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1. Introduction

Let Sn be the symmetric group on {1, . . . , n}. Recall that if σ ∈ Sn, 1 ≤ i < j ≤ n

and σ(i) > σ(j), the pair (σ(i), σ(j)) is said to be an inversion for σ ∈ Sn. Let N(σ)
denote the inversion set of σ. Also set D = {(i, j) | 1 ≤ j < i ≤ n}.

Definition 1.1. We say that Y ⊂ Sn is inversion complete if 
⋃

σ∈Y N(σ) = D, and that is 
minimal inversion complete if it is inversion complete and minimal with respect to this 
property.

The following result in extremal combinatorics of permutations has been communi-
cated to us by Fabio Tardella [13], who informed us about a forthcoming joint work with 
M. Queyranne and E. Balandraud.

Theorem 1.1. The maximal cardinality of a minimal inversion complete subset of Sn is 
�n2

4 �.

The enumerative problem dealt with in Theorem 1.1 admits a natural generalization 
to finite reflection groups. Indeed, let Δ be a finite crystallographic irreducible root 
system and W be the corresponding Weyl group. Fix a set of positive roots Δ+ ⊂ Δ. If 
w ∈ W , then permutation inversions are naturally replaced by the subset N(w) of Δ+

defined in (2.1) (cf. [2]). The problem consists in determining the maximal cardinality of 
a subset Y of W such that 

⋃
w∈Y N(w) = Δ+ and minimal with respect to this property. 

Let us denote this number by MC (T ) for a group of type T .
In this perspective we provide a proof of Theorem 1.1 and of the following results.

Theorem 1.2. MC (Bn) =
(
n
2
)

+ 1.

Theorem 1.3. MC (Dn) =
(
n
2
)
.

We also have proofs that

MC (F4) ≥ 6, MC (E6) ≥ 16, MC (E7) ≥ 27, MC (E8) ≥ 36. (1.1)

We conjecture that these bounds are actually the exact values of our statistic. We have 
indeed a computer assisted proof of equality in type F4 (cf. Remark 7.1).

By using the canonical root system (cf. Section 8), our problem further generalizes to 
noncrystallographic types. It is quite easy to prove that MC(I2(m)) = 2; in particular, 
since G2 is I2(6), we have MC (G2) = 2. We can also show that MC (H3) = 5 and that 
MC (H4) ≥ 8. (See Section 8.)

Theorems 1.1, 1.2, 1.3 are proven in two steps. First we exhibit a minimal inversion 
complete set of the desired cardinality, which gives a lower bound for MC(T ). The choice 
of this set is motivated by the theory of abelian ideals of Borel subalgebras. Then we prove 
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that the desired cardinality is the maximal allowed for any minimal inversion complete 
set: this reduces to graph theoretical considerations, which arise from Lie theoretical 
arguments. This step is a direct consequence of a well known result in extremal graph 
theory in type A, and it is more involved in the other cases.

In Section 7 we prove the lower bounds (1.1). Let g be the simple Lie algebra having Δ
as root system, and let b be a Borel subalgebra of g. As in the classical cases, these bounds 
are dimensions of abelian ideals of b. In Section 8 we deal with noncrystallographic types. 
In Section 9 we make a speculation relating the calculation of our statistics with an 
arithmetic property of subsets of positive roots. Were our speculation true, we would 
obtain a clear explanation of the relationship between MC (T ) and the abelian ideals 
of b.

2. Setup

Let Δ be an irreducible crystallographic root system in a Euclidean space V , endowed 
with a positive definite symmetric bilinear form (·, ·). We call a set Σ of roots symmetric 
if Σ = −Σ.

Fix a positive system Δ+ and let Π = {α1, . . . , αn} be the corresponding basis of 
simple roots. Recall that the support of a root α is the subgraph of the Dynkin dia-
gram whose vertices are the simple roots in which α has nonzero coefficient (cf. [1, 3.3, 
Definition 1]).

Let W be the corresponding Weyl group, i.e. the group generated by the reflections sα
for α ∈ Δ. Set si = sαi

, i = 1, . . . , n. Recall that {si | 1 ≤ i ≤ n} is a set of Coxeter 
generators for W . Let � be the corresponding length function.

Set

N(w) =
{
α ∈ Δ+ ∣∣ w−1(α) ∈ −Δ+}. (2.1)

Note that

N(w) =
{
α ∈ Δ+ ∣∣ �(wsα) < �(w)

}
. (2.2)

Then the map w �→ N(w) is injective. The set N(w) can be recovered as follows: if 
w = si1 · · · sik is a reduced expression of w, then

N(w) =
{
αi1 , si1(αi2), . . . , si1 · · · sik−1(αik)

}
. (2.3)

Recall (cf. [2, Chapter 3]) that the right weak Bruhat order on W is the partial order 
defined by v ≤ w if there exists u ∈ W such that w = vu and �(w) = �(v) + �(u). It is 
well-known (cf. [2, Proposition 3.1.3]) that

v ≤ w ⇐⇒ N(v) ⊆ N(w). (2.4)
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The following characterization of the sets N(w) is given e.g. in [1, VI, Exercise 16]. Let 
us say that L ⊆ Δ+ is closed if

α, β ∈ L, α + β ∈ Δ+ =⇒ α + β ∈ L,

coclosed if

α, β /∈ L, α + β ∈ Δ+ =⇒ α + β /∈ L,

and biclosed if it is both closed and coclosed. Here we follow [5] for terminology.

Proposition 2.1. Given L ⊆ Δ+, then L = N(w) for some w ∈ W if and only if it is 
biclosed.

Notice that coclosedness can be expressed as follows:

α + β ∈ L, α, β ∈ Δ+, α /∈ L =⇒ β ∈ L. (2.5)

3. Minimal inversion complete sets

We start by recalling our natural generalization to Weyl groups of the notion of 
minimal inversion complete sets given in Definition 1.1 for subsets of the symmetric 
group.

Definition 3.1. We say that Y ⊂ W is inversion complete if 
⋃

x∈Y N(x) = Δ+, and that 
is minimal inversion complete if it is inversion complete and minimal with respect to 
this property.

Remark 3.1. Strictly speaking, this definition depends on Δ. The ambiguity might occur 
for the hyperoctahedral group, which is the Weyl group of root systems of type B and 
of type C as well.

If α ∈ V , we set α∨ = 2
(α,α)α. Let ΔB be a root system of type B and set ΔC = Δ∨

B . 
Then ΔC is a root system of type C. Clearly the same Weyl group W corresponds to 
both root systems, but, if w ∈ W , the set N(w) defined in (2.1) does depend on the 
choice for Δ. Write NB(w) and NC(w) to highlight the dependence on the root system. 
Since w(α∨) = w(α)∨, it is clear that NC(w) = NB(w)∨, so

⋃
x∈Y

NB(x) = Δ+
B ⇐⇒

⋃
x∈Y

NC(x) = Δ+
C .

Therefore, being inversion complete depends only on W .

Remark 3.2. It is immediate from Definition 3.1 and relation (2.4) that a minimal inver-
sion complete set is an anti-chain in the weak Bruhat order.
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Theorem 1.1 leads to the following

Problem. Find the maximal cardinality MC (T ) of a minimal inversion complete set in 
a finite Weyl group of type T .

Remark 3.3. In Section 8 we will formulate the above problem in the more general context 
of finite reflection groups.

Example 3.1. If W is a dihedral Weyl group of order 2m, then MC(W ) = 2. Indeed, 
if {s1, s2} is a set of Coxeter generators for W , then the unique reduced expressions 
are obtained by taking prefixes or suffixes of the word s1s2 · · · s1s2︸ ︷︷ ︸

m

. In particular, any 

anti-chain has cardinality at most 2, and by Remark 3.2 we have that MC (W ) ≤ 2. The 
converse inequality is obvious: for any k, 1 ≤ k ≤ m − 1, the subset {s1s2 · · ·︸ ︷︷ ︸

m−k

, s2s1 · · ·︸ ︷︷ ︸
k

}

is minimal complete. Since the Weyl groups of type B2, G2 coincide with I2(4), I2(6), 
respectively, this argument proves in particular that MC (G2) = MC (B2) = 2.

We now introduce a very useful tool for our analysis.

Definition 3.2. If Y is a subset of W , an essential root for Y is a root α ∈ Δ+ such that 
there is a unique w ∈ Y with α ∈ N(w). In such a case, we will write N(α) instead of 
N(w).

We say that Y admits an essential set of roots, if, for each w ∈ Y , there is an essential 
root α with α ∈ N(w).

If Y admits an essential set of roots, then we can choose one essential root α(w) ∈
N(w) for each w ∈ W . The set {α(w) | w ∈ Y } is called an essential set for Y .

We call a subset E of Δ+ an essential set, if there is a subset Y of W such that E is 
an essential set for Y .

Remark 3.4. If Y is minimal inversion complete, then there is at least one essential root 
in N(w) ⊂ Δ+ for each w ∈ Y , hence Y admits an essential set of roots.

We call a k-tuple P = (η1, . . . , ηk) ∈ (Δ+)k a root path if 
∑j

i=1 ηi ∈ Δ+ for any 
j = 1, . . . , k. We call the root α(P ) =

∑k
i=1 ηi the last sum of the root path. If P =

(η1, . . . , ηk) is a root path, we let Supp(P ) = {η1, . . . , ηk}. If S is a subset of Δ+ and 
Supp(P ) ⊂ S, then we will say somewhat loosely that P is a path in S.

Lemma 3.1. Fix an essential set S+ for Y and let P = (η1, . . . , ηk) be a root path in S+. 
If α(P ) ∈ N(γ) for γ ∈ S+, then γ ∈ Supp(P ).

Proof. The proof is by induction on k. If k = 1 then, since γ, η1 ∈ S+, we see that 
η1 ∈ N(γ) if and only if η1 = γ. Assume now k > 1. If α(P ) ∈ N(γ) and γ /∈ Supp(P )
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then, in particular, γ /∈ {η1, . . . , ηk−1}, so, by the induction hypothesis, 
∑k−1

i=1 ηi /∈ N(γ). 
Since ηk 
= γ, then ηk /∈ N(γ), hence α(P ) = (

∑k−1
i=1 ηi) +ηk /∈ N(γ), a contradiction. �

Recall from e.g. [6, 8.5] that, given α, β ∈ Δ, the α-string through β is the set of 
roots of the form β + iα with i ∈ Z. We will refer to such sets of roots as root strings. 
It is well known that there are integers r ≤ q such that the α-string through β is 
{β + iα | r ≤ i ≤ q}. We call |q − r| the length of the root string.

Proposition 3.2. Let S+ ⊂ Δ+ be an essential set for Y and set S = S+ ∪ (−S+). Then:

(1) If there are root paths P , P ′ in S+ such that α(P ) = α(P ′) then Supp(P ) ∩
Supp(P ′) 
= ∅.

(2) If α, β ∈ S and α + β ∈ Δ, then α + β /∈ S.
(3) S does not contain root strings of length greater or equal to 2.

Proof. Let us prove (1). Since Y is minimal inversion complete there is η ∈ S+ such that 
α(P ) = α(P ′) ∈ N(η). Lemma 3.1 now implies that η ∈ Supp(P ) ∩ Supp(P ′).

Let us prove (2). If α, β ∈ S+ and α+ β ∈ S+, then P = (α, β) and P ′ = (α+ β) are 
root paths that contradict (1), thus α + β /∈ S+. Clearly this argument rules out also 
the case when α, β ∈ −S+. If α ∈ S+ and β ∈ −S+ and α + β ∈ S+ (or α + β ∈ −S+), 
then α = −β + (α + β) ∈ S+ (or β = −α + (α + β) ∈ −S+), so the previous argument 
applies.

Let us prove (3). If S contains a root string of length greater or equal to 2 then there 
are α ∈ S and γ ∈ Δ such that {α, α + γ, α + 2γ} ⊂ S. We can assume γ ∈ Δ+: if 
γ ∈ −Δ+ then it is enough to show that the string −α, −α − γ, −α − 2γ cannot stay 
in S. If α ∈ S+ then α /∈ N(α + γ) so γ ∈ N(α + γ) by coclosedness (2.5) of N(α + γ). 
But this implies α + 2γ ∈ N(α + γ) by closedness of N(α+ γ), since α + γ ∈ N(α + γ), 
a contradiction. If α ∈ −S+ and η = α+ γ ∈ S+ then γ = −α+ η, so α+2γ = −α+2η, 
but then α+2γ is the last sum of the root path (−α, η, η) and this is not possible by (1). 
The other cases are treated by showing that the string −α−2γ, −α−γ, −α cannot stay 
in S. �
4. Type A

In this section we will give a proof of Theorem 1.1, exploiting the fact that the sym-
metric group is the Weyl group of a crystallographic root system Δ of type A.

4.1. Encoding the roots

We start by recalling the explicit description of the root system of type An−1 as given 
in Planche I of [1]. Let {εi}ni=1 denote the standard basis of Rn, then Δ = {εi−εj | 1 ≤ i 
=
j ≤ n} is a root system of type An−1 and we may choose Δ+ = {εi− εj | 1 ≤ i < j ≤ n}.
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We associate to a set S of roots a directed graph G(S) = (V (S), E(S)) as follows:

V (S) = {1, . . . , n} and (i, j) ∈ E(S) ⇔ εi − εj ∈ S.

Note that α, β, α+β ∈ S if and only if they form in the graph G(S) a transitive triangle, 
with α and β represented by consecutive arcs:

i

j

k
α

α + β

β

(4.1)

The graph of a symmetric set S has only antiparallel arcs so the graph of S can be 
substituted by the underlying undirected graph that we denote by Γ (S).

Remark 4.1. Let S be a symmetric set of roots. Then S satisfies condition (2) of Propo-
sition 3.2 if and only if there are no triangles in Γ (S). Indeed, if α, β ∈ S and α+ β is a 
root, then α+β /∈ S for, otherwise, there would be a triangle. On the other hand, if there 
is a triangle in Γ (S), then, since all arcs in G(S) are antiparallel, there is a transitive 
triangle in G(S), hence condition (2) is not satisfied.

Recall that Δ+ is a poset (usually named the root poset) under the partial order �
defined by α � β if and only if β−α is a sum of positive roots or zero (cf. e.g. [6, 10.1]). 
The arcs of its Hasse diagram can be labeled by the simple roots: an arc labeled by αi

joins α to α + αi. The Hasse diagram can be represented by a staircase diagram:

α1

α2

α3

α4

α5

1

2

3

4

5 4 3 2

Here the diagram for type A5 is shown. The cells are the vertices of the Hasse diagram 
and the border between two cells is the arc between the two vertices. The direction of 
the arc is right–left for a vertical border and down–up for a horizontal border. The label 
for each arc is given by the number at its right for a horizontal border and the number 
on top of it for a vertical border. This means that, if the border belongs to a line labeled
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by i, then the corresponding arc in the Hasse diagram is decorated by αi. In particular, 
an element of the poset corresponds to the root obtained by choosing a descending path 
(i.e. going right and down) from the corresponding cell to a simple root αi and then 
summing to αi the roots labeling the arcs of the descending path. For example, the 
highest root θ (i.e. the cell on the upper left corner) can be reached following the first 
row hence θ = α1 + α2 + α3 + α4 + α5. In the following we identify positive roots and 
cells using the above encoding.

Passing from this encoding to the ε-coordinates is very easy: label the i-th row from 
the top of the diagram with i, the j-th column from the right with j + 1. Then the root 
εi− εj corresponds to the (i, j)-cell. For example, consider the gray cells in the following 
figure.

1

2

3

4

5

23456

(4.2)

The corresponding set of roots is

{εi − εj | 3 ≤ i < j ≤ 6}.

4.2. Proof of Theorem 1.1

After the identification εi − εj ↔ (j, i), (2.1) yields exactly for N(w) the set of the 
inversions of the permutation w ∈ Sn, so the proof of Theorem 1.1 reduces to showing 
that MC (An−1) = �n2

4 �.
Set N = �n

2 �, N ′ = �n
2 �. Define

P (An−1) =
{
εi − εn−j+1 ∈ Δ+ ∣∣ 1 ≤ i ≤ N, 1 ≤ j ≤ N ′}. (4.3)

The set P (A5) is the highlighted subset in the diagram (4.2), while P (A6) is the high-
lighted subset of the diagram below.
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1

2

3

4

5

6 5 4 3 2

γ

β

α

(4.4)

This set has the following two properties:

(1) For any γ ∈ P (An−1), γ = α+β, α, β ∈ Δ+, then either α ∈ P (An−1), β /∈ P (An−1)
or α /∈ P (An−1), β ∈ P (An−1).

(2) Any positive root α ∈ Δ+\P (An−1) appears as a summand in a decomposition of a 
root of P (An−1) as a sum of two positive roots.

These properties are easily checked using the following remark. Given a positive root γ, 
consider its hook within the above diagram. A decomposition of γ as a sum of two 
positive roots is given by the rightmost cell in the arm of the hook and by the root just 
below γ in the leg. For example, in (4.4), γ = α2+α3+α4+α5 = α+β with α = α2+α3, 
β = α4 +α5. The other decompositions (if any) are obtained by moving by one step left 
in the arm and down in the leg, at the same time. For any γ ∈ P (An−1), set

L(γ) = {γ} ∪
{
α ∈ Δ+ ∣∣ α /∈ P (An−1), γ − α ∈ Δ+}.

Lemma 4.1. For any γ ∈ P (An−1), the set L(γ) is biclosed.

Proof. To prove closedness, we observe that no two roots from L(γ) sum to a root. This 
is clear if the two summands both belong to the arm (or to the leg) of γ, and it follows 
from the fact that the union of their supports is disconnected in the other cases.

To check co-closedness we use (2.5). Let α, β be positive roots such that α + β ∈
L(γ)\{γ}, and assume that α /∈ L(γ). We now prove that β ∈ L(γ). This is clear 
when α + β = γ because of property (1) of P (An−1) above. If α + β ∈ L(γ)\{γ}, then 
γ = α+β+η for some η ∈ P (An−1). Then, by the definition of P (An−1), both α and β do 
not belong to P (An−1) and by construction there is exactly one of them, necessarily β, 
such that γ − β ∈ Δ+. Then β ∈ L(γ) and (2.5) is fulfilled. �
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Let wγ ∈ Sn be such that N(wγ) = L(γ) and set Y (An−1) = {wγ | γ ∈ P (An−1)}.

Proposition 4.2. Y (An−1) is a minimal inversion complete set. In particular, we have 
that MC (An−1) ≥ �n2

4 �.

Proof. The fact that 
⋃

w∈Sn
N(w) = Δ+ follows from property (2). Minimality is clear 

by construction: any root γ ∈ P (An−1) appears only in N(wγ). �
Proof of Theorem 1.1. By Proposition 4.2, it suffices to prove that a minimal inversion 
complete set Y has at most �n2

4 � elements. Let S+ be an essential set for Y and set 
S = S+ ∪ −S+. By Proposition 3.2 (3) and Remark 4.1, there is no triangle in Γ (S). 
By Mantel’s Theorem (see [14]) a triangle-avoiding graph on n vertices has at most �n2

4 �
edges. �
5. Type B

5.1. Encoding the roots

Recall (cf. Planche II of [1]) that the roots for type Bn are, in ε-coordinates,

Δ =
{
±(εi ± εj)

∣∣ 1 ≤ i < j ≤ n
}
∪ {±εi | 1 ≤ i ≤ n}.

A set of positive roots is

Δ+ = {εi ± εj | 1 ≤ i < j ≤ n} ∪ {εi | 1 ≤ i ≤ n}.

We associate to a set S of roots a directed graph G(S) = (V (S), E(S)) as follows:

V (S) = {0,±1, . . . ,±n} and (i, j) ∈ E(S) ⇔ sgn(i)ε|i| − sgn(j)ε|j| ∈ S.

Note that a root is represented by two arcs: i → j and −j → −i. Indeed the graphs 
obtained in this way are invariant under the arc-reversing transformation i �→ −i. For 
example the root ε1 − ε2 corresponds to the arcs 1 → 2 and −2 → −1, while the root ε1
corresponds to the arcs 1 → 0 and 0 → −1. This annoying feature is balanced by the 
fact that α, β, α + β ∈ S if and only if they form in the graph G(S) a pair of transitive 
triangles, with α and β represented by consecutive arcs:

i

j

k
α

α + β

β

−i

−j

−k
α

α + β

β

(5.1)
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We can also associate to S another graph that we call the graph of type C of S. It is 
the graph we would obtain if we used a root system of type C. Explicitly the graph of 
type C is the digraph GC(S) = (VC(S), EC(S)), where VC(S) = {±1, . . . , ±n} and

(i, j) ∈ EC(S) ⇔ sgn(i)ε|i| − sgn(j)ε|j| ∈ S and 1
2
(
sgn(i)ε|i| − sgn(j)ε|j|

)
∈ S

Note that a long root is represented by two arcs: i → j and −j → −i, while the short 
roots are represented by a single arc from i to −i.

We can go from G(S) to GC(S) by substituting any pair of consecutive arcs i → 0 →
−i in G(S) with a single arc i → −i in GC(S). For example, if G(S) is

i

0
j

−i

−j , then GC(S) =

i

j

−i

−j .

For a symmetric set of roots S both G(S) and GC(S) have only antiparallel arcs (i, j)
and (j, i), so they can be described by the underlying undirected graphs. We denote 
these undirected graphs by Γ (S) and ΓC(S) respectively.

In analogy with type A, we represent the Hasse diagram of the ranked poset Δ+ by 
a staircase diagram:

θ α1

α2

α3

α4

1

2

3

234432

Here the diagram for type B4 is shown. The cells are the vertices of the Hasse diagram and 
the border between two cells is the arc between the two vertices. The direction of the arc 
is right–left for a vertical border and down–up for a horizontal border. As for type A the 
labels for the arcs are given by the numbers at the right and top of the borders. Similarly, 
a vertex of the poset corresponds to the root obtained by choosing a descending path (i.e. 
going right and down) from the corresponding cell to a simple root αi and then summing 
to αi the roots labeling the arcs of the descending path. For example, the highest root θ
can be reached following the first row hence θ = α1 + α2 + α3 + α4 + α4 + α3 + α2 =
α1 + 2α2 + 2α3 + 2α4.
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Passing from this encoding to the ε-coordinates is very easy: label the i-th row from 
the top of the diagram with i, the j-th column from the right with j + 1 if j < n, with 0
if j = n, and with j − 2n − 1 if j > n. Then the root corresponding to the cell (i, j) is 
εi − sgn(j)ε|j|.

For example, consider the following diagram.

1

2

3

4

2340−4−3−2

(5.2)

The set of roots corresponding to the gray cells in (5.2) is

{εi + εj | 1 ≤ i < j ≤ 4} ∪ {ε1}.

5.2. Proof of Theorem 1.2

To proceed in analogy with type A, we need to locate a minimal inversion complete 
set of the supposed maximal cardinality, to have a lower bound for MC(Bn). Define

P (Bn) = {εi + εj | 1 ≤ i < j ≤ n} ∪ {ε1}. (5.3)

The gray cells in (5.2) afford P (B4).
We now list all the possible decompositions of a positive root as a sum of two positive 

roots: if i < j

εi + εj = (εi) + (εj) (5.4)

= (εi − εh) + (εh + εj), 1 ≤ i < h ≤ n, h 
= j, (5.5)

= (εi + εh) + (εj − εh), 1 ≤ j < h ≤ n, (5.6)

εi = (εi − εh) + εh, 1 ≤ i < h ≤ n, (5.7)

εi − εj = (εi − εh) + (εh − εj), 1 ≤ i < h < j ≤ n. (5.8)

If γ = εi + εj with i < j set

L(γ) = {γ} ∪ {εj} ∪ {εi − εh | i < h ≤ n, h 
= j} ∪ {εj − εh | 1 ≤ j < h ≤ n}.
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If γ = ε1 set

L(γ) = {γ} ∪ {ε1 − εh | 1 < h ≤ n}.

Notice that this is a slight modification of our definition of L(γ) in type A.

Lemma 5.1. For any γ ∈ P (Bn), L(γ) is biclosed.

Proof. Direct inspection of closedness and coclosedness, done using decompositions (5.4) 
to (5.8). �

Let wγ ∈ W be such that N(wγ) = L(γ) and set Y (Bn) = {wγ | γ ∈ P (Bn)}. 
Similarly to type A, one checks that

Proposition 5.2. Y (Bn) is a minimal inversion complete set. In particular, we have that 
MC (Bn) ≥

(
n
2
)

+ 1.

Let Y be a minimal inversion complete set and let S+ be an essential set for Y . By 
Proposition 5.2, in order to prove Theorem 1.2, we need only to show that |S+| ≤

(
n
2
)
+1. 

To check this we will use the graph associated to S = S+ ∪ (−S+).
First of all, we see how the conditions of Proposition 3.2 translate in our encoding of 

sets of roots as directed graphs. Let σ be the arc reversing involution of G(S) mapping 
each vertex i into −i.

It is clear that to a root path P ⊂ (Δ+)k corresponds a pair of paths in the directed 
graph: so condition (1) of Proposition 3.2 says that if two vertices i, j with i 
= ±j are 
joined by two paths P , P ′ in Γ (S) then either P and P ′ or P and σ(P ′) have an arc in 
common.

As in Remark 4.1, condition (2) is equivalent to saying that in Γ (S) there are no 
triangles.

Condition (2) and condition (3) hold if and only if both in Γ (S) and in ΓC(S) there 
are no triangles. Indeed, if a string of roots of length at least 2 occurs, then there is a 
subgraph of Γ (S) of this type:

i

0
j

−i

−j (5.9)

so in ΓC(S) there is a triangle. On the other hand, if there is a triangle in the graph 
of type C and the triangle does not have edges {j, −j} between opposite vertices, then 
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there is a triangle in Γ (S), contradicting condition (2). If there is a triangle in ΓC(S)
with an edge {j, −j}, then in Γ (S) there is a subgraph as in (5.9), so there is a string of 
roots of length at least 2.

5.2.1. Low rank cases
By Example 3.1 we have that MC (B2) = 2. We now prove that MC(Bn) =

(
n
2
)

+ 1
for n = 3, 4. The proof will be a case by case check.

Case I: B3. By Proposition 5.2, we need only to check that MC (B3) ≤ 4. Let Y be a 
minimal inversion complete set for B3, S+ an essential set for Y , and S = S+∪−S+. We 
need to check that |S| ≤ 8. It clearly suffices to show that, if S satisfies conditions (2)
and (3) of Proposition 3.2, then |S| ≤ 8.

If no vertex is connected to 0, then Γ (S) = ΓC(S) and ΓC(S) cannot have triangles, 
so it has at most 9 edges. Since, by construction, Γ (S) has an even number of edges, 
we deduce that |S| ≤ 8. If there is a vertex i connected to 0, also −i is connected to 0. 
Consider the subgraph Γ ′ of Γ (S) induced by V (S)\{±i}. The graph Γ ′ cannot have 
triangles and also its graph of type C cannot have triangles, so, by what we proved in the 
B2 case, Γ ′ has at most 4 edges. If j 
= i and j 
= 0, then j cannot be connected to both i
and −i, for, otherwise, there would be a triangle in the graph of type C. But then there 
is at most one edge connecting j to ±i. Since there are 4 vertices different from ±i and 
different from 0, there are at most 4 edges connecting ±i to the other nonzero vertices. 
It follows that the total number of edges is less or equal to 10. If |S| = 10 then i must be 
connected to at least 2 vertices j, h other than 0 and −i is connected to −i, −h. Thus 
Γ (S) contains the graph

0

i

j

−h

−i

−j

h

It is now clear that we can only add 2 edges to the graph above (the edge connecting j
and −h and the edge connecting −j and h) if we want to avoid triangles in Γ (S) and in 
ΓC(S). This contradicts the assumption that |S| = 10, and we are done in this case.

Case II: B4. In this case we will use also condition (1) of Proposition 3.2.
By Proposition 5.2, we need only to check that MC(B4) ≤ 7. Let Y be a minimal 

inversion complete set for B4, S+ an essential set for Y , and S = S+ ∪ −S+. We need 
to check that |S| ≤ 14. It clearly suffices to show that, if S satisfies the conditions of 
Proposition 3.2, then |S| ≤ 14.

Suppose first that there are no vertices connected to 0. Then Γ (S) = ΓC(S). Since 
ΓC(S) has no triangles, there are at most 16 edges. Assume |S| = 16. In this case, by 
Turán’s Theorem [14], Γ (S) is
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In the graph of S+, the vertex 1 is a source and the vertex −1 is a sink. Note that two 
vertices which are not connected can be switched without changing the graph. Thus, by 
rearranging the vertices we can assume that the graph of S+ is, up to giving orientation 
to some edges,

1

−1

If the path 1 → i → −1 occurs, also the path 1 → −i → −1 must occur. Up to 
rearranging the vertices we obtain the graph

1 −i

−1

−j

−hj

h

i
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Let us choose the orientation for the edge {i, h}. If the orientation is i → h, then we 
cannot have h → −j because of condition (1) (we have two paths i → h → −j and 
i → −1 → −j without common roots). We cannot have −j → h either because of 
condition (1) again (we have two paths 1 → i → h and 1 → −j → h without common 
roots). So we must have the orientation h → i. But again, we cannot have h → −j

because of condition (1) (we have two paths h → i → −1 and h → −j → −1 without 
common roots) and we cannot have −j → h either because of condition (1) (we have 
two paths 1 → −j → h → i and 1 → i without common roots). It follows that |S| < 16
in this case. Since |S| is even, we obtain that |S| ≤ 14.

If there is a pair of vertices ±i that is connected to 0, consider the subgraph of Γ (S)
induced by V (S)\{±i}. Then this graph satisfies the properties of Proposition 3.2, thus 
it can have at most 8 edges. For each j 
= ±i such that j 
= 0 there is at most one edge 
connecting i to ±j so the maximum number of such edges is 3. The same argument holds 
for −i. Finally there are the two edges connecting ±i to 0. The total is 8 +3 +3 +2 = 16, 
so |S| ≤ 16.

If the graph does have 16 edges, then, for each h ∈ {±1, . . . , ±4}\{±i}, the vertex i
must be connected to exactly one between h, −h. If there are two pairs ±i, ±j connected 
to 0, then i must be connected to either j or −j and this is impossible, for, otherwise, 
there would be a triangle in the graph of S. It follows that ±i are the only vertices 
connected to 0.

Let ±j, ±k, ±h be the nonzero vertices other than ±i. As shown above we can and 
do assume that i is connected to j, k, h and −i is connected to −j, −k, −h. There is no 
connection between the vertices j, k, h, for, otherwise, there would be a triangle. The 
same argument with −i shows that there are no edges between −j, −k, −h. The only 
edges between j, k, h, −j, −k, −h occur between vertices in {j, k, h} and vertices in 
{−j, −k, −h}. The edges {r, −r} between opposite vertices do not occur, so there are at 
most 6 edges, short of the 8 needed. It follows that |S| < 16 and we are done.

5.2.2. General case

Theorem 5.3. MC (Bn) =
(
n
2
)

+ 1.

Proof. By Proposition 5.2, we need only to prove that MC(Bn) ≤
(
n
2
)
+1. This has been 

proved for n = 2, 3, 4 above. Note that we have actually proved in these cases that, if 
S+ satisfies the conditions of Proposition 3.2, then |S+| ≤

(
n
2
)

+ 1.
If n ≥ 4, we will prove by induction on n that, if a set S+ ⊂ Δ+ satisfies the conditions 

of Proposition 3.2, then |S+| ≤
(
n
2
)

+ 1. The base of the induction is the case n = 4. 
Assume now n > 4.

Set S = S+ ∪ −S+. Assume first that there is a pair of vertices ±i connected to 0. 
Consider the subgraph of Γ (S) induced by V (S)\{±i} as vertices. Then this graph 
satisfies the properties of Proposition 3.2, thus it can have at most 2

(
n−1

2
)

+ 2 edges. 
For each j 
= ±i such that j 
= 0 there is at most one edge connecting i to ±j so the 
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maximum number of such edges is n − 1. The same argument holds for −i. Finally there 
are the two edges connecting ±i to 0. The total is 2

(
n−1

2
)
+ 2 + 2(n − 1) + 2 = 2

(
n
2
)
+ 4. 

Thus |S| ≤ 2
(
n
2
)

+ 4. We need only to check that |S| 
= 2
(
n
2
)

+ 4.
If |S| = 2

(
n
2
)
+4, then, for each h ∈ {±1, . . . , ±n}\{±i}, the vertex i must be connected 

to exactly one between h, −h. If there is another pair ±j connected to 0, then i must be 
connected to either j or −j and this is impossible, for, otherwise, there would be a triangle 
in the graph of S. It follows that at most one pair ±i is connected to 0. Let ±i1, . . . , ±in−1
be the other nonzero vertices. As observed above, i must be connected to one element of 
each of the pairs ±i1, . . . ,±in−1, so assume i is connected to i1, . . . , in−1. Then there is 
no connection between the vertices i1, . . . , in−1, for, otherwise, there would be a triangle. 
The same argument with −i shows that there are no edges between −i1, . . . , −in−1. The 
only edges between ±i1, . . . ,±in−1 occur between vertices in {i1, . . . , in−1} and vertices 
in {−i1, . . . , −in−1}. The edges {r, −r} between opposite vertices do not occur, so there 
are at most 2

(
n−1

2
)

edges, short of the 2
(
n−1

2
)

+ 2 needed. We deduce that the only 
possibility for having at least 2

(
n
2
)

+ 4 edges can occur if no vertex is connected to 0.
Assume now that |S| ≥ 2

(
n
2
)

+ 4 and that there are no vertices connected to 0. If we 
drop a vertex ±i from the graph, then, by the induction hypothesis, we know that we 
can have at most 2

(
n−1

2
)
+2 edges. Thus ±i have to be connected with at least 2n edges. 

By symmetry, both i and −i are connected by at least n edges, i.e. any vertex has degree 
at least n. This implies that each vertex has degree exactly n. In fact, if i1, . . . , in+1 are 
connected to i, then i1 cannot be connected to ij for each j, because, otherwise, there 
would be triangles. So i1 is connected only to at most n − 1 edges. This is not possible 
because i1 has degree at least n. Let i1, . . . , in be the vertices connected to i. As already 
observed they cannot be connected to each other, so they are connected to vertices in 
{±1, . . . , ±n}\{i1, . . . , in}. It follows that there are at least n2 edges in the graph. If we 
drop ±i1 from the graph, we have at least n2−2n edges. But n2−2n = 2

(
n−1

2
)
+2 +(n −4), 

so, since n > 4,

n2 − 2n > 2
(
n− 1

2

)
+ 2

and this is impossible due to the induction hypothesis. �
6. Type D

This case is treated along the lines of type B.

6.1. Encoding the roots

Recall (cf. Planche IV of [1]) that the root system can be described as

Δ =
{
±(εi ± εj)

∣∣ 1 ≤ i < j ≤ n
}
.
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A set of positive roots is

Δ+ = {εi ± εj | 1 ≤ i < j ≤ n}.

If S is a set of roots, we define the graph Γ (S) by looking at S as a subset of a root 
system of type B. Note that, since there are not short roots in Δ, Γ (S) coincides with 
ΓC(S) and in ΓC(S) there are no edges {r, −r} connecting opposite vertices.

6.2. Proof of Theorem 1.3

Define

P (Dn) = {εi + εj | 1 ≤ i < j ≤ n}. (6.1)

If i < j and γ = εi + εj , set

L(γ) = {εi + εj} ∪ {εi − εh | i < h ≤ n, h 
= j} ∪ {εj − εh | 1 ≤ j < h ≤ n}.

One can check, as in Section 5, that L(γ) is biclosed and that the set

Y (Dn) =
{
wγ

∣∣ N(wγ) = L(γ), γ ∈ P (Dn)
}

is minimal complete, of cardinality 
(
n
2
)
, so we have proved:

Proposition 6.1. If n ≥ 4, MC (Dn) ≥
(
n
2
)
.

6.2.1. Case D4
We want to prove that MC(D4) = 6. By Proposition 6.1, we need only to check that 

MC (D4) ≤ 6. Let Y be a minimal inversion complete set for D4, S+ an essential set 
for Y , and S = S+ ∪ −S+. We need to check that |S| ≤ 12. It clearly suffices to show 
that, if S satisfies the conditions of Proposition 3.2, then |S| ≤ 12.

If we drop a pair ±i of vertices from Γ (S), then the resulting subgraph cannot have 
triangles, so there are at most 9 edges. Since the number of roots must be even, the 
subgraph has at most 8 edges. It follows that at least 6 edges connect to ±i. By the 
symmetry of the graph we see that i has degree at least 3. Assume first that there is no 
vertex r such that i is connected to both r and −r. Let j, h, k be the vertices connected 
to i so −i is connected to −j, −h, −k. There cannot be any edge between the vertices j, 
h, k, for, otherwise, there would be triangles. For the same reason there cannot be edges 
between the vertices −j, −h, −k. It follows that there are at most 6 edges in the ±j, 
±h, ±k subgraph. This implies that there are at most 12 edges in Γ (S).

We can therefore assume that i is connected to a pair ±j. By symmetry, −i is con-
nected to ±j as well. Since i has degree at least 3, there must be another vertex h
connected to i, so −i is connected to −h. For the same reason j is connected to an-
other k. Note that k 
= h for, otherwise, we would have triangles. Thus Γ (S) contains 
the subgraph
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i j

k

−h

−i−j

−k

h

The vertex h must also have degree 3 and there is a pair ±r connected to h. The 
possibilities for r are r = i or r = k because both j and −j cannot be connected to h. 
The two resulting subgraphs are

i j

k

−h

−i−j

−k

h

Γ ′

i j

k

−h

−i−j

−k

h

Γ ′′

In Γ ′ we have to add two edges that connect k to a pair ±r. The possibilities are r = h

or r = i, thus obtaining the two subgraphs

i j

k

−h

−i−j

−k

h

Γ ′
1

i j

k

−h

−i−j

−k

h

Γ ′
2
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In Γ ′
1 an edge has to be added so that k has degree at least 3. The only possible choices are 

the edges {k, ±h}. By possibly switching h with −h, we can assume that k is connected 
to h. The graph then becomes

i j

k

−h

−i−j

−k

h

which is, up to renaming the vertices, the subgraph Γ ′
2. The subgraph Γ ′′ has 12 edges. 

If |S| > 12, there must be a vertex of degree 4. Since in Γ ′′ all vertices are equivalent, 
we can assume that i has degree 4. The only possibility is that i is connected to −h so 
also −i is connected to h and we obtain again Γ ′

2. Thus Γ ′
2 is a subgraph of Γ (S).

We now give an orientation to the edges of the rectangle connecting the four vertices 
of degree 4. The graph Γ (S) is symmetric with respect to the lines parallel to the edges 
of this rectangle, so using this symmetry we can assume that the orientation in G(S+)
for the edges {i, ±h} in Γ (S) is i → h and i → −h. The digraph of S+ thus contains

i j

k

−h

−i−j

−k

h

Let us choose the orientation for the edge {h, −k}. If the orientation is h → −k, then 
we cannot have −h → −k because of condition (1) (we have two paths i → h → −k
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and i → −h → −k without common roots). We cannot have −k → −h either because of 
condition (1) again (we have two paths i → h → −k → −h and i → −h without common 
roots). So we must have the orientation −k → h. But again, we cannot have −k → −h

because of condition (1) (we have two paths −k → h → −i and −k → −h → −i without 
common roots) and we cannot have −h → −k either because of condition (1) (we have 
two paths i → −h → −k → h and i → h without common roots). It follows that |S| < 14
and we are done.

6.2.2. General case

Theorem 6.2. If n ≥ 4 then MC (Dn) =
(
n
2
)
.

Proof. By Proposition 6.1, we need only to prove that MC (Dn) ≤
(
n
2
)
. This has been 

proved for n = 4 above. Note that we have actually proved that, if S+ satisfies the 
conditions of Proposition 3.2, then |S+| ≤

(4
2
)
.

If n ≥ 4, we will prove by induction on n that, if a set S+ ⊂ Δ+ satisfies the conditions 
of Proposition 3.2, then |S+| ≤

(
n
2
)
. The base of the induction is the case D4. Assume 

now n > 4.
Set S = S+ ∪ −S+. Assume that |S| ≥ 2

(
n
2
)

+ 2. If we drop a vertex ±i from the 
graph, then, by the induction hypothesis, we know that we can have at most 2

(
n−1

2
)

edges. Thus ±i have to be connected with at least 2n edges. By symmetry, both i and 
−i are connected by at least n edges, i.e. any vertex has degree at least n. This implies 
that each vertex has degree exactly n. In fact, if i1, . . . , in+1 are connected to i, then i1
cannot be connected to ij for each j, because, otherwise, there would be triangles. So i1
is connected only to at most n − 1 edges. This is not possible because i1 has degree at 
least n.

Let i1, . . . , in be the vertices connected to i. As already observed they cannot be 
connected to each other, so they are connected to vertices in

{±1, . . . ,±n}\{i1, . . . , in}.

It follows that there are at least n2 edges in the graph. If we drop ±i1 from the graph 
we have at least n2 − 2n edges. But n2 − 2n = 2

(
n−1

2
)

+ (n − 2), so, since n > 4,

n2 − 2n > 2
(
n− 1

2

)
,

and this is impossible due to the induction hypothesis. �
7. Lower bounds for exceptional types

We want to prove the inequalities (1.1). It suffices provide in each case a minimal 
complete set Y of the required cardinality. In type F4, if we display the Dynkin diagram 
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of F4 as ◦ ◦ ◦ ◦
α1 α2 α3 α4

, then an essential set for Y is given in the first 

column of the following table, while Y itself appears in the second column:

α(w) w

2α1 + 4α2 + 3α3 + 2α4 s4s3s2s1s3s2s4s3
2α1 + 4α2 + 3α3 + α4 s3s2s1s3s2s4s3
2α1 + 4α2 + 2α3 + α4 s2s1s3s2s4s3
2α1 + 3α2 + 2α3 + α4 s1s2s3s2s4s3s2s1
α1 + 3α2 + 2α3 + α4 s2s3s2s4s3s2s1
α1 + 2α2 + 2α3 + α4 s3s2s4s3s2s1

. (7.1)

Remark 7.1. In [9] we have performed calculations proving that MC(F4) = 6. Indeed, we 
have proved that no subset of Δ+ of cardinality bigger or equal to 7 can be essential for a 
minimal complete set. More precisely, we have first singled out the subsets {β1, . . . , βi} ⊂
Δ+ with i ≥ 7 such that there exist (w1, . . . , wi) ∈ W i with βi ∈ N(wk), βj /∈ N(wk)
for j 
= k. Then we have verified that no choice of (w1, . . . , wi) arising from the previous 
step affords a complete set.

Now we have to deal with the E series. Note that MC (T ) is the maximal dimension 
of an abelian subalgebra of a simple Lie algebra of type X = A, B, D (although the same 
does not happen in types C, F4, and G2). Kostant’s theory implies that this number 
is also the maximal dimension of an abelian ideal of a Borel subalgebra (see [8] and 
also [10]). The previous remark motivated the choice of P (An−1), P (Bn), and P (Dn): 
the sum of root subspaces corresponding to the roots displayed in (4.3), (5.3), (6.1) is 
indeed an abelian ideal of maximal dimension in each type.

Also for types E we can exhibit a minimal complete set choosing as essential set 
P (En), n = 6, 7, 8, the roots indexing an abelian ideal of maximal dimension: we omit 
the details, referring to [12] or [3], where these ideals are explicitly described. To build 
up N(α) for each α ∈ P (En), we observe that in type E6 and E7 for any decomposition 
α = βi + γi as a sum of two positive roots, one and only one component, say βi, belongs 
to P (En). Then it turns out that {α} ∪

⋃
i{γi} is biclosed, hence we can take it for N(α). 

More explicitly, in type E6 we have

Y (E6) = {s2s4s3s5s4s2s6s5s4s3s1, s4s3s5s4s2s6s5s4s3s1, s3s5s4s2s6s5s4s3s1,

s5s4s2s6s5s4s3s1, s3s4s2s6s5s4s3s1, s4s2s6s5s4s3s1, s2s6s5s4s3s1,

s3s4s2s5s4s3s1, s4s2s5s4s3s1, s2s5s4s3s1, s2s4s3s1, s6s5s4s3s1, s5s4s3s1,

s4s3s1, s3s1, s1}

whereas in type E7 we have

Y (E7) = {s1s3s4s2s5s4s3s1s6s5s4s2s3s4s5s6s7, s3s4s2s5s4s3s1s6s5s4s2s3s4s5s6s7,

s4s2s5s4s3s1s6s5s4s2s3s4s5s6s7, s2s5s4s3s1s6s5s4s2s3s4s5s6s7,
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s2s4s3s1s6s5s4s2s3s4s5s6s7, s5s4s3s1s6s5s4s2s3s4s5s6s7,

s4s3s1s6s5s4s2s3s4s5s6s7, s3s1s6s5s4s2s3s4s5s6s7,

s1s6s5s4s2s3s4s5s6s7, s2s4s3s1s5s4s2s3s4s5s6s7,

s4s3s1s5s4s2s3s4s5s6s7, s3s1s5s4s2s3s4s5s6s7,

s1s5s4s2s3s4s5s6s7, s3s1s4s2s3s4s5s6s7,

s1s4s2s3s4s5s6s7, s1s2s3s4s5s6s7, s1s3s4s5s6s7, s6s5s4s2s3s4s5s6s7,

s5s4s2s3s4s5s6s7, s4s2s3s4s5s6s7, s2s3s4s5s6s7, s3s4s5s6s7,

s2s4s5s6s7, s4s5s6s7, s5s6s7, s6s7, s7}

In type E8 it may happen that both components do not belong to P (E8), but it is again 
possible to choose the components in such a way to have a biclosed set. The outcome is 
as follows

Y (E8) = {s8s7s6s5s4s2s3s1s4s3s5s4s2s6s5s4s3s7s6s5s4s2s8s7s6s5s4s3s1,

s7s6s5s4s2s3s1s4s3s5s4s2s6s5s4s3s7s6s5s4s2s8s7s6s5s4s3s1,

s6s5s4s2s3s1s4s3s5s4s2s6s5s4s3s7s6s5s4s2s8s7s6s5s4s3s1,

s5s4s2s3s1s4s3s5s4s2s6s5s4s3s7s6s5s4s2s8s7s6s5s4s3s1,

s4s2s3s1s4s3s5s4s2s6s5s4s3s7s6s5s4s2s8s7s6s5s4s3s1,

s2s3s1s4s3s5s4s2s6s5s4s3s7s6s5s4s2s8s7s6s5s4s3s1,

s1s2s4s3s5s4s2s6s5s4s3s7s6s5s4s2s8s7s6s5s4s3s1,

s3s1s4s3s5s4s2s6s5s4s3s1s7s6s5s4s2s3s8s7s6s5s4,

s1s4s3s5s4s2s6s5s4s3s1s7s6s5s4s2s3s8s7s6s5s4,

s1s3s5s4s2s6s5s4s3s1s7s6s5s4s2s3s8s7s6s5s4,

s1s3s4s2s6s5s4s3s1s7s6s5s4s3s8s7s6s5s4s2,

s1s3s4s2s5s4s3s1s7s6s5s4s2s3s8s7s6s5s4,

s1s3s4s2s5s4s3s1s6s5s4s2s3s4s8s7s6s5,

s2s4s3s5s4s2s6s5s4s3s7s6s5s4s2s8s7s6s5s4s3s1,

s4s3s5s4s2s6s5s4s3s1s7s6s5s4s2s8s7s6s5s4s3,

s3s5s4s2s6s5s4s3s1s7s6s5s4s2s3s8s7s6s5s4,

s3s4s2s6s5s4s3s1s7s6s5s4s2s3s8s7s6s5s4,

s3s4s2s5s4s3s1s7s6s5s4s2s3s8s7s6s5s4,

s3s4s2s5s4s3s1s6s5s4s2s3s8s7s6s5s4, s5s4s2s6s5s4s3s1s7s6s5s4s2s3s8s7s6s5s4,

s4s2s6s5s4s3s1s7s6s5s4s3s8s7s6s5s4s2, s4s2s5s4s3s1s7s6s5s4s2s3s8s7s6s5s4,
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s4s2s5s4s3s1s6s5s4s2s3s4s8s7s6s5, s2s6s5s4s3s1s7s6s5s4s3s8s7s6s5s4s2,

s2s5s4s3s1s7s6s5s4s3s8s7s6s5s4s2, s2s5s4s3s1s6s5s4s2s3s8s7s6s5s4,

s2s4s3s1s7s6s5s4s2s3s8s7s6s5s4, s2s4s3s1s6s5s4s2s3s4s8s7s6s5,

s2s4s3s1s5s4s2s3s4s8s7s6s5, s1s3s4s2s5s4s3s1s6s5s4s2s3s7s6s5s4,

s3s4s2s5s4s3s1s6s5s4s2s3s7s6s5s4, s4s2s5s4s3s1s6s5s4s2s3s7s6s5s4,

s2s5s4s3s1s6s5s4s3s7s6s5s4s2, s2s4s3s1s6s5s4s2s3s7s6s5s4,

s2s4s3s1s5s4s2s3s4s7s6s5, s2s4s3s1s5s4s2s3s6s5s4}

These considerations prove the lower bounds (1.1).
In type F4, the roots displayed in (7.1) index an abelian set (which is neither of 

maximal dimension nor an upper ideal in the root poset). In type Cn, the maximal 
dimension of an abelian ideal is 

(
n+1

2
)
, which is much larger than MC (Cn) = MC (Bn). 

A conjectural conceptual explanation of this phenomenon is given in Section 9.

8. Noncrystallographic types

We can formulate the problem stated in Section 3 for any finite reflection group. 
Indeed, let W be a finite reflection group viewed as a finite Coxeter system with Coxeter 
generators S. Let R =

⋃
w∈W wsw−1 be the set of reflections. Set

N(w) =
{
t ∈ R

∣∣ �(wt) < �(w)
}
.

By (2.2), the previous formula is the natural generalization of the set of inversion to 
the noncrystallographic case. The notion of being inversion complete is changed in the 
obvious way: Y ⊂ W is inversion complete if 

⋃
x∈Y N(x) = R.

Recall (see [4], [7, Chapter 5], [2, 4.2]) that any Coxeter group (W, S) with rela-
tions (ss′)mss′ = 1 has a geometric representation obtained by considering a real vector 
space V with a distinguished basis Π = {αs | s ∈ S} on which W operates by reflections 
w.r.t. the inner product (αs, αs′) = − cos( π

mss′
) (which is positive definite if W is finite). 

Set

ΔCan = WΠ. (8.1)

It is known that, for finite reflection groups, the following properties hold:

(1) Any α ∈ ΔCan can be written as α =
∑

s∈S asαs with either all as ≥ 0 or all as ≤ 0, 
but not in both ways; correspondingly we decompose ΔCan as ΔCan = Δ+

Can∪Δ−
Can.

(2) s(αs) ∈ Δ−
Can, s(Δ+

Can\{αs}) ⊂ Δ+
Can.

(3) If w ∈ W , s, s′ ∈ S are such that w(αs) = αs′ , then wsw−1 = s′.
(4) If α ∈ ΔCan and, for some t ∈ R, tα ∈ ΔCan then t = ±1.
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(5) If α ∈ Δ+
Can cannot be written as α = xβ + yγ, x > 0, y > 0, β, γ ∈ Δ+

Can, then 
α ∈ Π.

These conditions ensure, in particular, that inversions may be computed via (2.1) also 
in this case.

We already proved in Example 3.1 that MC (I2(m)) = 2. In type H3, if the Coxeter 

diagram is ◦ ◦ ◦
α1 α2 α3

5 and si ≡ sαi
, the following subset is minimal complete

{s1s2s1s3s2s1, s2s1s2s1s3s2s1, s2s1s3s2s1, s1s3s2s1, s3s2s1}.

The same procedure explained in Remark 7.1 for type F4 can be implemented in this case 
to check that no essential set with at least 7 elements exists and that all essential sets of 
cardinality are not essential sets for minimal complete sets. (See [9] for a Mathematica
code.)

In type H4 (with Coxeter diagram ◦ ◦ ◦ ◦
α1 α2 α3 α4

5 ), we can provide 

a lower bound by exhibiting a minimal inversion complete set consisting of 8 elements:

Y (H4)

= {s1s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s3,

s2s1s2s1s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4,

s2s1s2s3s2s1s2s1s3s4s3, s2s1s3s2s1s2s1s3s2s1s4s3,

s3s2s1s2s1s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4,

s2s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1,

s2s1s2s3s2s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1,

s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2}

(8.2)

9. Final comments

In this section we propose a conjectural approach to the calculation of MC(T ) which 
would explain the connection with the theory of abelian ideals of Borel subalgebras (see 
Section 7).

Let Δ denote either a usual root system if W is crystallographic or ΔCan (cf. (8.1)) 
in the other cases.

Definition 9.1. We say that A ⊂ Δ+ is abelian if α, β ∈ A =⇒ α + β /∈ Δ. We say that 
A ⊂ Δ+ is strongly abelian if α, β ∈ A =⇒ sα + tβ /∈ Δ ∀s, t ∈ R>0.
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It is clear that a strongly abelian set is abelian. The converse in general does not hold. 
We have however the following result.

Proposition 9.1. If Δ is of type ADE, then an abelian set is strongly abelian.

Proof. Let A be an abelian set and consider α, β ∈ A, α 
= β. We may assume that 
all root have square length 2. Since we are in types ADE, we have, for any pair ξ, η of 
distinct roots, that (ξ, η) ∈ {−1, 0, 1}. Assume by contradiction that there exist positive 
scalars x, y such that γ = xα + yβ ∈ Δ. Since α + β /∈ Δ, we have that (α, β) ≥ 0. If 
(α, β) = 0 then (γ, α) = 2x, (γ, β) = 2y. The latter relations force x = y = 1

2 . Then 
‖γ‖2 = 1, which is absurd. If (α, β) = 1 then (γ, α) = 2x + y, (γ, β) = x +2y and in turn 
x = y = 1

3 . Then ‖γ‖2 = 2
3 , which is again absurd. �

Conjecture. There exists a minimal complete set Y of maximal cardinality and a choice 
of an essential set for Y which is strongly abelian.

The conjecture is true in types An and Dn, as we have proven in the previous sections. 
It is also true in type Bn: the set P (Bn) (cf. (5.3)) is indeed strongly abelian. It is easy 
to check directly the conjecture for I2(m). An essential set for the minimal complete 
set exhibited in Section 8 for H3 is indeed strongly abelian. We also checked this is 
also a strongly abelian set of maximal cardinality (see [9]). It is also easy to check 
directly that the maximal cardinality of a strongly abelian set of roots in type F4 is 6
(see [9]), which supports our belief that inequalities in (1.1) are indeed equalities: were the 
conjecture true, the theory of abelian subalgebras in semisimple Lie algebra (combined 
with Proposition 9.1) would yield a conceptual proof of equality for types En in (1.1).

In type H4, the following statements have been checked in [9]:

• the maximal cardinality of a strongly abelian set is 10;
• no strongly abelian set of cardinality 10 can be essential;
• all strongly abelian sets consisting of 8 elements cannot be embedded in larger sets 

(even not strongly abelian) that are the essential sets of minimal complete sets.

We remark that the unique essential set corresponding to (8.2) is indeed strongly abelian. 
In particular, if the above conjecture is true, we have MC(H4) = 8.
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