Fifth Summer School in Analysis and Applied Mathematics
Rome, June 1-5, 2009

Giovanni Alberti (University of Pisa)

Classical and non-classical tools for minimal surfaces*

* These notes contain some short parts that were not included in the lectures for lack of time.
Lecture 1

1.0 Outline of the lectures

- recalling some basic notions related to the Plateau problem & minimal surfaces, i.e., area, area formula, first variation of the area...
- recalling some basic facts from the theory of holomorphic functions and differential geometry of surfaces in the space which will be used extensively in the lectures by prof. Hildebrandt.
- giving a brief and self-contained introduction to the theory of finite perimeter sets as a tool to prove existence results for variational problems related to area-minimization
- outlining a few applications of the theory of finite perimeter sets (to give an idea of where this theory can be fruitfully applied...).

1.1 Hausdorff measure

Purpose: Intrinsic (and widely accepted) notion of length and area for subsets of higher-dimensional spaces (the point is to avoid parametrizations).

Definition of Hausdorff measure

Fix a real number \(d \geq 0 \) (the dimension). Given a set \(E \subset \mathbb{R}^n \) define, for every \(s > 0 \)

\[
\mathcal{H}^d_s(E) := \inf \left\{ \sum \text{diam}(E_i)^d \mid \{E_i\} \text{ countable cover of } E \text{ s.t. diam}(E_i) \leq s \right\}
\]

and

\[
\mathcal{H}^d_s(E) := \lim_{s \to 0} \mathcal{H}^d_s(E) = \sup_{s > 0} \mathcal{H}^d_s(E)
\]

Remarks

- \(\mathcal{H}^d \) is a \(s \)-additive measure on Borel sets
- \(\mathcal{H}^d \) is invariant under isometries (rigid motions) and scales as one would expect from a \(d \)-dimensional measure:
 \[\mathcal{H}^d(\lambda E) = \lambda^d \mathcal{H}^d(E) \]
- \(\mathcal{H}^n = \mathcal{L}^n \) = Lebesgue measure on \(\mathbb{R}^n \). In fact
 \(\mathcal{H}^d \) = usual \(d \)-dimensional volume of subsets of \(d \)-dimensional plane (or smooth \(d \)-dim. submanifolds). For this we need the Riemann constant \(\mathcal{A}_d \) with \(\mathcal{A}_d = \text{vol. unit ball in } \mathbb{R}^d \).
1.3

- Why do we need to take the limit $S \rightarrow 0$ in the definition? Indeed this is not needed for $d = n$: $H^n = H^S \equiv \mathbb{R}$ for every $S \geq 0$. But it is needed for $d < n$ (for instance, if E is a bounded curve of infinite length, you have $H^1(E) = \infty$ but $H^d_n(E) < \infty$ for every $S > 0$).

- Finally, H^d can be defined of $E \subset \mathbb{R}^n$ with X metric space, and it is intrinsic in the sense that it depends only on the restriction of the distance to the set E. In fact holds more: if d and d' are distances on X such that $d'(x,y) = d(x,y) + O(d'(x,y))$ as $d(x,y) \rightarrow 0$, then d and d' induce the same Hausdorff measures; that is, H^d depends only on the asymptotic behaviour of the distance on close points (only the metric matters).

Hausdorff dimension

Note that given E and $d < d'$ then $H^d(E) = 0 \Rightarrow H^{d'}(E) = \infty$ ("a surface has infinite length") $H^d(E) < \infty \Rightarrow H^d(E) = 0$ ("a curve has zero area")

This motivates the following definition of Hausdorff dimension:

$$\dim_H(E) := \inf \{d | H^d(E) = 0 = \sup \{d | H^d(E) < \infty\}$$

1.2 Area formula

Aim: compute effectively the area (Haussdorff meas) using a parametrization of the set.

Given a map $X : D \rightarrow \mathbb{R}^n$, with D open set in \mathbb{R}^d, which parametrizes the d-dimensional surface $S = X(D)$, then $H^d(S)$ is given by a suitable integral formula.

Standard assumptions:
- X of class C^1, injective (more or less), maximal rank (in most points).

First case:
- $d = 2 \land m = 3$
- (surfaces in space)

Let $X = x(u) = X(u,v,z)$, ∂u, ∂z partial der of X.

Then it is intuitively clear that

$$\text{Area}(S) = H^d(S) = \int_D |\partial u \wedge \partial z| \, du \, dz$$
In particular \(\partial_1 X \) and \(\partial_2 X \) span the tangent plane to \(S \) at \(X \) and therefore

\[
N = \frac{\partial_1 X \wedge \partial_2 X}{|\partial_1 X \wedge \partial_2 X|}
\]

is a normal (unit) vector to \(S \) at \(X \).

Notice that therefore a parametrization \(X \) defines implicitly an orientation of the parametrized surface \(S \) (either in terms of choice of a basis of \(\text{T}_x(S) \) or, equivalently, in terms of choice of a normal vector).

Second case:

c \(= \) n arbitrary.

Let \(S \) be a d-dimensional surface in \(\mathbb{R}^n \) parametrized by \(X: \Omega \subset \mathbb{R}^d \rightarrow \mathbb{R}^n \). Then

\[
\text{Vol}_d(S) = \mathcal{H}^d(S) = \int_{\Omega} J \, du_1 \ldots du_d
\]

where \(J = J(u) \) is the d-dimensional volume of the parallelepiped spanned by the vectors \(\partial_1 X, \ldots, \partial_d X \) (the columns of the matrix \(VX \)).

How do we compute the Jacobian determinant \(J \)?

Taking any isometry \(R \) from \(\text{T}_x(S) = \text{Span}\{X_1, \ldots, X_d\} \) to \(\mathbb{R}^d \) we have

\[
J = \left| \det (R \cdot VX) \right|
\]

recall that \(\det(R) = \det A \)

\[
R = R^T \iff \sqrt{\det((R \cdot VX)^T (R \cdot VX))} = \sqrt{\det((VX)^T VX)}
\]

Binet's formula

\[
\Rightarrow \sqrt{\sum_{H = \text{deg}} \det H}^2
\]

Hence

\[
\text{Vol}_d(S) = \mathcal{H}^d(S) = \int_{\Omega} J \, du_1 \ldots du_d = \int_{D} \sqrt{\det(VX^T VX)}
\]

\[
= \int_{D} \sqrt{\sum_{H = \text{deg}} \det H}^2
\]

Remarks

- Binet's formula states that for a \(n \times d \) matrix \(A \) there holds \(\det(A^T A) = \sum_{H = \text{deg}} \det H^2 \).

For \(n = 3, d = 2 \) it has the following interpretation:

If \(R \) is a subset of a plane \(\mathbb{R}^2 \) and \(R_1, R_2, R_3 \) are the projection on the coordinate planes, then

\[
\text{Area}(R) = \sqrt{\sum (\text{Area}(R_i))^2}
\]
- Area of the graph of a function.
Let \(X(u) = (u, f(u)) \) be the standard parameterization of the graph \(\Gamma \) of the function \(f : \mathbb{R}^d \to \mathbb{R}^m \).

Then, if \(m = 1 \) we recover the usual formula
\[
\text{Vol}_d (\Gamma) = \int_D \sqrt{1 + |\nabla p|^2} \, d^d x.
\]

However this formula is no longer correct for \(m > 1 \), indeed in this case,
\[
\text{Vol}_d (\Gamma) = \int_D \sqrt{1 + \sum_{H \text{ square neighborhood of } \nabla f} (\det(H))^2} \, d^d x.
\]

- Another important variant of the area formula in case \(X \) is not injective involves the degree instead of the multiplicity:
\[
\int_{p \in S} \deg (X, p) \, d\mathbb{H}^d (p) = \int_{D \uparrow p} \pm J(w) \, d\mathbb{H}^d (w)
\]

number of \(u \in D \) s.t. \(X(u) = p \), counted \(\pm 1 \) if \(\nabla X(u) \) is orient. preserving, counted -1 if \(\nabla X(u) \) is orient. reversing.

the sign \(\pm \) is +1 if \(\nabla X(u) \) is orient. preserving, and -1 if it is orient. reversing.

This is known as "oriented" area formula.

- If \(X \) is not injective the area formula must be corrected to take into account
multiplicity
\[
\int_{p \in S} \#(X^{-1}(p)) \, d\mathbb{H}^d (p) = \int_D \sqrt{\det(\nabla X \cdot \nabla X)} \, d^d x.
\]

number of \(u \in D \) s.t. \(X(u) = p \), i.e., multiplicity of \(X \) at \(p \).
1.3 Plateau's Problem (simplest formulation)

Given a closed (regular) curve Γ in \mathbb{R}^3, find the surface S with boundary Γ with minimal area.

(Here "find" means "prove the existence of ".)

Parametric approach

Among all $X: \mathcal{D} \to \mathbb{R}^3$ such that X restricted to $\partial \mathcal{D}$ parametrizes Γ, find the one such that

$$F(X) = \text{Area}(X(\mathcal{D})) = \int_{\mathcal{D}} |\partial X| \, \text{d}x$$

is minimal.

(To be discussed: a) which domain \mathcal{D} we consider? just a disc? b) what is the regularity of X? c) is X injective?)

Naive attempt

One can imagine finding a minimizer of F by a standard semicontinuity-and-compactness strategy, that is, by the following two steps:

1. Proving that F is weakly lower semicontinuous on a suitable class \mathcal{Y} of Sobolev maps $X: \mathcal{D} \to \mathbb{R}^3$

2. Proving that the set $\mathcal{Y}_m := \{X | F(X) \leq m\}$ is bounded (in the Sobolev norm under consideration) at least for some $m > \inf F$.

Indeed \mathcal{Y}_m is weakly closed because F is weakly lower semicontinuous, and therefore if it is bounded it is weakly compact (at least if F is a reflexive space). Thus a standard argument shows that F attains a minimum on \mathcal{Y}_m and therefore on \mathcal{Y}.

It is worth to see what happens in the case we are interested in.

It turns out that semicontinuity is (essentially) OK, but the problem is compactness.
1.4 Semicontinuity of \(F(X) = \int_D |\partial X \Lambda \partial X| \)

We recall two basic facts:

Fact 1 If \(v_n \rightharpoonup v \) in \(L^p(D, \mathbb{R}^n) \) and \(f: \mathbb{R}^n \rightarrow [0, +\infty] \) is a convex lower s.c. function then

\[
\int_D f(v) \leq \liminf_{n \to \infty} \int_D f(v_n)
\]

This is essentially due to the fact that \(f \) is the upper envelope of affine functions, which allows to write the integral \(\int f(v) \) as a (localized) upper envelope of weakly continuous functionals.

Fact 2 If \(u_n \rightharpoonup u \) in \(W^{1,p}(D, \mathbb{R}^n) \) with \(p \geq 2 \), then \(\nabla u_n \rightharpoonup \nabla u \) in \(L^p \) and \(\det \nabla u_n \rightharpoonup \det \nabla u \) in \(L^{p/2} \) (some extra care should be taken for the case \(p = 2 \)).

The key point for (\(\ast \)) is the identity

\[
\det \nabla u = \partial_1 \partial_3 u_2 - \partial_2 \partial_3 u_1 = \partial_1 (u_1 \partial_3 u_2) - \partial_2 (u_1 \partial_3 u_2)
\]

Indeed \(u^{(1)} \rightharpoonup u \) in \(W^{1,p} \) implies \(u^{(1)} \rightharpoonup u \) in \(L^p \) and \(\nabla u^{(1)} \rightharpoonup \nabla u \) in \(L^p \). Hence \(u^{(1)} \partial_3 u_2^{(1)} \rightharpoonup u_1 \partial_3 u_2 \) in \(L^{p/2} \) and \(\partial_1 (u^{(1)} \partial_3 u_2^{(1)}) \rightharpoonup \partial_1 (u_1 \partial_3 u_2) \) in the sense of distributions, hence \(\det \nabla u^{(1)} \rightharpoonup \det \nabla u \) in the sense of distributions, and the rest follows by the fact that \(\det \nabla u \) are uniformly bounded a.e. in \(L^{p/2} \).

Putting together these two facts we obtain that

\[
F(X) = \int_D |\partial X \Lambda \partial X| = \int \sqrt{\sum_{1 \leq i < j \leq 2} (\det \nabla(X(x), x))}^2
\]

is weakly lower s.c. in \(W^{1,p} \) for \(p \geq 2 \).

The key point is that \(|\partial X \Lambda \partial X| \) is a convex functions of the determinants of the \(2 \times 2 \) minors of \(\nabla X \). At the same way one shows that

\[
F(u) = \int_D f(\nabla u)
\]

is weakly lower s.c. if \(f \) is any convex functions of \(\nabla u \) and its square minors (what is called a "polyconvex" function).
1.5 Lack of compactness (coercivity)

for $F(x)$.

Unfortunately the class $S^m = \{x | F(x) \in M\}$ is not bounded in any reasonable Sobolev norm.

The reason is that F is invariant under re-parametrization, that is,

$$F(x) = F(x \circ \phi)$$

for every diffeomorphism $\phi : D \rightarrow D$.

But taking suitable ϕ we can make any sobolev norm of $x \circ \phi$ as large as we want.

On the other hand one can use the invariance of F to restrict the search of a minimizer to a much smaller and better behaved class!

This will indeed be the starting point of prof. Hildebrandt's lectures.

Note that indeed a similar approach is routinely used when looking for curves of minimal length on a surface S (geodesics). Indeed using the fact that every curve $\gamma : [0,1] \rightarrow S$ admits a re-parametrization with constant speed one finds out that

$$\text{minimization of } \int_0^1 |\dot{\gamma}| \text{ over all } \gamma : [0,1] \rightarrow S$$

$$\text{II}$$

$$\text{minimization of } \int_0^1 |\gamma| \text{ over all } \gamma \text{ such that } |\dot{\gamma}| \text{ is constant}$$

$$\text{II}$$

$$\text{minimization of } \int_0^1 |\gamma|^2 \text{ over all } \gamma : [0,1] \rightarrow S.$$
1.6 Conformal parametrizations

Note that for every 3×2 matrix $M = (H_1, H_2)$ there holds

$$|M| = |M_1| |M_2| \sin \theta$$

$$\leq |M_1| |M_2|$$

$$\leq \frac{1}{2} (|M_1|^2 + |M_2|^2)$$

$$= \frac{1}{2} |M|^2 \quad \text{Euclidean norm of } M = \left(\frac{\partial}{\partial x} \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} \right)^T$$

Thus $|M_1 \wedge M_2| \leq \frac{1}{2} |M|^2$ and moreover holds if and only if M satisfies

a) $M_1 \cdot M_2 = 0$ (i.e. $\theta = \frac{\pi}{2}$) & $|M_1| = |M_2|$
\[\uparrow\]

b) M is a composition of an isometry and an homothety
\[\uparrow\]

c) M preserves angles between vectors, that is $\frac{M_1 \cdot M_2}{|M_1| |M_2|} = \frac{V_1 \cdot V_2}{|V_1| |V_2|}$
\[\uparrow\]

d) M preserves orthogonality, that is $V_1 \cdot V_2 = 0 \Rightarrow M_1 \cdot M_2 = 0$. \(\star\)

[a) \Rightarrow b) \Rightarrow c) \Rightarrow d) immediate.
d) \Rightarrow a) : apply \star with $V_1 = e_1, V_2 = e_2$ and then with $V_1 = e_1 + e_3, V_2 = e_1 - e_3$.

The matrices M satisfying a) or b) or c) or d) are called conformal.

A consequence of previous computations is that

for a generic parametrization $X:D \rightarrow \mathbb{R}^3$ there holds

$$\int_D \|
abla X \times \delta x\| \leq \frac{1}{2} \int_D \|
abla X\|^2$$

$$\text{area functional} \uparrow$$

$$\text{Dirichlet funct.} \uparrow$$

and holds if X is conformal, that is, ∇X is a conformal matrix at (almost) every point of D.

Of course the existence of conformal parametrization for all surfaces cannot be taken for granted, but this will not be discussed in this lecture. I will instead spend some time to discuss conformal changes of variables in the plane.
1.7 Conformal maps in the plane

A map \(f : D \subset \mathbb{R}^2 \to \mathbb{R}^2 \) is conformal if \(\partial_x f \cdot \partial_y f = 0 \) and \(|\partial_x f| = |\partial_y f| \) at every point, that is

\[
\nabla f \in M \cup M'
\]

\[
\left\{ \begin{align*}
(\begin{array}{cc}
a & b \\
b & a
\end{array}) \mid a, b \in \mathbb{R} \end{align*} \right\} \cup \left\{ \begin{align*}
(\begin{array}{cc}
a & b \\
b & -a
\end{array}) \mid a, b \in \mathbb{R} \end{align*} \right\}
\]

Now, \(\nabla f \in M \) is equivalent to say that \(f \) satisfies the Cauchy-Riemann equations, that is, \(f \) is holomorphic (and the identification \(\alpha \cdot \beta = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \) gives the identification of the complex derivative \(f' \) with the Jacobian matrix \(\nabla f \).

On the other hand, \(\nabla f \in M' \) means that \(f \) is antiholomorphic.

Let us review a few useful facts.

FACT 1

A conformal change of variable preserves Dirichlet energy and conformality. If \(\phi : D \subset \mathbb{R}^2 \to D \subset \mathbb{R}^2 \) is conformal and bijective, for every \(u : D \to \mathbb{R} \) (or \(\mathbb{R}^m \)) there holds

\[
\int_D |\nabla u|^2 = \int_{D'} |\nabla (u \circ \phi)|^2.
\]

Moreover, for every \(X : D \to \mathbb{R}^3 \) which is conformal, \(X \circ \phi \) is conformal too.

FACT 2

If \(D \) is connected and \(f : D \to \mathbb{R}^2 \) is conformal, then \(f \) is either holomorphic or antiholomorphic.

For \(f \) of class \(C^2 \), define \(A = \{ z \in D : \nabla f(z) \in M \setminus \{0\} \} \), \(A' = \{ z \in D : \nabla f(z) \in M' \setminus \{0\} \} \) and \(A_0 = \{ z \in D : \nabla f(z) = 0 \} \). Set

\[
g(z) = \begin{cases} \frac{\partial f}{\partial \bar{z}}(z) & \text{if } z \in A \\ 0 & \text{if } z \in A_0 \\ \frac{\partial f}{\partial z}(z) & \text{if } z \in A'
\end{cases}
\]

Then \(g \) is holomorphic, and therefore is either constantly 0 or \(g(0) \) is a discrete set, that is \(A_0 \) is discrete, which implies that \(A \) or \(A' \) is empty (because they cannot be separated by a discrete set).

FACT 3

\(\text{holo} \circ \text{holo} = \text{holo} \) \((\equiv \, M \times M \subset M)\),
\(\text{holo} \circ \text{antiholo} = \text{antiholo} \) \((\equiv \, M \times M' \subset M')\),
\(\text{antiholo} \circ \text{holo} = \text{antiholo} \) \((\equiv \, M' \times M' \subset M')\),
\(\text{antiholo} \circ \text{antiholo} = \text{holo} \) \((\equiv \, M' \times M \subset M)\).

In particular, every antiholomorphic function can be written as \(\bar{f(z)} \) or \(f(z) \) with \(f \) holomorphic.
As a corollary of facts 2 and 3, conformal maps from \mathbb{R}^2 to \mathbb{R}^2 reduce essentially to holomorphic maps.

FACT 4

If f is holomorphic and injective then $f' \neq 0$ (i.e., $\nabla f \neq 0$) at every point. Hence f' is holomorphic too.

Assume $f'(z_0) = 0$. Then f can be written as $f(z) = f(z_0) + (z - z_0) g(z)$ for some $n \geq 2$, g holomorphic with $g(z_0) \neq 0$ (just write the Taylor series of f at z_0...). Since $g(z_0) \neq 0$, it can be locally written as $h^m(z)$ and therefore $f(z) = f(z_0) + ((z - z_0) h(z))^n$, which is clearly not injective in any neighbourhood of z_0....

FACT 5

If D is the disc $(D = \{z : |z| < 1\})$ an holomorphic function $f : D \to \mathbb{C}$ is determined (up to a purely imaginary constant) by the restriction of its Real Part $\text{Re} f$ to the boundary of D.

Indeed $f(z) = \sum_{n \geq 0} a_n z^n \Rightarrow \text{Re}(e^{i\theta}) = \sum_{n \geq 0} \frac{1}{2} a_n e^{i\theta} + \frac{1}{2} a_n e^{-i\theta} \Rightarrow$ the Fourier coefficients of $\text{Re}(e^{i\theta})$ give a_0 and a_n for every $n \geq 1$.

QUESTION

How many are the holomorphic bijections from a domain D into itself? and from D into another domain D'?

The answer is: very few! This is already hinted by fact 5, and indeed we have:

FACT 6

If D is the disc, the holomorphic homeomorphisms of D into itself are of the form

$$\frac{f(z)}{g(z)} = \frac{b z + a}{1 + a z} \quad (\star)$$

with $a, b \in \mathbb{C}$, $|b| = 1$ and $|a| < 1$.

We first check that the maps given by (\star) are homeomorphisms of D into itself (they are obviously holomorphic). Consider indeed all projective transformations of the projective line $P\mathbb{C} = \mathbb{C} \cup \{\infty\}$, namely the maps $g(z) = \frac{Az + B}{Cz + D}$ with $AB - CD \neq 0$.

Imposing that four points of the circle S' (e.g., $\pm 1, \pm i$) are mapped into the circle it is enough to guarantee that all S' is mapped
onto S^1 because projective transformations maps conics in conics, and one conic is determined by four points. These conditions give all the maps of the form (*) with $|b|=1$. The condition $|a|<1$ is obtained by requiring that 0 is mapped inside D and not outside.

To prove that there are no other holomorphic homeomorphisms of D besides those in (\ast), it is enough to show that every such homeomorphism f which satisfies the additional constraint $f(0)=0$ is a rotation, that is $f(z)=\lambda z$ for some λ with $|\lambda|=1$ (if f does not satisfy $f(0)=0$, by composing with a suitable map w (\ast) we get \tilde{f} s.t. $\tilde{f}(0)=0$; if \tilde{f} is a rotation then f is of the form (\ast)). Indeed we have $|f(z)|=1$ for every $z \in \partial D=S^1$ (because f maps ∂D to ∂D) and since $f(z)$ is holomorphic also w_0, the maximum principle yields $|f(z)|=1$ in D and therefore $f(z)=\text{constant of modulus 1}$ in D (an holomorphic function with constant modulus is constant).

Remark. By fact 6, an holomorphic homeomorphism f of the disc D is uniquely determined by assigning the values $f(z_1), f(z_2), f(z_3) \in S^1$ for given $z_1, z_2, z_3 \in S^1$.

FACT 7

Given the rigidity of holomorphic automorphisms of the disc (fact 6) it is rather surprising that the following holds:

Riemann Mapping Theorem

If A is a simply connected open set in \mathbb{C} with $A \neq \mathbb{C}$, then there exists an holomorphic homeomorphism $f : D \to A$, where D is the disc. Moreover if the boundary of A is sufficiently regular, then f extends to an homeomorphism of $D \cup \overline{A}$.

FACT 8

From the Riemann mapping theorem one might guess that if two open set A_1 and A_2 are homeomorphic then they are also isomorphic (holomorphically homeomorphic). It is not so: let $D_{R,R'}$ denote the annulus $\{z \in \mathbb{C} | R_1 < |z| < R_2 \}$; then $D_{R,R'}$ is isomorphic to $D_{R',R}$, if and only if $R/R' = R'/R$.

Assume for simplicity $R=R'=1$, and let $f : D_1 \to D_2$ be an isomorphism. Up to an inversion we can also assume that f maps S^1 to S^1 and rS^1 to rS^1. Then f can be extended by reflection in an isomorphism $\tilde{f} : D_{1,1} \to D_{1,1}$.
Take indeed
\[\tilde{f}(z) = \begin{cases} f(z) & \text{if } r \leq |z| \leq s, \\ \frac{|z^2|}{|f(r/2)|} & \text{if } |z| < r. \end{cases} \]

By iterating this reflection procedure, one gets an \textit{holomorphic homeomorphism} \(\tilde{f} : D \rightarrow D \) such that
\[|f(z)| = r^n = |z|^n \quad \text{for every } z \text{ s.t. } |z| = r. \]

But then \(\frac{|z^n|}{|z|r^n} \) must be equal to 1, that is \(r = r' \).

\textbf{Final Remark}

We have seen that holomorphic homeomorphisms in the plane are quite rigid, and of course the same holds for conformal homeomorphisms (cfr. fact 2 above).

In higher dimension the situation is even worse: let \(\tilde{f} : A \subset \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a conformal map, that is,
\[\tilde{f} \cdot \tilde{f}' = 0 \quad \forall i,j; \quad |\tilde{f}| = |\tilde{f}'| \quad \forall i,j. \]

Then \(\tilde{f} \) is (locally) a composition of similarities, isometries (rotations and reflections) and inversions \((x \mapsto \frac{x}{|x|^p}) \).

This class is unsuitable for any variational application....