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Abstract: We study the asymptotic behaviour of Dirichlet problems on varying domains with

a nonlinear elliptic differential operator. In the limit problem it appears a nonlinear extra term

whose properties are strictly connected with the form of the differential operator. We investigate

this connection when the domains have a periodic structure.

1. Introduction to the problem.
The contents of the present paper is related to the study of the asymptotic behaviour

of the following problems

(1.1)

−div a(x,Duh) = f in Ωh,

uh ∈W 1,p
0 (Ωh) ,

where Ωh is a sequence of open subsets of a fixed bounded open set Ω ⊂ Rn, a(x, ξ) is
a Carathéodory function which satisfies standard conditions of monotonicity and of p− 1
order growth (1 < p < +∞), and f belongs to W−1,p′(Ω). For every h ∈ N we extend
the function uh to a function in the space W 1,p

0 (Ω) by setting uh = 0 on Ω \ Ωh. By the
monotonicity of a it is easy to prove that the sequence (uh) is bounded in W 1,p

0 (Ω) and
then, up to a subsequence, converges weakly in W 1,p

0 (Ω) to some function u ∈ W 1,p
0 (Ω).

The problem is to characterize u as the solution of some limit problem.
This problem has been studied by many authors in the literature under different as-

sumptions on the differential operator and with different approaches (see for instance [10],
[4], [11], [7], [5], [6], [2],...)

In the case of monotone operators G. Dal Maso and F. Murat in [8] (see also [5]) proved
the following result: assume that the function a(x, ξ) satisfies the homogeneity condition

(1.2) a(x, tξ) = |t|p−2t a(x, ξ) ∀ξ ∈ Rn and ∀t ∈ R
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(this assumption is clearly satisfied if a(x, ξ) = |ξ|p−2ξ, i.e., when the operator
−div a(x,Du) is the p-Laplacian operator −∆p). Then, there exists a subsequence of
indices, that we still denote by (h), and a non negative Borel measure µ such that for
every f ∈ W−1,p′(Ω) the solutions of (1.1) converge weakly in W 1,p

0 (Ω) to the solution u
of the problem

(1.3)


u ∈W 1,p

0 (Ω) ∩ Lp
µ(Ω) ,∫

Ω

a(x,Du)Dv dx +
∫

Ω

|u|p−2uv dµ = 〈f, v〉 ∀v ∈W 1,p
0 (Ω) ∩ Lp

µ(Ω) .

The measure µ which appears in problem (1.3) does not charge sets of p-capacity zero (for
the definition and the properties of the p-capacity we refer to [12]).

Let us remark that the class of problems of the type (1.3) is quite large and includes,
with a suitable choice of µ, the class of Dirichlet boundary valued problems on open subset
of Ω. Namely if E is a closed subset of Ω and µ is defined as follows

µ(B) =

 0 , if p-Cap(B ∩ E) = 0,

+∞ , otherwise

for every Borel set B ⊆ Ω, then it is easy to see that problem (1.3) is equivalent to the
problem −div a(x,Du) = f in Ω \ E,

u ∈W 1,p
0 (Ω \ E) ,

If we assume that µ is a Radon measure, the problem (1.3) may be written as

(1.4)


−div a(x,Du) + |u|p−2uµ = f in Ω,

u ∈W 1,p
0 (Ω) ∩ Lp

µ(Ω) ,

where the equation above is understood in the sense of distribution. Comparing problems
(1.1) and (1.3), we find that in the limit problem it appears an extra term, |u|p−2uµ, which
is (p− 1)-homogeneous.

In [3] we generalize the result of G. Dal Maso and F. Murat to the case in which the
function a(x, ξ) does not satisfy the assumption (1.2). More precisely we assume that the
function a(x, ξ) satisfies the following conditions if 2 ≤ p < +∞:

(i) there exists a constant α > 0 such that

(a(x, ξ1)− a(x, ξ2))(ξ1 − ξ2) ≥ α|ξ1 − ξ2|p

for every ξ1, ξ2 ∈ Rn and for a.e. x ∈ Ω;
(ii) there exist a constant β > 0 and a function h ∈ Lp(Ω) such that

|a(x, ξ1)− a(x, ξ2)| ≤ β(h(x) + |ξ1|+ |ξ2|)p−2|ξ1 − ξ2|
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for every ξ1, ξ2 ∈ Rn and for a.e. x ∈ Ω;
(iii) a(x, 0) = 0 for a.e. x ∈ Ω.

We make analogous assumptions in the case 1 < p < 2.
Under these conditions on the operators −div a(x, ·) the following result holds.

Theorem 1.1. Let (Ωh) be a sequence of arbitrary open subsets of Ω. There exist a
subsequence of (Ωh), still denoted by (Ωh), a non negative Borel measure µ and a function
F : Ω ×R 7→ R, such that for every f ∈ W−1,p′(Ω) the sequence (uh) of solutions of the
problems (1.1) converges weakly in W 1,p

0 (Ω) to the solution u, of the following problem

(1.5)


u ∈W 1,p

0 (Ω) ∩ Lp
µ(Ω) ,∫

Ω

a(x,Du)Dv dx +
∫

Ω

F (x, u)v dµ = 〈f, v〉 ∀v ∈W 1,p
0 (Ω) ∩ Lp

µ(Ω) .

Moreover the measure µ is zero on sets of p-capacity zero and the function F (x, s) satisfies
the following conditions if 2 ≤ p < +∞:

(I) for every s1, s2 ∈ R and for every x ∈ Ω we have

|F (x, s1)− F (x, s2)| ≤ L(|s1|+ |s2|)
p−2
p−1 |s1 − s2|

1
p−1 ;

(II) for every s1, s2 ∈ R and for every x ∈ Ω we have

(F (x, s1)− F (x, s2))(s1 − s2) ≥ α|s1 − s2|p ;

(III) F (x, 0) = 0 for every x ∈ Ω;
Analogous conditions hold in the case 1 < p < 2.

This result for general monotone operator without any homogeneity condition has been
also proved in [11] and [2] under additional geometric assumptions on the sequence (Ωh)
which assure in particular that the measure µ which appears in the limit problem is a
Radon measure.
Remark 1.2. The measure µ in problem (1.5) may be taken equal to the measure which
defines the extra term when the operator A is the p-Laplacian operator.

Remark 1.3. The result above has a local character. In the sense that the function F
and the measure µ which appear in the extra term in the limit problem do not depend
on the domain Ω and on the fact that we consider solutions of Dirichlet problems with
boundary value zero on ∂Ω. Namely if (Ωh) is the sequence given by Theorem 1.1 and
(zh) is a sequence of functions in W 1,p(Ω) satisfying∫

Ω

a(x,Dzh)Dv dx = 〈f, v〉

for every v ∈W 1,p
0 (Ω∩Ωh) with compact support in Ω, which converges to some function

z weakly in W 1,p(Ω), then z belongs to Lp
µ(Ω′) for every open set Ω′ ⊂⊂ Ω and∫

Ω

a(x,Dz)Dv dx +
∫

Ω

F (x, z)v dµ = 〈f, v〉
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for every v ∈W 1,p
0 (Ω) ∩ Lp

µ(Ω) with compact support in Ω.

The goal of the present paper is to show in a particular case that the function F (x, s)
for a non homogeneous operator can be in general non homogeneous with respect to s (see
Section 3). We preliminarily study (in Section 2) the homogenization problem (1.1) in
the simple case in which a(x, ξ) does not depend on x and the sequence (Ωh) is given by
(Ω \Eh), where Eh is the union of closed balls of radius rh whose centers are periodically
distributed.

2. The periodic case.
In this section we consider the asymptotic behaviour of the problem (1.1) in the special

case when the sequence (Ωh) has a periodic structure.
For every 0 < ε < 1 let us consider a partition of Rn, with n > p, composed of semi-open

cubes Qi
ε, i ∈ Zn, of side length 2ε and center xi

ε = 2εi. Let r = εn/n−p and for every
i ∈ Zn let Bi

r be the closed ball in Qi
ε of radius r and center xi

ε. By Qε and Br we shall
denote Q0

ε and B0
r , respectively.

Let Eε =
⋃

iB
i
r. It is well known (see [4] and [9]) that, under this special geometrical

assumption, the limit problem which describes the asymptotic behaviour of the Dirichlet
problems in Ω\Eε is determined by the measure Cndx in Ω, where Cn is a positive constant
which depends only on n and p. Namely for every f ∈W−1,p′(Ω) if wε is the solution of−∆pwε = f in Ω \ Eε,

wε ∈W 1,p
0 (Ω \ Eε)

then wε converge weakly in W 1,p
0 (Ω) to the solution w of the problem

(2.1)

−∆pw + |w|p−2w = f in Ω,

w ∈W 1,p
0 (Ω)

as ε→ 0.
Let us suppose now that the function a(x, ξ) does not depend on x and let (rh) be a

sequence which converges to zero such that

∃ lim
h→∞

−(rh)p−1a(−r−1
h ξ) ∀ ξ ∈ Rn .

Let us define the function a∞(ξ) by

(2.2) a∞(ξ) = lim
h→∞

−(rh)p−1a(−r−1
h ξ) ∀ ξ ∈ Rn .

It is easy to see that a∞ satisfies (i)–(iii). In the sequel (εh) will be the sequence of positive
numbers converging to zero defined by

(2.3) rh = ε
n/n−p
h .
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By Theorem 1.1 and by Remark 1.2 we can suppose that for every f ∈ W−1,p′(Ω) the
sequence (uh) of the solutions of the problems

(2.4)

−div a(Duh) = f in Ω \ Eεh
,

uh ∈W 1,p
0 (Ω \ Eεh

) ,

converges weakly in W 1,p
0 (Ω) to the unique solution u of the problem

(2.5)

−div a(Du) + F (x, u) = f in Ω,

u ∈W 1,p
0 (Ω) ,

where F : Ω×R 7→ R satisfied conditions (I)–(III).
We shall show that since the function a does not depend on x, the function F does not

depend on x too (Lemma 2.1). Moreover we shall prove that, in this case, it is possible to
construct F by means of the function a∞ defined in (2.2) (Theorem 2.2).
Lemma 2.1. The function F (x, s) in problem (2.5) does not depend on x, i.e., F (x, s) =
F (s) for every x ∈ Rn.

Proof: Let us consider an open set Ω′ ⊂⊂ Ω. Let ε0 = dist (∂Ω, ∂Ω′), then for every
i ∈ Zn, with |i| = 1, and for every 0 < ε ≤ ε0 we have that Ω̃ = Ω′ + εi ⊂⊂ Ω.

Let s ∈ R, let sk
h be the solution of problem−div a(Dsk

h) = k(|s|p−2s− |sk
h|p−2sk

h) in Ω′ \ Eεh
,

sk
h ∈W

1,p
0 (Ω′ \ Eεh

) ,

and let s̃k
h be the solution of the analogous problem corresponding to Ω̃. By the local

character of Theorem 1.1 (see Remarks 1.3) we have that the sequences (sk
h) and (s̃k

h),
extended by zero in (Ω \ Ω′) ∪ Eεh

and in (Ω \ Ω̃) ∪ Eεh
, converge weakly in W 1,p

0 (Ω) to
the solutions sk and s̃k of problems

(2.6)

−div a(Dsk) + F (x, sk) = k(|s|p−2s− |sk|p−2sk) in Ω′,

sk ∈W 1,p
0 (Ω′) ,

and

(2.7)

−div a(Ds̃k) + F (x, s̃k) = k(|s|p−2s− |s̃k|p−2s̃k) in Ω̃,

s̃k ∈W 1,p
0 (Ω̃) ,

Moreover a penalization result proved in [3] permits us to conclude that

(2.8) lim
k→∞

∫
Ω′
ϕ|D(sk − s)|pdx + k

∫
Ω′
ϕ|sk − s|pdx = 0
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for every ϕ ∈ C∞0 (Ω′), with ϕ ≥ 0, and

(2.9) lim
k→∞

∫
Ω̃

ϕ|D(s̃k − s)|pdx + k

∫
Ω̃

ϕ|s̃k − s|pdx = 0

for every ϕ ∈ C∞0 (Ω̃), with ϕ ≥ 0. By (2.7) we have∫
Ω̃

a(Ds̃k)Dϕdx +
∫

Ω̃

F (x, s̃k)ϕdx = k

∫
Ω̃

(|s|p−2s− |s̃k|p−2s̃k)ϕdx

for every ϕ ∈ C∞0 (Ω̃) and then by changing variables in (2.7) we obtain∫
Ω′
a(Ds̃k(x+ εi))Dϕdx +

∫
Ω′
F (x+ εi, s̃k(x+ εi))ϕdx =

= k

∫
Ω′

(|s|p−2s− |s̃k(x+ εi)|p−2s̃k(x+ εi))ϕdx

for every v ∈ C∞0 (Ω′). Thus for every ϕ ∈ C∞0 (Ω′) by (2.6) we have

(2.10)

∫
Ω′
|F (x+ εi, s̃k(x+ εi))− F (x, sk(x))||ϕ| dx ≤

≤
∫

Ω′
|a(D(s̃k(x+ εi))− a(Dsk(x))||Dϕ| dx+

+k
∫

Ω′
||s̃k(x+ εi)|p−2s̃k(x+ εi)− |sk(x)|p−2sk(x)||ϕ| dx .

Since by (2.8) and (2.9) we easily obtain that the right hand side of (2.10) converges to zero
as k →∞. By condition (I) the sequence (F (x+ εi, s̃k(x+ εi))) converges to F (x+ εi, s)
and (F (x, sk(x))) converges to F (x, s) for a.e. x in a compact subset of Ω′; hence, from
(2.10), we get

F (x+ εi, s) = F (x, s)

for every x ∈ Ω′ and for every ε ≤ ε0; so that F (x, s) = F (s) for every x ∈ Ω′ and the
conclusion follows from the arbitrariness of Ω′ and s.

From now on we shall denote by Hp(Rn) the space of all functions belonging to Lp∗(Rn),
1/p∗ = 1/p− 1/n, whose first order distribution derivatives belong to Lp(Rn).

We shall say that a function u : Rn 7→ R is Qεh
-periodic if u(x+ εhi) = u(x) for every

x ∈ Rn and for every i ∈ Zn.

The following theorem gives an explicit representation of the function F (s) in terms of
the p-capacity of the closed unit ball B1 in Rn relative to the operator −div a∞. This
result can be obtained as a particular case of the results proved by Skrypnik in a more
general context (see [11]). For the sake of completeness we shall give here an alternative
proof that holds in the particular case of a periodic structure.

86



J. Casado Diaz & A. Garroni

We shall denote by C a positive constant which can change from line to line and which
depends only on n, α, and β.
Theorem 2.2. Let s ∈ R and let ζ be the solution of the problem

(2.11)


−div a∞(Dζ) = 0 in {|x| > 1}
ζ = s in {|x| ≤ 1}
ζ ∈ Hp(Rn) .

Then the function F (·) in (2.5) is given by the following formula

(2.12) F (s) =
1
2n

∫
Rn

a∞(Dζ)Dv dx ,

where v is an arbitrary function in Hp(Rn) such that v = 1 on {|x| ≤ 1}.

Proof: Let sh ∈W 1,p
loc (Rn) be the solution of the problem

(2.13)

−div a(Dsh) = F (s) in Qεh
\Brh

,
sh = 0 on Brh

,
sh Qεh

-periodic ,

where Qεh
is the cube of center 0 and side 2εh and Brh

is the closed ball of center 0 and
radius rh. Let us prove that the sequence (sh) converges to s weakly in W 1,p(Ω).

For every function v ∈W 1,p(Ω) the following version of the Poincaré inequality holds

(2.14)
∫

Ω

|v|pdx ≤ K|Ω|
p-Cap(N(v),Ω)

∫
Ω

|Dv|pdx ,

where K is a positive constant independent of v and Ω, N(v) = {x ∈ Ω : v(x) = 0}, |Ω|
denotes the Lebesgue measure of Ω, and p-Cap(N(v),Ω) is the p-capacity of the set N(v)
in Ω (see [12]). Since {x ∈ Qεh

: sh(x) = 0} ⊇ Brh
by (2.14) we get

(2.15)
∫

Qεh

|sh|pdx ≤ K(2εh)n

p-Cap(Brh
, Qεh

)

∫
Qεh

|Dsh|pdx

for every h ∈ N. Moreover it is well known that p-Cap(Brh
, Qεh

) ≥ p-Cap(Brh
, B2εh

) =
(rp−n

h − (2εh)p−n)−1 and hence, by (2.3), p-Cap(Brh
, Qεh

) ≥ εn
h; so that by (2.15) we

obtain

(2.16)
∫

Qεh

|sh|pdx ≤ K

∫
Qεh

|Dsh|pdx ,

where K is positive constant independent of h. Taking sh as a test function in (2.13), by
Hölder inequality and (2.16), we have∫

Qεh

|Dsh|pdx = F (s)
∫

Qεh

shdx ≤

≤ F (s)(2εh)n/p′
(∫

Qεh

|sh|pdx
) 1

p ≤ K
1
pF (s)(2εh)n/p′

(∫
Qεh

|Dsh|pdx
) 1

p
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and hence

(2.17)
1

(2εh)n

∫
Qεh

|Dsh|pdx ≤ CF (s)p′ .

Since (εh) tends to zero and (sh) is Qεh
-periodic we have

(2.18)


∫

Ω

|Dsh|pdx =
|Ω|+ oh

(2εh)n

∫
Qεh

|Dsh|pdx ,∫
Ω

|sh|pdx =
|Ω|+ oh

(2εh)n

∫
Qεh

|sh|pdx ,

where limh→∞ oh = 0. Thus by (2.16) we get∫
Ω

|Dsh|pdx+
∫

Ω

|sh|pdx ≤ |Ω|+ oh

(2εh)n
(1 +K)

∫
Qεh

|Dsh|pdx

and hence, by (2.17), we have that (sh) is bounded in W 1,p(Ω). Then, up to a subsequence,
(sh) converges weakly in W 1,p(Ω) to some function v. Since sh is Qεh

-periodic it is easy
to check that v is constant, i.e., v = c ∈ R. Moreover for every ϕ ∈ C∞0 (Ω) the function
sh satisfies

(2.19)
∫

Ω

a(Dsh)Dϕdx = F (s)
∫

Ω

ϕdx .

Indeed if ϕ ∈ C∞0 (Ω), then the function ψ(x) =
∑

i∈Zn ϕ(x+ εhi) is Qεh
-periodic and by

(2.13) we have∫
Ω

a(Dsh)Dϕdx =
∑
i∈Zn

∫
Qi

εh

a(Dsh)Dϕdx =
∫

Qεh

a(Dsh)Dψ dx =

=
∫

Qεh

F (s)ψ dx =
∑
i∈Zn

∫
Qi

εh

F (s)ϕdx =
∫

Ω

F (s)ϕdx .

Thus by Remark 1.3 we have that∫
Ω

F (c)ϕdx =
∫

Ω

F (s)ϕdx

and hence by the monotonicity of F (condition (II)) we get c = s.
Let us consider now the function zh(x) = sh(rhx) and let us denote by Qh the cube of

center 0 and side 2εh/rh. By changing variables in (2.13) we obtain that zh satisfies

(2.20)
∫

Qh

r−1
h a(r−1

h Dzh)Dv dx = F (s)
∫

Qh

v dx
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for every v Qh-periodic and v = 0 on B1. By (2.17) and (2.3) we have

(2.21)
∫

Qh

|Dzh|pdx =
1
rn
h

∫
Qεh

rp
h|Dsh|pdx =

1
εn

h

∫
Qεh

|Dsh|pdx ≤ 2nCF (s)p′ .

Let us denote by (zh)Qh
= 1

|Qh|
∫

Qh
zhdx the average of zh on Qh. Since by (2.18) we have

(zh)Qh
=

rn
h

2nεn
h

∫
Qh

zhdx =
1

2nεn
h

∫
Qεh

shdx =
1

(|Ω|+ oh)

∫
Ω

shdx

and (sh) converges to s strongly in Lp(Ω), we obtain that (zh)Qh
converges to s. Moreover

by the Sobolev inequality we have

(2.22)
(∫

Qh

|zh − (zh)Qh
|p
∗
dx

)1/p∗

≤ C
(∫

Qh

|Dzh|pdx
)1/p

,

where the constant C is independent of h. Then by (2.21) and (2.22), and by the fact that
(zh)Qh

converges to s we have that, up to a subsequence, the sequence (zh) converges to
some function z ∈ W 1,p

loc (Ω) weakly in W 1,p(B) for every bounded open set B ⊆ Rn. Let
ϕ ∈ C∞0 (Rn) be with compact support. Since for h large enough we have suppϕ ⊆ Qh we
can take (zh − z)ϕ as test function in (2.20) and by (i) we get

(2.23)

α

∫
supp ϕ

|D(zh − z)|pϕdx ≤

≤
∫

supp ϕ

(rh)p−1(a(r−1
h Dzh)− a(r−1

h Dz))D(zh − z)ϕdx =

= rp
h

∫
supp ϕ

F (s)(zh − z)ϕdx−
∫

supp ϕ

(rh)p−1a(r−1
h Dzh)Dϕ(zh − z) dx−

−
∫

supp ϕ

(rh)p−1a(r−1
h Dz)D(zh − z)ϕdx .

Since, by (ii) and (2.2), the right hand side of (2.23) tends to zero as h → ∞ we obtain
that (zh) converges to z strongly in W 1,p

loc (Rn). If we take as test function in (2.20) a
function v ∈W 1,p(Rn) with compact support and v = 0 in B1, then we can take the limit
as h→∞ and by (2.2) we have that

(2.24)
∫
Rn

a∞(−Dz)Dv = 0

for every v ∈W 1,p(Rn) with compact support and v = 0 in B1.
Let now ζ = s−z. By (2.21) and the fact that (zh) converges to z strongly in W 1,p

loc (Rn)
we have ∫

B

|Dζ|pdx ≤ C
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for every bounded open set B ⊆ Rn and hence Dζ ∈ Lp(Rn,Rn). Similarly by (2.22)
and the fact that (zh)Qh

converges to s we get that ζ ∈ Lp∗(Rn) and hence ζ ∈ Hp(Rn).
Finally, since ζ = s on B1, by (2.24) we have that ζ is the unique solution of problem
(2.11).

Let us prove the representation formula (2.12). Let v ∈ Hp(Rn) be with compact
support and v = 1 on B1. Taking 1− v as test function in problem (2.20) we have

(2.25)
∫

Qh

(rh)p−1a(r−1
h Dzh)Dv dx = 2nF (s)− rp

hF (s)
∫

Qh

v dx .

Taking the limit as h → ∞ we obtain (2.12). If v has not compact support, it is enough
to consider a function ṽ ∈ Hp(Rn) with compact support and ṽ = 1 on B1. Using v − ṽ
as test function in (2.11) we get∫

Rn

a∞(Dζ)Dv =
∫
Rn

a∞(Dζ)Dṽ = 2nF (s)

and this concludes the proof.

Remark 2.3. The representation formula (2.12) assure that if the function a is asymp-
totically (p− 1)-homogeneous, i.e.,

(2.26) ∃ lim
r→0

−rp−1a(−r−1ξ) ∀ξ ∈ Rn ,

then the limit problem (2.5) does not depend on the choice of the sequence (εh). More
precisely if (2.26) is satisfied then the asymptotic behaviour of the solutions uε of the
problems

(2.27)

−diva(Duε) = f in Ω \ Eε ,

uε = 0 on ∂(Ω \ Eε) ,

is completely described by the solution of problem (2.5). So that in this case we have the
same homogenization phenomenon which is well known in the homogeneous case.

3. Example of non homogeneous extra term.
In this section, under special assumption for the function a∞, we shall prove that the

function F is (p − 1)-homogeneous if and only if a∞ is (p − 1)-homogeneous. This re-
sult will permit us to exhibit simple examples where the function F is not homogeneous
(Remark 3.3) and to show that in this case the homogenization phenomenon describe by
Remark 2.3 does not occurs (Proposition 3.2).
Proposition 3.1. Let us suppose that the function a∞ defined by (2.2) is of the form

(3.1) a∞(ξ) = γ(|ξ|)ξ
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where γ : [0,+∞] 7→ [α, β]. Then the function F (s) given by (2.12) is homogeneous of
degree (p− 1) if and only if a∞ is homogeneous of degree (p− 1).

Proof: If a∞ is homogeneous of degree (p − 1) then the result is a direct consequence of
formula (2.12) once we note that if ζ is the solution of problem (2.11) at the level s ∈ R
then the function tζ, with t ∈ R, is the solution of the same problem at the level ts.

Vice versa let F (s) be homogeneous of degree (p−1). Let ωn be the (n−1)-dimensional
measure of the unit sphere in Rn and let Hp = {u : [0,+∞) 7→ R :

∫ +∞
1

rn−1|u|p∗dr +∫ +∞
1

rn−1|u′|pdr < +∞}. By assumption (3.1) it is easy to see that the solution ζ of
problem (2.11) is radially symmetric, i.e., ζ(x) = z(|x|) with z ∈ Hp, and

(3.2) F (s) =
ωn

2n

∫ +∞

1

rn−1γ(|z′|)z′v′dr

for every v ∈ Hp with v(1) = 1. Moreover for every v ∈ Hp with v(1) = 0 we have∫ +∞

1

rn−1γ(|z′|)z′v′dr = 0 .

Then there exist a constant t(s) depending on s such that rn−1γ(|z′|)z′ = t(s). By (3.2)
we have that 2nF (s)/ωn = −t(s) and hence

(3.3) ωnr
n−1γ(|z′|)z′ = −2nF (s) .

Let us denote by P (r) the function defined by P (r) = γ(|r|)r for every r ∈ R. By (i) and
(ii) we have that there exists the inverse function P−1 of P . Then by (3.3) we have

(3.4) z′(r) = P−1
(−2nF (s)
ωnrn−1

)
and, since

∫ +∞

1

z′dr = −s and F (s) = |s|p−2sF (1), we get

(3.5)
∫ +∞

1

G
( |s|p−2s

rn−1

)
dr = −s ,

where G(t) = P−1(−2nF (1)t/ωn). By changing variables in (3.5), with ρ = |s|p−2s/rn−1,
we obtain

1
n− 1

|s|
p−n
n−1 s

∫ |s|p−2s

0

G(ρ)|ρ|
−n

n−1 dρ = −s

and hence ∫ |s|p−2s

0

G(ρ)|ρ|
−n

n−1 dρ = −(n− 1)|s|
n−p
n−1 .

If we derive with respect to s we get G(s)|s|
−n(p−1)

n−1 = −(n− p)|s|
1−p
n−1 s/|s| and hence

γ(|r|)r =
2n

ωn(n− p)
F (1)|r|p−2r ,
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which concludes the proof.

Proposition 3.2. Under the same assumption of Proposition 3.1, let us assume that
the function a∞ is not homogeneous. Then there exists a sequence (ε′h) of positive num-
ber converging to zero such that the sequence (uε′

h
) of the solutions of problems (2.26)

corresponding to ε = ε′h do not converges weakly in W 1,p
0 (Ω) to the solution of problem

(2.5).

Proof: Let us prove the result by contradiction. Let uε be the solution of prob-
lem (2.26) and let us suppose that every subsequence of (uε) converges weakly in
W 1,p

0 (Ω) to the solution u of problem (2.5). Let (rh) be a sequence such that a∞(ξ) =
limh→∞−(rh)p−1a(−r−1

h ξ) for every ξ ∈ Rn, for every t ∈ R, t > 0, let us define
rt
h = t−1rh, and let εt

h be defined by

rt
h = (εt

h)n/(n−p) = t−n/(n−p)ε
n/(n−p)
h .

Since for every t > 0 the sequence (uεt
h
) converges weakly in W 1,p

0 (Ω) to the solution u of
problem (2.5), by Proposition 2.2 for every s ∈ R and for every v ∈ Hp(Rn), with v = 1
in {|x| ≤ 1}, we have

(3.6) F (s) =
1
2n

∫
Rn

at
∞(Dζs

t )Dv dx ,

where for every ξ ∈ Rn

(3.7) at
∞(ξ) = lim

h→∞
−(rt

h)p−1a(−(rt
h)−1ξ) =

1
tp−1

a∞(tξ)

and ζs
t is the solution of the problem

(3.8)

−div at
∞(Dζs

t ) = 0 in {|x| > 1}
ζs
t = s in {|x| ≤ 1}
ζs
t ∈ Hp(Rn) .

Moreover, since a∞(ξ) = γ(|ξ|)ξ, for every ξ ∈ Rn we have that

(3.9) a|t|∞(ξ) =
1

|t|p−2
γ(|tξ|)ξ =

1
|t|p−2t

a∞(tξ) ∀t ∈ R , t 6= 0 .

Now let zs
t = t−1ζs

1 for every s, t ∈ R, with t 6= 0. By (3.8) zs
t is the solution of the

problem −div a|t|∞(Dzs
t ) = 0 in {|x| > 1}

zs
t = s/t in {|x| ≤ 1}
zs
t ∈ Hp(Rn) ,

then, by uniqueness, we deduce that zs
t = ζ

s/t
|t| and hence

tζ
s/t
|t| = ζs

1 ∀s, t ∈ R , t 6= 0 .

92



J. Casado Diaz & A. Garroni

Therefore by (3.6) and (3.9), for every s, t ∈ R with t 6= 0, we have

F (s) =
1
2n

∫
Rn

a∞(Dζs
1)Dv dx =

|t|p−2t

2n

∫
Rn

a|t|∞(Dζs/t
|t| )Dv dx = |t|p−2tF (t−1s)

for every v ∈ Hp(Rn), with v = 1 in {|x| ≤ 1}. This implies that F is (p−1)-homogeneous
and hence, by Proposition 3.1, a∞ is (p− 1)-homogeneous which is a contradiction.

Example 3.3. Let us consider the operator −div (γ(|Du|)Du) where γ(|t|) = (2 +
sin(log |t|))|t|p−2, that can be considered as a non linear perturbation of the p-Laplacian
operator. It is easy to see that the function a(ξ) = γ(|ξ|)ξ satisfies condition (i)–(iii).
Moreover if we choose rh = exp(−2πn), then γ(r−1

h |ξ|) = γ(|ξ|) for every ξ ∈ Rn and
hence a∞(ξ) = a(ξ) for every ξ ∈ Rn. Since the function a(ξ) is clearly non-homogeneous,
by Proposition 3.1 we obtain that the function F (s) which appears in the limit prob-
lem (2.5) is non-homogeneous. Moreover with this choice of a(ξ), by Proposition 3.2, the
limit problem for the sequence (uεh

) depend on the choice of the sequence (εh), i.e., the
homogenization result which holds for the homogeneous case does not occur.
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