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Abstract

Let F¢ denote the basic quasi-symmetric functions, in Gessel’s notation (1984) (C any com-
position). The plethysm s; o F¢ is a positive linear combination of functions Fp. Under certain
conditions, the image under the involution @ of a quasi-symmetric function defined by equali-
ties and inequalities of the variables is obtained by negating the inequalities. © 1998 Elsevier
Science B.V. All rights reserved

AMS Classification: 05E05

0. Introduction

Quasi-symmetric functions are a generalization of symmetric functions. They ap-
pear in [1-4,8-12] in connection with enumeration of permutations, the Robinson—
Schensted correspondence, reduced decompositions, (P, w)-partitions, the descent alge-
bra and noncommutative symmetric functions.

We consider here the A-ring structure of the ring of quasi-symmetric functions, i.e.,
the plethysm of a quasi-symmetric functions into a symmetric function. We show
that the plethysm s,0Fc is a positive linear combination of Fp’s, which are the
basic functions defined in [3]. We also study quasi-symmetric functions defined by
inequality/equality conditions on the variables, and give a condition which ensures
that the conjugate (image under the involution w) of these functions is obtained by
reversing the inequalities, and exchanging strict and large inequalities (a well-known
phenomenon for Schur functions).
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The proofs use the theory of (P, w)-partitions, together with a generalization of it,
and a result of [5], expressing the lexicographic order without using equality.

1. Quasi-symmetric functions

The ring OSym of quasi-symmetric functions is the free Z-module over the functions
Mc € Z[[X]], X a totally ordered infinite set of commuting varibales, defined for any
composition C=(cy,...,c;) by

Mc= Z xf’ ---x;".

Xp < e <Xp

QOSym has another basis (F¢), related to (M) by

FC=§MD, (1.1)

where the sum is over all compositions D which are finer than C, e.g., Fa; =My +M ;.
These functions are also defined by the formula

FC=2xl...xn

where the sum is subject to the conditions x; <x;;, and x; <x;;, if i €S, the subset
of {1,...,n— 1} associated to C. For these results, see [3]. Note that in [2], the Mc
are called quasi-monomial functions and the Fc quasi-ribbon functions.

2. Plethysm

The ring Z[[X]] is a A-ring, where the Adams operators y; are the continuous
ring endomorphisms of Z[[X]] defined by y;(x)=x' for all x in X. Then clearly
Yi(Mc)=Mc, where IC=(lcy,...,lc;). Hence QSym is a sub-A-ring. If g is any
symmetric function and F any quasi-symmetric function, we may thus define go F, as
in [6]. The reader who does not like A-rings may proceed to the next paragraph, where
we define directly go F, when F is a sum of monomials: this is the only case that we
use in Theorem 2.1.

If F=3,., m(x) is written as a sum of monomials, then goF=g(m;,icl), ie.
goF is obtained by replacing the variables of g by the monomials m;; this classical
result may be seen as follows: the mappings g+—goF and g+ g(m;, i €I) are both
algebra homomorphisms of the ring of symmetric functions into QSym. For g= p,, the
Ith power sum, one has p;oF =y, (F)=F (x', xeX):Zie, m,’ = pi(m;, i€l), so
that both endomotphisms coincide on p;. Now, the p; generate the ring of symmetric
functions, which implies the equality in general (one has to work over Q).

Observe that since g is symmetric, the order chosen in the sum (x) is immaterial. It
is this operation which we may call plethysm.
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It is a classical result that for two Schur functions s; and s,, the plethysm s; 03,
is a sum of Schur functions; see [7]. Since the functions F¢ play, mutatis mutandis,
the same role in the theory of quasi-symmetric functions and (P, ®)-partitions that the
Schur functions play in the theory of symmetric functions and tableaux, the following
result solves a natural question about this plethysm.

Theorem 2.1. The quasi-symmetric function s, o Fc is a sum of functions Fp,.

By standard formulas in A-rings, this implies that go F is a sum of functions Fp, if
F is a sum of functions F¢ and if g is a sum of Schur functions.

Let G be a finite directed graph, with simple edges; let the set £ of edges be
partitioned into two disjoint subsets E; and E,,, and call an edge in E; (resp. E,,) strict
(resp. weak). A G-partition is a function f:V — X such that for any vertices v, v/
in ¥, one has f(v) < f(v') (resp. f(v)<f(v')) if (v,v') is a weak (resp. strict) edge.
Then, we define the quasi-symmetric function

r@G)=x11 f), (2.1)
foer
where the summation is over all G-partitions f.
To such a graph G, associate the graph G’ obtained by reverting the strict edges.

Lemma 2.2. If G and G’ are acyclic, then I'(G) is a sum of F¢'s.

Proof. Since G is acyclic, there is a partial order <p on ¥, which is generated by
the relations v <pt’, (v,0') € E, and which turns ¥ into a poset P. Similarly, there is
another partial order on ¥, generated by the edges of the graph G’, and which may
be extended into a linear order on V. Thus, there is a bijection w: V — {1,...,n} such
that: (v,v") € E, = w(v)<w(v'), and (v,v') € Es = o(v) > w(v').

Now, V' =P is a labelled poset. Recall that a (P, w)-partition is a function f : P — X
such that if p <pgq then f(p)< f(g), and if moreover w(p)>w(q), then f(p)<f(q).
We verify that P-w-partitions and G-partitions coincide.

Let f be a P-w-partition. If (v,v') is a weak edge, then v <p ¢/, hence f(v)< f(v').
If (v,0") is a strict edge, then w(v)>w(v'), and v <pv'; thus f(v)< f(v'). This shows
that f is a G-partition. Conversely, if f is a G-partition, suppose that P <pq. Then,
by construction of <p, there is a chain of vertices P=1p,0y,..., U, =g such that
each (v;,v;41) is an edge in G. Then f(v;)< f(viy1), hence f(p)< f(q). If more-
over w(p)>w(q), then we cannot have w(v;) <w(v;;,) for each i, which implies that
the edges (v;,v;;1) are not all weak; hence, some (v;,v,,) is strict and S < f(vigy),
and finally f(p)< f(q).

Now, by a result of Stanley [10] (see also [3]), the quasi-symmetric generating
function of (P, w), i.e the right-hand side of (2.1), where the summation if over all P—
w-partitions f, is equal to )__F((,), where the summation is over all linear extensions
« of the poset P, and where C(a) is the descent composition of the corresponding
permutation. The lemma follows. [
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Let G,H be graphs as before, with G=(V,E), H=(W,F). Consider all graphs K
with set of vertices V' x W and edges satisfying: there is a weak (resp. strict) edge
from (v,w) to (v,w’) in K if (w,w') is a weak (resp. strict) edge in H; there is an
edge from (v,w) to (v/,w) or from (v',w) to (v,w), which may be weak or strict, if
there is an edge from v to v/ in G. See Fig. 1 for an example of such graphs G,H
and K. Strict edges are bold.

Lemma 2.3. If the undirected graph underlying G is a tree and if H H' are acyclic,
then the graphs K and K' are acyclic.

Proof. Suppose there is a closed path in K :(vg,wp)— (v, w1)— - — (Vp, W) =
(vo,wp), wWhere the (v;,w;) are distinct for i=0,...,n — 1. Then for each i, either
v; =0i41 OF w; =w;y; in the first case, there is an edge w; —w;y; in H.

Hence, there is a closed path in H, except if all w; are equal. In this case, we have
a path in the undirected graph underlying G: vy, v,,...,v, =10y, and the v; are distinct
for i=0,...,n — 1. Since G is a tree, we must have »=0. Hence, there is no closed
path in K.

For K’, observe that it is obtained from G and H’, exactly as K was obtained from
G and H. This shows that K’ is acyclic. O

Let A, B be totally ordered sets. Order 4 x B lexicographically, that is
(a,b)<(d',b) & a<a or (a=ad and b<b').

A fundamental observation of Gordon [5] is that the weak and strict lexicographical
order may be defined without using the symbol =. Indeed

(a,b)<(a',b') & (a<a' and b=¥") or (a<d’ and b<b)
and
(a,b)<(d',b') & (a<d and b<b') or (a<d and b>P).

Observe that the two cases in both right-hand sides are mutually exclusive, since so
are the conditions on b and &'.
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The lexicographic order on 4" is defined recursively. Then the previous observations
imply the following lemma.

Lemma 2.4. There exist 2" sequences (Ry,...,R,), with each R; in {<,<,>,2},
such that the condition (ai,...,a,)<(by,...,b;) (resp. (ay,....an)<(b1,...,by)) is
equivalent to the disjoint union of the 2" conditions:

a\R by and a;,R b, and ...and a,R,b,. (2.2)

Proof of Theorem 2.1. (1) Let m;, i€, be a family of totally ordered monomials.
Then for any quasi-symmetric function F, the function F(m;, i€I) is well-defined.
Take as a family of monomials those appearing in the function Fp (which is multipli-
city-free by (1.1)). Then s; o Fp =s;(m;, i €I). Since s; is a sum of F¢ [3,10,12], it
is enough to show that F-(m;, i €1) is a sum of Fg’s. We order monomials of equal
degree, written as an increasing product of variables, by lexicographic order.

Then denote FgoFp=Fc(m;, i€1).

(2) There exist graphs G and H, whose underlying undirected graphs are paths such
that I'(G)=F¢, I'(H)=Fp. Indeed, we may take W ={1,...,n}, with (i,i+1) a weak
(resp. strict) edge in H if i¢S (resp. i €S), where S is the subset of {1,...,n — 1}
associated to the composition D.

Then Fp= 3 f(1)... f(n), where the sum is over all H-partitions f.

(3) Order the H-partitions by lexicographic order: f<g if (f(1),...,f(n))<
(g(1),...,9(n)) in lexicographic order. Then Fc o Fp =Fc(fi(1)... fi(n)), i €1, where
fi,i €1, are these H-partitions in order.

Since by Lemma 2.4, the lexicographic order is a disjoint union of relations of the
form (2.2), we deduce that F- o Fpp is a sum of functions I'(K'), where K is obtained as
in Lemma 2.3. By Lemma 2.2 this implies that I'(K') is a sum of Fz’s and concludes
the proof. O

We illustrate the proof of Theorem 2.1 by the computation of /5 o F; (with the
notations of the latter proof). We have F5 =I'(G) and /> =I'(H), where G and H
are shown in Fig. 2.

By using the equations before Lemma 2.4, we find that /5, o F, is the sum of the
I'(K) for K being each of the four graphs shown in Fig. 3.

Indeed, we have Fyj o F, = > ajbiaxbyasbh; where the sum is over all ay,a;,a3, b,
by, b3 in X such that a; <b; and (a;,b;)<(az,b)<(as,b3). But the latter condition is
equivalent to ((a; <az and b; <by) or (a; <ay and by > b)) and ((a; <a3 and by =b3)
or (a; <a; and by <b3)), which in turn is equivalent to the (disjoint) union of the four
conditions

(a1<a; and b <b; and ay <a; and by = b3)
or

(a1 <a; and b; <b; and a; <a3 and b, <b3)
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or
(a1<a; and b; > b, and a; <a; and b, >bs3)
or

(a1<a; and by >b, and a» <a; and b, <bs),

corresponding to the four graphs in Fig. 3.

3. Conjugation

It is well-known that if s5; is a Schur function, then w(s;), the conjugate of s;, with
the notations of [7], is obtained from s; by interchanging strict and large
inequalities in the combinatorial definition of s5;. For example, if 1=32, we have
s;= »_abcde, where the summation condition is a<b<c, d<e, a<d, b<e; next,
w(s3)=sy =sn1 =) abcde, where the condition is a<b<c, d<e, a<d, b<e.

Note that, since s; is symmetric, the previous condition may be replaced by a>b>c,
d>e, a=d, b>e. We say that this condition is obtained from the first by conjugation
(i.e. replace < by > and < by >).
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C=(214,2) o(C)=(1,2,1,1,3,1)
10)={2,37} I(o(C)={8,6,54.1}

Fig. 4.

Note that the notation w here has nothing to do with the w in (P, w)-partitions. We
apologize for this possible ambiguity.
We extend this to quasi-symmetric functions. Define w: OSym — QSym by

o(Fc)=Fycy, @3.1)

where o(C) is the composition defined by: I(C) and I((C)) are complementary
subsets of {1,...,n — 1}, where |Cl=n, I(C) is {c1,c1 + ¢2,...,c1t + -+ + ¢y } if
C=(c,...,cx), I(C)=I(C) and C the reverse of C. Equivalently, C and o(C), when
represented by skew shapes, are transpose each of another. See Fig. 4.

It has been shown by Gessel (1990, unpublished manuscript; see also [1,8]) that
is an involutive antomorphism of OSym, extending the classical automorphism « of
the ring of symmetric functions [7].

We say that a quasi-symmetric function F is defined by a set of equality and
inequality conditions if F=)_x;...x,, where the summation is over all x;’s in X
satisfying a set of conditions, each of the form x;Rx;, with Re { <, <, >, >,=} (the
set depends only on F').

For example, each Schur function, each F¢ or Mc is of this form (e.g. M>; is defined
by the conditions x; =x;, x, <x3). The sign of the set of conditions is (—1)%, where k
is the number of equalities in the set. The conjugate of the set is obtained, as above,
by replacing each x; <x; by x; 2x and x; <x by x;>x;.

Let C be as above a set of conditions on the variables x,...,x,. We define two
graphs, with directed and undirected edges, with vertices 1,2,...,n, as follows: there
is an undirected edge i —j in G and G’ if x; =x; is in C, and a directed edge i —; in
G (resp. G') if x; <x; or x; <x (resp. if x; <x or x;>x) is in C.

We say that such a graph is acyclic if there is no closed simple path in it, where a
path is a compatible sequence of edges (such a graph looks like the streets in a city,
with one and two-way streets); the path i — j —i (i) is not considered as a simple
closed path.
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Theorem 3.1. Let C be a set of equalities and inequalities, F its associated quasi-
symmetric function, and (—1)* its sign. If the graphs G,G' defined above are acyclic,
then (—1)*w(F) is defined by the conjugate set.

Remark. The reader may verify that the condition of acyclicity implies that for each
i+ j, one has at most one inequality or equality between x; and x in C.

Examples. (1) By Fig. 1, &(F2142) =F\21131, which are, respectively, defined by the
conditions x| <x; <x3 <xy <xs <X <x7<Xg<X9 and xg <xg <x7 <X <X5<x3<X3<
X2 <Xi.
(2) By [7], @(pr)=(=1)*""py, and p; is defined by the conditions x; =xp= - - - =x;.
(3) More generally, by [1,9], w(Mc)=(=1)I€I=4OS" M, where the summation
is over all compositions D which are less fine than C, and D is the reversal of D. For
example, w(Ma3)=(—1)°"* (M35 + Maz + Mis + M), which may be written

w > abcdef | = — 3 xyztuv — > xyztuv
a=b<c=d=e< f X< y=z=t<u=v x=y=z=t<u=v
- > xyztuy — S xyztuv
X < y=z=t=u=v X=y=z=l=u=v
= — > xyztuv
x L y=z=t<u=v
= — > abcdef .

a=b2c=d=e>2f

(4) The theorem applies to all inequality conditions defined by graphs G satisfying
the hypothesis of Lemma 2.2. In particular, to P —w-partitions and Young diagrams.
We use again the definitions of Section 2.

Lemma 3.2. Let G be a directed graph, with weak and strict edges. Let w(G) be the
graph obtained by reversing the edges and exchanging strict and weak edges. If G
and G’ are acyclic, then I'(0(G))= o(I'(G)).

Proof. We use the proof of Lemma 2.2, and conclude that I'(G)= )", F¢(x), Where
the sum is over all linear extensions of P.

Similarly, taking the reverse poset with the same labelling, we find that I'(w(G)) =
> . Fcw@), with the same summation condition, where & is the reversal of a. Now,
C(&)= w(C(a)), hence (3.1) implies that I'(&(G))=w(I'(G)). O

Proof of Theorem 3.1 (Induction on the number k of equalities). (1) If k=0, then
F =TI(G), with the notations of (2.1), where the edges of G corresponding to weak
(resp. strict) inequalities are weak (resp. strict.).

Then the graph of the conjugate set of C is w(G), obtained as in Lemma 3.2. Thus,
the theorem follows in this case.
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(2) Suppose now that there is an equality x; =x; in C. We define two sets of equal-
ities and inequalities, C; and C,, by replacing x; =x by x; <x; and x; <x; respectively.
Let Fy,F; be the corresponding functions. Then F =F; — F,. Now, the acyclicity of
the graphs G,G’ implies that of Gy,G/, G, G5. Hence, by induction, (—1)*~'a(F;)
and (—1)*~'w(F;,) are defined by the sets of conditions o(Cy) and w(C;) respec-
tively. Now, these sets are obtained from w(C) by replacing in it xi=x by x;>x
and x; >x. Hence the functions F’, Fy, F; corresponding to ((C),w(C)),w(C,) satisfy
F'=F, — F|. Since, as we saw, o(F))=(—1)*"'F{, w(F,)=(—1)*"'F}, we obtain
(F)=o(Fy)—o(F2)=(—1)*"1(F] —F})=(—1)*F’, which is what was to be shown.
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