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Abstract

We study dielectric breakdown for composites made of two isotropic phases.
We show that Sachs’ bound is optimal. This simple example is used to illustrate
a variational principle which departs from the traditional one. We also derive
the usual variational principle by elementary means without appealing to the
technology of convex duality.

1 Introduction

We study a model of (first failure) dielectric breakdown in Rn. We discuss the general
setting with an emphasis on the mathematical setting. We actually give two different
derivations (both based on a power-law type regularization) and discuss the advantages
of each of them. Our choice to treat conductivity is motivated by its simplicity. However,
the general setting applies to other problems, including polycrystal plasticity in the
context of anti-plane shear or plane stress. In this respect, our analysis follows a recent
paper by Kohn and Little [15] on the subject. We begin with an informal description
of the model problem which follows closely the notation and the setting given in the
latter work.

Consider a body occupies a bounded portion of space Ω which is the union of
two non overlapping subdomains Ω1 and Ω2 of prescribed volume fractions. Given
two positive thresholds M1 and M2 which are characteristic of materials one and two
respectively, and given ξ ∈ Rn, we would like to know if there exists a function u, with
−
∫
∇u dx = ξ, such that the following condition is satisfied at almost every point

|∇u(x)| ≤M1 , x ∈ Ω1 ,
|∇u(x)| ≤M2 , x ∈ Ω2 .

(1.1)

The physical picture is as follows. The vector ξ represents the average electric field.
For any given direction ξ̂, there exists a critical value ecr of the magnitude of the
average electric field ξ = λξ̂ such that if |λ| < ecr, then the electric field ∇u satisfies
(1.1) everywhere and the body behaves as a perfect insulator. Otherwise if |λ| ≥ ecr,
then ∇u violates (1.1) in some region and then the body begins to conduct. This is a
reasonable way to model the first failure in dielectric breakdown. After this first failure
occurs the model is inadequate and other effects have to be taken into account.

Dielectric breakdown is one of the many nonlinear models which are used in the
physicist’s literature (see [16] and references therein). It is a simplified version of the
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more flexible power-law model which is known to give an adequate description for
classes of conductors including ZnO ceramics (see [2] and references therein).

The mathematical justification of the dielectric breakdown model as a limiting case
of the power-law model is one of the focus of our paper. Our result is two-fold. First
we achieve an efficient mathematical derivation in two different ways, both new to the
best of our knowledge. Second we show how the new derivation gives a different point
of view on the model which recovers all the information of the traditional approach
but, in addition, gives a new variational principle which is quite interesting being less
degenerate than the traditional one.

To explain the content of these derivations it is convenient to rewrite (1.1) in a
more concise form as follows

∇u(x) ∈ K(x) , a.e. x ∈ Ω , (1.2)

where

K(x) := {η ∈ R2 : λ(x)|η| ≤ 1} (1.3)

and

λ(x) = βχ(x) + α(1− χ(x)) = M−1
1 χ(x) +M−1

2 (1− χ(x)) . (1.4)

Here χ is the characteristic function of the region Ωβ, while α and β are given positive
numbers. We will use throughout the usual terminology: the set Ωβ is occupied by
“phase β”, the arrangement of the two phases is determined by the characteristic
function χ and will be called the “microgeometry”. In the setting of anti-plane shear
Kohn and Little considered a set K(x) which is a rectangle whose orientation varies
from point to point. In our case, (in dimension two) the set K(x) is a circle whose
radius varies from point to point. In the context of plasticity, the set K(x) is called
the yield set. One knows this set for any given phase, i.e. one knows M1 and M2. The
ultimate goal is to understand the structure of an “effective” yield set, Keff which,
roughly speaking, represents the yield set of the given body made of the two phases
and which is parametrized by a set of vectors: Keff is the set of all ξ ∈ Rn such that
there exists a function u, with −

∫
∇u dx = ξ, such that ∇u ∈ K(x).

We now begin the mathematical formulation. Let Q = (0, 1)n be the unit cube. Fix
0 < α < β, θ ∈ (0, 1), ξ ∈ Rn and a microgeometry χ in Q, with

∫
χdx = θ. The

problem is to find a function u = u] + 〈ξ, x〉 which satisfies (1.1), with u] a Q-periodic
function. The natural function space requires u to have a bounded gradient. Hence
we require u] ∈ W 1,∞

] (Q) (i.e. u] is Q-periodic and belongs to W 1,∞
loc (Rn)). In this

formulation the analogue of the so-called effective yield set is given by

Khom ≡ {ξ ∈ Rn : (1.1) holds for some u = u] + 〈ξ, x〉 with u] ∈ W 1,∞
] (Q)} . (1.5)

Now for p ≥ 1 we consider the corresponding power-law “ancestor problem”:

ghom
p (ξ) = inf

u∈W 1,p
]

(Q)

∫
Q
gp(x,∇u(x) + ξ)dx , (1.6)

where

gp(x, ξ) =
1

p
λp(x)|ξ|p . (1.7)
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For p = 2, one can interpret ghom
2 as the effective (or homogenized) conductivity asso-

ciated to the scalar conductivity σ(x) = λ2(x). For p 6= 2 the material has a nonlinear
response and the Euler Lagrange equations associated to (1.6) are

div[λp(x)|∇u(x) + ξ|p−2(∇u(x) + ξ)] = 0 in Rn ,

u ∈ W 1,p
] (Q) .

(1.8)

The heuristic is as follows. As p grows, the function gp tends to blow up unless the field
satisfies (1.2) almost everywhere. It is therefore tempting to consider a formal limit
in the following way. One can say that as p tends to infinity, either (1.2) is satisfied
at any point, and then the material does not conduct when subject to average field ξ
or otherwise at some point in the material (or to be slightly more precise on a set of
positive measure) condition (1.2) is violated. In the latter case the material begins to
conduct if subject to that particular average field. This leads to a formal derivation of
the dielectric breakdown model. Following the tradition, we set

ghom
∞ (ξ) = inf

u∈W 1,∞
]

(Q)

∫
Q
g∞(x,∇u(x) + ξ) dx , (1.9)

where

g∞(x, ξ) = IK(x)(ξ) :=

{
0 if λ(x)|ξ| ≤ 1 a.e in Q,

+∞ otherwise ,
(1.10)

and we rewrite the “effective yield” set Khom as

Khom ≡ {ξ ∈ Rn : ghom
∞ (ξ) <∞} ≡ {ξ ∈ Rn : ghom

∞ (ξ) = 0} . (1.11)

The function ghom
∞ is, in fact, the right substitute of ghom

p in the case p = ∞, but
this fact requires some justification. The traditional one uses (among other things) the
formalism of convex duality. The reader is referred to the book by Jikov et al. [12] and
to [15] for an exposition of this point of view. The papers [4], [5] and [25] are among
those studying related problems.

In this paper we will justify the model in a more direct way using the point of view
of the De Giorgi’s Γ-convergence (see the seminal paper [8] and the monographs [7]
and [6]).

We will also describe a different rigorous derivation of the model. We will see that
our new derivation recovers all the information delivered by (1.9) and, in our opinion,
it also has some advantages. Let us outline our alternative strategy. We consider the
new family of functions

fhom
p (ξ) := inf

u∈W 1,p
]

(Q)

(∫
Q
λp(x)|∇u(x) + ξ|pdx

) 1
p

. (1.12)

This is a convenient notation. However let us emphasize that we are not claiming that
fhom
p (ξ) is the homogenized energy density associated to the right hand side of (1.12).

Obviously, for any p ∈ (1,∞), this function describes the same physics as (1.6). We
show that the above family defines a limit function, namely

fhom
∞ (ξ) = inf

u∈W 1,∞
]

(Q)
sup
x∈Q

(λ(x)|∇u(x) + ξ|) . (1.13)
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With these notations one can check that

ξ ∈ Khom ⇔ fhom
∞ (ξ) ≤ 1 (1.14)

and moreover that

ξ ∈ ∂Khom ⇔ fhom
∞ (ξ) = 1 . (1.15)

Thus our formulation describes in a very direct way Khom exactly like the more tra-
ditional one and therefore it is not essentially different form it. An immediate advantage
is that it achieves the same goals with more elementary and direct mathematical tools
and moreover it characterizes ∂Khom in a very straightforward way through (1.15).

Using the new formulation (1.13) we obtain a number of interesting consequences
which are definitely less transparent in the traditional approach. For instance we can
deduce the following facts. For fixed microgeometry, fhom

p (ξ) is a continuous function of
p in the interval (1,∞] (see (2.13)). This provides a useful comparison. Second, among
the minimizers of (1.13), there is at least one, let us call it u∞, which is inherited from
the sequence up, where the function up is the (unique) minimum of the variational
principle (1.12). Next, under some smoothness assumptions on gp, one finds an Euler-
Lagrange equation for u∞. Indeed u∞ turns out to be a so-called viscosity solution of
a second order non linear PDE. This is the anisotropic version of the operator ∆∞
(called the infinite-laplacian) which has been studied among others by Aronsson [1],
Jensen [14], T. Bhattacharya, De Benedetto and Manfredi [3]. We will not pursue this
interesting direction here. We refer to Sections 1, 2 and 3 of Juutinen’s thesis [14] for
more details. In looking for a minimal approach to our work one might bring back these
consequences to corresponding statements in the language which uses ghom

p and ghom
∞ .

However, this would be rather artificial since the new approach gives an interesting
insight in itself.

Let us now describe the content of each section of the present paper. Section 2 is
the most technical of the paper and proves the derivations described above. Sections 3
and 4 address the second focus of the paper. This is a detailed study of the model (1.2),
(1.3) and (1.4). More precisely, we study the problem of establishing microgeometry
independent bounds for (1.13). To explain the main results of our analysis, we focus first
on the upper bounds (Section 3). Our starting point is the well known Sachs’ bound.
For each ξ, the bound depends on α, β and the volume fraction. One is interested in
showing the optimality of this bound. In our new language, this is translated into the
following statement: find a vector ξ and a microgeometry, so that the inequality

fhom
∞ (ξ) ≤ max(α, β)|ξ|

holds as an equality.
The optimality, in the sense just mentioned can be called optimality along one

direction. This is easy to achieve through a simple laminate microgeometry. A much
more complicated issue is to show simultaneous optimality with respect to any desired
direction. This is our way of saying that the bound is optimal among “isotropic” micro-
geometries. We achieve this goal by exhibiting a new class of optimal microgeometries.
This class has some feature in common with the microgeometry proposed in the context
of polycrystalline materials by Kohn and Little. One interesting feature of the class we
propose here is its remarkable flexibility.

Our work is strongly connected with the literature concerning attempts to improve
Sachs’ bound for power-law materials. It is now well understood that improving this
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elementary bound for non linear material is a fundamentally more difficult problem
than improving the equally famous Taylor’s bound [31]. The first significant attempt in
this direction is due to Talbot and Willis [28] and [29]. They treated three dimensional
problems. Their technique is based on previous work by Willis [32], Stein [24] and
John and Nirenberg [13]. It was able to give an improvement of Sachs’ bound which, at
first, seemed disappointingly modest. However our work proves that this improvement
ought to be very small for large p and actually it must tend to zero when p tends
to infinity, hence giving additional value to their work. Recently Talbot, in the very
interesting paper [26], made a further improvement, in particular for n = 2. Again
similar comments apply.

In Section 4, we turn our attention to microgeometry independent lower bounds.
We exhibit a particular example which shows that, in the limit as min(α, β) tends
to zero, the lower bound predicts the right scaling law. We conclude, in particular,
that in the limit when the ratio of β and α tends to infinity, the composite may
behave as perfectly conductor as well as perfectly insulator depending on the type of
microgeometry. Section 5 is devoted to the conclusions.

2 The power-law asymptotics

In this section we give two rigorous derivations of the dielectric breakdown model
presented in the introduction using the technique of Γ-convergence. This are Proposi-
tions 2.1 and 2.6. Proposition 2.5 complements the results, by exploring some direct
implications which will be used later in the paper.

This new application of Γ-convergence to material science adds to the many which
are already commonly used.

To state our results we need some preliminary definitions. Let Q = (0, 1)n be the
unit cube in Rn, let 0 < α ≤ β be two given real constants and let λ be an L∞(Q)
function such that

α ≤ λ(x) ≤ β a.e. in Q .

We are interested in the behavior, as p goes to ∞, of the minima of the functionals of
the form 1

p

∫
Q |λ∇u|pdx under suitable periodic (or more general) boundary conditions.

We shall consider

ghom
p (ξ) = inf

u∈W 1,p
]

(Q)

1

p

∫
Q
λp(x)|∇u(x) + ξ|pdx , (2.1)

where W 1,p
] (Q) is the class of all functions in W 1,p(Q) which, extended by periodicity,

belong to u ∈ W 1,p
loc (Rn).

The Γ-convergence, result permits, in this case, to describe the behavior of all
sequences of “almost minimizers” (as explained in Proposition 2.5 below). Apriori each
functional we study is well defined on a different space (W 1,p(Q)). However, in order
to study the Γ-convergence, it is natural to extend our functionals to a single Banach
space in which a notion of convergence is given. We recall that such convergence must
be weak enough to assure the compactness of any sequence of minimizers and strong
enough to assure the lower semicontinuity of the energies. To this aim let Gp be the
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functional defined in L1 by

Gp(u) =


1

p

∫
Q
|λ∇u|pdx if u ∈ W 1,p(Q),

+∞ otherwise in L1(Q).

(2.2)

We say that a sequence {Gp} Γ-converges to the functional G∞ (with respect to
the L1 topology) if the following two conditions are satisfied:

(i) For every u ∈ L1 there exists a sequence {up} (called a recovering sequence), such
that up → u in L1 with

lim sup
p→∞

Gp(up) ≤ G∞(u) .

(ii) For every sequence up in L1, with up → u in L1, we have

lim inf
p→∞

Gp(up) ≥ G∞(u) .

We shall prove the following result

Proposition 2.1 The family {Gp} Γ-converges with respect to the L1 topology to the
functional

G∞(u) =


0 if |λ∇u| ≤ 1 a.e. in Q,

+∞ otherwise in L1(Q).
(2.3)

We postpone the proof of Proposition 2.1.

Remark 2.2 Proposition 2.1 provides (via Proposition 2.5 below), the following con-
sequences. First, for any ξ ∈ Rn, the convergence of ghom

p (ξ), defined by (2.1), to ghom
∞ (ξ)

given by

ghom
∞ (ξ) = inf

u∈W 1,∞
]

(Q)
G∞(u+ 〈ξ, x〉) = inf

u∈W 1,∞
]

(Q)

∫
Q

1K(x)(∇u+ ξ)dx . (2.4)

Second, among the minimizers of (2.4) there is at least one which is a limit (up to
subsequences) of the sequence of the minimizers of (1.6).

We shall also consider a slightly different functional defined by

Fp(u) =


(∫

Q
|λ∇u|pdx

) 1
p

if u ∈ W 1,p(Q),

+∞ otherwise in L1(Q).

(2.5)

Clearly, for any given ξ ∈ Rn and p > 1, v is a minimum for (2.1) if and only if v is a
minimum for

fhom
p (ξ) = inf

u∈W 1,p
]

(Q)
Fp(u+ 〈ξ, x〉) . (2.6)
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Remark 2.3 The main reason to study the Γ-limit of the functionals Fp is that, as
proved in Proposition 2.6, this approach will provide us with a new variational principle
which is less degenerate than (2.4). In particular this will establish a new characteri-
zation of the set Khom (see Remark 2.8).

The Γ-convergence result stated in Proposition 2.1 makes rigorous the statement that
“the power-law constraint reduces to a pointwise constraint as p goes to infinity”. This
crucial point is the content of the following lemma.

Lemma 2.4 Let up be a sequence converging to u in L1 and such that

lim inf
p→∞

Gp(up) < +∞ ,

then |λ∇u| ≤ 1 a.e. in Q.

Proof. Without loss of generality we can assume that

lim inf
p→∞

Gp(up) = lim
p→∞

Gp(up) = C < +∞ . (2.7)

By Hölder’s inequality we have

∫
Q
|∇up|αdx ≤ (pGp(up))

α
p

(∫
Q

1

λα
dx
) p−α

p

for all α ∈ [1, p] (2.8)

which, together with (2.7), implies in particular that the sequence ∇up is bounded in
Lα(Q) for every α ≥ 1. Hence, since up converges to u in L1(Q), ∇up converges to ∇u
weakly in Lα(Q). For every open subset B ⊆ Q, Hölder’s inequality yields

∫
B
|λ∇up| dx ≤

(∫
B
|λ∇up|pdx

) 1
p

|B|
p−1
p .

Then, taking the limit as p→∞, using the weak lower semicontinuity of the norm and
(2.7), we have∫

B
|λ∇u| dx ≤ lim inf

p→∞

∫
B
|λ∇up| dx ≤ lim inf

p→∞
p

1
pGp(up)

1
p |B|

p−1
p = |B| (2.9)

for every open set B ⊆ Q. Since λ∇u is an L1 function, for almost all x0 in Q

lim
ρ→0
−
∫
Bρ(x0)

|λ∇u| dx = |λ(x0)∇u(x0)| .

The latter in conjunction with (2.9) yields the conclusion. 2

Proof of Proposition 2.1. Let us prove first the property (i) of the Γ-convergence.
If G∞(u) = +∞ the inequality is trivially satisfied by any sequence converging to u.
Otherwise, let u be such that G∞(u) = 0, i.e. |λ∇u| ≤ 1 a.e. in Q. Choosing up = u
we have

lim sup
p→∞

Gp(up) ≤ lim sup
p→∞

1

p
= 0 = G∞(u) .

We now check property (ii) . By Lemma 2.4, if up → u and lim infp→∞Gp(up) < +∞,
then |λ∇u| ≤ 1. Hence G∞(u) = 0 and (ii) follows. 2
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We now prove the convergence of the minimizers.

Proposition 2.5 For any ξ ∈ Rn, ghom
p (ξ) converges to ghom

∞ (ξ). Moreover every se-
quence of minimizers {uξ,p} of problems (2.1), up to a subsequence, converges in L1 to
a minimum uξ of problem (2.4).

Proof. Let us fix ξ ∈ Rn and let uξ,p ∈ W 1,p
] (Q) be a minimizer of (2.1), so that

Gp(uξ,p + 〈ξ, x〉) = ghom
p (ξ).

If lim supp→∞Gp(uξ,p + 〈ξ, x〉) = +∞, then ghom
∞ (ξ) = +∞. Indeed assume, by

contradiction, that there exists v ∈ W 1,∞
] (Q) such that G∞(v + 〈ξ, x〉) = 0, then

|λ(∇v + ξ)| ≤ 1 and hence we have

lim sup
p→∞

Gp(uξ,p + 〈ξ, x〉) ≤ lim sup
p→∞

Gp(v + 〈ξ, x〉) = 0 .

Therefore we may assume that

lim sup
p→∞

Gp(uξ,p + 〈ξ, x〉) < +∞ . (2.10)

Up to a translation we have −
∫
uξ,p dx = 0. Thus, by the equicoerciveness of Gp (see

(2.8)), we have that uξ,p is bounded in W 1,α(Q), α ≥ 1, and, up to a subsequence,
it converges to some function uξ weakly in W 1,α(Q) and strongly in L1(Q). Finally,
by (2.10) and Lemma 2.4, |λ(∇uξ + 〈ξ, x〉)| ≤ 1, i.e. G∞(uξ + 〈ξ, x〉) = 0. Moreover
uξ ∈ W 1,∞

] (Q) and

0 ≤ ghom
∞ (ξ) ≤ G∞(uξ + 〈ξ, x〉) = 0 ,

hence, ghom
∞ (ξ) = 0. Finally

lim sup
p→∞

Gp(uξ,p + 〈ξ, x〉) ≤ lim sup
p→∞

Gp(uξ + 〈ξ, x〉) = 0 .

2

We now establish the new variational principle for the dielectric breakdown problem.

Proposition 2.6 The sequence {Fp}, defined by (2.5), Γ-converges with respect to the
L1 topology to F∞ defined as follows:

F∞(u) =

 sup
Q
|λ∇u| if u ∈ W 1,∞(Q)

+∞ otherwise in L1(Q).
(2.11)

Proof. The result is an immediate consequence of the fact that Fp is an increasing
sequence of L1 lower semicontinuous functionals that converges pointwise to F∞. Indeed
the pointwise convergence ensures that condition (i) of the Γ-convergence is satisfied
by a recovering sequence up = u for every u ∈ L1(Q). To obtain condition (ii), let {up}
be a sequence converging to u in L1. By the monotonicity of {Fp} we have

Fq(up) ≤ Fp(up) ∀ q < p ,

so that, by the lower semicontinuity we get

Fq(u) ≤ lim inf
p→∞

Fq(up) ≤ lim inf
p→∞

Fp(up) .

We conclude taking the limit as q →∞. 2
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Remark 2.7 Let us define

f∞(ξ) = inf
u∈W 1,∞

]
(Q)

F∞(u+ 〈ξ, x〉) = inf
u∈W 1,∞

]
(Q)

sup
Q
|λ(∇u+ ξ)| . (2.12)

Arguing as in the proof of Proposition 2.5, we deduce by Proposition 2.6 that

lim
p→∞

fhom
p (ξ) = fhom

∞ (ξ) . (2.13)

Remark 2.8 The function f∞ “reconstructs” the set Khom. Indeed we have

Khom =
{
ξ ∈ Rn : ∃u ∈ W 1,∞

] (Q) such that |∇u+ ξ| ≤ 1
}

and thus, by (2.12), we get

Khom = {ξ : f∞(ξ) ≤ 1} . (2.14)

Clearly f∞(ξ) is an homogeneous function and, by Lemma 2.9 below, it is also Lipschitz
continuous. This implies in particular that

∂Khom = {ξ : f∞(ξ) = 1} . (2.15)

Lemma 2.9 The function fhom
∞ (ξ) is Lipschitz continuous. More precisely

|fhom
∞ (ξ1)− fhom

∞ (ξ2)| ≤ β|ξ1 − ξ2| , ξ1 , ξ2 ∈ Rn .

Proof. Let us fix ξ1, ξ2 ∈ Rn and let u1 ∈ W 1,∞
] (Q) be a minimum for problem (2.12)

corresponding to the vector ξ1, i.e. fhom
∞ (ξ1) = sup (λ(x)|∇u1(x) + ξ1|). Thus

fhom
∞ (ξ2)− fhom

∞ (ξ1) ≤ sup
x

(λ(x)|∇u1(x) + ξ2|)− sup
x

(λ(x)|∇u1(x) + ξ1|) ≤ β|ξ2 − ξ1| .

We conclude the proof interchanging the role of ξ1 and ξ2. 2

3 Upper bounds for fhom
∞

In this section we prove that there exist isotropic microgeometries which saturate Sachs’
bound. Hence Sachs’ bound is optimal for the dielectric breakdown model. From now
on λ(x) will be given by

λ(x) = βχ(x) + α(1− χ(x)) ,

where 0 < α ≤ β and χ is the characteristic function of a measurable subset Eβ of the
unit cube Q (a microgeometry), i.e. χ = χEβ . In the sequel we use the notation fhom

∞,χ (ξ)
when we want to emphasize the dependence of fhom

∞ (ξ) on the microgeometry.
We will verify that Sachs’ bound can be written in the form

fhom
∞ (ξ) ≤ β|ξ| . (3.1)

We shall first give a sufficient condition for a microgeometry to be optimal for Sachs’
bound in one fixed direction ξ̂. Then we show that Sachs’ bound is optimal for isotropic
microgeometries (a microgeometry is said to be isotropic if fhom

∞ (ξ) depends only on
|ξ|).
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In contrast, when p ∈ [2,∞), it is possible to prove that there exists no isotropic
microgeometry satisfying Sachs’ bound for the function fhom

p , [21]. However, the result
of this section implies that, as p approaches infinity, Sachs’ bound becomes nearly
optimal for fhom

p and therefore any quantitative improvement of it must be very small
as soon as p becomes rather large. We remark that this shows that the results of Talbot
and Willis [28] and [29] on the subject are remarkably good.

In the setting of dielectric breakdown (or perfect plasticity), Sachs’ bound is given
by

KSachs ⊆ Khom (3.2)

where the set KSachs is defined by

KSachs = {ξ ∈ Rn : ξ ∈ K(x) for all x ∈ Q} , (3.3)

so that, in our case

KSachs =

{
ξ ∈ Rn : |ξ| ≤ 1

β

}
=: B 1

β
. (3.4)

Sachs’ bound can be equivalently stated in terms of fhom
∞,χ , as follows

fhom
∞,χ (ξ) ≤ β|ξ| ∀ ξ ∈ Rn . (3.5)

To check this, for any ξ̂ ∈ Rn, with |ξ̂| = 1 (i.e. ξ̂ ∈ Sn−1), let us define

λ(ξ̂) = sup{t ∈ [0,∞) : tξ̂ ∈ Khom} . (3.6)

By the homogeneity of fhom
∞,χ (ξ) and by (2.14) and (2.15) we have

λ(ξ̂) =
1

fhom
∞,χ (ξ̂)

(3.7)

for every ξ̂ ∈ Sn−1. Now (3.2) is equivalent to saying that

tξ̂ ∈ Khom ∀ t ∈
[
0,

1

β

]
and ∀ ξ̂ ∈ Sn−1 (3.8)

and this, by definition, implies λ(ξ̂) ≥ 1
β
, and hence (3.5).

Conversely if (3.5) holds true, then, by (3.7) λ(ξ̂) ≥ 1
β

for every ξ̂ ∈ Sn−1, and this

implies (3.8); hence, by (3.4), we have

B 1
β
⊆ Khom ⇔ fhom

∞,χ (ξ) ≤ β|ξ| ∀ ξ ∈ Rn .

Note that λ(ξ̂) corresponds to the critical value ecr of the magnitude of the electric
field as defined in the introduction.

Definition 3.1 Sachs’ bound (3.5) is optimal along a given direction ξ̂ ∈ Sn−1 (or
ξ̂-optimal) if

sup
χ
fhom
∞,χ (ξ̂) = β . (3.9)

A microgeometry χ such that

fhom
∞,χ (ξ̂) = β , (3.10)

is called a ξ̂-optimal microgeometry.
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Remark 3.2 Note that, by the definition of fhom
∞,χ (ξ̂), the ξ̂-optimality of a microgeom-

etry χ is equivalent to the fact that u = 0 is a minimizer for problem (1.13). Moreover
since fhom

∞,χ (ξ) is homogeneous, (3.10) implies that

fhom
∞,χ (ξ) = β|ξ|

for all vectors ξ proportional to ξ̂.

Let us give a sufficient condition for the optimality of a microgeometry.

Proposition 3.3 Fix a direction ξ̂ ∈ Sn−1. Let χ be a microgeometry and let Eβ the
set occupied by the phase β (χ = χEβ). Assume that Eβ contains a neighborhood of

a closed path γ on the torus (Rn/Zn), with γ parallel to ξ̂. Then χ is a ξ̂-optimal
microgeometry.

We postpone the proof.

Example 3.4 The microgeometry in Fig. 1 is optimal along e1 and e2.

Remark 3.5 Note that the condition above on the set Eβ is equivalent to saying
that there exists a closed path γ on the torus and δ > 0 such that Eβ ⊇ {x ∈
Q : dist(x, γ) ≤ δ}. Moreover this condition can be satisfied only if ξ̂ is a “rational”
direction, i.e. it is a multiple of ξ̂ belongs to Zn.

In particular, for any rational direction ξ̂ and any θ > 0, we can construct an ξ̂-
optimal microgeometry with |Eβ| = θ. Indeed, first fix a closed path γ on the torus

Rn/Zn with finite length L and parallel to ξ̂ (which is always possible because ξ̂
has a rational direction) and then set Eβ = {x ∈ Q : dist(x, γ) ≤ δ}. Then, by

Proposition 3.3, χEβ is ξ̂-optimal and |Eβ| = θ for a suitable choice of δ (see Fig. 2).

Proof of Proposition 3.3. Let u ∈ W 1,∞
] (Q) be such that fhom

∞,χ (ξ̂) = ‖λ(∇u+ ξ̂)‖∞.
Assume by contradiction that

‖λ(∇u+ ξ̂)‖∞ < β ,

then, in particular, we have
sup
Eβ

|∇u+ ξ̂| < 1 .

This implies that 〈∇u, ξ̂〉 < −ε, for some ε > 0.
Let L be the length of γ. Since u ∈ W 1,∞

] (Q), its restriction to almost every line

parallel to ξ̂ is absolutely continuous; thus, since a neighborhood of γ belongs to Eβ, we
may assume that u is absolutely continuous on γ and therefore the following calculation
makes sense

0 =
∫
γ
du =

∫ L

0
〈∇u, ξ̂〉 ds < −εL ,

yielding a contradiction. 2

Definition 3.6 We say that χ is an isotropic microgeometry if fhom
∞,χ (ξ) = Cχ|ξ|, where

Cχ is a positive constant, i.e. if fhom
∞,χ (ξ) depends only on the norm of ξ.
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In view of (2.14) this definition is equivalent to saying that the corresponding Khom is
a ball of radius C−1

χ .

Remark 3.7 Since fhom
∞,χ (ξ) is Lipschitz continuous with respect to ξ (see Lemma 2.9),

if a microgeometry is optimal along all rational directions, then it is optimal along any
direction. In particular it is isotropic.

Remark 3.7 together with Proposition 3.3 will permit us to construct a class of optimal
isotropic microgeometry.

Theorem 3.8 For any fixed 0 < θ ≤ 1, there exist infinitely many optimal isotropic
microgeometries with volume fraction θ.

Proof. Let us fix an arbitrary (countable) family of rational directions {ξh} which is
dense in Sn−1. For any such direction ξh let us consider a closed path γh in Rn/Zn

parallel to ξh. Set γ = ∪hγh and note that γ has zero measure. By the continuity of
the Lebesgue measure we have that for any θ ∈ (0, 1] there exists an open set Eβ
containing γ, with |Eβ| = θ. By construction the set Eβ satisfies the assumptions of
Proposition 3.3. Hence, by Remark 3.7, the microgeometry χ = χEβ is an optimal
isotropic microgeometry. 2

Example 3.9 To give an example of a type of geometry that can arise by the con-
struction in the proof of Theorem 3.8, let us consider, for any h ∈ N, the closed path
γh as above and let Lh be its length. Fix δ ∈ (0, 1) and for every h ∈ N set

Eδ,h
β =

x ∈ Q : dist(x, γh) <

(
2−hδ

Lh

) 1
n

 .

Clearly |Eδ,h
β | ≤ 2−hδ. Thus the set Eδ

β = ∪hEδ,h
β is an open set which contains γ =

∪hγh and, since 0 < |Eδ
β| ≤ δ < 1, Eδ

β it is non-trivial example of optimal isotropic
microgeometry.

Note that, in general, due to its “self intersections” the set Eδ
β has measure strictly less

than δ. However, by “fattening” it in an arbitrary way, one can achieve any desired
volume fraction greater than |Eδ

β|.

4 Lower bound for p =∞
In the present section we give lower bounds for fhom

∞ . We will not attempt to give the
best possible of such bounds. Our goal is more modest. We give a lower bound which is
very easy to compute based on the comparison principle developed by Ponte-Castañeda
[22] and P. Suquet [25]. One could probably obtain the same bounds with a different
method and, at least in principle, more refined bounds are available. More precisely, the
study in [20] suggests that the same result could be attained using the Talbot-Willis
method [27] (enlarging upon previous work of Willis [32]). In addition, possibly better
bounds could be obtained using the so-called translation method directly at level p.

In principle, even better result could be obtained by applying the reasonings in [19]
where the two former methods are combined.
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On the other hand, these more refined methods are not always guaranteed to give
(strictly) better bounds and in any case the calculations involved are major. The reason
our lower bounds are quite satisfactory is that they have the very important feature of
having an asymptotically optimal scaling law.

Actually we shall see that for 0 < α ≤ β, our lower bound goes to zero as α goes to
zero. This may appear disappointing at first. However, it is easy to prove that it must
be so. This is because there exist isotropic microgeometries for which fhom

∞ tends to
zero as α tends to zero. A more refined question to ask is whether our bounds predict
the right scaling. In the following we prove that this is in fact the case.

Indeed, fix the numbers β > α and the volume fraction θ ∈ (0, 1) of the phase β.
The main results of the present section are Proposition 4.1 and Proposition 4.5. The
former shows that there exists a constant CL such that for all microgeometries χEβ ,
with |Eβ| = θ, one has

fhom
∞,χ (ξ) ≥ αCL|ξ| (4.1)

and therefore

inf
χ
fhom
∞,χ (ξ) ≥ αCL|ξ| . (4.2)

Proposition 4.5 proves that there exists a constant CU such that

inf
χ
fhom
∞,χ (ξ) ≤ αCU |ξ| . (4.3)

The combination of the inequalities (4.2) and (4.3) shows that our lower bound predicts
the exact scaling law as α goes to zero. In particular, this shows that as α goes to zero
there are microgeometries for which the composite behaves like a perfect insulator.
Combining this with the work of Section 3 we see that as the ratio between β and
α diverges the composite may behave like a perfect conductor or a perfect insulator
depending on the specific microgeometry.

Similar questions emerge in the study of ionic polycrystals. However, the study of
these issues requires a different analysis, see [9].

We begin by proving (4.2). More precisely we prove the following proposition.

Proposition 4.1 (Comparison principle). Given 0 < α ≤ β, θ ∈ [0, 1], n ≥ 2, and
given n vectors ξi forming an orthonormal basis, let fhom

∞ (ξi) be defined by (2.12). Then
for any choice of a microgeometry χ with −

∫
χ = θ, one has

(∑n
i=1(fhom

∞ (ξi))2

n

) 1
2

≥ α

(
α2(n− 1)(1− θ) + β2(1− θ + nθ)

α2(n− 1 + θ) + β2(1− θ)

) 1
2

. (4.4)

A useful and immediate corollary is the following

Corollary 4.2 If fhom
∞ is isotropic, (see Definition 3.6), then

∀ξ ∈ Rn, fhom
∞ (ξ) ≥ α

(
α2(n− 1)(1− θ) + β2(1− θ + nθ)

α2(n− 1 + θ) + β2(1− θ)

) 1
2

|ξ| . (4.5)

Clearly (4.5) implies (4.2).
The proof of Proposition 4.1 will follow the plan implemented by Ponte Castañeda,

Suquet and others in several papers. See for instance [22], [25], [23] and [20]. The
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calculation of [15] is also similar in spirit. The only somewhat technical difference is
that we assume nothing in terms of isotropy both of the linear and the nonlinear
behavior. This is a nice feature since it maybe very difficult to check whether a given
microgeometry is indeed isotropic. In this respect our derivation is more efficient. The
results in [20] might, in principle be better but we will not use those more complicated
bounds. Let us begin focusing on the linear bounds which will be needed to apply the
comparison principle. We recall that given σ(x) = σ1(1 − χ) + σ2χ with 0 < σ1 < σ2,
then the effective conductivity σ∗ is defined as follows: for any vector ξ ∈ Rn,

〈σ∗ξ, ξ〉 := inf
u∈W 1,2

]
(Q)

∫
Q
σ(x)|∇u(x) + ξ|2dx .

For given σ1, σ2 and volume fraction θ =
∫
χ, the set of possible σ∗ as χ varies is called

the G-closure of the corresponding problem and denoted by Gθ. This set is known
in any dimension n. This is a result due to Tartar and Murat [30] and to Lurie and
Cherkaev [17]. They proved, in particular the following result

Theorem 4.3 If σ∗ belongs to Gθ, its eigenvalues σ∗j , j = 1, 2, . . . , n satisfy the bounds

n∑
i=1

1

σ∗i − σ1

≤ n

θ(σ2 − σ1)
+

1− θ
θσ1

,

σ∗j ≥
(

1− θ
σ1

+
θ

σ2

)−1

, j = 1, 2, . . . , n .

(4.6)

We may now begin the proof of Proposition 4.1.

Proof of Proposition 4.1. Set σ = λ2. For any ξ ∈ Rn we have

〈σ∗ξ, ξ〉 := inf
u∈W 1,2

]
(Q)

∫
Q
σ(x)|∇u(x) + ξ|2dx .

In particular for any u ∈ W 1,∞
] (Q) and any ξ ∈ Rn we have

〈σ∗ξ, ξ〉 ≤ ‖σ
1
2 (∇u+ ξ)‖2

∞ .

Taking the infimum on both sides of the latter inequality over the set of functions
u ∈ W 1,∞

] (Q) we obtain

〈σ∗ξ, ξ〉 ≤
(
fhom
∞ (ξ)

)2
∀ξ ∈ Rn . (4.7)

Next we consider n orthonormal vectors ξi and apply (4.7) to each of them obtaining

n∑
i=1

(
fhom
∞ (ξi)

)2
≥ Trace σ∗ ≥ min

σ∗∈Gθ
Trace σ∗ . (4.8)

Recalling that σ = λ2, to prove (4.4) it remains to prove that

min
σ∗∈Gθ

Trace σ∗ = nσ1
σ1(n− 1)(1− θ) + σ2(1− θ + nθ)

σ1(n− 1 + θ) + σ2(1− θ)
. (4.9)
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Indeed, because of a certain convexity property of the set Gθ, one can check that

min
σ∗∈Gθ

Trace σ∗ = min
σ∗∈Gθ,isot

Trace σ∗ , (4.10)

where Gθ,isot is the intersection of Gθ with the set of matrices proportional to the
identity (isotropic). (This calculation, based on a Lagrange multiplier argument is
omitted). Therefore using (4.10) and (4.6), (4.8) implies (4.9) and hence (4.4) follows.

2

Let us consider an example where we can compute explicitly the function f∞ in two
different directions and that shows a linear behavior in α when α tends to zero.

Example 4.4 For simplicity we shall give a two dimensional geometry for which we
compute f∞(ei), with i = 1, 2, e1 = (1, 0), and e2 = (0, 1). Let Eβ be the cube Q 1

2
of

side 1
2

centered at (1/2, 1/2). For any fixed 0 < α < β, let us consider the piecewise
affine function given by

u(x1, x2) =



β − α
β + α

x1 if x1 ≤
1

4

−β − α
β + α

(
x1 −

1

2

)
if

1

4
≤ x1 ≤

3

4

β − α
β + α

(x1 − 1) if
3

4
≤ x1 ≤ 1.

Remark that

|λ(x1, x2)(∇u(x1, x2) + e1)| = ‖λ(∇u+ e1)‖∞ =
2αβ

β + α
a.e. x = (x1, x2) ∈ R ,

where R = {(x1, x2) : 0 ≤ x1 ≤ 1 and 1
4
≤ x2 ≤ 3

4
}. We shall prove that f∞(e1) = 2αβ

β+α
.

Indeed we have already remarked that

f∞(e1) ≤ ‖λ(∇u+ e1)‖∞ =
2αβ

β + α
. (4.11)

To prove the opposite inequality let us arguing by contradiction. Assume that there
exists a function ũ ∈ W 1,∞

] (Q) such that

‖λ(∇ũ+ e1)‖∞ <
2αβ

β + α
. (4.12)

In particular, by (contradiction), for almost every x = (x1, x2) ∈ Eβ

β(〈∇ũ(x), e1〉+ 1) ≤ β|∇ũ(x) + e1| <
2αβ

β + α
,

which implies that

〈∇ũ(x), e1〉 < −
β − α
β + α

. (4.13)

Now, by the periodicity of ũ, we get∫
R
〈∇ũ(x), e1〉 dx = 0 ,
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where R is the rectangle defined above, and thus, by (4.13), we have∫
R\Eβ
〈∇ũ(x), e1〉 dx = −

∫
Eβ

〈∇ũ(x), e1〉 dx > |Eβ|
β − α
β + α

.

Since |Eβ| = |R \ Eβ| we have

sup
R\Eβ
〈∇ũ(x), e1〉 >

β − α
β + α

.

Hence

‖λ(∇ũ+ e1)‖∞ ≥ sup
R\Eβ

α|∇ũ(x) + e1| > α

(
β − α
β + α

+ 1

)
=

2αβ

β + α
,

which, together with (4.12), gives a contradiction. Hence fhom
∞ (e1) = 2αβ

β+α
. By the

symmetry of this geometry we also get that fhom
∞ (e2) = 2αβ

β+α
.

Let us now go back to the proof of (4.3). We prove the following proposition.

Proposition 4.5 For any θ ∈ (0, 1) there exists a microgeometry χθ, with
∫
χθ = θ,

such that for every ξ ∈ Sn−1

sup
α>0

fhom
∞,χθ(ξ)

α
≤ C , (4.14)

where C is a positive constant which depends neither on β nor on ξ. In particular there
exists a constant CU > 0 such that

inf∫
χ=θ

fhom
∞,χ (ξ) ≤ αCU |ξ| .

Proof. Fix θ ∈ (0, 1), 0 < α < β, and consider the microgeometry χθ = χQθ , where

Qθ denotes the cube of side θ
1
n centered in Q. Let us denote by d(x) the function

d(x) =
2

1− θ 1
n

dist(x, ∂Q) ,

where dist(x, ∂Q) is the distance between x and ∂Q. Next for any ξ ∈ Sn−1, let us
define the function

u(x) =


−〈ξ, x〉 if x ∈ Eβ = Qθ

−〈ξ, x〉 d(x) if x ∈ Q \ Eβ .

Observe that u ∈ W 1,∞
] (Q), hence we have

f∞,χ(ξ) ≤ ‖λ(x)(∇u(x) + ξ)‖∞ = sup
Q\Eβ

α|∇u(x) + ξ| ≤

sup
Q\Eβ

α‖ξ − d(x)ξ − 〈ξ, x〉∇d(x)‖ ≤ sup
Q\Eβ

α ((1− d(x)) + |x||∇d(x)|) .
(4.15)

Since |∇d(x)| ≤ 2

1−θ
1
n

we obtain

fhom
∞,χ (ξ) ≤ α

(
1 +

2
√
n

1− θ 1
n

)
,

which concludes the proof. 2
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5 Conclusions

We have given two slightly different characterizations of a model of dielectric break-
down. We have described the new characterization and some of its features in the
simplest possible example of a mixture of two isotropic phases.

Our new variational principle needs only slight modifications to be extended to
other problems. For instance the isotropy of the phases and their number play no role.
The same approach should work also in polycrystal plasticity at least for the kind of
model presented in [11]. However the issue of bounds and their attainability requires a
different analysis, (see [9]).

The obvious disadvantage to depart from a very well known and established way of
thinking about the model, is partly compensated by the simplicity of the new approach.
The crucial potential advantage of the new formulation is the use of the new variational
principle since it is less degenerate than the traditional one.

For the model we have treated, it is known (see [3] and [14]) that, under some
smoothness hypotheses, one can derive a sort of Euler Lagrange equation for a varia-
tional principle of type (2.12). Unfortunately, the assumptions which are required are
still inadequate for problems involving composites. In the smooth case, i.e. when λ is
smooth, one finds a second order equation of the form

〈∇(λ2|∇u|2), λ2∇u〉 = 0 . (5.1)

In particular when λ = 1, (5.1) reduces to the so called infinite-laplacian, usually
denoted by ∆∞ and defined by

∆∞u := 〈D2u∇u,∇u〉 . (5.2)

The mathematics involved is rather subtle since the solutions are to be understood in
the weak sense of “viscosity solutions”. Nevertheless, we believe that this is a promising
issue deserving further investigations. We refer to [14] for a very nice and self-contained
introduction to this subject as well as for some of the most recent results (see in
particular Corollary 4.33 of [14]).

Our examples in Section 4 make some contact with examples which are present in
the literature of the so-called infinite laplacian.

From the point of view of bounds, our results of Section 3 and (2.13) shed new light
on the bounds by Talbot and Willis, [28] and [29], showing their considerable efficiency.
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