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1 Introduction

In a wonderful article in this Monthly, John Holte [23] found fascinating mathemat-
ics in the usual process of “carries” when adding integers. His article reminded us
of the mathematics of shuffling cards. This connection is developed below.

Consider adding two 40-digit binary numbers (the top row, in italics, comprises
the carries):

1 01110 01000 00001 00111 10111 00000 00111 1110
10111 00110 00000 10011 11011 10001 00011 11010
10011 10101 11110 10001 01000 11010 11001 01111

1 01010 11011 11111 00101 00100 01011 11101 01001

For this example, 19/40=47.5% of the columns have a carry of 1. Holte shows that
if the binary digits are chosen at random, uniformly, in the limit 50% of all the
carries are zero. This holds no matter what the base. More generally, if one adds n
integers (base b) that are produced by choosing their digits uniformly at random in
{0, 1, . . . , b− 1}, the sequence of carries κ0 = 0, κ1, κ2, . . . is a Markov chain taking
values in {0, 1, 2, . . . , n − 1}. The Markov property holds because to compute the
amount carried to the next column, one only needs to know the carry and numbers
in the current column: the past does not matter. We let P (i, j) = P (κ′ = j|κ = i)
denote an entry of the transition matrix between successive carries κ, κ′. Holte
found the following:

(H1) For 0 ≤ i, j ≤ n− 1,

P (i, j) =
1
bn

j−bi/bc∑
r=0

(−1)r

(
n + 1

r

)(
n− 1− i + (j + 1− r)b

n

)
.

For example, for n = 2 and all b,

(P (i, j)) =
1
2b

(
b + 1 b− 1
b− 1 b + 1

)
,

and for n = 3 and all b,

(P (i, j)) =
1

6b2

b2 + 3b + 2 4b2 − 4 b2 − 3b + 2
b2 − 1 4b2 + 2 b2 − 1

b2 − 3b + 2 4b2 − 4 b2 + 3b + 2

 .

In the special case when b = 2, for any n, Holte derives the simpler expression

P (i, j) =
1
2n

·
(

n + 1
2j − i + 1

)
0 ≤ i, j ≤ n− 1.
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The matrices of (H1) are the “amazing matrices” of Holte’s title, and we also
denote them by Pb. Among many things, Holte shows

(H2) The matrix Pb has stationary vector π (left eigenvector with eigenvalue 1)
independent of the base b:

π(j) =
A(n, j)

n!
,

where A(n, j) is an Eulerian number. The n! in the denominator is to make
the entries of the left eigenvector sum to 1.

The Eulerian number A(n, j) may be defined as the number of permutations
in the symmetric group Sn with j descents. Recall that σ ∈ Sn has a descent at
position i if σ(i + 1) < σ(i). So 5 13 2 4 has two descents. Note that we write
permutations as sequences, where the ith number in the sequence denotes σ(i).

When n = 2, A(2, 0) = A(2, 1) = 1, thus π(0) = π(1) = 1/2 is the limiting
frequency of carries when two long integers are added. When n = 3, A(3, 0) =
1, A(3, 1) = 4, A(3, 2) = 1, giving π(0) = 1/6, π(1) = 2/3, π(2) = 1/6.

We mention that Eulerian numbers make many mathematical appearances, e.g.
in the theory of sorting [27] and in juggling sequences [11]. For further background
on their properties, the reader can consult [13].

Holte further establishes the remarkable

(H3) The matrix Pb has eigenvalues 1, 1/b, 1/b2, . . . , 1/bn−1 with explicitly com-
putable left and right eigenvectors independent of b.

(H4) PaPb = Pab for all real a, b.

When we saw properties (H2), (H3), (H4), we hollered “Wait, this is all about
shuffling cards!” Readers who know us may well think, “For these two guys, ev-
erything is about shuffling cards.” While there is some truth to these thoughts, we
justify our claim in the next section. Following this we show how the connection
between carries and shuffling contributes to each subject. The rate of convergence
of the Markov chain (H1) to the stationary distribution π is given in Section 4: the
argument shows that the matrix Pb is totally positive of order 2. Finally, we show
how the same matrix occurs in taking sections of generating functions [9], discuss
carries for multiplication, and describe another “amazing matrix”.

Our developments do not exhaust the material in Holte’s article, which we en-
thusiastically recommend. A “higher math” perspective on arithmetic carries as
cocycles [24] suggests many further projects. We have tried to keep the presen-
tation elementary, and mention the (more technical) companion paper [16] which
analyzes the carries chain using symmetric function theory and gives analogs of our
main results for other Coxeter groups.

2 Shuffling Cards

How many times should a deck of n cards be riffle shuffled to thoroughly mix it? For
an introduction to this subject, see [2, 28]. The main theoretical developments are
in [5, 17] with further developments in [19, 20]. A survey of the many connections
and developments is in [15]. The basic shuffling mechanism was suggested by [21].
It gives a realistic mathematical model for the usual method of riffle shuffling n
cards:
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• Cut off C cards with probability
(

n
C

)
/2n, 0 ≤ C ≤ n.

• Shuffle the two parts of the deck according to the following rule: if at some
stage there are A cards in one part and B cards in the other part, drop the
next card from the bottom of the first part with probability A/(A + B) and
from the bottom of the second part with probability B/(A + B).

• Continue until all cards are dropped.

Let Q(σ) be the probability of generating the permutation σ after one shuffle,
starting from the identity, and let Qh(σ) denote the corresponding quantity after h
successive shuffles. Repeated shuffling is modeled by convolution:

Q2(σ) =
∑

η

Q(η)Q(ση−1), Qh(σ) =
∑

Qh−1(η)Q(ση−1). (1)

Thus to be at σ after two shuffles, the first shuffle goes to some permutation η and
the second must be to ση−1. The uniform distribution is U(σ) = 1/n!. Standard
theory shows that

Qh(σ) → U(σ) as h →∞. (2)

The reference [5] gives useful rates for the convergence in (2), showing that for
h = (3/2) log2 n + c with c fixed,

1
2

∑
σ

|Qh(σ)− U(σ)| → 1− 2Φ
(
−2−c

4
√

3

)
with Φ(x) =

1√
2π

∫ x

−∞
e−t2/2dt

as n →∞. Roughly stated, it takes h = (3/2) log2 n+ c to get 2−c close to random;
when n = 52 and h = 7, the above distance to uniform is about 0.3 and tends to
zero exponentially thereafter.

To explain the connection with carries, it is useful to have a geometric description
of shuffling. Consider dropping n points uniformly at random into [0, 1). Label these
points in order x(1) ≤ x(2) · · · ≤ x(n). The baker’s transformation x 7→ 2x mod 1
maps [0, 1) into itself and permutes the points. Let σ be the induced permutation.
As shown in [5], the chance of σ is exactly Q(σ). A natural generalization of this
shuffling scheme to “b-shuffles” is induced from x 7→ bx mod 1 with b fixed in
{1, 2, 3, . . .}. Thus ordinary riffle shuffles are 2-shuffles and a 3-shuffle results from
dividing the deck into three piles and dropping cards sequentially from the bottom
of each pile with probability proportional to packet size.

Let Qb(σ) be the probability of σ after a b-shuffle. Letting ∗ be the convolution
operator used in equation (1), one can show [5] from the geometric description that

Qa ∗Qb = Qab. (3)

The key is to check that the points ax(1) mod 1, ax(2) mod 1, . . ., ax(n) mod 1 have
the same distribution as n uniform points in [0, 1), so the b-shuffle can be applied
to these points without having to reposition them at random in [0, 1). Then (3)
follows since b(ax(i) mod 1) mod 1= abx(i) mod 1.

The physical model of shuffling described at the start of this section is Q2 in
this notation and we see that Qh

2 = Q2h . Thus to study repeated shuffles, we need
only understand a single b-shuffle. A main result of [5] is a simple formula:

Qb(σ) =

(
n+b−r

n

)
bn

. (4)
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Here r = r(σ) = 1 + #{descents in (σ−1)}.
In addition to the similarities between (H4) and (3), [5] and [22] proved that

the eigenvalues of the Markov chain induced by Qb are also 1, 1/b, 1/b2, . . . , 1/bn−1

(though here 1/bi occurs with multiplicity equal to the number of permutations in
Sn with n − i cycles instead of with multiplicity 1). This and the appearance of
descents convinced us that there must be an intimate connection between carries
and shuffling. The main result of this article (proved in Section 3) makes this
precise.

Theorem 2.1. The number of descents in successive b-shuffles of n cards forms a
Markov chain on {0, 1, . . . , n− 1} with transition matrix (P (i, j)) of (H1).

3 Bijective Methods

First we describe some notation to be used throughout. The number of descents
of a permutation τ is denoted by d(τ). Label the columns of the n numbers to be
added base b by C1, C2, C3, . . . where C1 is the right-most column.

The main purpose of this section is to give a bijective proof of the following
theorem, which implies Theorem 2.1.

Theorem 3.1. Let κj denote the amount carried from column j to column j + 1
when n m-digit base-b numbers are added, and the digits are chosen uniformly and
independently from {0, 1, · · · , b − 1}. Let τj be the permutation obtained after the
first j steps of a sequence of m b-shuffles, started at the identity. Then

P(κ1 = i1, . . . , κm = im) = P(d(τ1) = i1, . . . , d(τm) = im)

for all values of i1, . . . , im.

In preparation for the proof of Theorem 3.1, some definitions and lemmas are
needed. To begin, note that κj is determined by the last j columns Cj · · ·C1. Given
a length-n list of j-digit base-b numbers, one says that the list has a carry at position
i if the addition of the (i+1)st number on the list to the sum of the first i numbers
on the list increases the amount that would be carried to the (j + 1)st column (it
might seem more natural to say that the carry is at position i+1, but our convention
will be useful). For example the following list of 3-digit base-3 numbers:

0 1 2
0 1 2
1 1 2
1 1 1
2 1 2
1 2 1

has a carry at positions 3 and 4. Indeed 012 + 012 = 101 which doesn’t create a
carry. Adding 112 gives 220 which still doesn’t create a carry. Adding 111 gives 101
with a carry, so there is a carry at position 3. Adding 212 gives 020 with a carry,
so there is a carry at position 4. Finally adding 121 gives 211, which doesn’t create
a carry.

Note that when there is a carry at position i, the carry is 1. This observation
yields the following lemma.
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Lemma 3.2. Let κ(Cj · · ·C1) denote the number of positions i such that when the
base-b numbers given by Cj · · ·C1 are added, there is a carry at position i. Then
κ(Cj · · ·C1) = κj.

Given a length-n list of j-digit base-b numbers, one says that the list has a
descent at position i if the (i + 1)st number on the list is smaller than the ith
number on the list. For example the following list of 3-digit base-3 numbers:

0 1 2
1 0 1
2 2 0
1 0 1
0 2 0
2 1 1

has a descent at position 3 since 220 is greater than 101, and a descent at position
4 since 101 is greater than 020.

For what follows we use a bijection, which we call the bar map, on length-n lists
of j-digit base-b numbers. Letting a1, . . . , an denote the n number on this list, the
bar map may be described as

(a1, . . . , an) 7→ (a1, a1 + a2, a1 + a2 + a3, . . . , a1 + · · ·+ an)

where addition is mod bj . For example,

C3C2C1 =

0 1 2
0 1 2
1 1 2
1 1 1
2 1 2
1 2 1

7→ C3C2C1 =

0 1 2
1 0 1
2 2 0
1 0 1
0 2 0
2 1 1

.

Indeed 012 + 012 = 101 giving the second line of C3C2C1. Then 101 + 112 = 220
giving the third line, and 220 + 111 = 101 (retaining only the last 3 coordinates),
giving the fourth line, etc. One can easily invert the bar map, so it is a bijection.

Remark: The bar map was shown to us by Jim Fill with the suggestion that it
would lead to a bijective proof of Theorem 3.1. Our analytic proof is recorded in
[16].

The following lemma is immediate from the above definitions.

Lemma 3.3. Cj · · ·C1 has a descent at position i if and only if Cj · · ·C1 has a
carry at position i.

Given a length-n list of j-digit base-b numbers, we define an associated permuta-
tion π by labeling the n numbers from smallest to largest (considering the higher-up
number to be smaller in case of ties). For example with n = 6, j = 2, b = 3, one
would have

π = π


1 2
2 1
1 0
0 1
0 0
2 1

 =

4
5
3
2
1
6

,
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since 00 is the smallest, followed by 01, 10, 12, then the uppermost copy of 21
and finally the lowermost copy of 21. Note that, by the convention we use for
writing permutations, this means that π(1) = 4, π(2) = 5, etc. We mention that
this construction appears in the theory of inverse riffle shuffling [5].

Lemma 3.4. Cj · · ·C1 has a descent at position i if and only if the associated
permutation π(Cj · · ·C1) has a descent at position i.

Proof. This is immediate from the definition of π. �

To proceed we define a second bijection, called the star map, on length-n lists
of j-digit base-b numbers. As above, it is useful to think of such a list as a sequence
of j length-n column vectors with entries in 0, 1, . . . , b − 1. The star map sends
column vectors Aj · · ·A1 to (Aj · · ·A1)∗ defined as follows. The right-most column
of (Aj · · ·A1)∗ is A1. The second column in (Aj · · ·A1)∗ is obtained by putting
the entries of A2 in the order specified by the permutation corresponding to the
right-most column of (Aj · · ·A1)∗ (which is A1); i.e. if π = π(A1), what gets put
in position j is the π(j)th entry of A2. Then the third column in (Aj · · ·A1)∗ is
obtained by putting the entries of A3 in the order specified by the permutation
corresponding to the two right-most columns of (Aj · · ·A1)∗, and so on.

For example,

A3A2A1 =

1 2 2
1 2 1
2 0 0
0 0 1
2 1 0
0 1 1

7→ (A3A2A1)∗ =

0 1 2
1 0 1
2 2 0
1 0 1
0 2 0
2 1 1

Indeed, the right-most column of (A3A2A1)∗ is A1. The second column of
(A3A2A1)∗ is obtained by taking the entries of A2 (namely 2, 2, 0, 0, 1, 1) and putting
the first 2 next to the smallest element of A1 (so the highest 0), then the second
2 next to the 2nd smallest element (so the second 0), then the first 0 next to the
3rd smallest element (so the highest 1), then the second 0 next to the 4th smallest
element (so the second 1), then the first 1 next to the 5th smallest element (so the
third 1), and finally the second 1 next to the 6th smallest element (so the only 2),
giving

1 2
0 1
2 0
0 1
2 0
1 1

.

Then the third column of (A3A2A1)∗ is obtained by taking the entries of A3 (namely
1, 1, 2, 0, 2, 0) and putting the first 1 next to the smallest pair (so the highest 01),
then putting the second 1 next to the 2nd smallest pair (so the second 01), then
the first 2 next to the third smallest pair 11, then the first 0 next to the fourth
smallest pair 12, then the second 2 next to the fifth smallest pair (the highest 20),
and finally the second 0 next to the sixth smallest pair (the second 20).

The star map is straightforward to invert (we leave this as an exercise to the
reader), so it is a bijection.

The crucial property of the star map is given by the following lemma, the j = 2
case of which is essentially equivalent to the “AB&B” formula in [28, Section 9.4].
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Lemma 3.5.
π(Aj) · · ·π(A1) = π[(Aj · · ·A1)∗],

where the product on the left is the usual multiplication of permutations.

As an illustration,

A3A2A1 =

1 2 2
1 2 1
2 0 0
0 0 1
2 1 0
0 1 1

yields the permutations
π(A3) π(A2) π(A1)

3 5 6
4 6 3
5 1 1
1 2 4
6 3 2
2 4 5

.

Also as calculated above,

(A3A2A1)∗ =

0 1 2
1 0 1
2 2 0
1 0 1
0 2 0
2 1 1

which yields the permutations

π[(A3A2A1)∗] π[(A2A1)∗] π[(A1)∗]
1 4 6
3 1 3
6 5 1
4 2 4
2 6 2
5 3 5

.

π[(A∗
1)] = π(A1), π[(A2A1)∗] = π(A2)π(A1), π[(A3A2A1)∗] = π(A3)π(A2)π(A1),

and Lemma 3.5 gives that this happens in general.

Proof of Lemma 3.5. This is clear for j = 1, so consider j = 2. Then the claim
is perhaps easiest to see using the theory of inverse riffle shuffles. Namely given a
column of n 1-digit base-b numbers, label cards 1, . . . , n with these numbers, then
bring the cards labeled 0 to the top (cards higher up remaining higher up), then
bring the cards labeled 1 just beneath them, and so on. For instance,

Card Label
1 2
2 1
3 0
4 1
5 0
6 1

7→

Card Label
3 0
5 0
2 1
4 1
6 1
1 2

.
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Note that the third column of the table represents π(A1)−1. Now repeat this process,
using the column

2
2
0
0
1
1

,

to label the cards, placing the labels just to the left of the digit already on each card.
A moment’s thought shows that this is equivalent to a single process in which one
labels the cards with pairs from (A2A1)∗. Thus π[(A2A1)∗]−1 = π(A1)−1π(A2)−1,
so that π[(A2A1)∗] = π(A2)π(A1). The reader desiring further discussion for the
case of two columns is referred to Section 9.4 of the expository paper [28]. The
argument for j ≥ 3 is identical: just use the observation that iterating the procedure
three times is equivalent to a single process in which one labels the cards with triples
from (A3A2A1)∗. �

With the above preparations in hand, Theorem 3.1 can be proved.

Proof of Theorem 3.1. To begin, note that

κ1 = i1, . . . , κm = im ⇔ κ(Cj · · ·C1) = ij (1 ≤ j ≤ m)
⇔ d(Cj · · ·C1) = ij (1 ≤ j ≤ m)
⇔ d(π(Cj · · ·C1)) = ij (1 ≤ j ≤ m).

The first step used Lemma 3.2, the second step used Lemma 3.3 and the third step
used Lemma 3.4.

Let Am · · ·A1 = (Cm · · ·C1)−∗, where −∗ denotes the inverse of the star map.
Then Aj · · ·A1 = (Cj · · ·C1)−∗ for all 1 ≤ j ≤ m, and Lemma 3.5 implies that

d[π(Aj) · · ·π(A1)] = d(π[(Aj · · ·A1)∗]) = d[π(Cj · · ·C1)],

so the above equivalences can be extended to

⇔ d[π(Aj) · · ·π(A1)] = ij (1 ≤ j ≤ m).

Now note that if Cm · · ·C1 are chosen i.i.d. with entries uniform in 0, 1, . . . , b − 1,
then the same is true of Am · · ·A1 since the bar and star maps are both bijections.
Note that each π(Ai) has the distribution of a permutation after a b-shuffle, so one
may take τj to be the product π(Aj) · · ·π(A1), and the theorem is proved. �

Remark and example: The above construction may appear complicated, but we
mention that the star map (though useful in the proof) is not needed in order to
go from the numbers being added to the τ ’s. Indeed, from the proof of Theorem
3.1 one sees that the τj ’s can be defined by τj = π(Cj · · ·C1). Thus in the running
example,

C3C2C1 =

0 1 2
0 1 2
1 1 2
1 1 1
2 1 2
1 2 1

7→ C3C2C1 =

0 1 2
1 0 1
2 2 0
1 0 1
0 2 0
2 1 1

7→

τ3 τ2 τ1

1 4 6
3 1 3
6 5 1
4 2 4
2 6 2
5 3 5

.
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Observe that κ1 = 3, κ2 = 3, κ3 = 2, and that d(τ1) = 3, d(τ2) = 3, d(τ3) = 2 as
claimed.

As a corollary of Theorem 3.1, we deduce that the descent process after riffle
shuffles is Markov (usually, a function of a Markov chain is not Markov).

Corollary 3.6. Let a Markov chain on the symmetric group begin at the identity
and proceed by successive independent b-shuffles. Then d(π), the number of descents,
forms a Markov chain.

Proof. This follows from Theorem 3.1 and the fact that the carries process is
Markov. �

4 Applications to the Carries Process

As in previous sections, let κj be the amount carried from column j to column
j + 1 when n m-digit base-b numbers are added, and the digits of these numbers
are chosen uniformly and independently in {0, 1, . . . , b− 1}.

Theorem 4.1. For 1 ≤ j ≤ m and n ≥ 2, the expected value of κj is µj =
n−1

2

(
1− 1

bj

)
. The variance of κj is σ2

j = n+1
12

(
1− 1

b2j

)
. Normalized by its mean

and variance, for large n, κj has a limiting standard normal distribution.

Proof. From Lemma 3.3, κj is distributed exactly like the number of descents among
the n rows of the right-most j digits of the random array. The distribution of these
descents is studied in [8] where they are shown to be a 1-dependent process with the
required mean and variance. The central limit theorem for 1-dependent processes
is classical [3]. �

Remarks:

1. Note that µj , σ
2
j are increasing to their respective limiting values n−1

2 , n+1
12 as

j increases.

A Markov chain P on the integers is called stochastically monotone if for
any up-set U (that is a set of the form U = {l : l ≥ k}), one has that
P (i, U) ≥ P (h, U) whenever i ≥ h. The carries chain is clearly stochastically
monotone (starting with a carry of i rather than a carry of h ≤ i can only
increase the carry at the next step). This monotonicity was used in our
analysis of the total variation distance convergence rate of the carries chain
in the companion paper [16], and a referee notes that it gives another proof
that µj+1 ≥ µj . Namely since P is stochastically monotone, so is each power
P j . Thus the distributions P j(0, ·) increase stochastically in j (meaning that
P j+1(0, U) ≥ P j(0, U) for any up-set U). Indeed,

P j+1(0, U) =
∑

i

P (0, i)P j(i, U) ≥
∑

i

P (0, i)P j(0, U) = P j(0, U).

This precisely says that the successive carry random variables κj increase
stochastically, so their expected values are nondecreasing too.

2. Let Sm = κ1 + κ2 + · · · + κm be the total number of carries. By linearity of
expectation and Theorem 4.1, this has mean

µ̄m =
n− 1

2

(
m− 1

b− 1

(
1− 1

bm

))
.
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When n = 2, this was shown by Knuth [26, p. 278]. He also finds the variance
of Sm when n = 2. For fixed n and b, the central limit theorem for finite state
space Markov chains [7] shows that Sm, normalized by its mean and variance,
has a standard normal limiting distribution.

3. The fine properties of the number of carries within a column is studied in [8]
where it is shown to be a determinantal point process.

As shown above, the carries process κj , 0 ≤ j ≤ m (with κ0 = 0) is a Markov
chain which has limiting stationary distribution π(j) = A(n, j)/n!. To study the
rate of convergence to the limit we first prove a new property of the amazing matrix
(P (i, j)) of (H1). Recall that a matrix is totally positive of order two (TP2) if all
the 2 × 2 minors are non-negative (matrices in which all minors are positive are
called strictly totally positive). The argument for Lemma 4.2 was suggested by
Alexei Borodin.

Lemma 4.2. For every n and b, the matrix (P (i, j)) of (H1) is TP2.

Proof. As noted on [23, p. 140],

P (i, j) =
1
bn

[
x(j+1)b−i−1

](1− xb

1− x

)n+1

where [xk]f(x) is the coefficient of xk in a polynomial f(x). Consider the infinite
matrix Mn with (i, j) coordinate 1/bn · [xi−j ]

(
(1− xb)/(1− x)

)n+1. As the trans-
pose of P is a submatrix of Mn, it will suffice to show that Mn is TP2. Since the
product of TP2 matrices is TP2 and Mn = 1/bn · (M0)n+1, it is enough to treat
the case n = 0. Now, M0 is lower triangular with ones down the diagonal, ones on
the next lowest b − 1 diagonals and zeros elsewhere. For example, when b = 3 the
relevant matrix is 

1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 1 1 0 0 0 · · ·
0 1 1 1 0 0 · · ·
0 0 1 1 1 0 · · ·

. . . . . . . . . . . . . . . . . .


.

Since (for general b) the 1’s occur in consecutive diagonal bands, the matrices(
0 1
1 0

) (
0 1
1 1

) (
1 1
1 0

)
,

cannot occur as submatrices. As these are the only 2 × 2 zero-one matrices with
negative determinant, the lemma follows. �

Remark: When b = 2, the original (P (i, j)) =
(
2−n

(
n+1

2j−i+1

))
is totally positive

(TP∞). Indeed, P (i, j) = 2−n[x2j−i+1](1 + x)n+1. Let i′ = i + 1, j′ = j + 1. This
becomes 2−n[x2j′−i′ ](1 + x)n+1. Thus each minor of (P (i, j)) is a subminor of the
matrix with entries 2−n[xj′−i′ ](1+x)n+1. This is totally positive by the classification
of Polya frequency sequences due to Schoenberg and Edrei [25, Chapter 8]. We have
yet to settle whether (P (i, j)) is TP∞ for general b, but note by (H4) that since
the product of TP∞ matrices is TP∞, total positivity does hold when b is a power
of 2.
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Consider the basic transition matrix (P (i, j)) for general b, n. This has station-
ary distribution π(j), 0 ≤ j ≤ n, given in (H2). The carries Markov chain starts
at 0 and the right-most carries tend to be smaller. This is seen in Theorem 4.1 and
Remark 1 following it. It is natural to ask how far over one must go so that the
carries process is stationary. If P r(0, j) is the chance of carry j after r steps, we
measure the approach to stationarity by separation

sep(r) = max
j

[
1− P r(0, j)

π(j)

]
.

Thus 0 ≤ sep(r) ≤ 1 and sep(r) is small provided P r(0, j) is close to π(j) for all j.
See [2] or [15] for further properties of separation. The following theorem may be
roughly summarized as showing that convergence requires r = 2 logb n.

Theorem 4.3. For any b ≥ 2, n ≥ 2, the transition matrix (P (i, j)) of (H1)
satisfies

1. For all r ≥ 0, the separation sep(r) of the carries chain after r steps (started
at 0) is attained at the state j = n− 1.

2. For r = b2 logb(n) + logb(c)c,

sep(r) → 1− e−
1
2c

if c > 0 is fixed and n →∞.

Proof. By Lemma 4.2, the matrix (P (i, j)) is TP2. Thus the matrix P ∗ with i, j
entry P ∗(i, j) := [P (j, i)π(j)]/π(i) is also TP2, since every 2 × 2 minor of P ∗ is
a positive multiple of a 2 × 2 minor of P . Now consider the function fr(i) =
P r(0, i)/π(i). We claim that P ∗fr = fr+1. Indeed,

[P ∗fr](i) =
∑

j

P ∗(i, j)fr(j)

=
∑

j

P ∗(i, j)
P r(0, j)

π(j)

=
∑

j

P (j, i)π(j)
π(i)

P r(0, j)
π(j)

=
P r+1(0, i)

π(i)
= fr+1(i).

Now the “variation-diminishing property” [25, p. 22] gives that if f is monotone
and P ∗ is TP2, then P ∗f is monotone. Since f0 is monotone (the walk is started
at 0), it follows that fr is monotone, i.e., that the separation sep(r) is attained at
the state n− 1.

For the second assertion, note that by the relation between riffle shuffling and
the carries chain in Theorem 3.1, P r(0, n− 1) is equal to the chance of being at the
unique permutation with n−1 descents after r iterations of a b-shuffle; by equation

11



(4) in Section 2 this is b−rn
(
br

n

)
. Thus

sep(r) = 1− P r(0, n− 1)
π(n− 1)

= 1−
n−1∏
i=0

(
1− i

br

)

= 1− exp

(
n−1∑
i=0

log
(

1− i

br

))
.

Letting br = cn2 with c > 0 fixed, this becomes

1− exp

(
−

n−1∑
i=0

[
i

cn2
+ O

(
i2

n4

)])
→ 1− e−

1
2c ,

as n →∞. �

Remark: It is known [5] that it takes r = 2 logb n b-shuffles to make separation
small on the symmetric group. Via Theorem 3.1, this shows 2 logb n steps suffice
for the carries process. Of course, a priori fewer steps might suffice but Theorem
4.3 shows the result is sharp for large n. In mild contrast, it is known [1, 5] that
(3/2) log2 n “ordinary” (b = 2) riffle shuffles are necessary and suffice for total
variation convergence. Our companion paper [16] shows that (1/2) logb n carry
steps are necessary and suffice for total variation convergence.

5 Three Related Topics

The “amazing matrix” turns up in different contexts (sections of generating func-
tions) in the work of Brenti and Welker [9]. There is an analog of carries for multi-
plication which has interesting structure. Finally, there are quite different amazing
matrices having many of the same properties as Holte’s. These three topics are
briefly developed in this section.

5.1 Sections of generating functions

Some natural sequences ak, 0 ≤ k < ∞ have generating functions

∞∑
k=0

akxk =
h(x)

(1− x)n+1
(5)

with h(x) = h0 + h1x + · · · + hn+1x
n+1 a polynomial of degree at most n + 1.

For example, the generating function of ak = kn has this form with h(x) =∑
j≥0 A(n, j)xj+1 with A(n, j) the Eulerian numbers of (H2). Rational generating

functions characterize sequences {ah} which satisfy a constant coefficient recurrence
[29]. They arise naturally as the Hilbert series of graded algebras [18, Chapter 10.4].

Suppose we are interested in every b-th term {abk}, 0 ≤ k < ∞. It is not hard
to see that

∞∑
k=0

abkxk =
h<b>(x)

(1− x)n+1

12



for another polynomial h<b>(x) of degree at most n+1. Brenti and Welker [9] show
that the i-th coefficient of h<b>(x) satisfies

h<b>
i =

n+1∑
j=0

C(i, j)hj

with C an (n + 2)× (n + 2) matrix with (i, j) entry (0 ≤ i, j ≤ n + 1) equal to the
number of solutions to a1 + · · · + an+1 = ib − j where 0 ≤ al ≤ b − 1 are integers.
The carries matrix is closely related to their matrix. Indeed, remove from C the
i = 0, n + 1 rows and the j = 0, n + 1 columns. Let i′ = i − 1, j′ = j − 1. This
gives an n × n matrix with i′, j′ entry (0 ≤ i′, j′ ≤ n − 1) equal to the number
of solutions to a1 + · · · + an+1 = (i′ + 1)b − (j′ + 1) where 0 ≤ al ≤ b − 1 are
integers. Multiplying by b−n and taking transposes gives the carries matrix for
mod b addition of n numbers (see the formula for the carries matrix on [23, p.
140]). Brenti and Welker [9] and Beck and Stapledon [6] develop some properties
of the transformation C. We hope some of the facts from the present development
(in particular the central limit theorems satisfied by the coefficients and results on
convergence rates) will illuminate their algebraic applications; see [16] for a result
in this direction.

5.2 Carries for multiplication

Consider the process of base-b multiplication of a random number (digits chosen
from the uniform distribution on {0, 1, . . . , b− 1}) by a fixed number k > 0. We do
not require that k is single-digit. Then there is a natural way to define a carries
process, which is best defined by example. Let k = 26 and consider multiplying
1423 by 26 base 10. The zeroth carry is defined as κ0 = 0. To compute the first
carry, note that 26 × 3 = 78, so κ1 = 7. Then κ1 + 26 × 2 = 59, so κ2 = 5. Next
κ2 + 26 × 4 = 109, so κ3 = 10. Finally, κ3 + 26 × 1 = 36, so κ4 = 3. The carries
in this multiplication process are equal to those arising from adding k copies of the
same random number (so 26 copies of 1423 in the example).

It is not difficult to see that the above process is a Markov chain on the state
space {0, 1, . . . , k − 1}. For example, if b = 10 and k = 7, the transition matrix is

K(i, j) =
1
10



2 1 2 1 2 1 1
2 1 2 1 1 2 1
2 1 1 2 1 2 1
1 2 1 2 1 2 1
1 2 1 2 1 1 2
1 2 1 1 2 1 2
1 1 2 1 2 1 2


The matrix K above does not have all eigenvalues real, but the following prop-

erties do hold in general:

• K is doubly stochastic, meaning that every row and column sums to 1.

• K is a generalized circulant matrix, meaning that each column is obtained
from the previous column by shifting it downward by b mod k.

• Fix k and let Ka,Kb be the base a, b transition matrices for multiplication by
k. Then Kab = KaKb.

13



The first two properties are at the level of undergraduate exercises, and [14,
Chapter 5] is a useful reference for generalized circulants. The third property holds
for the same reason that it does for Holte’s matrix (see the explanation on [23, p.
143]).

Since K is doubly stochastic, the carries chain for multiplication has the uniform
distribution on {0, 1, . . . , k − 1} as its stationary distribution. Concerning conver-
gence rates, one has the following simple upper bound for total variation distance.

Proposition 5.1. Let Kr
0 denote the distribution of the carries chain for multipli-

cation by k base-b after r steps, started at the state 0. Let π denote the uniform
distribution on {0, 1, . . . , k − 1}. Then

1
2

k−1∑
j=0

|Kr
0(j)− π(j)| ≤ k

2br
.

Proof. Observe that

Kr
0(j) =

1
br
|{x : jbr ≤ kx < (j + 1)br, 0 ≤ x < br}| .

The number of integers x satisfying jbr/k ≤ x < (j + 1)br/k is between (br/k)− 1
and (br/k) + 1. Hence |Kr

0(j) − π(j)| ≤ 1/br, and the result follows by summing
over j. �

Convergence rate lower bounds depend on the number theoretic relation of k
and b in a complicated way. For instance if k = b, the process is exactly random
after 1 step.

5.3 Another amazing matrix

From one point of view, Holte’s amazing matrix exists because there is a “big”
Markov chain on the symmetric group Sn with eigenvalues 1, 1/b, 1/b2, . . . , 1/bn−1

and a function T : Sn → {0, 1, . . . , n− 1} such that the image of this Markov chain
is Holte’s Markov chain of carries. (The chain on Sn is the b-shuffle Markov chain,
and the function T assigns to each permutation the number of descents). Of course,
the interpretation as “carries” remains amazing.

There are many functions of the basic riffle shuffling Markov chain which remain
Markov chains. Here is a simple one. Consider repeated shuffling of a deck of n
cards using the b-shuffles described in Section 2. The position of card labeled “one”
gives a Markov chain on {1, 2, . . . , n}. In [4] the transition matrix of this chain is
shown to be

Qb(i, j) =
1
bn
× (6)

b∑
h=1

u∑
r=`

(
j − 1

r

)(
n− j

i− r − 1

)
hr(b− h)j−1−r(h− 1)i−1−r(b− h + 1)(n−j)−(i−r−1)

where the inner sum is from ` = max(0, (i + j)− (n + 1)) to u = min(i− 1, j − 1).
For example, when n = 2, 3 the matrices are

1
2b

(
b + 1 b− 1
b− 1 b + 1

)
1

6b2

(b + 1)(2b + 1) 2(b2 − 1) (b− 1)(2b− 1)
2(b2 − 1) 2(b2 + 2) 2(b2 − 1)

(b− 1)(2b− 1) 2(b2 − 1) (b + 1)(2b + 1)

 .
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Ciucu [12] (see also [4]) proves that Qb satisfies

• Qb has eigenvalues 1, 1/b, 1/b2, . . . , 1/bn−1.

• The eigenvectors of Qb do not depend on b; in particular, the stationary
distribution is uniform: π(i) = 1/n, 1 ≤ i ≤ n.

• QaQb = Qab.

We suspect that Qb has other nice properties and appearances.
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