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On the enumeration of Permutation Polynomials
(Extended abstract)

Claudia Malvenuto and Francesco Pappalardi

Abstract

Given a permutation o of the elements of a finite field F,, the permutation
polynomial f, € Fy[z] is the unique polynomial with degree less than ¢ — 1 that
has the property that f.(t) = o(t) for every t € Fy. We consider the natural
question of enumerating the permutations in a given conjugacy class for which
the permutation polynomial has degree strictly less than ¢ — 2. We give formulas
that extend existing ones. Furthermore for the case of k—cycles, we consider the
harder problem of enumerating the permutations within a given conjugacy class
for which the permutation polynomial has minimal degree. After giving an upper
bound and a lower bound (for ¢ = 1 (mod %)) we consider various examples in
which interesting Galois properties arise.

Résumé

Soit o une permutation des éléments d’un corps fini Fy: le polyndome de per-
mutation fo € Fy[z] est le seul polyndéme ayant degré inférieur & ¢ — 1 et tel
que fo(t) = o(t) pour chaque t € F;. Nous considérons la question naturelle
d’énumérer les permutations dans une classe de conjugaison donnée dont le po-
lyndme de permutation ait un degré strictement inférieur & ¢ — 2. Nous donnons
des formules qui étendent celles deja connues. De plus dans le cas de k—cycles,
nous considérons le probléme plus complexe d’énumérer les permutations dans
une classe de conjugaison donnée dont le polynéme de permutation associé ait
un degré minimal. Aprés avoir donné des bornes supérieure et inférieure (pour
g = 1 (mod k)) nous prenons en considération divers exemples qui possédent des
propriétés de Galois intéressantes.

1 Introduction

Let ¢ be a power of a prime and denote with IF, the finite field with g elements. If o is a
permutation of the elements of [Fy, then one can associate to ¢ the polynomial in Fg[2]

folz) = 3 o(e) (1 (o- C)q—l) .

celr,
Such a polynomial has the property that
1. fo(b) = o(b) for all b € Fy;
2. The degree 8(fs) < ¢ — 2 (since the sum of all the elements of IF, is zero).

fo 1s the unique polynomial in [F, with these two properties and it is called the
permutation polynomzal of o.
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Permutation polynomials have increasingly attracted the attentions of various re-
searchers in the past couple of decades. We suggest the inspiring survey papers by
Rudolf Lidl and Gary Mullen' for an introduction. A key exchange protocol for pu-
blic key cryptography based on permutation polynomials has been proposed by Joel V.
Brawley?

Let us denote with S, the set of elements of IF, that are moved by . Note that if
o and ¢’ are conjugated, then |S,| = |S,|.

We have that 0(f,) > ¢ — |S,|. To see this it is enough to note that by the first
property of the definition, the polynomial f,(z) — z has as roots all the elements of Iy,
which are not in S,. Therefore, if not identically zero, it has to have degree at least
g |S.|.

An immediate consequence is that all transpositions give rise to polynomials of
degree q — 2 while the degree of a 3-cycle can be ¢ — 2 or ¢ — 3.

Let C be a conjugation class of permutations of a finite field F,. We consider the
function N¢(gq) defined as the number of permutations in C for which the associated
permutation polynomial has degree < ¢ — 2.

In 1969, C. Wells? proved the formula

q(¢g—1) ifg=1 (mod 3)

Wit

o

Nig)(q) = if g=2 (mod 3)
19(¢—1) ifg=0 (mod3)

where [k] denotes the conjugation class of k—cycles.

2 Permutation Polynomials with
non—maximal degree

We will prove formulas for Njj(¢g) where k = 4,5,6 and for the classes of permutations
of type [2 2],[3 2],[4 2],[3 3] and [2 2 2].
Namely, suppose ¢ is odd and let 5 denote the quadratic character ¢ of Fy. Then

1 When does a polynomial over a finite field permute the elements of the field? Amer. Math. Mon.
95 (1988), 243-246, Amer. Math. Mon. 100 (1993), 71-74 )
2Some Cryptographic Applications of Permutation Polynomials, Cryptologia 1, Number 1, (1977)
76-92.
3 The degrees of permutation polynomials over finite fields, J. Combinatorial Theory 7 (1969) 49-55
{ 1 if a is a square in F,
4ie. n(e) = —1 if a is not a square in Fy
0 if a=0
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Nglg) = 19(g—1)(g—5—2n(—1) — 4n(-3))
Np 2(g) = qlg —1)(g—4) {1+ n(-1)}

Nisj(g) = gg(g—1)
(> — (9 — n(5) = 5n(=1) + 5n(=9)) ¢ + 26 + 51(—7)
+157(=3) + 15n(—1))

N[2 3](f1) = I%Q(q -1)
(¢ — (9 + n(=3) + 3n(-1))g + (24 + 6n(—3) + 18n(—1) + 6n(—"7)))
+n(—1)(1 —n(9))q(q — 5)

The case of even characteristics has also been settled®. Suppose ¢ = 2*. Then

Ny (27) = 327(2" - 1)(2" - 4)(1 + (-1)")

N

Nz 9(27) = §2M(2" - 1)(2" - 2)

Ngp(2") = $2°(2" = 1)(2" = 3 — (-1)")(2" = 6 - 3(-1)")
Npg(2") = $2°(2" = 1)(2" = 3 (=1)")(2" - 6).

Similar formulas (which we report at the end of this section)
have been computed for the four conjugation classes

of permutations that move 6 elements.

As an example let us produce the proof that

Proposition 1 If ¢ is odd, then

Nea(a) = 39lg = 1) (4= 5 = 20(=1) = 49(~3))

Proof. The first step consists in showing that
if a, b, ¢, d € Fy (all distinct)
such that the 4—cycle o = (a b ¢ d) is counted by N4(q),
have to satisfy the equation:

(a=ba+ (b—c)b+(c—d)c+ (d—a)d=0. (1)
Indeed, if f, is the permutation polynomial of & and we write

fo(2) = A12972 4 A9 3 4. 4 Ag_ox + Ag-1,
then

celf,

Since the squares of all the elements of F; add up to zero, the previous formula

5Part of the formulas for
even characteristics are due to A. Conflitti
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can be written as
A(e) ==Y (c—a(e))e= > (a(c) - c)e.
cel, cES,

In our case, So = {a,b,c,d}. Therefore A;(c) equals to the left hand side

of (1). Since Ni4)(q) counts the o for which A;(c) =0, we

conclude the first step of the proof.

Now for each of the ¢(¢ — 1) fixed choices

of a and b distinct in FFy,

substituting in (1), ¢ = 2(b — a) + a, d = y(b — a) + a, we obtain the equation

(l-2)+(z-ye+y’ =0 (2)
Since a, b, ¢ and d are all distinct, is equivalent
to the condition z, y &€ {0,1} and z # y, taking into

account that every circular permutation
of a solution gives rise to the same 4—cycle, we have

1
Nigle) = Zq(q - 1)Cy

where

quzl{(m’y) |£7y€IFq\{0,1}, .’B#y, (]_—;p)_*.(x_y)m_i_y?f:o}l

Assume ¢ is odd. The affine conic (1 — z) + (2 — y)z + y? = 0 has

g —n(-3) (3)

rational points over F,.

This can be seen by noticing that the projective conic _
associated has ¢ + 1 points and its points at infinity over F, are [1,w,0],
[1,@,0] (where w € Fy is a root of T2 — T + 1) which are rational if and only if

n(=3) # -1. .

From this number we have to subtract the number of rational points (z,y) verifying

the conditions

z,y € {0,1} or x = y. All these conditions give rise to the following (at most) 10
points over Fg: '

(0,8), (0,—1), (L+4,1), (1—4,1)

(Lw), (1,@), (w,0), (@0, (v,w), (@,©)

where ¢ is a root of T2 + 1.

The number of the above points which are rational over F, is

2[1+n(=1)] + 3[1 + n(~3)]

Subtracting the above quantity from (3), we obtain the statement. o
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In general if ¢ > k is odd, the
1
Ni(g) = £ala —1)Pi(a)

where

Pk(.’L') = zF-3 -+ almk‘4 +---ap_3
and the coeflicients

a; = (o 1)bin + -+ (s )bis,
for appropriate integers a; j, 3; ;. There are ways to compute upper bounds for o ;, 3; ;

and s;.
For example we can prove that for & odd

k k
;g j S i .

This allows (in principle) to calculate formulas for N;j(g), for any value of k as long
as one has calculated it for sufficiently many values of ¢.
For the general case, we can give some estimates. For example

Pi(q) = ¢* 3 + O(k*¢*%).

Therefore

| —

Np(@) = £ (@1 + O(k*¢"7?)) .

o~

We conclude this section with two tables containing the formulas announced. The
first holds for ¢ odd®.

Table 1: Permutation that move 6 elements in odd characteristics

Nigi(q) = $q(g—1) ¢° — 144> + (68 — 67(5) — 67(50)) ¢
— (184 + 66 7(~3) + 93n(=1) + 12n(—2) + 54n(~T)) +
(—=2n(-1)¢" + (84 5179(=1))g + 4)(1 +n(9))

357Ny 21(q9) = 3q(g— 1)  ¢° = (14— n(2)) ¢ + (71 + 12n(—1) + n(—2) + 47(=3) — 87(2)) q
—(148 4+ 1007(—1) + 2470(—~2) + 447n(=3) + 40n(=7))

37N 3(9) = el — 1)  ¢® —13¢% + (62+ 9n(—1) + 47(-3))g
— (150 4+ 997(—1) + 429(=3) + 72n(-7))

Npggog(e) = &ala—1) ¢~ (14+3n(-1))¢° + (70+367(-1) + 67(-2)) g
~ (1364 120n(—1) + 487(-2) + 8n(—-3) + 16(1 - n(9))) .

Table 2: Permutation that move 6 elements in even characteristics

Nigy(2™) = $2™(2™ — 1)(2" - 3 - (=1)™)(2%" — (11 = (=1)™)2™ + (41 + 7(=1)™))

Npg 2(27) = 32727 — 1)(2" = 3 — (=1)™)(2%" — 11 2" 4+ 37 + (-1)")

Nps 5)(27) = £527(2" = 1)(2" = 3 = (=1)")(2°" = (10— (=1)™)2" + 45 - 3(-1)"))

Nz 2 9)(27) = ..l—gzn(gn = 1)(2™ - 2)(2" — 4)(2" - 8).

8The symbols 357 (resp. 37) means that for characteristic 3 and 5 (resp 3), the formula needs
adjustment.
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3 k-cycle Permutation Polynomials with minimal de-
gree

As we noticed above, if a permutation ¢ moves ¢ elements of IF, then

d(fs) > q — c. For example the permutation polynomial of any k—-cycle has degree
at least ¢ — k. For practical applications it is very important to produce permutation
polynomials with ”small” degree.

This justifies the definition. For a given conjugation class C, let ¢ = ¢(C) be the
number of elements moved by any element of C. Then

me(g) ={o€C|d(fs)=q—c}

(i.e. the permutations in C such that their permutation polynomial has minimal degree)
The first elementary lower bound is:

Proposition 2 With the above notations, assume that ¢ > 4. If me(q) # 0, then

1

me(g) > —q(g —1).

¢

Proof. Let o9 be a permutation in mc(q), a,b € Fy, a # 0 and L, is the linear
transformation” of F,, then L;})UOLa,b € me(g).

It is easy to see that the number of distinct elements in mg (gq) produced in this way
equals to the index of the centralizer C,,. of og in Al (F,).

We claim that |C,,| < ¢?. Indeed assume first that oo(0) # 0 and o¢(1) # 1. Then
ifa,b€Fy, a+#0 and

O'OLa,b = La,bo'O;

for all z € Fy, oo(az + b) = aop(z) + b.

If we substitute £ = 0, we obtain o(b)—b = aoo(0) £ 0. So b € So,- If we substitute
x =1, we obtain og(a+b) — (a+b) = a(o0(0) —1) #0. Soa+b € S,,.

Finally b € S,, can be chosen in at most ¢ distinct ways and for each fixed b,
a € Sy, — b can also be chosen in at most ¢ distinct ways.

If 60(0) = 0 or op(1) = 1, then one can chose ag, by € Fy such that

O'(b()) 75 bo O'(Clo + bo) # ag + byg.

1
ao,boaLaovbD'
Therefore if not m¢(q) 1s not empty, we have that

and replace o¢ by 0y = L

Ime(q)] > ;%Q(q - 1)

and this concludes the proof. o

We can improve the previous result for some k—cycles.

Theorem 1 If ¢ = 1(modk) then

Imp(g)| > Mq(t] - 1).

>

"The group A! (Fg) of linear transformations of F4 consists on those maps Loy :Fg = Fg,z > az+b.
This group has order g(g — 1).
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Furthermore, using algebraic geometry, we prove the upper bound

Theorem 2 If ¢ > k, then

b !
Imp(g)] < (* : 1)‘q(q -1).

In principle one should be able to prove similar estimates for other

conjugation classes of permutations. However, technical problems arise.

For permutations that move less then 5 elements we study the problem in detail.
For example

1 .
Impg(9)l = 79(a — 1)K,
where

4 ifg=1 (mod3H)

Kg=1+n(-1)+ { 0 otherwise

The formulas for 5—cycles are more complicated.
Next we restrict our attention to prime fields.
We deal with the problem of studying how sharp is the previous
estimate. We provide evidence of the fact that the estimate is essentially
the best possible. This will be a consequence of the Chebotarev Density Theorem.
More precisely, let a be an integer with 1 < a < (k — 1)! and consider
the function:

. a
For(z) = {p < = | p prime,p > k, Nyj(p) = +(p(p— 1))}

If m(z) is the number of primes up to z, Fy i (x)/7(2) measures

the probability that a IF, has exactly £(p(p — 1))

k-cycle permutation polynomial with minimal degree p — k. It is
natural to expect that this probability tends to a finite limit as = tends
to co. That is to say that one expects.

Far(z) ~ capm(z),

Where the condition ¢, x = 0 should be interpreted as to say that
Fox(z) = 0. We conjecture that c(_1yx # 0.

In general c(_1y1x < 1/(k —1)!!. However it is difficult

to compute. We can show that ¢z 4 = 1/8 and

cs1 6 < 1/(288 - 108!). Furthermore c415 = 1/60000.

Here is a list of the first few primes that

enjoy the property Nis)(p) = 24(p(p —1))/5.

471301 1695341 2134241 3676831 4845761 4938181

5892011 8276131 8748281 9589201 10922651 10996471

11208671 11622601 11683751 11794661 13910161 13950281
14679361 15379361.

Although 1/30000 = 0.000016% seems a small a small proportion of primes.
It is surprisingly high respect to the bound cq1 5 < 1/24! ~ 1.6- 10724,
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The bulk of our technique is based on the reduction of the problem of determining
the solutions over I,

of a family of homogeneous equations defined over Z.

We bound this number by the number of solutions over Q which

after proving finiteness is estimated with the Bezout Theorem. The algebraic
structure of the minimal field which contains all the solutions and its Galois group
over @ will be used to attack the conjecture.

The results described in this note will appear in two papers:

1. C. Malvenuto & F. Pappalardi, Enumerating Permutation Polynomials I: permu-
tations with non mazimal degree, Preprint

2. C. Malvenuto & F. Pappalardi, Enumerating Permutation Polynomials II: k-cycles
with minimal degree, Preprint
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