

DISCRETE MATHEMATICS

Discrete Mathematics 193 (1998) 225-233

Plethysm and conjugation of quasi-symmetric functions

Claudia Malvenuto, Christophe Reutenauer*,1

Département de mathématiques et d'informatique, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Ouébec, Canada H3C 3P8

Received 14 December 1994; revised 20 August 1995; accepted 5 March 1998

In honor of Adriano Garsia

Abstract

Let F_C denote the basic quasi-symmetric functions, in Gessel's notation (1984) (C any composition). The plethysm $s_\lambda \circ F_C$ is a positive linear combination of functions F_D . Under certain conditions, the image under the involution ω of a quasi-symmetric function defined by equalities and inequalities of the variables is obtained by negating the inequalities. © 1998 Elsevier Science B.V. All rights reserved

AMS Classification: 05E05

0. Introduction

Quasi-symmetric functions are a generalization of symmetric functions. They appear in [1-4,8-12] in connection with enumeration of permutations, the Robinson-Schensted correspondence, reduced decompositions, (P,ω) -partitions, the descent algebra and noncommutative symmetric functions.

We consider here the λ -ring structure of the ring of quasi-symmetric functions, i.e., the plethysm of a quasi-symmetric functions into a symmetric function. We show that the plethysm $s_{\lambda} \circ F_C$ is a positive linear combination of F_D 's, which are the basic functions defined in [3]. We also study quasi-symmetric functions defined by inequality/equality conditions on the variables, and give a condition which ensures that the conjugate (image under the involution ω) of these functions is obtained by reversing the inequalities, and exchanging strict and large inequalities (a well-known phenomenon for Schur functions).

^{*} Corresponding author. E-mail: reutenauer.christophe@uqam.ca.

¹ The author was supported by a grant of NSERC (Canada).

The proofs use the theory of (P, ω) -partitions, together with a generalization of it, and a result of [5], expressing the lexicographic order without using equality.

1. Quasi-symmetric functions

The ring QSym of quasi-symmetric functions is the free \mathbb{Z} -module over the functions $M_C \in \mathbb{Z}[[X]]$, X a totally ordered infinite set of commuting varibales, defined for any composition $C = (c_1, \ldots, c_k)$ by

$$M_C = \sum_{x_1 < \cdots < x_k} x_1^{c_1} \cdots x_k^{c_k}.$$

QSym has another basis (F_C) , related to (M_C) by

$$F_C = \sum_D M_D,\tag{1.1}$$

where the sum is over all compositions D which are finer than C, e.g., $F_{21} = M_{21} + M_{111}$. These functions are also defined by the formula

$$F_C = \sum x_1 \cdots x_n$$

where the sum is subject to the conditions $x_i \le x_{i+1}$, and $x_i < x_{i+1}$ if $i \in S$, the subset of $\{1, \ldots, n-1\}$ associated to C. For these results, see [3]. Note that in [2], the M_C are called *quasi-monomial functions* and the F_C *quasi-ribbon functions*.

2. Plethysm

The ring $\mathbb{Z}[[X]]$ is a λ -ring, where the Adams operators ψ_l are the continuous ring endomorphisms of $\mathbb{Z}[[X]]$ defined by $\psi_l(x) = x^l$ for all x in X. Then clearly $\psi_l(M_C) = M_{lC}$, where $lC = (lc_1, \ldots, lc_k)$. Hence QSym is a sub- λ -ring. If g is any symmetric function and F any quasi-symmetric function, we may thus define $g \circ F$, as in [6]. The reader who does not like λ -rings may proceed to the next paragraph, where we define directly $g \circ F$, when F is a sum of monomials: this is the only case that we use in Theorem 2.1.

If $F = \sum_{i \in I} m_i(*)$ is written as a sum of monomials, then $g \circ F = g(m_i, i \in I)$, i.e. $g \circ F$ is obtained by replacing the variables of g by the monomials m_i ; this classical result may be seen as follows: the mappings $g \mapsto g \circ F$ and $g \mapsto g(m_i, i \in I)$ are both algebra homomorphisms of the ring of symmetric functions into QSym. For $g = p_I$, the Ith power sum, one has $p_I \circ F = \psi_I(F) = F(x^I, x \in X) = \sum_{i \in I} m_i^I = p_I(m_i, i \in I)$, so that both endomorphisms coincide on p_I . Now, the p_I generate the ring of symmetric functions, which implies the equality in general (one has to work over \mathbb{Q}).

Observe that since g is symmetric, the order chosen in the sum (*) is immaterial. It is this operation which we may call plethysm.

It is a classical result that for two Schur functions s_{λ} and s_{μ} , the plethysm $s_{\lambda} \circ s_{\mu}$ is a sum of Schur functions; see [7]. Since the functions F_C play, mutatis mutandis, the same role in the theory of quasi-symmetric functions and (P, ω) -partitions that the Schur functions play in the theory of symmetric functions and tableaux, the following result solves a natural question about this plethysm.

Theorem 2.1. The quasi-symmetric function $s_{\lambda} \circ F_C$ is a sum of functions F_D .

By standard formulas in λ -rings, this implies that $g \circ F$ is a sum of functions F_D , if F is a sum of functions F_C and if g is a sum of Schur functions.

Let G be a finite directed graph, with simple edges; let the set E of edges be partitioned into two disjoint subsets E_s and E_w , and call an edge in E_s (resp. E_w) strict (resp. weak). A G-partition is a function $f: V \to X$ such that for any vertices v, v' in V, one has $f(v) \leq f(v')$ (resp. f(v) < f(v')) if (v, v') is a weak (resp. strict) edge. Then, we define the quasi-symmetric function

$$\Gamma(G) = \sum_{f} \prod_{v \in V} f(v), \tag{2.1}$$

where the summation is over all G-partitions f.

To such a graph G, associate the graph G' obtained by reverting the strict edges.

Lemma 2.2. If G and G' are acyclic, then $\Gamma(G)$ is a sum of F_C 's.

Proof. Since G is acyclic, there is a partial order \leq_P on V, which is generated by the relations $v \leq_P v'$, $(v,v') \in E$, and which turns V into a poset P. Similarly, there is another partial order on V, generated by the edges of the graph G', and which may be extended into a linear order on V. Thus, there is a bijection $\omega: V \to \{1, \ldots, n\}$ such that: $(v,v') \in E_w \Rightarrow \omega(v) < \omega(v')$, and $(v,v') \in E_s \Rightarrow \omega(v) > \omega(v')$.

Now, V = P is a labelled poset. Recall that a (P, ω) -partition is a function $f: P \to X$ such that if $p \leq_P q$ then $f(p) \leq f(q)$, and if moreover $\omega(p) > \omega(q)$, then f(p) < f(q). We verify that P- ω -partitions and G-partitions coincide.

Let f be a P- ω -partition. If (v,v') is a weak edge, then $v \leq_P v'$, hence $f(v) \leq f(v')$. If (v,v') is a strict edge, then $\omega(v) > \omega(v')$, and $v \leq_P v'$; thus f(v) < f(v'). This shows that f is a G-partition. Conversely, if f is a G-partition, suppose that $p \leq_P q$. Then, by construction of \leq_P , there is a chain of vertices $p = v_0, v_1, \ldots, v_n = q$ such that each (v_i, v_{i+1}) is an edge in G. Then $f(v_i) \leq f(v_{i+1})$, hence $f(p) \leq f(q)$. If moreover $\omega(p) > \omega(q)$, then we cannot have $\omega(v_i) < \omega(v_{i+1})$ for each i, which implies that the edges (v_i, v_{i+1}) are not all weak; hence, some (v_i, v_{i+1}) is strict and $f(v_i) < f(v_{i+1})$, and finally f(p) < f(q).

Now, by a result of Stanley [10] (see also [3]), the quasi-symmetric generating function of (P, ω) , i.e the right-hand side of (2.1), where the summation if over all $P-\omega$ -partitions f, is equal to $\sum_{\alpha} F_{C(\alpha)}$, where the summation is over all linear extensions α of the poset P, and where $C(\alpha)$ is the descent composition of the corresponding permutation. The lemma follows. \square

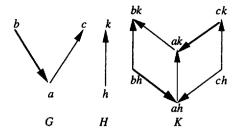


Fig. 1.

Let G, H be graphs as before, with G = (V, E), H = (W, F). Consider all graphs K with set of vertices $V \times W$ and edges satisfying: there is a weak (resp. strict) edge from (v, w) to (v, w') in K if (w, w') is a weak (resp. strict) edge in H; there is an edge from (v, w) to (v', w) or from (v', w) to (v, w), which may be weak or strict, if there is an edge from v to v' in G. See Fig. 1 for an example of such graphs G, H and K. Strict edges are bold.

Lemma 2.3. If the undirected graph underlying G is a tree and if H,H' are acyclic, then the graphs K and K' are acyclic.

Proof. Suppose there is a closed path in $K:(v_0, w_0) \to (v_1, w_1) \to \cdots \to (v_n, w_n) = (v_0, w_0)$, where the (v_i, w_i) are distinct for $i = 0, \ldots, n-1$. Then for each i, either $v_i = v_{i+1}$ or $w_i = w_{i+1}$; in the first case, there is an edge $w_i \to w_{i+1}$ in H.

Hence, there is a closed path in H, except if all w_i are equal. In this case, we have a path in the undirected graph underlying $G: v_0, v_1, \ldots, v_n = v_0$, and the v_i are distinct for $i = 0, \ldots, n-1$. Since G is a tree, we must have n = 0. Hence, there is no closed path in K.

For K', observe that it is obtained from G and H', exactly as K was obtained from G and H. This shows that K' is acyclic. \square

Let A, B be totally ordered sets. Order $A \times B$ lexicographically, that is

$$(a,b) < (a',b') \Leftrightarrow a < a' \text{ or } (a=a' \text{ and } b < b').$$

A fundamental observation of Gordon [5] is that the weak and strict lexicographical order may be defined without using the symbol =. Indeed

$$(a,b) < (a',b') \Leftrightarrow (a < a' \text{ and } b \ge b') \text{ or } (a \le a' \text{ and } b < b')$$

and

$$(a,b) \leq (a',b') \Leftrightarrow (a \leq a' \text{ and } b \leq b') \text{ or } (a < a' \text{ and } b > b').$$

Observe that the two cases in both right-hand sides are mutually exclusive, since so are the conditions on b and b'.

The lexicographic order on A^n is defined recursively. Then the previous observations imply the following lemma.

Lemma 2.4. There exist 2^n sequences $(R_1, ..., R_n)$, with each R_i in $\{<, \leq, >, >\}$, such that the condition $(a_1, ..., a_n) < (b_1, ..., b_n)$ (resp. $(a_1, ..., a_n) \leq (b_1, ..., b_n)$) is equivalent to the disjoint union of the 2^n conditions:

$$a_1R_1b_1$$
 and $a_2R_2b_2$ and ... and $a_nR_nb_n$. (2.2)

Proof of Theorem 2.1. (1) Let m_i , $i \in I$, be a family of totally ordered monomials. Then for any quasi-symmetric function F, the function $F(m_i, i \in I)$ is well-defined. Take as a family of monomials those appearing in the function F_D (which is multiplicity-free by (1.1)). Then $s_\lambda \circ F_D = s_\lambda(m_i, i \in I)$. Since s_λ is a sum of F_C [3,10,12], it is enough to show that $F_C(m_i, i \in I)$ is a sum of F_E 's. We order monomials of equal degree, written as an increasing product of variables, by lexicographic order.

Then denote $F_C \circ F_D = F_C(m_i, i \in I)$.

(2) There exist graphs G and H, whose underlying undirected graphs are paths such that $\Gamma(G) = F_C$, $\Gamma(H) = F_D$. Indeed, we may take $W = \{1, ..., n\}$, with (i, i+1) a weak (resp. strict) edge in H if $i \notin S$ (resp. $i \in S$), where S is the subset of $\{1, ..., n-1\}$ associated to the composition D.

Then $F_D = \sum_f f(1) \dots f(n)$, where the sum is over all *H*-partitions f.

(3) Order the *H*-partitions by lexicographic order: $f \leq g$ if $(f(1), ..., f(n)) \leq (g(1), ..., g(n))$ in lexicographic order. Then $F_C \circ F_D = F_C(f_i(1), ..., f_i(n))$, $i \in I$, where $f_i, i \in I$, are these *H*-partitions in order.

Since by Lemma 2.4, the lexicographic order is a disjoint union of relations of the form (2.2), we deduce that $F_C \circ F_D$ is a sum of functions $\Gamma(K)$, where K is obtained as in Lemma 2.3. By Lemma 2.2 this implies that $\Gamma(K)$ is a sum of F_E 's and concludes the proof. \square

We illustrate the proof of Theorem 2.1 by the computation of $F_{21} \circ F_2$ (with the notations of the latter proof). We have $F_{21} = \Gamma(G)$ and $F_2 = \Gamma(H)$, where G and H are shown in Fig. 2.

By using the equations before Lemma 2.4, we find that $F_{21} \circ F_2$ is the sum of the $\Gamma(K)$ for K being each of the four graphs shown in Fig. 3.

Indeed, we have $F_{21} \circ F_2 = \sum a_1b_1a_2b_2a_3b_3$ where the sum is over all a_1, a_2, a_3, b_1 , b_2, b_3 in X such that $a_i \leqslant b_i$ and $(a_1, b_1) \leqslant (a_2, b_2) < (a_3, b_3)$. But the latter condition is equivalent to $((a_1 \leqslant a_2 \text{ and } b_1 \leqslant b_2) \text{ or } (a_1 < a_2 \text{ and } b_1 > b_2))$ and $((a_2 < a_3 \text{ and } b_2 > b_3))$ or $(a_2 \leqslant a_3 \text{ and } b_2 < b_3))$, which in turn is equivalent to the (disjoint) union of the four conditions

$$(a_1 \leqslant a_2 \text{ and } b_1 \leqslant b_2 \text{ and } a_2 < a_3 \text{ and } b_2 \geqslant b_3)$$

or

$$(a_1 \leqslant a_2 \text{ and } b_1 \leqslant b_2 \text{ and } a_2 \leqslant a_3 \text{ and } b_2 < b_3)$$

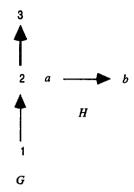
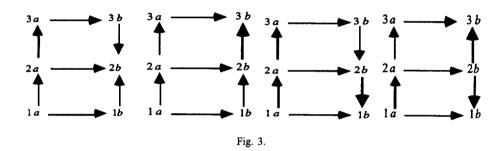


Fig. 2.



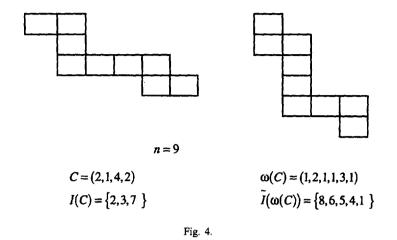
or $(a_1 < a_2 \text{ and } b_1 > b_2 \text{ and } a_2 < a_3 \text{ and } b_2 \geqslant b_3)$ or $(a_1 < a_2 \text{ and } b_1 > b_2 \text{ and } a_2 \leqslant a_3 \text{ and } b_2 < b_3),$

corresponding to the four graphs in Fig. 3.

3. Conjugation

It is well-known that if s_{λ} is a Schur function, then $\omega(s_{\lambda})$, the *conjugate* of s_{λ} , with the notations of [7], is obtained from s_{λ} by interchanging strict and large inequalities in the combinatorial definition of s_{λ} . For example, if $\lambda = 32$, we have $s_{\lambda} = \sum abcde$, where the summation condition is $a \le b \le c$, $d \le e$, a < d, b < e; next, $\omega(s_{\lambda}) = s_{\lambda'} = s_{221} = \sum abcde$, where the condition is a < b < c, d < e, $a \le d$, $b \le e$.

Note that, since s_{λ} is symmetric, the previous condition may be replaced by a > b > c, d > e, $a \ge d$, $b \ge e$. We say that this condition is obtained from the first by *conjugation* (i.e. replace < by \ge and \le by >).



Note that the notation ω here has nothing to do with the ω in (P, ω) -partitions. We apologize for this possible ambiguity.

We extend this to quasi-symmetric functions. Define $\omega: Q\operatorname{Sym} \to Q\operatorname{Sym}$ by

$$\omega(F_C) = F_{\omega(C)}, \tag{3.1}$$

where $\omega(C)$ is the composition defined by: I(C) and $\tilde{I}(\omega(C))$ are complementary subsets of $\{1,\ldots,n-1\}$, where |C|=n, I(C) is $\{c_1,c_1+c_2,\ldots,c_1+\cdots+c_{k-1}\}$ if $C=(c_1,\ldots,c_k)$, $\tilde{I}(C)=I(\tilde{C})$ and \tilde{C} the reverse of C. Equivalently, C and $\omega(C)$, when represented by skew shapes, are transpose each of another. See Fig. 4.

It has been shown by Gessel (1990, unpublished manuscript; see also [1,8]) that ω is an involutive antomorphism of QSym, extending the classical automorphism ω of the ring of symmetric functions [7].

We say that a quasi-symmetric function F is defined by a set of equality and inequality conditions if $F = \sum x_1 \dots x_n$, where the summation is over all x_i 's in X satisfying a set of conditions, each of the form $x_i R x_j$, with $R \in \{<, \leq, >, \geq, =\}$ (the set depends only on F).

For example, each Schur function, each F_C or M_C is of this form (e.g. M_{21} is defined by the conditions $x_1 = x_2$, $x_2 < x_3$). The *sign* of the set of conditions is $(-1)^k$, where k is the number of equalities in the set. The *conjugate* of the set is obtained, as above, by replacing each $x_i < x_j$ by $x_i \ge x_j$ and $x_i \le x_j$ by $x_i > x_j$.

Let C be as above a set of conditions on the variables $x_1, ..., x_n$. We define two graphs, with directed and undirected edges, with vertices 1, 2, ..., n, as follows: there is an undirected edge i - j in G and G' if $x_i = x_j$ is in C, and a directed edge $i \rightarrow j$ in G (resp. G') if $x_i \le x_j$ or $x_i < x_j$ (resp. if $x_i \le x_j$ or $x_i > x_j$) is in C.

We say that such a graph is *acyclic* if there is no closed simple path in it, where a path is a compatible sequence of edges (such a graph looks like the streets in a city, with one and two-way streets); the path i - j - i $(i \neq j)$ is not considered as a simple closed path.

Theorem 3.1. Let C be a set of equalities and inequalities, F its associated quasi-symmetric function, and $(-1)^k$ its sign. If the graphs G, G' defined above are acyclic, then $(-1)^k \omega(F)$ is defined by the conjugate set.

Remark. The reader may verify that the condition of acyclicity implies that for each $i \neq j$, one has at most one inequality or equality between x_i and x_j in C.

Examples. (1) By Fig. 1, $\omega(F_{2142}) = F_{121131}$, which are, respectively, defined by the conditions $x_1 \le x_2 < x_3 \le x_4 \le x_5 \le x_6 \le x_7 < x_8 \le x_9$ and $x_9 < x_8 \le x_7 < x_6 < x_5 < x_4 \le x_3 \le x_2 < x_1$.

- (2) By [7], $\omega(p_k) = (-1)^{k-1} p_k$, and p_k is defined by the conditions $x_1 = x_2 = \cdots = x_k$.
- (3) More generally, by [1,9], $\omega(M_C) = (-1)^{|C|-\ell(C)} \sum_D M_{\tilde{D}}$, where the summation is over all compositions D which are less fine than C, and \tilde{D} is the reversal of D. For example, $\omega(M_{231}) = (-1)^{6-3}(M_{132} + M_{42} + M_{15} + M_6)$, which may be written

$$\omega\left(\sum_{a=b < c=d=e < f} abcdef\right) = -\sum_{x < y=z=t < u=v} xyztuv - \sum_{x=y=z=t < u=v} xyztuv - \sum_{x = y=z=t=u=v} xyztuv$$

$$= -\sum_{x < y=z=t \le u=v} xyztuv$$

$$= -\sum_{x \le y=z=t \le u=v} xyztuv$$

$$= -\sum_{a=b \ge c=d=e \ge f} abcdef.$$

- (4) The theorem applies to all inequality conditions defined by graphs G satisfying the hypothesis of Lemma 2.2. In particular, to $P-\omega$ -partitions and Young diagrams. We use again the definitions of Section 2.
- **Lemma 3.2.** Let G be a directed graph, with weak and strict edges. Let $\omega(G)$ be the graph obtained by reversing the edges and exchanging strict and weak edges. If G and G' are acyclic, then $\Gamma(\omega(G)) = \omega(\Gamma(G))$.

Proof. We use the proof of Lemma 2.2, and conclude that $\Gamma(G) = \sum_{\alpha} F_{C(\alpha)}$, where the sum is over all linear extensions of P.

Similarly, taking the reverse poset with the same labelling, we find that $\Gamma(\omega(G)) = \sum_{\alpha} F_{C(\tilde{\alpha})}$, with the same summation condition, where $\tilde{\alpha}$ is the reversal of α . Now, $C(\tilde{\alpha}) = \omega(C(\alpha))$, hence (3.1) implies that $\Gamma(\omega(G)) = \omega(\Gamma(G))$. \square

Proof of Theorem 3.1 (Induction on the number k of equalities). (1) If k = 0, then $F = \Gamma(G)$, with the notations of (2.1), where the edges of G corresponding to weak (resp. strict) inequalities are weak (resp. strict.).

Then the graph of the conjugate set of C is $\omega(G)$, obtained as in Lemma 3.2. Thus, the theorem follows in this case.

(2) Suppose now that there is an equality $x_i = x_j$ in C. We define two sets of equalities and inequalities, C_1 and C_2 , by replacing $x_i = x_j$ by $x_i \le x_j$ and $x_i < x_j$ respectively. Let F_1, F_2 be the corresponding functions. Then $F = F_1 - F_2$. Now, the acyclicity of the graphs G, G' implies that of G_1, G'_1, G_2, G'_2 . Hence, by induction, $(-1)^{k-1}\omega(F_1)$ and $(-1)^{k-1}\omega(F_2)$ are defined by the sets of conditions $\omega(C_1)$ and $\omega(C_2)$ respectively. Now, these sets are obtained from $\omega(C)$ by replacing in it $x_i = x_j$ by $x_i > x_j$ and $x_i \ge x_j$. Hence the functions F', F'_1, F'_2 corresponding to $\omega(C), \omega(C_1), \omega(C_2)$ satisfy $F' = F'_2 - F'_1$. Since, as we saw, $\omega(F_1) = (-1)^{k-1}F'_1$, $\omega(F_2) = (-1)^{k-1}F'_2$, we obtain $\omega(F) = \omega(F_1) - \omega(F_2) = (-1)^{k-1}(F'_1 - F'_2) = (-1)^k F'$, which is what was to be shown.

Acknowledgements

The authors thank B. Leclerc and J.-Y. Thibon for useful discussions.

References

- [1] R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996) 1-25.
- [2] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, J.-Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995) 218-398.
- [3] I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Contemporary Math. 34 (1984) 289-301.
- [4] I. Gessel, C. Reutenauer, Number of permutations with given cycle structure and descent set, J. Combin Theory A 64 (1993) 189-215.
- [5] B. Gordon, Two theorems on multipartite partitions, J. London Math. Soc. 38 (1963) 459-464.
- [6] D. Knutson, λ-rings and the representation theory of the symmetric group, Lecture Notes Math., vol. 308, Springer, Berlin, 1973.
- [7] I.G. Macdonald, Symmetric Functions and Hall polynomials, Oxford Univ. Press, Oxford, 1979, 2nd extended edition 1995.
- [8] C. Malvenuto, Produits et coproduits de l'algèbre des fonctions quasi-symétriques et de l'algèbre des descentes, Thèse Math., UQAM, 1994.
- [9] C. Malvenuto, C. Reutenauer, Duality between quasi-symmetric functions and the descent algebra, J. Algebra 177 (1995) 967–982.
- [10] R.P. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc. 119 (1972)
- [11] R.P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, Europ. J. Combin. 5 (1984) 359-372.
- [12] G.P. Thomas, Young tableaux and Baxter sequences, Adv. Math. 26 (1977) 275-289.