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Abstract
We introduce models for static and quasi-static damage in elastic materials, based on a strain threshold,
and then investigate the relationship between these threshold models and the energy-based models
introduced in [17] and [15]. A somewhat surprising result is that, while classical solutions for the energy
models are also threshold solutions, this is not the case for nonclassical solutions, i.e., solutions with
microstructure. A new and arguably more physical definition of solutions with microstructure for the
energy-based model is then given, in which the energy minimality property is satisfied by sequences of
sets that generate the effective elastic tensors, rather than by the tensors themselves. We prove existence
for this energy based problem, and show that these solutions are also threshold solutions. A byproduct
of this analysis is that all local minimizers, in both the classical setting and for the new microstructure
definition, are also global minimizers.

1. Introduction

Many phenomena in mechanics, such as fracture, plasticity, and damage, have
been studied through variational models. These models, both static and quasi-
static, are often inspired by a threshold criterion – fracture occurs where the stress
has a sufficiently large singularity, plastic behavior starts where the stress reaches
the yield surface, and materials undergo damage where the stress exceeds a given
threshold. The main advantage of a variational formulation for these problems is
the ease of showing existence of global minimizers (even if only for a relaxed energy).
On the other hand, threshold criteria are local (in space), so that the correspon-
dence between these variational approaches and the threshold becomes suspect. In
particular, one would expect that if an energy based approach captures the thresh-
old criterion, then, since threshold criteria are local, local minimizers should be
threshold solutions. Hence, in order for global minimizers to correspond to thresh-
old solutions, there should be no local minimizers besides global minimizers, when
the norm defining locality is local in space (e.g., L1, but not L∞). Yet frequently
in these variational models, there is a difference between local and global minimiz-
ers (e.g., [9], [11], [12], [18], [16]), or at least uncertainty about whether there is a
difference ([17], [15]).

Additionally, if there is equivalence between the energy formulation and the
threshold criterion, a new issue arises if the energy needs to be relaxed. Namely,
this means that the threshold criterion also needs to be relaxed (i.e., there are no
solutions to the threshold formulation, but there are approximate solutions that
develop microstructure). A natural weak form of the threshold criterion then needs
to be formulated. When one considers quasi-static evolution, the correspondence
between the energy and threshold formulations should be maintained, so that the
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weak form of the threshold formulation suggests the correct relaxation for the energy
based formulation. For the quasi-static damage model that we consider, what
seemed to be the most natural class of competitors in the energy formulation needed
to be modified in order to correspond to the threshold point of view. This is
discussed further and in detail in Remark 3.3.

For these reasons (and others – see the note on dynamics at the end of this
introduction), our view is that there can be substantial value in formulating models
using threshold criteria explicitly, as these models can then be compared to the
energy-based ones, leading to either support for the existing models, or possibly
to their improvement or correction. Indeed, our unrelaxed threshold formulation,
which we describe shortly, strongly supports the unrelaxed energy formulations
in [17] and [15]. On the other hand, as just described, our relaxed formulation
requires a refinement of the formulation in [15]. More specifically, it requires that
the relaxed energy formulations be posed in terms of sequences of sets that generate
microstructure, rather than in terms of the effective behavior of the microstructure.
This new energy formulation appears to be more physical than the one in [15], which
suggests that the monotonic G-closure as described below might not be the right
object for quasi-static evolutions.

To begin, we first outline the variational model for damage proposed by Franc-
fort and Marigo [17] and the quasi-static model by Francfort and Garroni
[15]. In these models, two states, undamaged and damaged, are given by two elastic
well-ordered tensors, As and Aw, and the energy of each displacement u is given by∫

Ω

W (e(u)) dx−
∫

Ω

f u dx ,

where e(u) = ∇u+∇uT

2 is the symmetrized gradient and

W (ε) = min
{

1
2
Asε ε ,

1
2
Awε ε + k

}
,

where k can be viewed as the cost (per volume) for the material to undergo damage,
or the energy dissipated (per volume) when the material undergoes damage. This
energy density is not quasi-convex, thus in the minimization procedure we expect
microstructure, which requires relaxation. The quasi-convex envelope of W can be
represented as follows

QW (ε) = min
Θ∈[0,1]

min
A∈GΘ(As,Aw)

{
1
2
Aε ε + kΘ

}
,

where GΘ(As, Aw) is the G-closure of As and Aw mixed with volume fractions 1−Θ
and Θ.

Given an external loading f(t) parametrized by time, a relaxed quasi-static evo-
lution for this model (that also includes irreversibility of damage) was constructed
in [15]. There, it was proved that there exists a time parametrized family of elastic
tensors A(t, x) (mixture of As and Aw with proportion Θ(t, x)) satisfying a mono-
tonicity property (irreversibility of the damage), a minimality condition (described
in detail below) and an energy balance.

In the case Θ(t, x) ∈ {0, 1}, i.e., Θ(t, ·) = χD(t)(·), we say that D(t) is a strong
solution of this energy-based formulation.

We now describe the new models for damage evolution based explicitly on a strain
threshold, without any reference to an energetic cost for damage. We restrict our
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analysis to the scalar (anti-plane deformations) isotropic case (As = αI and Aw =
βI). Our formulation is based on three principles. First, damage is irreversible,
so that the damaged region is increasing in time; second, there exists a damage
threshold λ, such that in the undamaged region, the strain is at or below λ; and
third, damage only occurs as is necessary in order to maintain the second condition.
The first two conditions are straightforward, but a precise formulation of the third
is not as obvious. As an illustration, consider a one-dimensional homogeneous bar
being strained along its length by a boundary condition at its endpoints, so that at
every time the strain is constant along the bar. When the difference in boundary
conditions at the endpoints is large enough, the material cannot remain undamaged
and still satisfy the threshold condition. The question then is, where does damage
occur? There are really only two possibilites: i) damage occurs everywhere, and
ii) damage occurs at an arbitrary location, in a region just large enough so that
the second condition remains satisfied. We adopt the latter view, for the following
reason: to say that, mathematically, the bar is homogeneous is to say that we are
modeling a bar that is almost homogeneous, in which case the damage threshold will
vary from point to point. Points with lower thresholds will undergo damage first,
and once enough damage has occurred for the threshold condition to be satisfied in
the undamaged region, no further damage will occur.

Still, formulating this last condition for quasi-static evolutions seems necessarily
a bit technical, and we considered more than one formulation, finally settling on
the following, which we found to be the most straightforward to work with. We say
that t 7→ D(t) is a threshold-based quasi-static damage evolution with threshold λ
if

(1) Monotonicity: t 7→ D(t) is increasing
(2) Threshold: Setting σD(t)I := αIχD(t) + βI(1 − χD(t)) and u(t) to be the

solution of
−div(σD(t)∇u(t)) = f(t),

we have |∇u(t)| ≤ λ a.e. in Ω \D(t)
(3) D(t) is necessary: ∀E ⊂ D(t) with |E| > 0, and all ∆t sufficiently small,

∃τ < t−∆t such that if we consider the solution v of

−div(σD(τ+∆t)\∆E∇v) = f(τ + ∆t),

where ∆E := E ∩ [D(τ +∆t) \D(τ)], we have |∇v| > λ on a set of positive
measure in ∆E.

We will show in Theorem 4.4 that there is a correspondence between the k in
[15] and the threshold λ such that if a set-valued function D is a strong solution
to the variational formulation in [15], then it is a solution of the above threshold
problem. We note that the other direction holds also, but we are currently unable
to show this for the relaxed formulation, and so we do not discuss this direction
further here.

A corresponding “microstructure”-based threshold model is more difficult to
formulate, and the connection to [15] is more delicate. Because any threshold model
must involve pointwise properties of deformation gradients, there are difficulties in
formulating a relaxed model just in terms of weak limits of approximating sequences.
Instead one can use the pointwise properties of deformation gradients corresponding
to sequences of damage sets {Dn} that generate the relaxed solution A. For the
most natural microstructure version, there is a problem in making the argument
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that there exists a sequence {Dn} that generates the [15] microstructure solution
and is also a threshold solution. This is due to the fact that we cannot conclude that
the Dn have any (reasonable) minimality property, even asymptotically. The reason
is that if a sequence of mixtures of strong and weak materials (i.e., undamaged
and damaged) generates an effective elasticity tensor A, and another sequence of
mixtures with more weak material (in the sense of set inclusion) generates a tensor
A′, it is not necessarily true that A′ is obtainable as a mixture of A and the weak
material. Yet it is only with respect to such mixtures that [15] evolutions are
minimal. This fact and its consequences on relaxed formulations are detailed in
Remark 3.3. We were therefore led to define an energetic formulation explicitly in
terms of the mixtures that generate the effective tensors, which has solutions that
are also solutions of our relaxed threshold formulation.

The following remark, based on a simple computation, is a hint that the energy
formulation is equivalent to the threshold formulation with threshold λ.

Remark 1.1. We consider the Dirichlet problem on (0, 1) with u(0) = 0 and
u(1) = λ + δ, and we compute the elastic energy corresponding to no damage and
also the energy of the solution corresponding to the damaged set D = (0, d), with d
chosen so that u satisfies u′ = λ in (d, 1) (this corresponds to d = δα

λ(β−α)). In the
first case, the energy is E = 1

2β(λ + δ)2. In the second case Ed = 1
2λβ(λ + δ). We

notice that the statement

E − Ed > kd ⇐⇒ δ > 0

is true exactly when the damage energy penalty k = λ2β(β−α)
2α . That is, having

a damage region of (0, d) minimizes the energy exactly when this is just enough
damage to bring the strain outside the damage region down to the threshold λ.

Finally, we show that all local minimizers (and even all stable states) for our
energy model are global minimizers.

We end this introduction by noting that, while an energetic formulation for dy-
namics with damage is not so clear, with a threshold, there is a natural preliminary
formulation, based on the same three principles as the quasi-static formulation:
irreversibility, threshold, and necessity. Namely, we have

(1) Monotonicity: t 7→ D(t) is increasing
(2) Threshold: Setting σD(t)I := αIχD(t) + βI(1 − χD(t)) and u to be the

solution of

utt − div(σD∇u) = f(t)

subject to appropriate initial conditions, we have |∇u(t)| ≤ λ a.e. in Ω \
D(t), for every t ∈ [0, T ]

(3) D is necessary: ∀E ⊂ D(T ) with |E| > 0, and all ∆t > 0, the solution v of

vtt − div(σD\E∇v) = f(t),

subject to the same initial conditions as u, satisfies |∇v(x, t)| > λ for some
x ∈ D(t) ∩ E and t ∈ [τ, τ + ∆t], where

τ := inf{t : |E ∩D(t)| > 0}.
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2. Preliminaries and notation

2.1. Homogenization. Homogenization is the main tool in the relaxation of the
energy-based models. We recall, for the readers’ convenience, the notions of ho-
mogenization and of G-convergence (see, e.g., [13], or [36] for the more general case
of nonsymmetric linear operators and H-convergence), and specialize them to the
case of two-phase mixtures of linearly elastic materials.

Consider a sequence An ∈ L∞(Ω;F(α, β)), where 0 < α < β and

F(α, β) := {fourth order tensors B with symmetries Bijkh = Bkhij = Bjikh

such that Bεε ∈ [α|ε|2, β|ε|2], ε symmetric ∈ RN×N}.

We say that An G−→ A, A ∈ L∞(Ω;F(α, β)), iff, for every body force f ∈
H−1(Ω; RN ), the solutions un of the equilibrium equations

−div(Ane(un)) = f, un ∈ H1
0 (Ω; RN ),

where the linearized strain tensor e(un) is given by e(un) := (∇un+(∇un)t)
2 , satisfy

(2.1)

 un ⇀ u, weakly in H1
0 (Ω; RN )

Ane(un) ⇀ Ae(u), weakly in L2(Ω; RN×N ),

where u is the solution of
−div(Ae(u)) = f.

Note that in the case of symmetric tensors the first property of (2.1) is enough
to characterize G-convergence and the second condition, which is in turn essential
in the nonsymmetric case, can be obtained as a consequence.

Now, let B and C be the stiffness tensors (Hooke’s laws) of two phases, that is
elements of F(α, β). We look, for any mixture of those two phases – that is for any
characteristic function χ of, say, phase B – at a new elastic material with stiffness

σχ := χB + (1− χ)C.

Considering a sequence of characteristic functions χn ∗
⇀ Θ (which from now on

we understand to mean weak-∗ convergence in L∞(Ω)), we investigate the possible
G-limits of σχn . The properties of G-convergence that will be needed are

• Compactness: for any sequence An ∈ L∞(Ω;F(α, β)), there exists a subse-
quence, Ak(n), and A ∈ L∞(Ω;F(α, β)) such that Ak(n) G−→ A;

• Convergence of the energy: if An G−→ A, then, with un and u defined as
above, ∫

Ω

Ane(un)e(un) dx →
∫

Ω

Ae(u)e(u) dx;

• Metrizability: G-convergence is associated to a metrizable topology on
L∞(Ω;F(α, β));

• Ordering: if Bn ≤ An and Bn G−→ B, An G−→ A, then B ≤ A (the
inequalities are in the sense of quadratic forms);

• Locality: if Bn G−→ B, An G−→ A, and χ is a characteristic function on Ω,
then χBn + (1− χ)An G−→ χB + (1− χ)A;
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• Periodicity: if An(x) := A(nx), with A ∈ L∞([0, 1]N ;F(α, β)) periodic,
then the whole sequence An G-converges to A0, which is the constant tensor
given by

(2.2) A0ee = inf
ϕ periodic

∫
[0,1]N

A(y)(e + e(ϕ))(e + e(ϕ)) dy.

In the case of a two-phase material, we consider σχn(x) = χ(nx)B + (1 −
χ(nx))C, with χ a characteristic function on [0, 1]N , and we speak of peri-
odic mixtures with volume fraction Θ :=

∫
[0,1]N

χ dy of material B.
The set of all G-limits resulting from the periodic mixture of B and C

with volume fractions Θ and 1−Θ is denoted by GΘ(B,C).
The relevance of this set is clarified by a famous unpublished result of localization

due to Dal Maso and Kohn (see [38] for the nonlinear case). It claims that the
range of all possible mixuters of B and C is given by periodic homogenization.
More precisely if Θ ∈ L∞(Ω, [0, 1]) and we denote by GΘ(B,C) ⊂ L∞(Ω;F(α, β))
the set of all possible G-limits of σχn , where χn ∗

⇀ Θ, then

(2.3) GΘ(B,C) = {A ∈ L∞(Ω;F(α, β)) : A(x) ∈ GΘ(x)(B,C), a.e. in Ω}.
The set of all possible mixtures of B and C, as the volume fraction varies from
point to point, is the G-closure of B and C and will be denoted by G(B,C) and as
consequence of the localization result mentioned above is given by

G(B,C) = {A ∈ L∞(Ω;F(α, β)) : ∃Θ ∈ L∞([0, 1]N ; [0, 1]), such that

A(x) ∈ GΘ(x)(B,C), a.e. in Ω} .

3. Energy based solutions

The idea of the formulation given in [15], which was inspired by [17], is that the
G-closure of As and Aw is the right space for both solutions and their competitors,
when describing the minimality properties of solutions. Due to irreversibility, the
minimality property of damage is only with respect to adding further damage.
This is naturally formulated in [15] as the minimality, for each t, of (A(t),Θ(t))
with respect to competitors (A′,Θ′) such that A′ ∈ G(A(t), Aw). Furthermore,
this evolution can be approximated by a sequence of sets Dn(t) (the damage sets),
increasing in t, such that

χDn(t)Aw + (1− χDn(t))As
G−→ A(t) and χDn(t)

∗
⇀ Θ(t) .

However, rather surprisingly, even though (A(t),Θ(t)) has this seemingly natural
minimality property, the sequence Dn(t) (and, indeed, any such approximating
sequence) does not have good optimality properties, since if Dn ⊂ D′

n for each
n ∈ N, it is not generally true that the G-limit of (a subsequence of) σD′

n
is in

G(Aw, A(t)) (see Remark 3.3).
The point is that while the material damage being modeled can occur on a

very small scale, it is always a finite one. Hence, the relaxed formulation needs
to be viewed as an approximation for damage occurring on a very small scale, but
without microstructure. The energy formulation with relaxation therefore needs to
be consistent with the formulation for finite, albeit small, scales. Below we give
a definition of energy minimization based on this idea, but first we introduce the
space of competitors that we will use.
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From now on, with a little abuse of notation, we define

σE := χEAw + (1− χE)As.

Given A ∈ L∞(Ω;F(α, β)) and Θ ∈ L∞(Ω, [0, 1]), with A(x) ∈ GΘ(x)(Aw, As)
a.e. x ∈ Ω, and a sequence of sets Dn such that χDn

∗
⇀ Θ

σDn

G−→ A ,

we give the following definition.

Definition 3.1 (Constrained G-closure). We denote by Ĝ({Dn}, Aw, As), which
we call the constrained G-closure, the subset of G(Aw, As) given by all symmetric
tensors A′ that are the G-limit of a subsequence of σD′

n
satisfying D′

n ⊇ Dn. If
χD′

n

∗
⇀ Θ′ we say that A′ ∈ ĜΘ′({Dn}, Aw, As).

In the sequel, since As and Aw are fixed, the constrained G-closure will be simply
denoted by Ĝ({Dn}) (and ĜΘ′({Dn})).

Definition 3.2 (Energy Minimizing Evolution). Given f ∈ W 1,1([0, T ],H−1(Ω)),
we say that (A(t),Θ(t)) is a quasi-static evolution for the Energy Minimization
Problem (EMP) if for each t ∈ [0, T ], we have Θ(t) ∈ L∞(Ω), A(t) ∈ GΘ(t)(Aw, As),
and they satisfy the following properties

(1) Monotonicity: A(t) is decreasing and Θ(t) is increasing as functions of t;
(2) Energy balance: The total energy

E(t) :=
∫

Ω

1
2
A(t)e(u(t))e(u(t)) dx− 〈f(t), u(t)〉+ k

∫
Ω

Θ(t) dx

satisfies

E(t) = E(0)−
∫ t

0

〈ḟ(σ), u(σ)〉 dσ,

where u(t) is the solution in H1
0 (Ω) of

−div(A(t)e(u(t))) = f(t) in Ω ;

(3) Minimality: There exists a time-indexed family of sequences of sets Dn(t),
monotonically increasing in t, such that for every t ∈ [0, T ],

(3.4)

 χDn(t)
∗
⇀ Θ(t)

σDn(t)
G−→ A(t) ,

and for every (A′,Θ′) such that A′ ∈ ĜΘ′({Dn}) we have

∫
Ω

1
2
A(t)e(u(t))e(u(t)) dx− 〈f(t), u(t)〉+ k

∫
Ω

Θ(t) dx(3.5)

≤
∫

Ω

1
2
A′e(v)e(v) dx− 〈f(t), v〉+ k

∫
Ω

Θ′ dx,

among all v ∈ H1
0 (Ω; RN ).
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Remark 3.3. Note that the minimality condition in Definition 3.2 of quasi-static
evolutions is stronger than the one given on [15]:∫

Ω

1
2
A(t)e(u(t))e(u(t)) dx− 〈f(t), u(t)〉(3.6)

≤
∫

Ω

1
2
A′e(v)e(v) dx− 〈f(t), v〉+ k

∫
Ω

(1−Θ(t))θ dx,

among all v ∈ H1
0 (Ω; RN ), θ ∈ L∞(Ω, [0, 1]) and A′(x) ∈ Gθ(x)(Aw, A(t)) a.e.

x ∈ Ω. Indeed for every t ∈ (0, T ] and any E ⊆ Ω we can apply the minimality
condition of Definition 3.2 to the pair (A′,Θ′) given by A′ = χEAw + (1−χE)A(t)
and Θ′ = (1−Θ(t))χE + Θ(t). By the locality of the G-convergence this pair is an
admissible competitor for condition (3) of Definition 3.2. Indeed A′ ∈ Ĝ({Dn(t)})
(A′ being the G-limit of σDn(t)∪E for any sequence Dn(t) satisfying (3.4)) and
(1−Θ(t))χE + Θ(t) the weak∗ limit of χDn(t)∪E. On the other hand we have that,
a.e. x ∈ Ω, A′(x) ∈ Gθ(x)(Aw, A(t)) with θ = χE. As a consequence of (3.5) we
deduce∫

Ω

1
2
A(t)e(u(t))e(u(t)) dx− 〈f(t), u(t)〉

≤ min
v∈H1

0 (Ω)

∫
Ω

1
2
(χEAw + (1−χE)A(t))e(v)e(v) dx− 〈f(t), v〉+ k

∫
E

(1−Θ(t)) dx.

Thus we deduce (3.6) using the fact that for every A′ such that A′(x) ∈ Gθ(x)(Aw, A(t)),
with θ ∈ L∞(Ω, [0.1]), we have A′ ∈ Gθ(Aw, A(t)) and there exists a sequence of
sets Eh such that χEh

Aw + (1− χEh
)A(t) G−→ A′ and χEh

∗
⇀ θ, hence

lim
h→∞

min
v∈H1

0 (Ω)

∫
Ω

1
2
(χEh

Aw + (1− χEh
)A(t))e(v)e(v) dx− 〈f(t), v〉+k

∫
Eh

(1−Θ(t))

= min
v∈H1

0 (Ω)

∫
Ω

1
2
A′e(v)e(v) dx− 〈f(t), v〉+ k

∫
Ω

(1−Θ(t))θ dx.

Note that the argument in Remark 3.3 can in particular be used to show that

(3.7) Ĝ({Dn}) ⊃ G(Aw, A) = ∪ΘGΘ(Aw, A) .

This inclusion can be strict as shown in the following example, and this implies
that Definition 3.2 is strictly stronger than the one given in [15] (and that [15]
solutions cannot be shown to be threshold solutions). A natural interpretation of
this difference is that the only admissible competitors for (A(t),Θ(t)) in [15] are
states with at least as much damage, and all additional damage must occur on a
larger scale than the relaxed damage represented by (A(t),Θ(t)).

Example 3.4. We show with an explicit example that given A ∈ G(Aw, As) and
a sequence {Dn} of sets such that σDn G-converges to A, the set Ĝ({Dn}) can be
strictly larger than G(Aw, A). In other words we show that we can construct a
sequence D′

n ⊃ Dn such that σD′
n

G-converges to a tensor A′ with A′ /∈ G(Aw, A).
We give the example in two dimensions for scalar problems, but the same con-

struction can be also done in general. Consider As = βI and Aw = αI, where
β > α and I denotes the 2 × 2 identity matrix. Consider also a ball B of radius
r, 0 < r < 1

2 , centered in the unit cube and then consider the sequence of periodic
sets Dn such that χDn

(x) = χB(n(x− [x])), where [x] denotes, with a little abuse
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€ 

1
n

Figure 1. The periodic set Dn

of notation, the vector whose components are the integer part of the components
of x (see Figure 1).

Since each set Dn is invariant by 90◦ rotations, it follows from the homogeniza-
tion formula (2.2) that the effective matrix corresponding to this microstructure is
isotropic, i.e., there exists β′ ∈ (α, β) such that σDn

G-converges to β′I.
Now let E = {x : |x1 − 1

2 | < R}, with r ≤ R < 1
2 . Clearly B ⊆ E and the

corresponding periodic sequence En (the lamination satisfying χEn(x) = χE(n(x−
[x]))) contains Dn.

€ 

1
n

Figure 2. The periodic set En ⊃ Dn, a lamination

It is well known that the sequence σEn G-converges to a 2 × 2 matrix A′,
that by construction belongs to Ĝ({Dn}) and also belongs to the boundary of
G(αI, βI) := ∪ΘGΘ(αI, βI). On the other hand the set G(αI, β′I) is strictly
contained in G(αI, βI) (except for the point αI). We know in particular that

€ 

α
€ 

α

€ 

β

€ 

β

€ 

β '

€ 

β '

€ 

λ1

€ 

λ2

G(α,β)

G(α,β’)

Figure 3. G(αI, β′I) ⊂ G(αI, βI)

∂G(αI, βI) ∩G(αI, β′I) = αI, as shown in Figure 3 where the sets G(αI, βI) and
G(αI, β′I) are represented in terms of their eigenvalues λ1 and λ2.
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Hence A′ /∈ G(αI, β′I) and this shows that Ĝ({Dn}) ⊃ G(αI, β′I).

Remark 3.5. Notice that in [15] the solution constructed by a discrete time ap-
proximation satisfies the extra property, not explicitly stated in the definition, that
A(t) ∈ G

1− 1−Θ(t)
1−Θ(s)

(Aw, A(s)) for every s < t. This may be not true for a solution

of Definition 3.2 as constructed in Theorem 3.7. On the other hand, solutions of
Definition 3.2 satisfy A(t) ∈ ĜΘ(t)({Dn(s)}) for every s < t.

Definition 3.6 (Strong Energy Minimizing Evolution). We say that the set func-
tion D(t) (the damage set at time t) is a quasi-static evolution for the Strong Energy
Minimization Problem (SEMP) if the pair (σD(t), χD(t)) is a solution of (EMP).

In the following theorem we prove the existence of a solution to Definition 3.2.

Theorem 3.7. For every f ∈W 1,1([0, T ],H−1(Ω)), there exists a solution (A(t),Θ(t))
of (EMP).

Proof. We follow the proof obtained by discretization in time in [15]. There, the
issue was the existence of a solution for a weaker formulation than the one stated
in Definition 3.2, where the minimality condition (3) is satisfied for a smaller class
of competitors, i.e., A′ ∈ GΘ′(Aw, A(t)) (see Remark 3.3). This difference does
not change dramatically the strategy of the proof, but requires a slightly different
definition of the incremental problems for the discrete approximation.

Given the interval [0, T ] and given n ∈ N we consider a partition {tni }i=0...m with
tn0 = 0, tnm = T and tni − tni−1 ≤ 1

n (and m ∼ nT ). We now construct a piecewise
constant approximation of the solution starting from the almost minimizers of an
appropriate incremental variational problem, that is defined as follows.

Given tni we denote fn
i (·) = f(tni , ·).

Step 1:The first time step tn0 = 0.
At the first time step, we wish to almost minimize, over (v, χD) ∈ H1

0 (Ω) ×
L∞(Ω;{0, 1}),

Etot(v,D, f0) :=
∫

Ω

[
1
2

(
χDAw + (1− χD)As

)
e(v)e(v) + kχD

]
dx− 〈f0, v〉,

with f0 := f(0). We choose a sequence of subsets Dk
0 ⊂ Ω such that

min
v∈H1

0 (Ω)
Etot(v,Dk

0 , f0) ≤ inf
D

min
v∈H1

0 (Ω)
Etot(v,D, f0) +

1
2k

.

Step 2: The subsequent time steps.
Given n ∈ N, for every i ∈ {1, ...,m} we then can choose the sequence {Dk

i,n} with
Dk

i,n ⊇ Dk
i−1,n (where Dk

0,n := Dk
0 ), such that

min
v∈H1

0 (Ω)
Etot(v,Dk

i,n, fn
i ) ≤ inf

D⊇Dk
i−1,n

min
v∈H1

0 (Ω)
Etot(v,D, fn

i ) +
1

2i+1k
.
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Step 3: The discrete approximation.
For every n ∈ N we can define a piecewise constant in time sequence of sets Dk

n(t),
nondecreasing in t, by

Dk
n(t) := Dk

i,n if tni ≤ t < tni+1 and i = 0, ...,m− 1 .

We then extract a subsequence in k, still denoted by Dk
n(·), such that for every

t ∈ [0, T ] we have χDk
n(t)

∗
⇀ Θn(t)

σDk
n(t) := χDk

n(t)Aw + (1− χDk
n(t))As

G−→ An(t)
as k →∞

for some Θn(t) ∈ L∞(Ω, [0, 1]) and An(t) ∈ L∞(Ω;F(α, β)), with A(t, x) belonging
to GΘn(t,x)(Aw, As) a.e. in Ω, both monotonic in t. Thus (see for instance [15] The-
orem 3.1 and Remark 3.3) we can also extract a subsequence of n such that there ex-
ists Θ(t) ∈ L∞(Ω, [0, 1]) and A(t) ∈ L∞(Ω;F(α, β)), with A(t, x) ∈ GΘ(t,x)(Aw, As)
a.e. in Ω, satifying  Θn(t) ∗

⇀ Θ(t)

An(t) G−→ A(t)
as n →∞

for every t ∈ [0, T ]. Finally by a diagonal argument we can find a sequence k(n) →
∞ as n → ∞ such that the sequence of sets Dn(t) := D

k(n)
n (t) satisfies for every

t ∈ [0, T ]  χDn(t)
∗
⇀ Θ(t)

σDn(t)
G−→ A(t)

as n →∞ .

Note that the monotonicity of Dn(·) and Θ(·) are guaranteed by their construc-
tion. It remains to show that (Θ(t), A(t)) satisfies the energy balance (property (2)
of Definition 3.2) and the minimality (property (3) of Definition 3.2).

Step 4: Minimality property.
Fix t ∈ [0, T ] and consider D′

n ⊃ Dn(t) such that σD′
n

G-converges to some A′ and
χD′

n
weakly ∗ converges to some Θ′. By the definition of Dn(t) we have

min
v∈H1

0 (Ω)
Etot(v,Dn(t), fn(t)) ≤ min

v∈H1
0 (Ω)

Etot(v,D′
n, fn(t)) + o(1)

where fn(t) is the piecewise constant in time approximation of f given by fn(t, ·) :=
f(tni , ·) if tni ≤ t < tni+1, and o(1) → 0 as n →∞. By the definition of G-convergence
and using the fact that fn(t) → f(t) strongly in H−1(Ω) we get

(3.8) min
v∈H1

0 (Ω)
Etot(v,A(t),Θ(t), f(t)) ≤ min

v∈H1
0 (Ω)

Etot(v,A′,Θ′, f(t)) ,

where with a little abuse of notation we denoted

Etot(v,A,Θ, f) :=
∫

Ω

[
1
2
Ae(v)e(v) + kΘ

]
dx− 〈f, v〉 .

From (3.8) we deduce (3.5), which concludes the proof of minimality.
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Step 5: Energy Balance.
From the definition of Dk

i,n in Step 2 and the appropriate choice of each vk
i,n we get

Etot(vk
i,n, Dk

i,n, fn
i ) = min

v∈H1
0 (Ω)

Etot(v,Dk
i,n, fn

i )

≤ inf
D⊇Dk

i−1,n

min
v∈H1

0 (Ω)
Etot(v,D, fn

i ) +
1

2i+1k

≤ Etot(vk
i−1,n, Dk

i−1,n, fn
i ) +

1
2i+1k

≤ min
v∈H1

0 (Ω)
Etot(v,Dk

i−1,n, fn
i−1) + 〈fn

i−1 − fn
i , vk

i−1,n〉+
1

2i+1k
.

Then iterating the above relation from j ∈ {0, ...,m} to 0 we obtain

min
v∈H1

0 (Ω)
Etot(v,Dk

j,n, fn
j ) ≤ min

v∈H1
0 (Ω)

Etot(v,Dk
0 , f0) +

j∑
i=0

〈fn
i−1 − fn

i , vk
i−1,n〉+

1
k

.

Then by the definition of Dn(t) for every t ∈ [tnj , tnj+1) we get

Etot(vn(t), Dn(t), fn(t)) ≤ Etot(vn(0), Dn(0), f(0))−
j∑

i=0

〈fn
i − fn

i−1, vn(tni )〉+ o(1)

as n →∞, where vn(t) denotes the solution in H1
0 (Ω) of

−div (σDn(t)e(v)) = fn(t) in Ω .

Then using that

f(τ + ∆t)− f(τ)
∆t

H−1

−→ ḟ(τ) as ∆t → 0 for a.e. τ

and taking the limit as ∆t → 0 we obtain

E(t) ≤ E(0)−
∫ t

0

〈ḟ(τ), u(τ)〉dτ .

The proof of the inverse inequality is standard and based on the fact that from the
construction of A(t) it is easy to check that (A(t),Θ(t)) is an admissible competitor
for the minimality condition at time s < t. A detailed proof can be obtained as a
particular case of the proof of the more involved inequality (4.16) (see also [15]).

�

4. Threshold Formulation

We consider now the case of As and Aw isotropic: As = βI and Aw = αI. We
also restrict our attention to the scalar case (i.e., functions that take values in R
rather than in RN ).

Given D ⊂ Ω, from now on, with a little abuse of notation, σD will denote the
scalar function

σD := αχD + β(1− χD) .

First we formulate a definition for the classical situation in which the damage at
time t occurs in a set D(t), rather than needing to represent the damage region as
a limit of a sequence of sets.
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Definition 4.1. D(t) is a solution of the Strong Threshold Problem (STP) with
threshold λ if the following hold:

(1) Monotonicity: t 7→ D(t) is increasing;
(2) Threshold: Setting u(t) to be the solution of

−div(σD(t)∇u(t)) = f(t),

we have |∇u(t)| ≤ λ a.e. in Ω \D(t) ;
(3) D is necessary:

• ∀E ⊂ D(T ) with |E| > 0 and all ∆t small enough, ∃τ < t −∆t such
that if we consider the solution v of

−div(σD(τ+∆t)\∆E∇v) = f(τ + ∆t),

where ∆E := E ∩ [D(τ + ∆t) \D(τ)], we have |∇v| > λ in a subset of
∆E with positive measure.

• If D is not continuous at T , then we also require that ∀E ⊂ D(T ) \
D(T−) with |E| > 0 and D(T−) := ∪t<T D(t), the solution v of

−div(σD(T )\E∇v) = f(T )

satisfies |∇v(x)| > λ in a subset of E with positive measure.

Theorem 4.2. If D(t) is a solution of (SEMP), then it is a solution of (STP) with
threshold λ satisfying k = λ2β(β−α)

2α .

The above result can be obtained as a special case of the more general Theo-
rem 4.4 below, which is not restricted to the classical situation of damage occuring
in sets. We first need the following definition for threshold-based damage for the
weaker setting in which there is damage microstructure.

Definition 4.3. (A(t),Θ(t)) is a solution of the Threshold Problem (TP) with
threshold λ if for every t ∈ [0, T ] there exists a sequence {Dn(t)} such that σDn(t)I

G→
A(t) and χDn(t)

∗
⇀ Θ(t) in L∞, and the following hold

(1) Monotonicity: Dn(·) is increasing;
(2) Threshold: For the solution un of

−div(σDn(t)∇un) = f(t),

we have that ∀δ > 0, the sets in which there is no damage but the threshold
is exceeded by at least δ,

Un := {x /∈ Dn(t) : |∇un(x)| > λ + δ},
satisfy

|Un| → 0 ;
(3) Necessity of the damage:

• For all En ⊂ Dn(T ) with lim inf |En| > 0, we have that ∀δ > 0 and ∀
∆t > 0 small enough, there exists τ < T −∆t such that, setting vn to
be the solution of

−div(σDn(τ+∆t)\∆En
∇vn) = f(τ + ∆t),

where ∆En := En ∩ [Dn(τ + ∆t) \Dn(τ)], we have that the subsets of
∆En in which the threshold is almost exceeded,

∆Eδ
n := {x ∈ ∆En : |∇vn(x)| > λ− δ},



14 ADRIANA GARRONI AND CHRISTOPHER J. LARSEN

satisfy
lim inf
n→∞

|∆Eδ
n| > 0.

• If
∫
Ω

Θ(·) dx is not continuous at T , we have the following additional
requirement: ∀tn ↗ T and ∀En ⊂ Dn(T ) \Dn(tn) with lim inf |En| >
0, and for every δ > 0, the solution vn of

−div(σDn(T )\En
∇vn) = f(T ),

satisfies

lim inf
n→∞

|{x ∈ En : |∇vn(x)| > λ− δ}| > 0.

Theorem 4.4. If (A(t),Θ(t)) is a solution of the (EMP), then it is a solution of
(TP) with threshold λ satisfying k = λ2β(β−α)

2α .

We will need the following two simple estimates in the proof.

Lemma 4.5. Let E ⊂ Ω and S ⊂ Ω \ E be measurable. Consider the solution
uE ∈ H1

0 (Ω) of the equation

(4.9) −div (σE∇uE) = f in Ω ,

where f ∈ H−1(Ω). Then if we set

Eel(E, f) :=
1
2

∫
Ω

σE |∇uE |2dx− 〈f, uE〉

we have

∆Eel := Eel(E, f)− Eel(E ∪ S, f) ≤ (β − α)β
2α

‖∇uE‖2L2(S).

Proof. We follow a similar lemma in [27]. Setting φ := uE∪S − uE , we have from
(4.9) that

∫
Ω

σE∇uE · ∇φdx =
∫
Ω

fφ dx. Then

∆Eel =
1
2
(β − α)

∫
S

|∇uE |2dx + (β − α)
∫

S

∇uE · ∇φdx− 1
2

∫
Ω

σE∪S |∇φ|2dx.

It follows that

∆Eel ≤
1
2
(β − α)‖∇uE‖2L2(S) + (β − α)‖∇uE‖L2(S)‖∇φ‖L2(S) −

1
2
α‖∇φ‖2L2(S).

Viewed as a function of ‖∇φ‖L2(S), the right-hand side is of the form f(x) =
1
2ca2 + cax − 1

2αx2, which has a maximum at x = ca
α . Therefore, substituting

β−α
α ‖∇uE‖L2(S) for ‖∇φ‖L2(S) and simplifying, we get

(4.10) ∆Eel ≤
(β − α)β

2α
‖∇uE‖2L2(S).

�

Next, we have
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Remark 4.6. If Q1 is the usual unit cube in RN and if the sequences {un}, {vn}
are each bounded in H1(Q1) and are such that un − vn → 0 in L2(Q1), then a
straightforward computation shows that there exists 0 < R < 1 such that, if for
each 0 < γ < R we define wn by

wn := φun + (1− φ)vn

with φ the cutoff function equal to 1 in Q1 \QR and equal to zero in QR−γ (where
QR denotes the cube with the same orientation and center as Q1, but side R) and
such that |∇φ| = 1

γ on QR \QR−γ , then

lim
γ→0

lim
n→∞

∫
QR\QR−γ

|∇wn|2dx = 0

and also

(4.11) lim
γ→0

lim
n→∞

∫
QR

|∇wn −∇vn|2dx = 0.

The only issue in the computation is to choose R so as to avoid concentrations in
|∇un|2 and |∇vn|2 on ∂QR.

Proof of Theorem 4.4. By Definition 3.2 we have that there exists a sequence {Dn(t)}
(monotonically increasing in t), such that σDn(t)I

G→ A(t) and χDn(t)
∗
⇀ Θ(t) in

L∞(Ω) and for which the Minimality property (3) is satisfied. We will show that
{Dn(t)} also satisfies properties (2) and (3) of Definition 4.3. Both conditions are
proved by contradiction, using the following strategies.

If property (2) is false, then there exists δ > 0 such that the sets Un do not
eventually have small measure. We can then localize to nice points in Un and add
laminates of damage corresponding to the damage sets in Remark 1.1. This creates
a competitor D′

n to Dn, whose energy is lower on the order of lim supn→∞ |Un|,
contradicting the minimality of Dn.

Proving condition (3) is somewhat more subtle. If (3) is not satisfied, then there
exists a sequence of sets En ⊆ Dn(T ) with lim inf

n→∞
|En| = γ > 0, and there exist

δ > 0 and ∆t ↘ 0 such that for all τ small enough, the sequence of sets ∆Eδ
n

satisfy |∆Eδ
n| → 0 as n → ∞. This suggests that the sets En ⊂ Dn were not

necessary at time τ in order for the strain in the undamaged region to remain
below the threshold, and so it should not have been worth the cost to add the slices
∆En = En ∩ [Dn(τ + ∆t) \Dn(τ)] to Dn(τ). A difficulty is that as ∆t ↘ 0, these
slices in general disappear, so we need a way to keep account of this sub-optimality
even as ∆t ↘ 0. Using the fact that in ∆En we are below the threshold by δ, we
show that if we consider a new dissipation coefficient kδ on En corresponding to
the lower threshold λ− δ, then we have an energy balance with this new coefficient
on En, contradicting the energy balance with the original coefficient.

We first prove that property (2) is satisfied. Suppose it is false, so that there
exists δ > 0 such that

(4.12) lim sup
n→∞

|{x /∈ Dn(t) : |∇un(x)| > λ + δ}| = γ > 0 .

Set Un := {x /∈ Dn(t) : |∇un(x)| > λ + δ}. Note that for every ε > 0 the set Qn
ε of

all cubes Q that satisfy the following conditions
i) The center x0 is in Un and is a Lebesgue point for ∇un, un, and χUn
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ii) Two sides of Q are orthogonal to ∇un(x0), which we label ηn

iii) Setting ux0
ηn

(x) := ηn · (x− x0) + un(x0), we have

‖un − ux0
ηn
‖H1(Q) ≤ ε|Q|

and
iv) |Dn ∩Q| ≤ ε|Q|

is a fine covering of Un (except possibly for a set of measure zero). Therefore for
every given ε and n we can choose a countable collection of disjoint cubes in Qn

ε ,
{Qi}, such that

|En \ ∪iQi| = 0 .

Step 1.
In each cube we will perform a construction that lowers the energy of Dn, which
we now illustrate for a single cube Q that we assume to be centered at the origin.
We also assume, without loss of generality, that un(0) = 0 and we set η := ηn and
uη := u0

ηn
. We also define for each open set S ⊆ Ω

Etot(u, D, f, S) :=
1
2

∫
S

σD|∇u|2dx− 〈f, u〉S + k|D| ;

as above when S = Ω we will omit the dependence on S in the notation and with
〈·, ·〉S , with a little abuse of notation, we denote the localization of the reprentative
of f to S. More precisely, for f ∈ H−1(Ω), there exists g ∈ L2(Ω, Rn) such that
f = divg, i.e., 〈f, u〉 =

∫
Ω

g∇u dx for all u ∈ H1
0 (Ω). Then

〈f, u〉S =
∫

S

g∇u dx ∀u ∈ H1(S) .

We first consider Etot for functions that agree with uη on ∂Q, rather than with
un. We claim that

inf
{

1
2

∫
Q

σD′ |∇w|2dx− 〈f(t), w〉Q + k|D′| : w − uη ∈ H1
0 (Q) and D′ ⊆ Q

}
≤ Etot(uη, ∅, f(t), Q)− 1

2
βδ2|Q| .(4.13)

This can be seen by first considering the one dimensional function

z(y) :=


β
αλy if y ∈ (0, d)

λy + β
αλd if y ∈ [d, 1),

where d := δα
λ(β−α) . We extend z to all of R by periodicity and to RN by

vε(x) := z

(
x

ε
· η

|η|

)
for x ∈ RN . Notice that the sequence vε converges to uη in L2(Q) and is bounded
in H1(Q). Hence, we can apply Remark 4.6 to (Q, uη, vε), producing w that agrees
with uη on ∂Q and whose total energy is arbitrarily close to

1
2
|Q|βλ(λ + δ)− 〈f(t), uη〉Q +

1
2
βλδ|Q|

(see also Remark 1.1). Then a straightforward calculation gives (4.13).
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Step 2.
We next claim that in each cube Q in Qn

ε we have

inf
{

1
2

∫
Q

σD′ |∇w|2dx− 〈f(t), w〉Q + k|D′| : w − un(t) ∈ H1
0 (Q) and D′ ⊆ Q

}
≤ Etot(un(t), Dn(t), f(t), Q)− 1

2
βδ2|Q|+ o(1)|Q|(4.14)

where o(1) → 0 as ε → 0, uniformly with respect to n. This follows from Step 1
once we note that by properties (iii) and (iv) of Q we have

|Etot(un(t), Dn(t), f(t), Q)− Etot(uη, ∅, f(t), Q)| ≤ o(1)|Q|

and that we can make minimizing sequences for the inf in Step 1 admissible for
the above inf by adding un(t)− uη, introducing an error o(1)|Q|, with o(1) → 0 as
ε → 0 independent of n.

Step 3.
We return now to our disjoint family of cubes {Qi} and, using Step 2, we construct
a competitor (wn, D′

n) for (un(t), Dn(t)) in Ω, with D′
n ⊃ Dn(t), that agrees with

(un(t), Dn(t)) outside ∪Qi and is such that

Etot(wn, D′
n, f(t)) ≤ Etot(un(t), Dn(t), f(t))− 1

2
βδ2

∑
i

|Qi|+ o(1)
∑

i

|Qi| .

Now up to a subsequence σD′
n

G-converges to some A′ ∈ GΘ′(αI, βI), with χD′
n

∗
⇀

Θ′. In particular A′ ∈ ĜΘ′({Dn}). Then taking the limit as n →∞ we get

min{Etot(w,A′,Θ′, f(t)) : w ∈ H1
0 (Ω)} ≤ Etot(u(t), A(t),Θ(t), f(t))−1

2
βδ2γ+o(1)γ

which contradicts the minimality of (u(t), A(t),Θ(t)) for ε small enough.

We now prove that property (3) is satisfied. Assume first that
∫
Ω

Θ(·) dx is
continuous from below at T , in which case we assume by contradiction that there
exist:

i) a sequence of sets En ⊆ Dn(T ), with lim
n→∞

|En| = γ > 0,

ii) δ > 0,
iii) a sequence ∆t ↘ 0

such that for all τ < T and for each term in iii) satisfying ∆t < T − τ , we have
that the function vn in Definition 4.3 (3) satisfies

(4.15) lim inf
n→∞

|∆Eδ
n| = 0 ,

where
∆Eδ

n := {x ∈ ∆En : |∇vn(x)| > λ− δ}
and ∆En := En ∩ (Dn(τ + ∆t) \Dn(τ)).

We set kδ to be the dissipation coefficient corresponding to the threshold λ− δ,
so that kδ = (λ− δ)2 β(β−α)

2α .

Claim: u satisfies

E(T ) + γ(kδ − k) ≥ E(0)−
∫ T

0

〈ḟ(σ), u(σ)〉 dσ,(4.16)
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where

E(t) :=
1
2

∫
Ω

A(t)∇u(t)∇u(t) dx− 〈f(t), u(t)〉+ k

∫
Ω

Θ(t) dx

.
This together with the equality in Definition 3.6 implies that γ = 0.

Proof of claim: For each fixed ∆t we consider u at discrete-times ti = i∆t.
Define

Eel(Dn(ti), f(ti)) := min
v∈H1

0 (Ω)

[
1
2

∫
Ω

σDn(ti)|∇v|2dx− 〈f(ti), v〉
]

and set ∆En(ti) := En ∩ ∆Dn(ti) and ∆Dn(ti) := Dn(ti) \ Dn(ti−1). We then
have, from Lemma 4.5 and from (4.15), that

Eel(Dn(ti), f(ti)) + kδ|∆En(ti)|+ o(1) ≥ Eel(Dn(ti) \∆En(ti), f(ti)) ,

with o(1) → 0 as n →∞. We take the limit as n →∞ (and take subsequences as
necessary) so that

χ∆En(ti)
∗
⇀ ΘE(ti)

and we get

Eel(A(ti), f(ti)) + kδ

(∫
Ω

ΘE(ti) dx

)
≥ Eel(A∆t(ti), f(ti)) ,

where

(4.17) Eel(A, f) := min
v∈H1

0 (Ω)

[
1
2

∫
Ω

A∇v∇v dx− 〈f, v〉
]

and A∆t(ti) is the G-limit of σDn(ti)\∆En(ti)I. Then we use the minimality prop-
erty in Definition 3.2, noting that since Dn(ti) \ ∆En(ti) ⊇ Dn(ti−1), the pair
(A∆t(ti),Θ(ti)−ΘE(ti)) is a competitor for (A(ti−1),Θ(ti−1)), and from (4.17) we
get

Eel(A(ti), f(ti)) + k

(∫
Ω

Θ(ti) dx−
∫

Ω

ΘE(ti) dx

)
+ kδ

(∫
Ω

ΘE(ti) dx

)
≥ Eel(A(ti−1), f(ti−1))− 〈f(ti)− f(ti−1), u∆t(ti)〉+ k

∫
Ω

Θ(ti−1) dx ,

where u∆t(ti) is the minimizer for Eel(A∆t(ti), f(ti)). Since∑
i

∫
Ω

χ∆En(ti) converges to both
∑

i

∫
Ω

ΘE(ti) dx and γ∆t,

where γ∆t := limn→∞ |En∩Dn(t∆t)| (again dropping to a subsequence as necessary)
and t∆t =

[
T
∆t

]
∆t (i.e. it is the last element in the partition of [0, T ] such that

0 ≤ T − t∆t ≤ ∆t), summing the last inequality over i gives

Eel(A(t∆t), f(t∆t)) + k

(∫
Ω

Θ(t∆t) dx− γ∆t

)
+ kδγ∆t

≥ Eel(A(0), f(0)) + k

∫
Ω

Θ(0) dx−
∑

i

〈f(ti)− f(ti−1), u∆t(ti)〉 .
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Since A(ti) ≤ A∆t(ti) ≤ A(ti−1) and A(t), being monotonic, is continuous at
a.e. t, and since f ∈ W 1,1([0, T ],H−1(Ω)), by the continuous dependence of u on
A, we get

u∆t(τ) L2

−→ u(τ) for a.e. τ .

Moreover
f(τ + ∆t)− f(τ)

∆t

H−1

−→ ḟ(τ) for a.e. τ

and hence ∑
i

〈f(tni )− f(tni−1), u
∆t(tni )〉 −→

∫ T

0

〈ḟ(τ), u(τ)〉 dτ .

As a consequence of the energy balance we get that the total energy E is continuous
and then E(t∆t) → E(T ) as ∆t → 0, which, together with the fact that γ∆t → γ as
∆t → 0, gives (4.16).

Finally, we consider the case that
∫
Ω

Θ(t) dx is not continuous from below at
T . We assume by contradiction that there exist sequences tn ↗ T and En ⊆
Dn(T ) \Dn(tn) with lim infn→∞ |En| = γ > 0, together with δ > 0, such that the
minimizer vn for Eel(Dn(T ) \ En, f(T )), i.e., the solution in H1

0 (Ω) of

−div(σDn(T )\En
∇vn) = f(T ),

satisfies
lim inf
n→∞

|{x ∈ En : |∇vn(x)| > λ− δ}| = 0.

From Lemma 4.5 we see that, as above,

Eel(Dn(T ), T ) + k|Dn(T ) \ En|+ kδ|En|+ 〈f(T )− f(tn), un(T )〉+ O(1)(4.18)
≥ Eel(Dn(tn), tn) + k|Dn(tn)|.

Taking the limit as n →∞, we get

E(T )− (k − kδ)γ ≥ E(T ),

a contradiction.
�

5. Implications for Local Minimality and Stability

We conclude the paper discussing the notions of local minimality and stability
for the energetic model consider in Section 3. We will see that our threshold point
of view can also be used to show that there are no local minimizers or stable
configurations besides global minimizers.

The most natural norm for defining “small” increments of damage is the L1 norm
on characteristic functions, since this is the same as the measure of the increment.
Of course, the L∞ norm would not allow any “small” increments at all. So, we will
consider the L1 norm in defining local minimality and stability of damage.

Given A ∈ L∞(Ω;F(α, β)) and Θ ∈ L∞(Ω, [0, 1]), with A(x) ∈ GΘ(x)(Aw, As)
a.e. x ∈ Ω, and a sequence of sets Dn such that χDn

∗
⇀ Θ

σDn

G−→ A ,

we give the following definition.
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Definition 5.1. We say that ({Dn}, A, Θ) is a local minimizer corresponding to
f ∈ H−1(Ω) if there exists ε > 0 such that for every A′ ∈ ĜΘ′({Dn}) with Θ′ ∈
B(Θ, ε) (the ball in L1 centered at Θ with radius ε), we have

Eel(A,Θ, f) + k

∫
Ω

Θ dx ≤ Eel(A′,Θ′, f) + k

∫
Ω

Θ′ dx .

Furthermore, given f ∈ H−1(Ω), we say that ({Dn}, A, Θ) is stable if

lim sup
ε→0

sup
Θ′∈B(Θ,ε)

A′∈ĜΘ′ ({Dn})

Eel(A,Θ, f) + k
∫
Ω

Θ dx− Eel(A′,Θ′, f)− k
∫
Ω

Θ′ dx

ε
≤ 0.

We now show that all local minimizers, and even all stable damage “sets,” must
be global minimizers.

Theorem 5.2. If ({Dn}, A, Θ) is a local minimizer corresponding to some f , then
(A,Θ) is a global minimizer. Furthermore, even if the triple is only stable then
(A,Θ) is a global minimizer.

Proof. We suppose (A,Θ) is not an (EMP) global minimizer, and show that ({Dn}, A, Θ)
is not a local minimizer. Since it is not a global minimizer, there exists Θ′ ∈
L∞(Ω, [0, 1]), with Θ′ ≥ Θ, and A′ ∈ ĜΘ′({Dn}) such that

(5.19) Eel(A, f) + k

∫
Ω

Θ dx > Eel(A′, f) + k

∫
Ω

Θ′ dx .

We first show that Θ′ > Θ. From the definition of Ĝ({Dn}) there exists a
sequence of sets D′

n ⊇ Dn such that χD′
n

∗
⇀ Θ′ and σD′

n

G−→ A′.
Take un to be the minimizer of Etot(·, Dn, f), and similarly u′n the minimizer of

Etot(·, D′
n, f). Then from (5.19) and the fact that Θ′ ≥ Θ we have

lim
n→∞

[
1
2

∫
Ω

σDn
|∇un|2 −

∫
Ω

fun −
1
2

∫
Ω

σD′
n
|∇u′n|2 +

∫
Ω

fu′n

]
> 0,

while from the minimality of un we have

lim
n→∞

[
1
2

∫
Ω

σDn |∇un|2 −
∫

Ω

fun −
1
2

∫
Ω

σDn |∇u′n|2 +
∫

Ω

fu′n

]
≤ 0 .

But if limn→∞ |D′
n \Dn| = 0, since {|∇u′n|2} is equi-integrable (see, e.g., [14]), then

0 < lim
n→∞

[∫
Ω

σDn
|∇u′n|2 −

∫
Ω

σD′
n
|∇u′n|2

]
= lim

n→∞
(β − α)

∫
D′

n\Dn

|∇u′n|2 = 0 .

Hence, there is a contradiction unless Θ′ > Θ.
As a consequence of (5.19) we also get that |∇un| exceeds λ somewhere in D′

n \
Dn. More precisely we have that for some δ > 0, the sets Gδ

n := {x ∈ D′
n \ Dn :

|∇un(x)| > λ + δ}, satisfy
lim sup

n→∞
|Gδ

n| > 0.

In fact if for every δ > 0 we had

(5.20) lim sup
n→∞

|Gδ
n| = 0 ,
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using (4.10) we have

Eel(Dn, f)− Eel(D′
n, f) ≤ kδ|D′

n \Dn|+
(β − α)β

2α
‖∇un‖2L2(Gδ

n) .

This, taking the limit as n →∞, using (5.20), the equintegrability of ∇un and the
arbitrariness of δ, contradicts (5.19).

So, dropping to a subsequence, we have χGδ
n

∗
⇀ θ > 0 in L∞(Ω). We choose

a point x0 ∈ Ω that is a Lebesgue point for θ and θ(x0) > 0. Now, given any
ε > 0, we can choose a ball B, with |B| ≤ ε, such that

∫
B

θ dx > |B|
2 θ(x0), i.e.,

limn→∞ |Gδ
n ∩ B| > |B|

2 θ(x0) > 0. Then, just as in the proof of condition (2) in
Theorem 4.4, by adding laminates of damage within Gδ

n ∩B, the energy of Dn can
be lowered in the limit by at least 1

2βδ2 |B|
2 θ(x0). The triple ({D̃n}, Ã, Θ̃) generated

by the union of Dn and these laminates then has lower energy than ({Dn}, A, Θ)
and Θ̃ ∈ B(Θ, ε), and so ({Dn}, A, Θ) is not a local minimizer.

In fact, this also shows that

lim sup
ε→0

sup
Θ′∈B(Θ,ε)

A′∈ĜΘ′ ({Dn})

Eel(A,Θ, f) + k
∫
Ω

Θ dx− Eel(A′,Θ′, f)− k
∫
Ω

Θ′ dx

ε
≥ 1

2
βδ2,

and so ({Dn}, A, Θ) is not stable. �
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de l’homogénéisation: théorie et applications en physique, 319-369, Eyrolles, 1997. Col-
lection Etudes et Recherches EDF.

[36] F. Murat and L. Tartar. H-convergence. In A. Cherkaev and R.V. Kohn, editors,
Topics in the mathematical modelling of composite materials, 21-43, Birkhäuser, 1997.
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