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The course will give a brief overview of the variational theory for gradient flows
and rate-independent evolutions, trying to focus on the most important aspects:
variational approximations, convergence results, energy-dissipation inequalities and
metric characterization for gradient flows; energetic descriptions, BV solutions and
optimal jump transitions, viscous approximations in the case of rate-independent
evolutions. Some useful tools of convex and metric analysis will also be recalled.

Here is a more detailed description of the topics and a few references.

A setting for gradient flows and rate-independent evolutions. The simplest
variational setting for gradient flows and rate-independent evolutions consists in

• a state space X (here, for simplicity, a Banach space),
• a convex “dissipation functional”  : X ! [0,1),
• a time dependent energy E : X ⇥ [0, T ] ! R [ {+1}.

One looks for curves u : [0, T ] ! X which follow the direction of maximal descending
slope of the energy E. Such a direction is characterized in terms of the dissipation
potential  and of the di↵erential DE of the energy; when everything is smooth, it
amounts to solve the doubly nonlinear evolution equation [3, 10]

(1) D (u̇(t)) = �DE(t, u(t)) in X⇤, t 2 [0, T ], u(0) = u0.

(1) should be carefully formulated in nonsmooth/infinite-dimensional setting in or-
der to cover interesting PDE problems.

Gradient flows: superlinear dissipations. Gradient-flows correspond to super-

linear dissipation functions  : perhaps the most common example is when X is an
Hilbert space,  is its squared norm and (1) takes the simpler form [2, 12]

(2) u̇(t) = �rE(t, u(t)),

where one usually does not distinguish between X and X⇤ thanks to the identifica-
tion given by the Riesz isomorphism D .

The Minimizing Movement scheme. One of the most powerful method to prove
existence of a solution to (1) consists in the so-called Minimizing movement ap-
proximation [4, 1] scheme: denoting by ⌧ > 0 a time step size, under quite general
coercivity-lower semicontinuity assumptions on the energy E, one can construct a
sequence (Un

⌧ )n, n = 0, 1, . . . , N , N⌧ � T , such that

(3) Un
⌧ minimizes the functional U 7! ⌧ 

⇣U � Un�1
⌧

⌧

⌘
+ E(n⌧, U)

Denoting by U⌧ the piecewise constant interpolant of the discrete values Un
⌧ on each

interval ((n� 1)⌧, n⌧ ], it is possible to prove that U⌧k ! u uniformly in [0, T ] for a
suitable vanishing sequence ⌧k # 0.

1



2

Energy-dissipation inequality. It is remarkable that the limit curve can be char-
acterized by a single scalar energy-dissipation inequality [5, 1, 10]

(4) E(T, u(T )) +

Z T

0

⇣
 (u̇(t)) + ⇤(�DE(t, u(t))

⌘
dt  E(0, u0),

that encode the full information of the di↵erential equation (1) in the smooth cases
and provides a very useful tool in more general frameworks, as metric spaces without
a linear structure.

1-homogeneous dissipations: rate-independent evolutions. In this rough
scheme, a rate-independent evolution corresponds, formally, to one homogeneous

dissipations  , so that (1) becomes invariant by monotone time rescalings. The
typical example is  (v) := kvkX , the norm of the Banach space X.

Even if the formal structure of the equation looks similar, the loss of superlinear-
ity introduces many new problems and di�culties with respect to the gradient flow
case. In particular, the energy inequality (4) provides just a BV estimate in time
for the solutions, so that jumps can typically occur during the evolution, at least
when the energy is not convex. Therefore, even for very regular energies and data,
one has to deal with a non-smooth setting and possibly discontinuous solutions.

We will address two di↵erent strategies to construct a solution to the rate-
independent evolution system.

Energetic solutions by the minimization scheme. The first one, introduced
by A. Mielke and his collaborators, [11, 6, 7] is based on the same discretization
method (3) and it leads to the so-called energetic solutions. In this approach (4) is
replaced by the energy-dissipation inequality involving the total variation of u

(5) E(T, u(T )) + Var(u; [0, T ])  E(0, u0),

and a global stability condition

(6) E(t, u(t))  E(t, v) + kv � u(t)k for every v 2 X, t 2 [0, T ],

which reflects the global character of each minimization step of the approximation
scheme (notice that the small penalization parameter ⌧ has no e↵ect in (3) since
⌧ (v/⌧) =  (v) due to 1-homogeneity).

BV solutions by viscous regularization. In order to obtain a localized con-
dition, various viscosity-type corrections have been proposed. The simplest ones
consist to add a (asymptotically small) superlinear (e.g. quadratic) perturbation
to the dissipation term, obtaining a family of superlinear dissipation potentials  "

that approximate the linearly growing  as " # 0. One can then apply the theory
of “viscous” gradient flow to find a family of solutions u" corresponding to  " and
reduces the problem to study its limit u as " # 0 [9].

This procedure gives raise to the notion of viscous BV solutions to the rate-
independent system (X, ,E) [8], a class that it is in general di↵erent from the
previous energetic one. u can be characterized by a modified energy dissipation
inequality

(7) E(T, u(T )) + VAR(u; [0, T ])  E(0, u0),

and a local stability condition

(8)  ⇤(DE(t, u(t)))  1 for every v 2 X, t 2 [0, T ].

The bigger variation VAR di↵ers from the usual one Var in the contribution of
the jump points: at each jump time t the solution keeps trace of a fast transition
connecting the left and the right limit u±(t) along a gradient flow trajectory of
E(·, t). The use of the energy-dissipation inequality (4) is crucial to recover the
precise description of this trajectory.
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[1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space
of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel,
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