Esercizi della dodicesima settimana

(la seguente serie di esercizi introduce subliminalmente alcune delle idee di base della teoria di Galois e mostra come questa possa poi essere utilizzata per risolvere problemi "partici" come quello di determinare il polinomio minimo di un dato elemento algebrico)

- 1. Dimostrare che il polinomio $x^2 5$ è irriducibile in $\mathbb{Q}[x]$. Dedurne che $\mathbb{Q}(\sqrt{5})$ è un campo di grado 2 su \mathbb{Q} .
- 2. Sia $\mathbb{K} = \mathbb{Q}(\sqrt{5})$. Dimostrare che ogni automorfismo di \mathbb{K} (come campo) fissa \mathbb{Q} elemento per elemento (ovvero, se $\varphi \colon \mathbb{K} \to \mathbb{K}$ è un automorfismo, allora $\varphi|_{\mathbb{Q}} = \mathrm{id}_{\mathbb{Q}}$).
- 3. Sia φ un automorfismo di \mathbb{K} . Dimostrare che $\varphi(\sqrt{5}) \in {\{\sqrt{5}, -\sqrt{5}\}}$.
- 4. Dimostrare che se un automorfismo φ di \mathbb{K} soddisfa $\varphi(\sqrt{5}) = \sqrt{5}$ allora φ è l'identità. Dedurne che il gruppo $\operatorname{Aut}(\mathbb{K})$ ha cardinalità al più 2.
- 5. Dimostrare che esiste un automorfismo φ di \mathbb{K} tale che $\varphi(\sqrt{5}) = -\sqrt{5}$. Dedurne che il gruppo Aut(\mathbb{K}) è il gruppo ciclico di ordine 2, ed è generato da questo automorfismo φ .
- 6. Dimostrare che un elemento α di \mathbb{K} viene fissato da tutti gli elementi di $\operatorname{Aut}(\mathbb{K})$ se e solo se $\alpha \in \mathbb{Q}$.
- 7. Sia α un elemento di \mathbb{K} . Dimostrare che il polinomio $(x \alpha)(x \varphi(\alpha))$ è in $\mathbb{Q}[x]$ (dove φ è l'automorfismo del punto precedente).
- 8. Sia α un elemento di \mathbb{K} e sia $p(x) \in \mathbb{Q}[x]$ tale che $p(\alpha) = 0$. Dimostrare che anche $\varphi(\alpha)$ è una radice di p(x). Dedurne che se $\alpha \notin \mathbb{Q}$, allora il polinomio $(x \alpha)(x \varphi(\alpha))$ è irriducibile in $\mathbb{Q}[x]$ e dunque è il polinomio minimo di α su \mathbb{Q} .
- 9. Determinare il polinomio minimo di $2+3\sqrt{5}$ su \mathbb{Q} .
- 10. Dimostrare che il polinomio $x^2 7$ è irriducibile in $\mathbb{K}[x]$. Dedurne che $\mathbb{Q}(\sqrt{5}, \sqrt{7})$ è un campo di grado 4 su \mathbb{Q} .
- 11. Sia $\mathbb{L} = \mathbb{Q}(\sqrt{5}, \sqrt{7})$. Dimostrare che ogni automorfismo di \mathbb{L} (come campo) fissa \mathbb{Q} elemento per elemento.
- 12. Sia φ un automorfismo di \mathbb{L} . Dimosrare che $\varphi(\sqrt{5}) \in \{\sqrt{5}, -\sqrt{5}\}$ e $\varphi(\sqrt{7}) \in \{\sqrt{7}, -\sqrt{7}\}.$
- 13. Dimostrare che se un automorfismo φ di $\mathbb L$ soddisfa $\varphi(\sqrt{5}) = \sqrt{5}$ e $\varphi(\sqrt{7}) = \sqrt{7}$ allora φ è l'identità. Dedurne che il gruppo $\operatorname{Aut}(\mathbb L)$ ha cardinalità al più 4.
- 14. Dimostrare che esiste un automorfismo φ di \mathbb{L} tale che $\varphi(\sqrt{5}) = -\sqrt{5}$.
- 15. Dimostrare che esiste un automorfismo φ_1 di \mathbb{L} tale che $\varphi_1(\sqrt{5}) = \sqrt{5}$ e $\varphi_1(\sqrt{7}) = -\sqrt{7}$.

- 16. Dimostrare che esiste un automorfismo φ_2 di $\mathbb L$ tale che $\varphi_2(\sqrt{5}) = -\sqrt{5}$ e $\varphi_2(\sqrt{7}) = \sqrt{7}$.
- 17. Dimostrare che il gruppo $\operatorname{Aut}(\mathbb{L})$ è isomorfo al gruppo di Klein V_4 ed è generato dai due automorfismi φ_1 e φ_2 dei due punti precedenti.
- 18. Dimostrare che un elemento α di \mathbb{L} viene fissato da tutti gli elementi di $\operatorname{Aut}(\mathbb{L})$ se e solo se $\alpha \in \mathbb{Q}$.
- 19. Sia α un elemento di L. Dimostrare che il polinomio

$$(x-\alpha)(x-\varphi_1(\alpha))(x-\varphi_2(\alpha))(x-\varphi_1\varphi_2(\alpha))$$

è in $\mathbb{Q}[x]$ (dove φ_1 e φ_2 sono gli automorfismi dei punti precedenti).

- 20. Sia α un elemento di \mathbb{L} e sia $p(x) \in \mathbb{Q}[x]$ tale che $p(\alpha) = 0$. Dimostrare che $\varphi(\alpha)$ è una radice di p(x) per ogni $\varphi \in \operatorname{Aut}(\mathbb{L})$. Dedurne che se α ha 4 immagini distinte sotto l'azione di $\operatorname{Aut}(\mathbb{L})$, allora il polinomio $(x-\alpha)(x-\varphi_1(\alpha))(x-\varphi_2(\alpha))(x-\varphi_1\varphi_2(\alpha))$ è irriducibile in $\mathbb{Q}[x]$ e dunque è il polinomio minimo di α su \mathbb{Q} .
- 21. Determinare il polinomio minimo di $\sqrt{5}+\sqrt{7}$ su $\mathbb{Q}.$