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Chapter 1

Introduction to dislocations

The focus on the course will be the analysis of variational models for dis-
locations. These are topological defects in crystals that represent the main
mechanism for their plastic behavior. There is a large mechanical, numerical
and theoretical literature about dislocations, but many important questions
are still open. The mathematical understanding of these objects and related
models, on one hand give rise to very interesting and deep mathematical is-
sues, on the other hand can provide an improvement of the existing models
to explain some of the unexplored phenomena related with dislocations.

1.1 A phenomenological description

We start this course with a quick and schematic phenomenological descrip-
tion of dislocations and their role in plastic behavior.

1.1.1 Elastic vs Plastic

The first step is to identify the difference between elastic and plastic defor-
mation. These are familiar notions and it is easy to understand the core
of the matter by means of a very simple one-dimension ideal experiment.
We consider a bar (say of metal) and we stretch it. It behaves elastically if
the corresponding elongation is approximatively proportional to the internal
stress and that, once we release the load, the bar goes back to its original
configuration (as illustrated in the Figure 1.1 a) ). In other words an elas-
tic deformation is completely reversible and after a loading cycle the final
configuration is the same as the initial one.

Now, increasing the load over a given critical stress (the yielding stress
σcritical), the bar becomes softer (phase 2 in Figure 1.1 b) ), and in the
unloading process the deformation follows a different path (phase 3 in Fig-
ure 1.1 b) ) ending with a permanent deformation, a plastic deformation.
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Figure 1.1: a) Shows a schematic loading cycle with an elastic response; b) Cor-
responds to a cycles for an elasto-plastic response ending with a permanent plastic
deformation.

We can understand which is the mechanism for plastic deformation in
metals, again with an idealized experiment. Note that many materials ex-
hibit plastic behavior and the reasons, although similar, might depend on
the “microscopic” structure of the material. Metals are crystals, i.e. they
are characterized by a regular distribution of atoms that lie on a lattice. We
will then focus on crystal plasticity. We will also study some of the most
common crystalline structures in metal, but for the sake of simplicity we
will describe the plastic mechanism using a two dimensional cartoon which
represents a domain with an underlying square lattice subject to a load.

Single crystal Elastic deformation (reversible)

Elasto-plastic deformation Permanent deformation

Figure 1.2: Comparison between elastic and plastic deformation in a crystalline
structure

The picture in Figure 1.2 at the top on the left represents the crystal
at the equilibrium, the reference configuration (we suppose that without
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external load the atoms have minimal interaction energy in the square lat-
tice). Applying a load, we observe a shear resulting in a distortion of the
lattice (a small deviation from the reference configuration). Releasing the
load the deformation is completely reversible (represented by the double ar-
row in Figure 1.2); this is an elastic deformation. If now we increase the
load we observe sliding along horizontal lines (bottom of Figure 1.2). This
is an elasto-plastic deformation. Unloading we then obtain that the elastic
distortion is released but we end up with a permanent deformation.

Figure 1.3: http://www.doitpoms.ac.uk/tlplib/slip/index.php

This mechanism for deformation of metals was already observed in the
nineteen century with optical micrographs, even thought the crystalline na-
ture of metals was not yet understood. At the beginning of last century
the importance of slips for plastic deformation was recognized and scientists
were studing the elastic behavior of bodies subject to different types of de-
formations related with slips. The most relevant contribution was that of
Vito Volterra (1907) who computed explicitly the strain and stress fields for
the deformation for the cylinders with cuts illustrated in Figure 1.4 Several
macroscopic (continuum) models for (crystal) plasticity are still based on
this idea.

1.1.2 The idea of dislocations

The mechanism described above for plastic deformation was not able to
explain some relevant issues arising from experiments. The main open ques-
tion was how to explain the discrepancy between the theoretical yielding
stress and the measured one. Indeed, in the 1930s the micrographs were
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Figure 1.4: V. Volterra, Sur l’équilibre des corps élastiques multiplement
connexes Annales scient. de l’E.N.S. tome 24 (1907)

strong enough to permit to discover the crystallographic nature of the met-
als. Based on this new knowledge it was possible to estimate a theoretical
yielding threshold that tuned out to be orders of magnitude larger than the
measured yielding threshold (i.e. the critical stress σcritical at which plastic
flow actually starts). The theoretical threshold was obtained via an ab initio
calculation based on the idea that in order to start gliding atoms should over-
come an energy barrier due to the interaction with the neighboring atoms.
The height of this energy barriers is proportional to the theoretical stress
threshold, σth

1.
Another important point is the presence of hardening phenomena. In

fact after several cycles of loading and unloading in different directions the
material experiences hardening (i.e., an increase of the resistance of the ma-
terial to undergo plastic flow). These and other effects cannot be explained
by this simple slipping mechanism.

It was in order to explain this discrepancy that, in 1934, the presence
of dislocations was first conjectured by Orowan, Polanyi, and Taylor, the
idea behind this conjecture being that this slipping mechanism could also
be related to the presence of crystal defects.

At a discrete level a dislocation is represented (for the simple, yet unre-
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Figure 1.5: The upper part of the crystal has an extra plane of atoms and the
edge of this plane is the region in which the defected crystal cannot be matched
with a perfect cubic crystal (this line is a so called dislocation)

alistic cubic crystal) in Figure 1.5.
These defects are strictly related with the gliding mechanism. In general,

during plastic flow, the slip is not uniform and this is related with the
presence and the formation of dislocations. This concept is clarified by
the following definition of dislocations à la Volterra (inspired by the elastic
solutions of Volterra for cylinders with cuts that we have already mentioned):
dislocations can be understood as lines separating regions that underwent
different slips.

1In a first approximation (Frenkel 1926) the elastic stress on each atom, due to the
interaction with other atoms, when it deviates by x from its equilibrium configuration is
of the form

σ = σth sin
2πx

b

where b is the interatomic distance, while for small shears one has

σ = µ
x

d

where µ is the shear modulus and d the interplanar distance. These two representations
are at the basis of the estimate of the theoretical yield stress. Indeed in the small strain
limit we have sin(2πx/b) ∼ 2πx/b, which gives

σth ∼
µb

2πd

(see [8], Chapter 1).
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Figure 1.6: The red line represents an edge dislocation

This description makes it clear that ideally dislocations are lines. The
dislocation described in Figure 1.6 is called an edge dislocation, as well as
the one depicted at a discrete level in Figure 1.5. A classical way to detect
dislocations at a discrete level is represented in Figure 1.7.

b Burgers vector

Burgers circuit

Figure 1.7: The definition of the Burgers vector through the Burgers circuit

The procedure (suggested by Frank, 1951) consists in drawing a circuit
around the dislocation in the defected crystal. As you can observe the region
outside the circuit is locally a small deformation of a perfect crystal while
the region inside (the core region) contains the defect. If we now draw the
same circuit in a reference configuration (with a perfect crystal) we can see
that, whenever inside the first circuit there is a defect, the circuit in the
perfect crystal does not close. The missing vector represents the strength of
the dislocation and is called the Burgers vector of the dislocation. An edge
dislocation is then a straight line equipped with a Burgers vector orthogonal
to the line. From the picture it is clear that the Burgers vector does not
depend on the choice of the circuit, as far as the circuit contains only one
defect. We will see later that in fact the Burgers vector is a topological
invariant and, in this respect, dislocations can be considered a topological
defects.

There is another important class of dislocations, screw dislocations. These
are characterize by a Burgers vector parallel to the line, and they may be
obtained kinematically à la Volterra with a slip parallel to the line, as illus-
trated in Figure 1.8. In general a dislocation line might be neither edge nor
screw, but at a microscopic scale can be understood as made of infinitesimal
edge and screw dislocations. Why dislocations are so important and why
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Figure 1.8: The red line represents a screw dislocation

they are the answer to the questions the we raised above? The reason is
that their motion favors the plastic slip.

Figure 1.9: Motion of dislocations as a mechanism for plastic slip (Lloyd, Molina-
Aldareguia 2003)

Figure 1.10: The example of the carpet highlight the one dimensional nature of
these defects (Cacace 2004)

In Figures 1.9 and 1.10 you can find to classical examples used to explain
the effect of defects (moving a bump for the caterpillar produces a final
displacement with less effort, than jumping all at once, as well as pushing
a crease of the heavy carpet is easier than moving the whole carpet at the
same time). The example of the carpet is also interesting since it makes
clear that since this gliding mechanism occurs on a plane (the floor) the
defect (the crease) should be necessary a line.

Note that dislocations were conjectured based on this mechanism, much
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earlier than being observed. The first observations at a Transmission Elec-
tron Micrograph was possible only starting from the 1950s.

A last very important ingredient in the understanding of dislocations is
the crystallographic structure.

Figure 1.11: http://chemwiki.ucdavis.edu/

Indeed dislocations in general belong to a class of admissible planes and
may admit as Burgers vectors a given class of vectors, so that the a slip
along that plane by the Burgers vector represents a transformation under
which the underlying lattice is invariant. In general the slip plane is deter-
mined by the two vectors b and t, the Burgers vector and the direction of
the dislocation line. The only case in which the slip plane is not uniquely
determined, but depends on the crystal under consideration, is the case of
screw dislocations (for which b and t are parallel). The pairs of admissible
planes and corresponding admissible Burgers vectors are called slip systems.
Slip systems are important for the understanding of the interaction and the
motion of dislocations. For the sake of simplicity in most of these notes
we will consider only the case of the cubic lattice, which is not realistic.
Nevertheless this analysis is enough in order to understand the fundamental
facts, being the most relevant crystallographic structure for metals, Body
Center Cubic (BCC) and Face Center Cubic (FCC) lattices (Figure 1.11),
both with cubic symmetry.

These two structures present 12 slip systems, some of them illustrated
in Figure 1.12 (for some details about the specific properties of dislocations
in different crystalline structure see e.g. [9]).
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Figure 1.12

The crystallographic structure in clearly very relevant to understanding
the interaction of dislocations, their kinematic constraints and their mo-
tion. Effective continuum models for plasticity should then account for the
anisotropic effects due to the crystallographic details of the underlying crys-
tal. Many intermediate scales are relevant in the study of crystal plasticity
(see Figure 1.13).

Michael Ortiz
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Figure 1.13: One of the slides of course of M. Ortiz, Rome 2011

The final goal of our analysis is to bridge the scales, with a multi-scale
(ansatz free) analysis, improving existing continuum models with informa-
tions coming from a discrete (atomistic) description.
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1.2 A quick review of the elastic continuum theory
for dislocations

1.2.1 Kinematics

In the theory of elasticity on can represent a deformation of a body using a
reference configuration Ω ⊂ R3 and a function v : Ω→ R3

v

⌦ v(⌦)

reference configuration deformed configuration

Figure 1.14: Deformation of a body

Assuming that the reference configuration is the body at equilibrium, it
is also convenient to measure the deformation using the deviation from the
identity, which correspond to use as a relevant variable the displacement,
i.e. a function u : Ω→ R3 such that

v(x) = x+ u(x) .

We now include the possibility of plastic slips during deformation. We fix a
regular (e.g. Lipschitz, with Lipschitz boundary γ) surface Σ in Ω and we
assume that

1. u is regular outside the surface Σ, e.g. u ∈W 1,1(Ω \ Σ,R3);

2. u has a discontinuity across Σ;

3. the jump of u, [u] := u+ − u− with u+ and u− the two traces of u on
the two sides of Σ, is parallel to Σ. In other words we require that
[u] · n = 0, with n the normal to the surface Σ.

A functional space in which these requirements are well posed in a proper
weak sense is the space SBV (Ω;R3) (of the Special Functions with Bounded
Variation - see [6, 2]). We will come back to this technical point later on. For
the moment the above condition are enough to describe the main ingredients
of the kinematic. If we now compute the distributional gradient of u we
obtain that

Du = ∇uL3 + [u]⊗ nH2 Σ , (1.2.1)

where L3 denotes the 3-dimensional Lebesgue measure, while H2 Σ is the
2-dimensional Hausdorff measure on Σ (see e.g. [6]), which in this regular

11



case reduces to the classical surface measure on Σ. The expression (1.2.1)
for the distributional gradient of u is an example of a more general situation
occurring in the linear theory for plasticity, where the deformation gradient
is decomposed in an elastic strain βe and a plastic strain βp, i.e.

Du = βe + βp , (1.2.2)

In (1.2.1) ∇uL3 =: βe is absolutely continuous with respect to the 3-
dimensional Lebesgue measure and can be interpreted as the elastic bulk
distortion, while [u]⊗nH2 Σ =: βp is the plastic deformation due to slips.
Note that in the classical elasto-plastic models (see e.g. [11]) the decom-
position (1.2.2) is done at a macroscopic scale in which the effective plastic
deformation is understood as the result of many slips that occurs at smaller
scales, so it need not to be an actual slip, and hence is not necessary con-
centrated on surfaces (see e.g. [4]).

Since Du is a gradient we have that the distributional curl of Du is zero,

CurlDu = 0 in the sense of distributions in Ω (1.2.3)

(here we are denoting by Curlβ the curl of a 3×3 matrix β, which corresponds
to the a matrix whose rows are the curl of the rows of β)2. Hence we have
that

Curlβe = −Curlβp .

We also want to include the ingredient that the slips should be compatible
with the underlying lattice (at least locally). This corresponds to require
that the jump of u belongs to the set of admissible Burgers vectors that
we will denote by B, which in the case of the cubic lattice coincides with
Z3. From (1.2.3), taking Φ ∈ C∞0 (Ω,R3×3) and integrating by parts (using
Stokes formula), we get

〈Curlβe,Φ〉 :=

∫
Ω

Curl Φ · βe =

∫
Σ

Curl Φ[u]⊗ ndH2 (1.2.4)

Now, if the slip is uniform, then there are no dislocations. This means
that Σ disconnects Ω (or ∂Σ ∩ Ω = ∅) and [u] must be constant on each
connected component of Σ, hence by (1.2.4) we get

〈Curlβe,Φ〉 =

∫
∂Σ∩Ω

Φ[u]⊗ tdH1 = 0

(where t is the tangent to ∂Σ) which implies, if Ω is simply connected, that
βe is a gradient in whole of Ω (i.e. there exists a function v ∈W 1,1(Ω) such
that ∇v = βe).

2(Curlβ)ij =
∑
kl eklj∂kβil, with e123 = 1 = e312 = e231 and e321 = −1
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If, instead, we have non uniform slips we obtain that

Curlβe 6= 0 .

We now apply the above formulas to the specific examples illustrated
before.

For the edge dislocation in Figure 1.6 we take Σ = {x3 = 0, x2 < 0} so
that the dislocation line γ is given by γ = e1R, where e1, e2, e3 denotes the
canonical basis in R3. We choose u ∈W 1,1(Ω \ Σ) with

[u] =

{
be2 x = (x1, x2, 0) with x2 < 0

0 otherwise
(1.2.5)

where b ∈ Z and b = be2 is the Burgers vector3.
For the screw dislocation in Figure 1.8 again we take Σ = {x3 = 0, x2 <

0} and γ = e1R, and we choose u ∈W 1,1(Ω \ Σ) with

[u] =

{
−be1 x = (x1, x2, 0) with x2 < 0

0 otherwise
(1.2.6)

with b ∈ Z and b = −be1 is the Burgers vector.
Finally for an arbitrary loop in the plane {x3 = 0} as in Figure 1.15 we

�
⌃

Figure 1.15: The slip that produces a loop on Σ

take

[u] =

{
b x ∈ Σ

0 otherwise .
(1.2.7)

In all these cases we obtain

Curlβe = Curl∇u = b⊗ γ′

|γ′|
H1 γ in Ω , (1.2.8)

3The fact that it is possible to find a function with this regularity satisfying (1.2.5)
((1.2.6), or (1.2.7)) will be discussed later
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where with an abuse of notation we are using γ to denote the close curve
and its parametrization, so that γ′

|γ′| is the tangent to γ, while H1 γ is
the 1-dimensional Hausdorff measure on γ, which if γ is a Lipschitz curve,
coincides with the line measure on γ.

The examples above are consistent with the Volterra description of dis-
locations and provide a continuum version of the Burgers circuit that we
have introduced at a discrete level. Indeed from (1.2.8) we obtain that for
every circuit C around γ4, as in Figure 1.16, we have that the circulation of
βe around C is given by b, i.e.,∫

C
βe · τ = b , (1.2.9)

where τ is the tangent to C. This formula clarify the fact that dislocations
are topological defects of the elastic strain field.

C

⌧

�

b

Figure 1.16: The circulation around a circuit

The matrix-valued measure µ = b⊗ γ′

|γ′|H
1 γ is called the Nye disloca-

tion measure corresponding to the strain βe.
In general, as we already mentioned, in the context of the linear macro-

scopic theory for plasticity the decomposition in plastic and elastic strain
does not requires the structure given in (1.2.2), nevertheless we can interpret
the condition Curlβe 6= 0 as a consequence of the presence of dislocations
at a smaller scale. In the literature the quantity

α := Curlβe

is called the Nye dislocation density [12]. By its very definition, we have
that α should satisfy

Divα = 0 in the sense of distributions in Ω ,5 (1.2.10)

or equivalently ∫
Ω
DΦ · α = 0 ∀Φ ∈ C∞0 (Ω) .

4Precisely we should require that C is closed curve, which is the boundary of a surface
that intersect γ in one point
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In particular in the case of a dislocation line γ, i.e. α = µ = b⊗ tH1 γ,
this means that γ must be the union of a countable number of Lipschitz
curves with no end-points in Ω, b must be constant on each connected
component of γ away from branching points, and in each branching point
the oriented sum of Burgers vectors must be zero (see Figure 1.17).

�

b

b1

b2

Figure 1.17: Burgers vectors at branching points. The Burgers circulation is a
topological invariant, and hence b = b1 + b2.

1.2.2 Elasticity

Before describing elastic properties of dislocations and their consequences in
the continuum theories (see Section 1.2.3), we now give a very quick review
of the essential notions in linear elasticity that will be required (see e.g. [7],
[10] of [3] for a more complete treatment of elasticity theory).

A deformed elastic body is in a state of tension. In elasticity theory, using
Cauchy stress principle, the internal forces present in the body are described
by a stress tensor that represents the contact forces per unit area between
two different parts of the body separated by an ideal surface. Then at each
point of a reference configuration Ω ⊂ R3 we define the stress tensor σ ∈
R3×3 (the Piola-Kirchoff stress tensor), where each component σij represent
i-th component of the contact force per unit area on a surface orthogonal to
ej (as illustrated in Figure 1.18).

The six components with i 6= j are the shear stresses and using the
balance of momentum one can show that σij = σji, i.e. σ is a symmetric
tensor.

A theory, in elasticity, then corresponds to give a constitutive relation
for the stress in terms of the deformation, i.e. to give an explicit dependence
of σ in terms of the deformation v; this correspond to a condition on the
material under consideration.
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Figure 1.18

The first assumption that we always make, which can be obtained as a
consequence of the thermodynamical axiom of positive work on closed baths
(see [7], Section 28), is the property of hyperelasticity. We say the a material
is hyperelastic if there exists a scalar function W : R3×3 → R such that6

σij(F ) =
∂W

∂Fij
(F ) ∀F ∈ R3×3 . (1.2.11)

This in particular implies that to an elastic deformation v : Ω→ R3 we can
associate an elastic energy given by∫

Ω
W (∇v) dx . (1.2.12)

We also assume that the reference configuration is the equilibrium at which
we associate zero energy. This is expressed by

W (I) = 0 and
∂W

∂Fij
(I) = 0 (1.2.13)

The assumption that the energy (1.2.12) be frame indifferent, which corre-
sponds to the fact that the energy must be independent on the system of
coordinates in which we represnts the deformed configuration and translate
in terms of the energy density W in the following property

W (RF ) = W (F ) ∀F ∈ R3×3 and ∀R ∈ SO(3) . (1.2.14)

Finally, as a consequence of frame indifference we can assume that W is
a function of F TF . Indeed for any given F ∈ R3×3, we can use the polar

6We consider only the homogeneous case, which correspond to the fact that W (F ) does
not depend on x ∈ Ω.
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decomposition of F , and write

F = RU

for some rotation R ∈ SO(3) and some symmetric matrix U ∈ R3×3, which
then satisfies U =

√
F TF . Together with (1.2.14) this implies that

W (F ) = W (RTF ) = W (U) = W (
√
F TF ) = V (F TF ) . (1.2.15)

From this general elastic energy, in a small displacement regime, i.e., assum-
ing that v(x) = x+ δu(x) with δ small, we have

(I + δ∇u)T (I + δ∇u) = I + δ(∇u+∇uT ) + δ2∇uT∇u . (1.2.16)

We can formally linearize the elastic energy7 next to the identity (assuming
enough regularity for the function W ) and, using (1.2.15) and (1.2.16), we
obtain ∫

Ω
W (I + δ∇u) dx = δ2

∫
Ω
Ae(u)e(u) dx+ o(δ2) ,

where the elastic tensor A satisfies

Aijkl =
∂2W

∂Fij∂Flk
(I) ,

and

e(u) =
1

2
(∇u+∇uT )

is the symmetrized gradient of u. Exploiting the symmetries8 of the tensor
A we can introduce a symmetric matrix C ∈ R3×3 which represents the
linearized elastic coefficients satisfying the ellipticity condition

CFF ≥ c|F + F T |2 , with c > 0 ∀F ∈ R3×3 , (1.2.17)

and the linearized elastic energy given by∫
Ω
Ce(u) : e(u) dx , (1.2.18)

here G : F denotes the scalar product between matrices.
A further simplification of the elastic energy is obtained when the ma-

terial is isotropic (i.e., it is invariant by rotations of the reference configu-
ration). In this case the energy (1.2.18) reduces to the isotropic linearized
elastic energy ∫

Ω

λ

2
|tre(u)|2 + µ|e(u)|2 dx (1.2.19)

where λ and µ are the Lamè constants.

7This formal linearization can also be obtained rigorously in terms of Γ-convergence
(see [5])

8Aijkl = Aklij = Ajikl
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Exercise 1.2.1. Given a triangolar two-dimensional lattice L, as in Fig-

ure 1.19, generated by the vectors v1 = (1, 0) and v2 = (1
2 ,
√

3
2 ) consider the

points of the scaled lattice εL as atoms connected by harmonic springs, and
the following interaction energy∑

i,j∈L :|i−j|=1

ε2

(
1− |vi − vj |

ε

)2

,

where v : εL → R2 is the deformation of the lattice.

v1

v2

Figure 1.19

Now rewrite the energy in terms of a displacement u : εL → R2 such
that vi = εi+ δεui for δε << ε. Compute the limit as ε→ 0 of the energy

Fε(u) =
1

δ2
ε

∑
i,j∈L :|i−j|=1

ε2

(
1− |εi− εj + δε(ui − uj)|

ε

)2

.

Hint: use the fact that if ũ is the piecewise interpolation of u in the triangles

of εL, then ∇ũ ξ = ui+ξ − ui, for ξ ∈ {e1,
1
2e1±

√
3

2 e2}, and the fact that for

all F ∈ R2×2 and ξ ∈ {e1,
1
2e1 ±

√
3

2 e2} the function g(δ) = (1− |ξ + δFξ|)2

has a minimum in δ = 0.9

The above linear three-dimensional model for elasticity (1.2.18) reduces
to two two-dimensional models, the plane elasticity model and the anti-
plane elasticity model in cylindrical domains, of the form D×R, where D ⊂
R2 represents the cross section of the cylinder, under specific constitutive
assumptions.

Plane elasticity: We assume that under applied loads and boundary con-
ditions that do not depend on the variable x3 and do not have a component
in direction e3, the corresponding displacement be of the form

u(x) = (u1(x1, x2), u2(x1, x2), 0) .

9Here we are doing two things at the same time: passage from discrete-to-continuum
and linearization. You will see that the dependence on the symmetric gradient in the
limit will come out naturally, since the energy, depending only on the relative distances
between atoms is frame indifferent.
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Under this assumption the energy reduces to the two-dimensional elastic
energy ∫

D
C̃e(ũ) : e(ũ) dx , (1.2.20)

where C̃ ∈ R2×2 and the ũ : D → R2 is the plane displacement.

Anti-plane elasticity: We assume that under applied loads and bound-
ary conditions that do not depend on the variable x3 and only have the
component in direction e3, the corresponding displacement be of the form

u(x) = (0, 0, u3(x1, x2)) .

In this case we obtain the anti-plane energy∫
D
C∇û · ∇û dx , (1.2.21)

where C is a 2× 2 matrix and the scalar function û : D → R is the vertical
displacement. In the isotropic case we get∫

D
µ|∇û|2dx . (1.2.22)

1.2.3 Elastic properties of dislocations

We have already noticed that in a crystal with a dislocation, far from the
core, the crystal is slightly distorted (i.e., it is locally a small deviation from
the perfect crystal, the reference configuration). In this “good” part of the
crystal the classical continuum theory for dislocations is developed in the
context of linearized elasticity. Actually, the definition of the core region is
“empirical”: it corresponds to the region outside which linear elasticity fits
the experiments (see []), it depends on the material and its radius is of the
order of the lattice parameter.

The classical computation to evaluate the elastic distortion outside the
core is then the one of Volterra for an infinite cylinder (as in Figure 1.20).
We consider a displacement u with a jump of b on the surface Σ, and hence
satisfying

Curl∇u = b⊗ tH1 tR ,

and we also require that it satisfies the equilibrium equation

Div(C∇u) = 0 in R3 .

For the case of an infinite cylinder there are explicit solutions. In the case
of a screw dislocation the problem reduces to an anti-plane model with a
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scalar vertical displacement that jumps by b. In the isotropic case this is
given, in polar coordinates, by

u(ρ, θ) =
b

2π
θ , (1.2.23)

and the corresponding elastic strain is

βe := ∇u =
b

2πρ

(
− sin θ
cos θ

)
. (1.2.24)

Exercise 1.2.2. Prove that β = b
2πρ

(
− sin θ
cos θ

)
satisfies

divβe = 0 and curlβe = bδ0 in R2 ,

in the sense of distributions.10

From (1.2.24) we get

βe ∼ 1

ρ
. (1.2.25)

We will see that this fact is more general. One can prove that if the dislo-
cation line γ is not too irregular, the corresponding elastic strain satisfies
βe(x) ∼ 1

dist(x,γ) . This in particular implies that βe 6∈ L2
loc(R3).

For the explicit anti-plane strain (1.2.24) we can compute the elastic
energy in a hollow cylinder of inner radius r and outer radius R, around the

10Note that in this case the curl reduces to curlβ = ∂x2β1 − ∂x1β2.
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dislocation, which corresponds to compute the L2 norm of βe in the set11

BR \Br ⊂ R2 and we get∫
BR\Br

|βe|2dx =
|b|2

4π2

∫ 2π

0

∫ R

r

1

ρ2
ρ dρ dθ =

|b|2

2π
log

R

r
. (1.2.26)

Note that this computation provides always a lower bound for the L2 norm of
any field β : BR\Br → R2 satisfying curlβ = bδ0 in the sense of distributions.
Indeed this property can be rewritten as∫

∂Bρ

β · t ds = b ,

where t is the tangent to ∂Bρ and then, using Jensen inequality, we have∫
BR\Br

|β|2dx ≥
∫ R

r
2πρ−

∫
∂Bρ

|β · t|2 ds dρ

≥
∫ R

r
2πρ

∣∣∣∣∣−
∫
∂Bρ

β · t ds

∣∣∣∣∣
2

dρ =
|b|2

2π
log

R

r
.

(1.2.27)

The result is that the linear elastic energy outside the core of the disloca-
tion diverges logarithmically, in the core radius. A similar behavior can be
obtained, in plane elasticity, for edge dislocations. This is a general fact;
the lack of integrability in L2 is due to the topological defect. This creates
a difficulty in using linear elasticity with an energetic formulation. On the
other hand in a discrete description of the interactions between the atoms of
the crystal, there is no reason for the dislocation to have such a high energy
(indeed the core contains a finite number of interactions). In order to deal
with this “inconsistency” in the continuum theory for dislocations there are
a number of hybrid models in which different length scales coexist. A con-
tinuum variable, as the elastic strain, describes the elastic deformation far
from the core and in correspondence to dislocations the problem needs to
be regularized with a small parameter that plays the role of the lattice spac-
ing. To simplify matters, there are essentially two main ways, that we will
describe more in detail in the sequel, to regularize the problem. These are
schematically pictured in the two figures below (see Figure 1.21). In 1) we
regularize the elastic energy by removing the core (i.e., an ε-neighborhood
(γ)ε of the dislocation γ) from the elastic energy. We will refer to this
approach as the core radius approach. This corresponds to considering an
energy of the type ∫

Ω\(γ)ε

Cββdx

11Here we denote by BR the ball of radius R centered in 0.
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Figure 1.21: 1) The core radius approach. 2) The phase field approach
(Nabarro-Peierls)

with the condition Curlβ = b ⊗ tH1 γ =: µ. Alternatively we can con-
sider the energy in the whole of Ω by regularize the elastic strain through a
mollification of the measure µ at scale ε, requiring Curlβ = ϕε ? µ.

In 2) the relevant variable is the slip [u] which is regularized by making
the transition between two different slips smooth in a layer of length ε. We
refer to this model as a phase field model.12

We will refer to this class of models as semi-discrete models, in the sense
that, even though continuum models, they represent very well the discrete
setting. It can be proved, indeed, in many cases, that the asymptotic be-
havior of these models gives the same result that could be obtained starting
from a genuine discrete description.13

12The classical reference for this model is the Peierls-Nabarro model (see [8]).
13This has been proved rigorously in the case of screw dislocations in [13] and [1] .
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