ(xi,p). Given Ψ as in (2.4), it follows that Ψ−1 is a C2 function in a neighbourhood
of (0, 0) = Ψ(Qi) furthermore DΨ−1(0, 0) = I. Thus

∃ δ > 0 such that ∥DΨ−1(y)∥ ≤ 3 ∀ y ∈ B+
δ (0, 0). (3.10)

Since limp→+∞ qi,p = Ψ(Qi) = (0, 0), then for p sufficiently large we have

(BRµi,p

3

(qi,p) ∩ {y2 = 0}) ⊂ B+
δ (0, 0).

Let y = (y1, 0) ∈ (BRµi,p

3

(qi,p) ∩ {y2 = 0}) then y = Ψ(x) where

|x− xi,p| = |Ψ−1(y)−Ψ−1(qi,p)|
≤ sup

B+
δ (0,0)

∥DΨ−1∥|y − qi,p|

(3.10)

≤ Rµi,p.

This proves (3.9).
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Let us write, for any R > 0, recalling the definition of ũp in (2.5)

p

ˆ
BRµi,p

(xi,p)∩∂Ω
up+1
p dσ(x) ≥ p

ˆ
Ψi(BRµi,p

(xi,p)∩∂Ω)
ũp+1
p (y) dσ(y)

(3.9)

≥ p

ˆ
BRµi,p

3

(qi,p)∩{y2=0}
ũp+1
p (y) dσ(y)

≥ pµi,p

ˆ
BR

3

(0)∩{t2=−
q2
i,p

µi,p
}
ũp+1
p (qi,p + µi,pt) dt

1

(3.5)

≥ up(xi,p)
2

ˆ
BR

3

(0)∩{t2=−
q2
i,p

µi,p
}

ũp+1
p (qi,p + µi,pt)

up+1
p (xi,p)

dt1

≥ up(xi,p)
2

ˆ
BR

3

(0)∩{t2=−
q2
i,p

µi,p
}

(
1 +

zi,p(t)

p

)p+1

dt1. (3.11)

Thanks to (P l
3), we have

∥zi,p − U∥
L∞(B+

R/3
)
= op(1) as p→ +∞. (3.12)

Thus by (3.11), (3.12) and Fatou’s lemma

lim inf
p→+∞

(
p

ˆ
BRµi,p

(xi,p)∩∂Ω
up+1
p dσ(x)

)
≥ α2

i

ˆ
BR/3(0)∩{t2=0}

eU(t) dt1. (3.13)

Moreover by virtue of (P l
1) it is not hard to see that BRµi,p(xi,p)∩BRµj,p(xj,p) = ∅ for all i ̸= j.

Hence, in particular, thanks to (3.13)

lim inf
p→+∞

(
p

ˆ
∂Ω
up+1
p dσ(x)

)
≥

l∑
i=1

(
α2
i

ˆ
BR/3(0)∩{t2=0}

eU(t) dt1

)
.

At last, since this holds for any R > 0, we get

p

ˆ
Ω
(|∇up|2 + u2p) dx = p

ˆ
∂Ω
up+1
p dσ(x) ≥

l∑
i=1

α2
i

ˆ
∂R2

+

eU(t) dt1 + o(1) = 2π

l∑
i=1

α2
i + o(1),

as p→ +∞. □

Using an exhaustion method, we establish the existence of a maximal number k of “bubbles” U

appearing about the points of the boundary subset S̃.

Proposition 3.3. Let (up) be a family of solutions to (1.1) and assume that (1.2) holds. Then
after passing to a subsequence pn → +∞ as n → +∞, there exist an integer k ≥ 1 and k
families of points (xi,pn) in Ω i = 1, . . . , k such that (Pk

1 ), (Pk
2 ), (Pk

3 ) and (Pk
4 ) hold. Moreover

given any family points xk+1,pn, it is impossible to extract a new sequence from the previous one

such that (Pk+1
1 ), (Pk+1

2 ), (Pk+1
3 ) and (Pk+1

4 ) hold with the sequences (xi,pn), i = 1, . . . , k + 1.
Furthermore, there exists N ≤ min{m, k} (where m is the number of points of the set S) such
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that, up to reordering the points x̄i ∈ S, it holds

S̃ =

{
lim

n→+∞
xi,pn , i = 1, . . . , k

}
= {x̄1, . . . , x̄N}, (3.14)

where S̃ is the concentration set defined in (3.1).

Remark 3.4. The point x1,pn can be taken to be a maximum point of upn in Ω, hence it belongs

to ∂Ω, see STEP 1 below. The other sequences xi,pn, i = 2, . . . , k are instead in Ω.

Observe also that the number N of distinct points in S̃ satisfies N ≤ k.

Proof. For simplicity throughtout the proof we will denote any sequence pn → +∞ as n→ +∞
simply by p.

STEP 1. We show that there exists a family (x1,p) of points in Ω such that, after passing to a
subsequence (P1

2 ) and (P1
3 ) hold.

Let us choose x1,p be a point in Ω where up achieves its maximum. In [21] it has been proved
that x1,p ∈ ∂Ω and that it satisfies (P1

3 ).

STEP 2. We assume that (Pn
1 ), (Pn

2 ) and (Pn
3 ) hold for some n ∈ N \ {0}. Then we show that

either (Pn+1
1 ), (Pn+1

2 ) and (Pn+1
3 ) hold or (Pn

4 ) holds, namely there exists C > 0 such that

pRn,p(x)u
p−1
p (x) ≤ C

for all x ∈ Ω, with Rn,p defined as in (3.8).

Let n ∈ N \ {0} and assume that (Pn
1 ), (Pn

2 ) and (Pn
3 ) hold while

sup
x∈Ω

(
pRn,p(x)u

p−1
p (x)

)
→ +∞ as p→ +∞. (3.15)

We let xn+1,p ∈ Ω be such that

pRn,p(xn+1,p)u
p−1
p (xn+1,p) = sup

x∈Ω

(
pRn,p(x)u

p−1
p (x)

)
. (3.16)

By (3.15), (3.16) and since Ω is bounded it is clear that

pup−1
p (xn+1,p) → +∞ as p→ +∞

and
lim inf
p→+∞

up(xn+1,p) ≥ 1. (3.17)

We will prove that (Pn+1
1 ), (Pn+1

2 ) and (Pn+1
3 ) hold with the added sequence (xn+1,p).

Proof of (Pn+1
1 ).

We first claim that
|xi,p − xn+1,p|

µi,p
→ +∞ as p→ +∞ (3.18)

for all i = 1, . . . , n and µi,p as in (3.5).
Let us assume by contradiction that there exists i ∈ {1, . . . , n} such that |xi,p−xn+1,p|/µi,p → R
as p → +∞ for some R ≥ 0. Then the points xi,p and xn+1,p are close to each other and by
virtue of (Pn

2 ), they are very close to the boundary of Ω. Let us denote qi,p := Ψi(xi,p) and
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qn+1,p := Ψi(xn+1,p) where Ψi is the function defined by (2.4) around the boundary point
Qi := limp→+∞ xi,p. Since Ψi is C

2, (|qi,p − qn+1,p|/µi,p)p is bounded. Up to subsequence, |qi,p −
qn+1,p|/µi,p → R′ as p→ +∞ for some R′ ≥ 0. Thanks to (Pn

3 ), we get

lim
p→+∞

p|xi,p − xn+1,p|up−1
p (xn+1,p) = lim

p→+∞

|xi,p − xn+1,p|
µi,p

(
up(xn+1,p)

up(xi,p)

)p−1

= lim
p→+∞

|xi,p − xn+1,p|
µi,p

(
up(Ψ

−1
i (qn+1,p))

up(xi,p)

)p−1

= lim
p→+∞

|xi,p − xn+1,p|
µi,p

(
1 +

zi,p(µ
−1
i,p (qn+1,p − qi,p))

p

)p−1

=
4R

(t1)2 + (t2 + 2)2
< +∞ (where (t1)2 + (t2)2 = R′2),

against (3.15) and (3.16), thus (3.18) holds.
Setting

µn+1,p :=
[
pup−1

p (xn+1,p)
]−1 → 0 as p→ +∞, (3.19)

by (3.15) and (3.16) we deduce that

Rn,p(xn+1,p)

µn+1,p
→ +∞ as p→ +∞. (3.20)

Then (3.18), (3.20) and (Pn
1 ) imply that (Pn+1

1 ) holds with the added sequence (xn+1,p).

Proof of (Pn+1
2 ).

Let us prove that for any S > 0

sup
BSµn+1,p

(xn+1,p)∩Ω

up(x)

up(xn+1,p)
≤ 1 +O

(
Sµn+1,p

(p− 1)Rn,p(xn+1,p)

)
. (3.21)

Let x ∈ BSµn+1,p(xn+1,p) ∩ Ω, since xn+1,p satisfies (3.16),

Rn,p(x)u
p−1
p (x) ≤ Rn,p(xn+1,p)u

p−1
p (xn+1,p).

Furthermore |x− xn+1,p| ≤ Sµn+1,p, thus

Rn,p(x) ≥ min
i=1,...,n

|xn+1,p − xi,p| − |x− xn+1,p|

≥ Rn,p(xn+1,p)− Sµn+1,p.

Then, since for p large by (3.20), Rn,p(xn+1,p)− Sµn+1,p > 0

up−1
p (x) ≤ Rn,p(xn+1,p)

Rn,p(xn+1,p)− Sµn+1,p
up−1
p (xn+1,p)

≤ 1

1− S
Rn,p(xn+1,p)

µn+1,p

up−1
p (xn+1,p)

≤
(
1 +O(

Sµn+1,p

Rn,p(xn+1,p)
)
)
up−1
p (xn+1,p),

thus (3.21) is proved.
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Let us now introduce the rescaled function

vn+1,p(t) :=
p

up(xn+1,p)
[up(xn+1,p + µn+1,pt)− up(xn+1,p)],∀t ∈ Ω̃n+1,p := µ−1

n+1,p(Ω− xn+1,p).

(3.22)

Observe that by definition for t ∈ Ω̃n+1,p ∩BS(0)

vn+1,p(t) = p

(
up(x)

up(xn+1,p)
− 1

)
, (3.23)

where x := xn+1,p + µn+1,pt ∈ Ω ∩ BSµn+1,p(xn+1,p), hence by (3.21) and (3.20) it follows that
for any S > 0 one has

lim sup
p→+∞

sup
Ω̃n+1,p∩BS(0)

vn+1,p ≤ 0. (3.24)

Next to show (Pn+1
2 ) we argue by contradiction assuming that limp→+∞ dist(xn+1,p, ∂Ω)µ

−1
n+1,p ̸=

0. Up to a subsequence two cases may occur:

(1) dist(xn+1,p, ∂Ω)µ
−1
n+1,p −→ L > 0,

(2) dist(xn+1,p, ∂Ω)µ
−1
n+1,p −→ +∞.

Case (1). Let us start by the first case. We have xn+1,p −→ Qn+1 ∈ ∂Ω. We may assume without
loss of generality that the unit outward normal to ∂Ω at Qn+1 is −e2. For simplicity we will
also assume that ∂Ω is flat near Qn+1, we point out that all our arguments can be adapted to
the non-flat case considering the change of coordinates which straightens out ∂Ω near Qn+1,
introduced in Section 2.1 (see for instance [9, Theorem 3]). The flatness assumption means that
the function Ψn+1 in (2.4) is the identity, namely that there exists R := Rn+1 > 0 such that

Ω ∩B+
R(Qn+1) = B+

R(Qn+1) and ∂Ω ∩ ∂B+
R(Qn+1) = DR(Qn+1).

In particular, for p large one has that x2

n+1,p = dist(xn+1,p, ∂Ω), so that by assumption

x2

n+1,p

µn+1,p
−→ L (3.25)

as p→ +∞.
Let us project xn+1,p on the boundary defining the point x̂n+1,p := (x1

n+1,p, 0)(∈ ∂Ω), and let us
set

sn+1,p(t) := vn+1,p

(
t1, t2 −

x2

n+1,p

µn+1,p

)
, ∀t ∈ Ω̂n+1,p := µ−1

n+1,p(Ω− x̂n+1,p)

(3.22)
=

p

up(xn+1,p)
[up(x̂n+1,p + µn+1,pt)− up(xn+1,p)]. (3.26)

We can choose δ > 0 such that B+
δ (x̂n+1,p) ⊂ B+

R(Qn+1), hence

B+
δ

µn+1,p

(0) ⊂ Ω̂n+1,p and D δ
µn+1,p

(0) ⊂ ∂Ω̂n+1,p

and, by (1.1), the rescaled function sn+1,p solves the system
−∆sn+1,p + µ2n+1,psn+1,p = −µ2n+1,pp in B+

δ
µn+1,p

(0),

∂sn+1,p

∂ν
=

(
1 +

sn+1,p

p

)p

on D δ
µn+1,p

(0),
(3.27)



14

furthermore for any σ > 0, by (3.25), there exists S > 0 such that B+
σ (0) ⊂ BS(0,

x2
n+1,p

µn+1,p
)∩Ω̂n+1,p,

then

lim sup
p→+∞

sup
B+

σ (0)

sn+1,p(t) ≤ lim sup
p→+∞

sup

BS(0,
x2
n+1,p

µn+1,p
)∩Ω̂n+1,p

vn+1,p(t
1, t2 −

x2

n+1,p

µn+1,p
)

≤ lim sup
p→+∞

sup
BS(0)∩Ω̃n+1,p

vn+1,p(t)
(3.24)

≤ 0. (3.28)

Arguing similarly as in the proof of [9, Lemma 2], we will prove that for any r > L
3 there exist

C > 0, pr > 1 and α ∈ (0, 1) such that

∥sn+1,p∥C1,α(B+
r (0)) ≤ C, for any p > pr. (3.29)

We first observe that for any fixed q ≥ 2 and for p sufficiently largeˆ
B+

4r(0)
|pµ2n+1,p|q dx = op(1) (3.30)

andˆ
D4r(0)

∣∣∣∣1 + sn+1,p(t)

p

∣∣∣∣pq dσ =
1

µn+1,p

ˆ
D4rµn+1,p (x̂n+1,p)

(
up(x)

up(xn+1,p)

)pq

dσ

≤ p

u2p(xn+1,p)
sup

x∈D4rµn+1,p (x̂n+1,p)

(
up(x)

up(xn+1,p)

)p(q−1)−1 ˆ
∂Ω
up+1
p (x) dσ

≤ C, (3.31)

where in the last inequality we used (3.17), D4rµn+1,p(x̂n+1,p) ⊂ Bcrµn+1,p(xn+1,p) ∩ Ω̄ for some

constant c > 0 (being r > L
3 ), (3.21), (3.20) and the energy bound (1.2), since for a solution up

one has
´
Ω(|∇up|

2 + u2p) dx =
´
∂Ω u

p+1
p dσ.

Let us now consider the solution wp to
−∆wp + µ2n+1,pwp = −pµ2n+1,p in B+

4r(0),
∂wp

∂ν
=

(
1 +

sn+1,p

p

)p

on D4r(0),

wp = 0 on S4r(0).

(3.32)

By (3.30) and (3.31), with q = 2, the existence of such wp ∈ H1(B+
4r(0)) is guaranteed by

Lax-Milgram. Furthermore arguing as in [35, Theorem 5.3], we have by (3.30) and (3.31), that

wp ∈W
1
2
+t,q(B+

4r(0)) with the uniform bound

∥wp∥
W

1
2+t,q(B+

4r(0))
≤ C

(
∥µ2n+1,pp∥Lq(B+

4r(0))
+

∥∥∥∥(1 + sn+1,p

p

)p∥∥∥∥
Lq(D4r(0))

)
≤ C, (3.33)

for q > 4 and 0 < t < 2/q.
In particular, by Sobolev embeddings, ∥wp∥L∞(B+

4r(0))
≤ C, so we can define the function

φp := wp − sn+1,p + ∥wp∥L∞(B+
4r(0))

+ 1,

which solves {
−∆φp + µ2n+1,pφp = µ2n+1,p(∥wp∥L∞(B+

4r)
+ 1) in B+

4r(0),
∂φp

∂ν = 0 on D4r(0),
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furthermore, since sn+1,p ≤ 1 in B+
4r(0) for p sufficiently large by (3.28), then

φp ≥ 0 in B+
4r(0).

We define, for t = (t1, t2) ∈ B4r(0), the function

φ̂p(t) =

{
φp(t) if t2 ≥ 0
φp(t

1,−t2) if t2 < 0,

which turns out to be a non-negative weak solution to

−∆φ+ µ2n+1,pφ = µ2n+1,p(∥wp∥L∞(B+
4r(0))

+ 1) in B4r(0).

Therefore by the Harnack inequality we get for every a ≥ 1( 
B3r(0)

φ̂a
p

) 1
a

≤ C

(
inf

B3r(0)
φ̂p + ∥µ2n+1,p(∥wp∥L∞(B+

4r(0))
+ 1)∥L2(B4r(0))

)
3r>L+(3.25)

≤ C

(
φp(0,

x2

n+1,p

µn+1,p
) + µ2n+1,pC

)
≤ C

(
2∥wp∥L∞(B+

4r(0))
+ 1 + µ2n+1,pC

)
≤ C,

where we have used that sn+1,p(0,
x2
n+1,p

µn+1,p
) = 0 and that ∥wp∥L∞(B+

4r(0))
≤ C. Then

∥φp∥La(B3r(0)) ≤ C|B3r(0)|
1
a ≤ C for any p > pr and for any a > 1.

Finally by interior elliptic regularity

∥φ̂p∥W 2,q(B2r(0)) ≤ C
(
∥µ2n+1,p(∥wp∥L∞(B+

4r(0))
+ 1)∥Lq(B3r(0)) + ∥φ̂p∥Lq(B3r(0))

)
≤ C. (3.34)

Being sn+1,p = wp + ∥wp∥L∞(B+
4r(0))

+ 1− φp, combining (3.33) and (3.34) we obtain

∥sn+1,p∥
W

1
2+t,q(B+

2r(0))
≤ C for q > 4, 0 < t <

2

q
and p > pr.

At last by the Morrey embedding theorem we get that

∥sn+1,p∥C0,α(B+
2r(0))

≤ C for some α > 0

and in turn, by Schauder estimates for the Neumann problem, we get

∥sn+1,p∥C1,α(B+
r (0)) ≤ C

(
∥ − µ2n+1,pp∥L∞(B+

2r(0))
+ ∥(1 + sn+1,p

p
)p∥C0,α(D2r(0)) + ∥sn+1,p∥C0,α(B+

2r(0))

)
≤ C

for any p > pr, so (3.29) holds true.

By (3.29) and the regularity theory of elliptic equations, we derive that, up to a subsequence,

sn+1,p → Ũ in C1
loc(R2

+) as p→ ∞, (3.35)

where, by (3.27) and (3.28), Ũ satisfies the following problem
∆Ũ = 0 in R2

+
∂Ũ
∂ν = eŨ on ∂R2

+

Ũ ≤ 0 in R2
+.

(3.36)
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Furthermore sn+1,p(0,
x2
n+1,p

µn+1,p
) = 0, for any p, then by (3.25) it follows that Ũ(0, L) = 0.

Let us now prove that ˆ
∂R2

+

eŨ <∞. (3.37)

Let R > 0, then for any |t1| < R we have

(p+ 1)

[
log

(
1 +

sn+1,p(t
1, 0)

p

)
− sn+1,p(t

1, 0)

p+ 1

]
−→

p→+∞
0,

so we can use Fatou’s Lemma and (3.35) to write

ˆ R

−R
eŨ(t1,0)dt1 ≤

ˆ R

−R
e
sn+1,p(t1,0)+(p+1)

[
log

(
1+

sn+1,p(t
1,0)

p

)
−

sn+1,p(t
1,0)

p+1

]
dt1 + op(1)

≤
ˆ
BR(0)∩{t2=0}

(
1 +

sn+1,p(t)

p

)p+1

dt1 + op(1)

≤
ˆ
BR(0)∩{t2=0}

up+1
p (x̂n+1,p + µn+1,pt)

up+1
p (xn+1,p)

dt1 + op(1)

≤ µ−1
n+1,p

ˆ
BRµn+1,p

(x̂n+1,p)∩{x2=0}

up+1
p (x)

up+1
p (xn+1,p)

dx1 + op(1)

≤ p

up(xn+1,p)2

ˆ
∂Ω
up+1
p (x)dσ(x) + op(1)

(3.17)

≤ p

(1− ε)2

ˆ
∂Ω
up+1
p (x)dσ(x) + op(1)

(1.2)

≤ C < +∞,

so that eŨ ∈ L1(∂R2).
Using now (3.36), (3.37) and the classification due to P. Liu [27] (see also [39]), we obtain

Ũ(t1, t2) = log
2η2

(t1 − η1)2 + (t2 + η2)2
where η1 ∈ R and η2 > 0. (3.38)

Remark 3.5. Notice that what we have proven up to now in Case (1) holds true also if

dist(xn+1,p, ∂Ω)µ
−1
n+1,p −→ L = 0,

in particular we get that the rescaled function sn+1 defined in (3.26) converges to Ũ (see (3.35)),

which in this case satisfies the conditions Ũ(0, 0) = 0 and Ũ ≤ 0, that imply that η1 = 0 and

η2 = 2, namely that Ũ ≡ U , where U is the function defined in (1.5).

We remark that Ũ is a radial and decreasing function with respect to the point (η1,−η2). We
have

Ũ(η1, 0) > Ũ(0, L) = 0

which contradicts the fact that Ũ ≤ 0.
This rules out Case (1), namely the possibility that dist(xn+1,p, ∂Ω)µ

−1
n+1,p −→ L > 0.

Case (2). In the sequel we will prove that the second case i.e. dist(xn+1,p, ∂Ω)µ
−1
n+1,p −→ +∞

can not occur too. Let vn+1,p be the rescaled function defined in (3.22). By (1.1), vn+1,p solves

−∆vn+1,p + µ2n+1,pvn+1,p = −µ2n+1,pp in Ω̃n+1,p.
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Since for any R > 0, BR(0) ⊂ Ω̃n+1,p for p large enough, it follows that Ω̃n+1,p converges to the
whole plane R2.
Furthermore, from (3.17), (3.19) and the uniform bound (1.8) we get

|∆vn+1,p| ≤ |µ2n+1,pvn+1,p|+ |µ2n+1,pp| ≤ C in Ω̃n+1,p, (3.39)

namely vn+1,p are functions with uniformly bounded laplacian in BR(0), moreover vn+1,p(0) = 0.
Let us decompose

vn+1,p = φp + ψp in Ω̃n+1,p ∩BR(0),

with −∆φp = −∆vn+1,p in Ω̃n+1,p∩BR(0) and ψp = vn+1,p in ∂(Ω̃n+1,p∩BR(0)). Using (3.39) by

standard elliptic theory, we see that φp is uniformly bounded in Ω̃n+1,p∩BR(0). The function ψp is

harmonic in Ω̃n+1,p∩BR(0) and bounded from above by (3.24). By the Harnack inequality, either
ψp is uniformly bounded in BR(0), or it tends to −∞ on each compact set of BR(0). The second
alternative cannot happen because, by definition, ψp(0) = vn+1,p(0) − φp(0) = −φp(0) ≥ −C.
Hence vn+1,p is uniformly bounded in BR(0) for all R > 0. After passing to a subsequence,
standard elliptic theory implies that vn+1,p is bounded in C2

loc(R2). Thus

vn+1,p → V in C1
loc(R2) as p→ ∞, (3.40)

where V ∈ C1(R2) is a harmonic function satisfying V (0) = 0 and V ≤ 0 by (3.24).
So by a Liouville type theorem

V ≡ 0. (3.41)

Let now Qn+1 = lim
p→∞

xn+1,p. By (3.2) and (3.19) it follows that Qn+1 ∈ S ⊂ ∂Ω, where S is the

concentration set in (1.7). In order to simplify the exposition, we will assume in the sequel that
∂Ω is flat near the point Qn+1. This flatness assumption means that there exists R0 > 0 such
that

Ω ∩B+
R0

(Qn+1) = B+
R0

(Qn+1) and DR0(Qn+1) ⊂ ∂Ω.

We also assume that near Qn+1, ∂Ω is contained in the hyperplane x2 = 0 and the unit outward
normal to ∂Ω at Qn+1 is (−e2) where e2 is the second element of the canonical basis of R2.
W.l.o.g. we can also assume that

BR0(Qn+1) ∩ S = {Qn+1}. (3.42)

Now, inspired by Guo-Liu [24] (see page 750), we define the function

Wp(x) =
p

u2p(xn+1,p)

ˆ s0

−s0

up+1
p (x+ (s, 0))ds, ∀x ∈ B+

2s0
(Qn+1),

where 0 < s0 < R0/4. We have

∆x

(
up+1 (x+ (s, 0))

)
= (p+ 1)upp (x+ (s, 0))∆xup (x+ (s, 0))

+(p+ 1) p up−1
p (x+ (s, 0)) |∇xup (x+ (s, 0))|2

≥ (p+ 1)upp (x+ (s, 0))∆xup (x+ (s, 0))

= (p+ 1)up+1
p (x+ (s, 0))

≥ 0 ∀x ∈ B+
2s0

(Qn+1) ∪ S2s0(Qn+1) and ∀s ∈ [−s0, s0].

Hence Wp is a subharmonic function in B+
2s0

(Qn+1).
By (1.13) and (3.42), for p large,

|up(y)| ≤ C1
1

p
, ∀ y ∈ S2s0(Qn+1),
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thus
Wp → 0 uniformly in S2s0(Qn+1). (3.43)

Furthermore for each y ∈ D2s0 we have

Wp(y) ≤
p

u2p(xn+1,p)

ˆ
∂Ω
up+1
p (x) dσ(x)

(1.2),(3.17)

≤ C2. (3.44)

Combining (3.43) with (3.44) and using the maximum principle we get

Wp(x) ≤ C for all x ∈ B+
2s0

(Qn+1). (3.45)

On the other hand, we have for k > C and p sufficiently large

Wp(xn+1,p) =
p

u2p(xn+1,p)

ˆ s0

−s0

up+1
p (xn+1,p + (s, 0))ds

(3.19)

≥ p

u2p(xn+1,p)

ˆ kµn+1,p

−kµn+1,p

up+1
p (xn+1,p + (s, 0))ds

≥ p µn+1,p

u2p(xn+1,p)

ˆ k

−k
up+1
p (xn+1,p + µn+1,p(t, 0))dt

≥
ˆ k

−k

(
up(xn+1,p + µn+1,p(t, 0))

up(xn+1,p)

)p+1

dt

≥
ˆ k

−k

(
1 +

vn+1,p(t, 0)

p

)p+1

dt

(3.40)
=

ˆ k

−k
eV (t,0)dt+ o(1)

(3.41)
= 2k + o(1) > 3

2C,

which is in contradiction with (3.45).
Hence, we have proved that Case (2) cannot occur.
So, up to a subsequence,

lim
p→∞

dist(xn+1,p, ∂Ω)µ
−1
n+1,p = 0

and (Pn+1
2 ) holds with the added points (xn+1,p).

Proof of (Pn+1
3 ).

Since (Pn+1
2 ) holds, by Remark 3.5, assuming the flatness of ∂Ω near Qn+1, we have that

sn+1,p → U in C1
loc(R2

+)

where U is the limit function in (1.5).
By the definition of sn+1,p (see (3.26)), since x2

n+1,p/µn+1,p → 0, we conclude that also

vn+1,p → U in C1
loc(R2

+),

where vn+1,p are the rescaled functions introduced in (3.22).

In the flat case this proves that (Pn+1
3 ) holds with the added points (xn+1,p), since the rescaled

function zn+1,p in (3.6) coincide with the rescaled functions vn+1,p. The non-flat case can be
obtained in the same way (see [9, Theorem 3]), thus STEP 2. is proved.

STEP 3. We complete the proof of Proposition 3.3.
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From STEP 1. we have that (P1
1 ), (P1

2 ) and (P1
3 ) hold. Then, by STEP 2., either (P1

4 ) holds
or (P2

1 ), (P2
2 ) and (P2

3 ) hold. In the first case the assertion is proved with k = 1. In the second
case we go on and proceed with the same alternative until we reach a number k ∈ N \ {0} for
which (Pk

1 ), (Pk
2 ), (Pk

3 ) and (Pk
4 ) hold up to a sequence. Note that this is possible because the

solutions up satisfy (1.2) and Lemma 3.2 holds and hence the maximal number k of families of

points for which (Pk
1 ), (Pk

2 ), (Pk
3 ) hold must be finite.

Moreover, given any other family of points xk+1,p, it is impossible to extract a new sequence from

it such that (Pk+1
1 ), (Pk+1

2 ), (Pk+1
3 ) and (Pk+1

4 ) hold together with the points (xi,p)i=1,..,k+1.

Indeed if (Pk+1
1 ) was verified then

|xk+1,p − xi,p|
µk+1,p

→ +∞ as p→ +∞, for any i ∈ {1, . . . , k},

but this would contradict (Pk
4 ).

Finally let us recall that by Remark 3.1

S̃ =

{
lim

p→+∞
xi,p, i = 1, . . . , k

}
hence (3.14) follows from (3.3).

□

4. Refined analysis

We know that the solutions of (1.1) satisfy Theorem I in the Introduction. In particular, for a
sequence of positive solutions upn , the blow-up set S of pnupn is a discrete subset of ∂Ω

S = {x̄1, . . . , x̄m} ⊂ ∂Ω

(see (1.7) for the definition of S and (1)-Theorem I for its characterization).
Moreover we have seen in Proposition 3.3 that, up to reordering the points x̄i, the concentration

set S̃ of upn , defined in (3.1), satisfies

S̃ = {x̄1, . . . , x̄N}, with N ≤ min{m, k},

where k is the maximal number of bubbles U in Proposition 3.3.

Thanks to the local analysis developed in the previous section, we can actually deduce the
following.

Proposition 4.1.

S = S̃ and so in particular m = N ≤ k.

Proof. It is enough to show that S ⊆ S̃, namely thatm ≤ N . Let us assume by contradiction that

x̄m ∈ S \ S̃. Since x̄m ∈ S, by definition there exists xn ∈ Ω, xn → x̄m such that pnupn(xn) →
+∞. Since x̄m ̸∈ S̃ then there exist r > 0 such that Br(x̄m) ∩ S̃ = ∅ and that definitively

xn ∈ Br(x̄m) ∩ Ω =: K. Next we show that (Pk
4 ), which holds by Proposition 3.3, implies that

max
K

pn|upn | ≤ C, (4.1)
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thus reaching a contradiction.

Let δ := dist(K, S̃)/2 > 0. For y ∈ K we have

upn(y) =

ˆ
∂Ω
G(x, y)

∂upn
∂ν

dσ(x) =

ˆ
∂Ω
G(x, y)upnpn(x) dσ(x), (4.2)

where G(., .) is the Green function satisfying (1.3). We split the integral over ∂Ω into two parts,
the integral over Bδ(y) ∩ ∂Ω and the integral over ∂Ω \Bδ(y).

On the one hand, if x ∈ Bδ(y) we get d(x, S̃) ≥ δ > 0 and so Rk,pn(x) ≥ c > 0 for n large. From

(Pk
4 ) we derive

upn−1
pn (x) ≤ C

pn
, ∀x ∈ Bδ(y).

Hence ˆ
Bδ(y)∩∂Ω

G(x, y)upnpn(x) dσ(x) ≤ C

(
1

pn

) pn
pn−1

ˆ
∂Ω
G(x, y) dσ(x) ≤ C

pn
(4.3)

where we have used the fact that G(., y) is integrable on ∂Ω which follows from Lemma A.1 in
the Appendix.
On the other hand if x ∈ ∂Ω \ Bδ(y) then G(x, y) ≤ C by using (A.4) since |x − y| > δ > 0.
Thus we get ˆ

∂Ω\Bδ(y)
G(x, y)upnpn(x)dx ≤ cK

ˆ
∂Ω
upnpn(x)dx

(1.9)

≤ cK
pn
. (4.4)

Combining (4.2) with (4.3) and (4.4) we deduce (4.1).
□

We conclude the subsection with a result which will be of help in computing the constants ci
which appear in (1.13) and (1.12).

Lemma 4.2. Let pn → +∞, as n→ +∞ and ci > 0 be as in Theorem I, then

ci = lim
δ→0

lim
n→∞

pn

ˆ
Bδ(x̄i)∩∂Ω

upnpn dx , i = 1, . . . ,m.

Proof. We retrace the proof of (1.13) in order to characterize the constants ci. Let us observe
that, since the points x̄i’s are isolated, there exists δ > 0 such that B2δ(x̄i)∩B2δ(x̄j) = ∅. Then
by the Green representation formula for each x ∈ Ω \ S we have

pnupn(x) = p

ˆ
∂Ω
G(x, y)upnpn(y) dσ(y)

= pn

m∑
i=1

ˆ
Bδ(x̄i)∩∂Ω

G(x, y)upnpn(y) dσ(y) + pn

ˆ
∂Ω\∪iBδ(x̄i)

G(x, y)upnpn(y) dσ(y)

= pn

m∑
i=1

ˆ
Bδ(x̄i)∩∂Ω

G(x, y)upnpn(y) dσ(y) + on(1),

where in the last equality we have used that pnupn is bounded on compact sets of Ω \ S and the
fact that

´
∂ΩG(x, y) dσ(y) ≤ C (from Lemma A.1 in the Appendix).

Furthermore by the continuity of G(x, ·) in Ω\{x} and by (1.9) we obtain, up to a subsequence,
that

lim
n→+∞

pnupn(x) =
m∑
i=1

ciG(x, x̄i), where ci := lim
δ→0

lim
n→∞

pn

ˆ
Bδ(x̄i)∩∂Ω

upnpn dx.
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□

4.1. Scaling around local maxima.

Let xi,pn ∈ Ω, i = 1, . . . , k, be the maximal number of concentrating sequences in Proposition
3.3. W.l.o.g. we can relabel them and assume for the first m sequences that

xj,pn → x̄j , ∀j = 1, . . . ,m and S = {x̄1, x̄2, . . . , x̄m} (4.5)

In order to simplify the exposition, we will assume in the sequel that ∂Ω is flat near x̄j for all j =
1, . . . ,m. This flatness assumption means that there exists Rj > 0 such that

Ω ∩B+
Rj
(x̄j) = B+

Rj
(x̄j) and DRj (x̄j) ⊂ ∂Ω, for all j = 1, . . . ,m, (4.6)

and moreover Ψj ≡ Id. Since the x̄j ’s are distinct, it follows that there exists r ∈ (0,minj=1,...,mRj/4)
such that

B+
4r(x̄ℓ) ∩B

+
4r(x̄j) = ∅, B+

4r(x̄j) ⊂ Ω, for all ℓ, j = 1, . . . ,m, ℓ ̸= j. (4.7)

Lemma 4.3. Let m ∈ N \ {0} be as in (4.5) and let r > 0 be as in (4.7). Let us define

yj,n ∈ B+
2r(x̄j), j = 1, . . . ,m, such that

upn(yj,n) := max
B+

2r(x̄j)

upn(x). (4.8)

Then, for any j = 1, . . . ,m and as n→ ∞:

(i)

εj,n :=
[
pnu

pn−1
pn (yj,n)

]−1 −→ 0. (4.9)

(ii)
yj,n −→ x̄j and yj,n ∈ ∂Ω for n large. (4.10)

(iii)
|yi,n − yj,n|

εj,n
−→ +∞ for any i = 1, . . . ,m, i ̸= j.

(iv) Defining:

wj,n(y) :=
pn

upn(yj,n)
(upn(yj,n + εj,ny)− upn(yj,n)), y ∈ Ωj,n :=

Ω− yj,n
εj,n

, (4.11)

then
lim
n→∞

wj,n = U in C1
loc(R2

+) (4.12)

with U as in (1.5).
(v)

lim inf
n→∞

pn
upn(yj,n)

ˆ
Dr(yj,n)

upnpn(x) dσ(x) ≥ 2π.

Remark 4.4. (i) is the analogue of (3.4)-(3.5) for the families of points yj,n, j = 1, . . . ,m.
(iii) and (iv) are respectively properties (Pm

1 ) and (Pm
3 ) introduced in Section 3. Moreover by

(i) we get
lim inf
n→∞

upn(yj,n) ≥ 1 (4.13)

and by (ii) we also deduce property (Pm
2 ) and that for any δ ∈ (0, 2r) there exists nδ ∈ N such

that
yj,n ∈ Dδ(x̄j), for n ≥ nδ. (4.14)
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Proof. (i): let x̄j ∈ S = S̃ by Proposition 4.1 then there exists a sequence xn → x̄j such that

pnu
pn−1
pn (xn) → +∞ as n→ ∞. Hence xn ∈ Br(x̄j) for n large and the assertion follows observing

that by definition upn(yj,n) ≥ upn(xn).

(ii): Assume by contradiction that yj,n does not converge to x̄j , then up to a subsequence (that
we still denote by yj,n) yj,n → x̃ such that (2r ≥) |x̄j − x̃| ≥ δ > 0. But then by (1.13) in
Theorem I

pnupn(yj,n) =

m∑
j=1

cjG(x̃, x̄j) + on(1) = O(1). (4.15)

Moreover, since x̄j ∈ S, there exists a sequence xn ∈ Ω such that xn → x̄j and pnupn(xn) → +∞.
Hence xn ∈ Br(x̄j) for n large and by definition upn(yj,n) ≥ upn(xn), which is in contradiction
with (4.15), as a consequence yj,n → x̄j .

Recall that yj,n satisfies (4.8) and ∆upn = upn > 0 in B+
2r(x̄j). If by contradiction yj,n ∈ B+

2r(x̄j),
then ∆upn(yj,n) ≤ 0, which is impossible. Hence yj,n ∈ ∂B+

2r(x̄j) = D2r(x̄j) ∪ S2r(x̄j). Since
yj,n −→ x̄j ∈ ∂Ω, we obtain yj,n ∈ D2r(x̄j) ⊂ ∂Ω for n large.

(iii): Just observing that by construction |yi,p − yj,p| ≥ 4r if i ̸= j.

(iv): Observe that (ii) and (i) imply that for any R > 0 there exists nR ∈ N such that

B+
R(0) ⊂ B+

2r
εj,n

(
x̄j − yj,p
εj,n

)
⊂ Ωj,n for n ≥ nR. (4.16)

Indeed for n large yj,n ∈ Dr(x̄j) by (ii) and and Rεj,n < r by (i). As a consequence B+
Rεj,n

(yj,n) ⊂
B+

2r(x̄j) ⊂ Ω for n large, which gives (4.16) by scaling back.

From (4.16) and the arbitrariness of R we deduce that the set Ωj,n → R2
+ as n → ∞. (4.12) is

then obtained similarly as in the proof of Proposition 3.3-(Pn+1
3 ).

(v): using (4.14) we have that yj,n ∈ Dr(x̄j) for large n and so B+
r (yj,n) ⊂ B+

2r(x̄j) ⊂ Ω for
n large, namely, by scaling

B+
r

εj,n

(0) ⊂ Ωj,n, for n large (4.17)

By scaling and passing to the limit as n→ +∞, by (i), (iv) and Fatou’s Lemma one has

lim inf
n→∞

pn
upn(yj,n)

ˆ
Dr(yj,n)

upnpn(x) dσ(x) = lim inf
n→∞

ˆ
D r

εj,n
(0)

(
1 +

wj,n(y)

pn

)pn

dσ(y)

≥
ˆ
∂R2

+

eU(y) dσ(y) = 2π

which gives (v). □
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Lemma 4.5. Let r > 0 be as in (4.7) and yj,n for j = 1, . . . ,m be the local maxima of upn as
in (4.8). Let us define

βj,n :=
pn

upn(yj,n)

ˆ
Dr(yj,n)

upnpn(x) dσ(x), for j = 1, . . . ,m. (4.18)

Then

lim
n−→+∞

βj,n = 2π. (4.19)

Proof. Fix j ∈ {1, . . . ,m}. By Lemma 4.3-(v) we already know that

lim inf
n→+∞

βj,n ≥ 2π,

so we have to prove only the opposite inequality:

lim sup
n→+∞

βj,n ≤ 2π. (4.20)

For δ ∈ (0, r) by (4.7)

B+
δ (x̄j) ⊂ Ω (4.21)

and we define

αj,n(δ) :=
pn

upn(yj,n)

ˆ
Dδ(x̄j)

upnpn(x) dσ(x). (4.22)

In order to prove (4.20) it is sufficient to show that

lim
δ→0

lim sup
n→+∞

αj,n(δ) ≤ 2π (4.23)

since (4.20) will follow observing that

βj,n = αj,n(δ) +
pn

upn(yj,pn)

ˆ
Dr(yj,n)\Dδ(x̄j)

upnpn(x) dσ(x) = αj,n(δ) + on(1), (4.24)

where the second term goes to zero as n→ ∞ because yj,n ∈ D2r(x̄j). Indeed Dr(yj,n)\Dδ(x̄j) ⊂
D3r(x̄j) \Dδ(x̄j) ⊂ ∂Ω \ S and we know that for any compact subset of ∂Ω \ S the limit (1.13)
holds and lim infn→∞ upn(yj,n) ≥ 1 by (4.13).

In the rest of the proof we show (4.23).
Let us consider the local Pohozaev identity for problem (1.1) in the set B+

δ (x̄i):ˆ
B+

δ (x̄i)
u2pndx =

ˆ
∂B+

δ (x̄i)

1

2
⟨x− x̄i, ν⟩(|∇upn |2 + u2pn)− ⟨x− x̄i,∇upn⟩

∂upn
∂ν

dσ(x), (4.25)

where ν is the outer unitary normal vector to ∂B+
δ (x̄i) in x. Recalling that we have assumed

that ∂Ω is flat near x̄i (see (4.6)), then we have ν = −e2 on Dδ(x̄i), so that ⟨x− x̄i, ν⟩ = 0 and
⟨x − x̄i,∇u⟩ = (x − x̄i)

1 ∂u
∂x1 for each x ∈ Dδ(x̄i). Furthermore on Sδ(x̄i) we have ν = x−x̄i

δ and

⟨x− x̄i,∇u⟩ = δ ∂u∂ν . Hence from (4.25) and by integrating by part we get

1

pn + 1

ˆ
Dδ(x̄i)

upn+1
pn dσ =

ˆ
B+

δ (x̄i)
u2pndx− δ

2

ˆ
Sδ(x̄i)

(
|∇upn |2 + u2pn − 2

(
∂upn
∂ν

)2
)
dσ

+

[
(x− x̄i)

1
upn+1
pn

pn + 1

]x̄1
i+δ

x̄1
i−δ

.
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Multiplying the last equation by p2n we obtain

p2n
pn + 1

ˆ
Dδ(x̄i)

upn+1
pn dσ ≥ −δ

2

ˆ
Sδ(x̄i)

|pn∇upn |2 dσ − δ

2

ˆ
Sδ(x̄i)

(pnupn)
2 dσ

+ δ

ˆ
Sδ(x̄i)

(
pn
∂upn
∂ν

)2

dσ + p2n

[
(x− x̄i)

1
upn+1
pn

pn + 1

]x̄1
i+δ

x̄1
i−δ

=: T1 + T2 + T3 + T4. (4.26)

Next we analyze the behavior of the four terms in the right hand side.

Recall that, by (1.11), pnupn →
∑m

j=1 cjG(·, x̄j) in C1
loc(B

+
r (x̄i) \ {x̄i}). Moreover, using Lemma

A.3, for δ ∈ (0, r) we have
m∑
j=1

cjG(x, x̄j) =
ci
π
log

1

|x− x̄i|
+O(1) ,

m∑
j=1

cj∇G(x, x̄j) = −ci
π

x− x̄i
|x− x̄i|2

+O(1) (4.27)

for each x ∈ B+
δ (x̄i) \ {x̄i}. By the uniform convergence of the derivative of pnupn on compact

sets combined with (4.27), passing to the limit we have

T1 = −δ
2

ˆ
Sδ(x̄i)

|pn∇upn |2 dσ −→
n→∞

−δ
2

ˆ
Sδ(x̄i)

(
−ci
π

x− x̄i
|x− x̄i|2

+O(1)

)2

dσ(x) = − c2i
2π

+O(δ)

T2 = −δ
2

ˆ
Sδ(x̄i)

(pnupn)
2 dσ −→

n→∞
−δ
2

ˆ
Sδ(x̄i)

(
ci
π
log

1

|x− x̄i|
+O(1)

)2

dσ(x) = O(δ2 log2 δ)

T3 = δ

ˆ
Sδ(x̄i)

(
pn
∂upn
∂ν

)2

dσ −→
n→∞

δ

ˆ
Sδ(x̄i)

(
−ci
π

⟨x− x̄i, ν(x)⟩
|x− x̄i|2

+O(1)

)2

dσ(x) =
c2i
π

+O(δ)

and also

T4 ≤
2pn
pn + 1

δ∥pnupn+1
pn ∥L∞(∂Dδ(x̄i))

(1.13)
= on(1)O(δ).

So by (4.26) and recalling the definition of αi,n

αi,n(δ)upn(yi,n)
2 (4.22)

= upn(yi,n) pn

ˆ
Dδ(x̄i)

upnpn(x) dσ(x) ≥ pn

ˆ
Dδ(x̄i)

upn+1
pn (x) dσ(x)

(4.26)

≥ c2i
2π

+O(δ) + on(1), (4.28)

but by Lemma 4.2, (4.21) and (4.22)

ci = lim
δ→0

lim
n→∞

pn

ˆ
Dδ(x̄i)

upnpn dx = lim
δ→0

lim
n→∞

αi,n(δ)upn(yi,n). (4.29)

Combining (4.28) and (4.29) we get (4.23). □

Lemma 4.5 immediately implies the following result.

Proposition 4.6. Let r > 0 be as in (4.7) and let yj,n, for j = 1, . . . ,m, be the local maxima
of upn as in (4.8), where m is the number of points in the concentration set S. Let us consider
a subsequence of pn (which we still denote by pn) such that

mj := lim
n→∞

upn(yj,n) = lim
r→0

lim
n→∞

∥upn∥L∞(B2r(x̄j)∩Ω)
(4.30)
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is well defined for j = 1, . . . ,m. Then one has

cj = 2π ·mj ; (4.31)

lim
n→∞

pn

ˆ
Ω

(
|∇upn |2 + u2pn

)
dx = 2π

m∑
j=1

m2
j ; (4.32)

and

m = k, (4.33)

where cj’s are the constant in Theorem I and k ∈ N\{0} is the maximal number of bubbles given
by Proposition 3.3.

Proof. Observe that, by (1.8),mj is well defined for a suitable subsequence of pn and, furthermore
1 ≤ mj <∞ for any j = 1, . . . ,m, by (4.13).

(4.31) follows from some argument already used in the proof of Lemma 4.5 (see (4.22), (4.24)),
indeed we have

cj = lim
δ→0

lim
n→∞

pn

ˆ
Dδ(x̄j)

upnpn(x) dσ(x)
(4.22)
= lim

δ→0
lim
n→∞

αj,n(δ)upn(yj,n)
(4.24)
= lim

n→∞
βj,nupn(yj,n) = 2π·mj ,

where the last equality follows from Lemma 4.5.

Next we prove (4.32). Observe that

pn

ˆ
Ω

(
|∇upn |2 + u2pn

)
dx = pn

ˆ
∂Ω
upn+1
pn dσ

=

m∑
j=1

pn

ˆ
Dr(x̄j)

upn+1
pn dσ + pn

ˆ
∂Ω\∪m

j=1Dr(x̄j)
upn+1
pn dσ

(1.13)
=

m∑
j=1

pn

ˆ
Dr(x̄j)

upn+1
pn dσ + on(1). (4.34)

Moreover

pn

ˆ
Dr(x̄j)

upn+1
pn dσ = pn

ˆ
D r

2
(yj,n)

upn+1
pn dσ + on(1), (4.35)

since for n large enough D r
3
(x̄j) ⊂ D r

2
(yj,n) ⊂ Dr(x̄j) so that

pn

ˆ
Dr(x̄j)\D r

2
(yj,n)

upn+1
pn dσ ≤ pn

ˆ
{x∈Dr(x̄j),

r
3
<|x−x̄j |<r}

upn+1
pn dσ

(1.13)
= op(1).

Let us consider the remaining term in the right hand side of (4.35) and prove that

lim
n→∞

pn

ˆ
D r

2
(yj,n)

upn+1
pn dσ = 2π ·m2

j . (4.36)

On the one side, since the families of points yj,n, j = 1, . . . ,m, satisfy properties (Pm
1 ), (Pm

2 )
and (Pm

3 ) introduced in Section 3 (see Remark 4.4), similarly as in the proof of Lemma 3.2,
using (4.30), we obtain that

lim inf
n→∞

pn

ˆ
D r

2
(yj,n)

upn+1
pn dσ ≥ 2π ·m2

j . (4.37)
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On the other side, since B+
r
2
(yj,n) ⊂ B+

2r(x̄j) ⊂ Ω for n large,

pn

ˆ
D r

2
(yj,n)

upn+1
pn dσ ≤ upn(yj,n) pn

ˆ
Dr(yj,n)

upnpn dσ
(4.18)
= upn(yj,n)

2βj,n,

so Lemma 4.5 implies that

lim sup
n→∞

pn

ˆ
D r

2
(yj,n)

upn+1
pn dσ ≤ 2π ·m2

j . (4.38)

(4.36) then follows by combining (4.37) and (4.38). Finally (4.34), (4.35) and (4.36) imply (4.32).

Next we show that the points yj,n, j = 1, . . . ,m, also satisfy property (Pm
4 ), namely that there

exists C > 0 such that

pnRm,pn(x)u
pn−1
pn (x) ≤ C ∀x ∈ Ω (4.39)

where Rm,pn(x) := minj=1,...,m |x− yj,n|. Arguing by contradiction we suppose that

sup
x∈Ω

(
pnRm,pn(x)u

pn−1
pn (x)

)
→ +∞ as n→ +∞

and let ym+1,n ∈ Ω be such that

pnRm,pn(ym+1,n)u
pn−1
pn (ym+1,n) = sup

x∈Ω

(
pnRm,pn(x)u

pn−1
pn (x)

)
. (4.40)

By (4.40) and since Ω is bounded it is clear that

pnu
pn−1
pn (ym+1,n) → +∞ as n→ +∞.

Taking the sequences of local maxima yj,n for j = 1, . . . ,m and the added sequence ym+1,n,

similarly as in the proof of Proposition 3.3, we then get that (Pm+1
1 ), (Pm+1

2 ) and (Pm+1
3 ) hold.

Applying now Lemma 3.2 for the families of points (yi,n)i=1,...,m+1 and using (4.30) we obtain

pn

ˆ
Ω

(
|∇upn |2 + u2pn

)
dx ≥ 2π

m∑
i=1

m2
i+2πm2

m+1+on(1)
(4.13)

≥ 2π
m∑
i=1

m2
i+2π+on(1) as n→ +∞,

thus

lim
n→∞

pn

ˆ
Ω
|∇upn |2 + u2pn dx > 2π

m∑
i=1

m2
i

which contradicts (4.32) concluding the proof of (Pm
4 ).

At last in order to derive (4.33), let us consider k families of points x1,pn , x2,pn , . . . xk,pn ∈ Ω as
in the statement of Proposition 3.3. By virtue of Proposition 4.1

S = {x̄1, . . . , x̄m} = { lim
n→+∞

xi,pn : i ∈ {1, . . . , k}}.

Given i ∈ {1, . . . , k}, let j ∈ {1, . . . ,m} be such that limn→+∞ xi,pn = x̄j . Next, recalling that
{y1,n, y2,n, . . . , ym,n} satisfy (Pm

4 ) and applying (4.39) at xi,pn we get

p|xi,pn − yj,n|upn−1
pn (xi,pn)

(4.7)+(4.8)
= pRm,pn(xi,pn)u

pn−1
pn (xi,pn) ≤ C.

So in particular, up to a subsequence ∣∣∣∣yj,n − xi,pn
µi,pn

∣∣∣∣ ≤ C.
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As a consequence, up to a subsequence, since yj,n ∈ ∂Ω and xi,pn satisfies (Pk
2 ), there exists

t̂i,j ∈ ∂R2
+ such that

ti,j,n :=
yj,n − xi,pn

µi,pn
→ t̂i,j .

By (4.8), (3.6) and (3.7)

0 ≤ pn
upn(xi,pn)

(upn(yj,n)− upn(xi,pn)) = zi,pn (ti,j,n) → U(t̂i,j) ≤ 0.

Thus, by (1.5) t̂i,j = 0, then

|yj,n − xi,pn |
µi,pn

= on(1). (4.41)

In conclusion, let us suppose by contradiction that k > m, then there exists

i, ℓ ∈ {1, . . . , k}, i ̸= ℓ, such that lim
n→+∞

xi,pn = lim
n→+∞

xℓ,pn = x̄j for some j ∈ {1, . . . ,m}.

In addition w.l.o.g. let us assume that up to a subsequence µi,pn ≥ µℓ,pn .
By (4.41)

|xi,pn − xℓ,pn |
µi,pn

≤ |xi,pn − yj,n|
µi,pn

+
|xℓ,pn − yj,n|

µi,pn

≤ |xi,pn − yj,n|
µi,pn

+
|xℓ,pn − yj,n|

µℓ,pn
= on(1),

which is a contradiction against property (Pk
1 ) for x1,pn , x2,pn , . . . xk,pn . □

Next we give a decay estimate for the rescaled functions wj,n which will be fundamental to
compute the constants mi’s.

Lemma 4.7. For any γ ∈ (0, 2) there exists Rγ > 1 and nγ ∈ N such that

wj,n(z) ≤ (2− γ) log
1

|z|
+ C̃γ , ∀j = 1, . . . , k (4.42)

for some C̃γ > 0 provided Rγ ≤ |z| ≤ r
εj,n

, z ∈ D r
εj,n

(0) and n ≥ nγ.

As a consequence

0 ≤
(
1 +

wj,n(z)

pn

)pn

≤
{

1 for |z| ≤ Rγ

Cγ
1

|z|2−γ for Rγ ≤ |z| ≤ r
εj,n

. (4.43)

Proof. Arguing similarly as in the proof of [15, Lemma 4.4] one can deduce a crucial pointwise
estimate for wj,n, namely it can be proved that for any ε > 0, there exist Rε > 1 and nε ∈ N
such that

wj,n(y) ≤
(βj,n
π

− ε
)
log

1

|y|
+ Cε, ∀j = 1, . . . ,m

for some Cε > 0, provided 2Rε ≤ |y| ≤ r
εj,n

, y ∈ D r
εj,n

(0) and n ≥ nε.

(4.42) then follows by Lemma 4.5. Finally (4.43) is a direct consequence of (4.42) (see for instance
the proof of [17, Lemma 2.1] which can be easily adapted to this case). □

Proposition 4.8.

mi =
√
e, ∀i = 1, . . . ,m.
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Proof. From (1.9)

c ≤ pn

ˆ
∂Ω
upnpn(x)dσ(x) ≤ C

hence, by the properties of the Green function G,

ˆ
∂Ω\D2r(x̄j)

G(yj,n, x)u
pn
pn(x) dσ(x) ≤ Cr

ˆ
∂Ω\D2r(x̄j)

upnpn(x) dσ(x)

≤ Cr

ˆ
∂Ω
upnpn(x) dσ(x) = O(

1

pn
) (4.44)

and similarly, observing that (4.10) implies that for n large enough the points yj,n ∈ Dr/2(x̄j)
and that Dr/2(x̄j) ⊂ Dr(yj,n) ⊂ D2r(x̄j), also

ˆ
D2r(x̄j)\Dr(yj,n)

G(yj,n, x)u
pn
pn(x) dσ(x) ≤

ˆ
{x∈D2r(x̄j),

r
2
<|x−x̄j |<2r}

G(yj,n, x)u
pn
pn(x) dσ(x)

≤ C r
2

ˆ
∂Ω
upnpn(x) dσ(x) = O(

1

pn
). (4.45)

Using the previous estimates and the Green representation formula, we then get

upn(yj,n) =

ˆ
∂Ω
G(yj,n, x)u

pn
pn(x) dσ(x)

=

ˆ
D2r(x̄j)

G(yj,n, x)u
pn
pn(x) dσ(x) +

ˆ
∂Ω\D2r(x̄j)

G(yj,n, x)u
pn
pn(x) dσ(x)

(4.44)−(4.45)
=

ˆ
Dr(yj,n)

G(yj,n, x)u
pn
pn(x) dσ(x) + on(1)

(4.11)
=

upn(yj,n)

pn

ˆ
D r

εj,n
(0)
G(yj,n, yj,n + εj,nz)

(
1 +

wj,n(z)

pn

)pn

dσ(z) + on(1)

(1.4)
=

upn(yj,n)

pn

ˆ
D r

εj,n
(0)
H(yj,n, yj,n + εj,nz)

(
1 +

wj,n(z)

pn

)pn

dσ(z)

−upn(yj,n)
πpn

ˆ
D r

εj,p
(0)

log |z|
(
1 +

wj,n(z)

pn

)p

dσ(z)

−upn(yj,n) log(εj,n)
πpn

ˆ
D r

εj,n
(0)

(
1 +

wj,n(z)

pn

)pn

dσ(z) + on(1)

= An +Bn + Cn + on(1). (4.46)

Since H satisfies (A.3) in the Appendix, by (4.9) and (4.10) we get

lim
n→+∞

H(yj,n, yj,n + εj,nz) = H(x̄j , x̄j), for any z ∈ ∂R2
+,

so by (4.30), the convergence (4.12) and the uniform bounds in (4.43) we can apply the dominated
convergence theorem, and since the function z 7→ 1/|z|2−γ is integrable in {z ∈ ∂R2

+, |z| > Rγ}
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choosing γ ∈ (0, 1) we deduce

lim
p→+∞

upn(yj,n)

ˆ
D r

εj,n
(0)
H(yj,n, yj,n + εj,nz)

(
1 +

wj,n(z)

pn

)pn

dσ(z)

(4.12)
= mjH(x̄j , x̄j)

ˆ
∂R2

+

eU(z) dσ(z)
(1.6)
= 2πmjH(x̄j , x̄j),

from which

An :=
upn(yj,n)

pn

ˆ
D r

εj,n
(0)
H(yj,n, yj,n + εj,nz)

(
1 +

wj,n(z)

pn

)pn

dσ(z) = on(1). (4.47)

For the second term in (4.46) we apply again the dominated convergence theorem, using (4.43)
and observing now that the function z 7→ log |z|/|z|2−γ is integrable in {z ∈ ∂R2

+, |z| > Rγ}
and that z 7→ log |z| is integrable in {z ∈ ∂R2

+, |z| ≤ Rγ}. Hence we get

lim
n→+∞

upn(yj,n)

ˆ
D r

εj,n
(0)

log |z|
(
1 +

wj,n(z)

pn

)pn

dσ(z) = mj

ˆ
∂R2

+

log |z|eU(z) dσ(z) < +∞

and this implies that

Bn := −upn(yj,n)
πpn

ˆ
D r

εj,n
(0)

log |z|
(
1 +

wj,n(z)

pn

)pn

dσ(z) = on(1). (4.48)

Finally for the last term in (4.46) let us observe that by the definition of εj,n in (4.9)

log εj,n = −(pn − 1) log upn(yj,n)− log pn, (4.49)

again by the dominated convergence theorem it follows

Cn := −upn(yj,n) log(εp,n)
πpn

ˆ
D r

εj,n
(0)

(
1 +

wj,n(z)

pn

)pn

dσ(z)

= −upn(yj,n) log(εj,n)
πpn

(ˆ
∂R2

+

eU(z) dσ(z) + on(1)

)

= −upn(yj,n) log(εj,n)
πpn

(2π + on(1))

(4.49)
= upn(yj,n)

[
pn − 1

pn
log upn(yj,n) +

log pn
pn

]
(2 + on(1)). (4.50)

Substituting (4.47), (4.48) and (4.50) into (4.46) we get

upn(yj,n) = upn(yj,n)

[
pn − 1

pn
log upn(yj,n) +

log pn
pn

]
(2 + on(1)) + on(1),

passing to the limit as n→ +∞ and using (4.30) we conclude that

logmj =
1

2
.

□
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4.2. The proof of Theorem 1.1.

The statements of Theorem 1.1 have been proved in the various propositions obtained so far. In
particular (i) is a consequence of Lemma 4.2, (4.31) and Proposition 4.8. (ii) derives from (4.30)
and Proposition 4.8. The energy limit (iii) follows from (4.32) in Proposition 4.6, combined with
Proposition 4.8. The statement (iv) is contained in Lemma 4.3 in the flat case, and can be easily
extended to the non-flat case, similarly as in [21, 9], see Subsection 2.1.

Appendix A. Some properties of the Green function

Let y ∈ ∂Ω and let G(x, y) be the Green function satisfying the Neumann problem (1.3). First
note that G ≥ 0 and by the classical strong maximum principle, for each y ∈ ∂Ω G(., y) cannot
attain its minimum in Ω. Also, by the Hopf lemma if G(x, y) = 0 for some x, y ∈ ∂Ω, x ̸= y
then the normal derivative ∂G

∂νx
(x, y) is negative, which is impossible. Therefore, for each y ∈ ∂Ω

we have

G(·, y) > 0 in Ω. (A.1)

By a compactness argument we can find a constant c > 0 such that G(x, y) > c for all y ∈ ∂Ω
and all x ∈ Ω.

Lemma A.1. There exists a positive constant C1 such that

0 < G(x, y) ≤ C1 (| log |x− y||+ 1) for each x ∈ Ω \ {y} and y ∈ ∂Ω.

Proof. By (1.4), we have

G(x, y) =
1

π
log

1

|x− y|
+H(x, y) (A.2)

where 1
π log 1

|x−y| is the singular part of G and H(x, y) is the regular part of G. The function

H(., y) satisfies 
−∆xH(x, y) +H(x, y) = − 1

π
log

1

|x− y|
in Ω

∂H

∂νx
(x, y) =

1

π

⟨x− y, ν(x)⟩
|x− y|2

on ∂Ω.

Arguing as in [38] (see pages 834 and 835), we have

x 7→ H(x, y) ∈ C1,γ(Ω), y 7→ H(x, y) ∈ C1,γ(∂Ω, C1,γ(Ω)) and ∇xH ∈ C(Ω× ∂Ω) (A.3)

for any γ ∈ (0, 1). The desired result follows from (A.1), (A.2) and (A.3). □

As consequence of Lemma A.1, we have the following result.

Lemma A.2. There exist C2, Cδ > 0 such that:

G(x, y) ≤ Cδ ∀ |x− y| > δ > 0, (A.4)

|∇xG(x, y)| ≤
C2

|x− y|
∀ x ∈ Ω \ {y}. (A.5)

Proof. It is easy to see that (A.4) is a consequence of Lemma A.1.
By (A.2) we have

∇xG(x, y) = − 1

π

x− y

|x− y|2
+∇xH(x, y) (A.6)

for each x ∈ Ω \ {y}. Hence (A.5) follows from (A.6) and (A.3). □
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Let x1, . . . , xn be n distinct points in ∂Ω and let r be some positive small constant such that
Br(xi) ∩Br(xj) = for all 1 ≤ i ̸= j ≤ n.

Lemma A.3. Let 1 ≤ i ≤ n and let (cj)1≤j≤n be n real numbers. For each x ∈ Br(xi) ∩ Ω\{xi},
we have

n∑
j=1

cjG(x, xj) =
ci
π
log

1

|x− xi|
+O(1) and

n∑
j=1

cj∇G(x, xj) = −ci
π

x− xi
|x− xi|2

+O(1).

Proof. Using Lemma A.2, for each x ∈ Br(xi) ∩ Ω \ {xi} we have

m∑
j=1

cjG(x, xj) = ciG(x, xi) +O(1) and
m∑
j=1

cj∇G(x, xj) = ci∇G(x, xi) +O(1).

Furthermore G(x, xi) satisfies (A.2) and (A.6), so that, by the regularity of H in (A.3) we obtain
the desired result. □
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