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Preface

The notion of stacks grew out of attempts to construct moduli spaces in contexts
where ordinary varieties or schemes were deficient. They may be regarded as the next
step in the development from affine and projective varieties to abstract varieties to
schemes to algebraic spaces. However, even when moduli spaces have been constructed
as projective varieties, whenever some objects being parametrized have nontrivial au-
tomorphisms the usual (coarse) moduli space is not a faithful reflection of the moduli
problem; in such cases, the corresponding stack is more useful.

It is not easy to point to one moment when stacks appeared. Many of the ideas that
led to stacks can be found in work of Grothendieck, especially [38]. These ideas were
developed by Giraud [31], and in the work of Artin [4] and Knutson [56] on algebraic
spaces, which were an earlier extension of the notion of schemes. More ideas toward
stacks can be found in Mumford’s article [71], which remains an excellent source of
inspiration.

Deligne and Mumford defined a notion of algebraic stack in [20] — the concept
now known as Deligne–Mumford stack — and used moduli stacks of curves to give
an alternative and conceptually simpler proof of the main theorem of that paper: the
moduli space of curves of genus g over any field is irreducible. Concise definitions were
given in [20], but the basic theorems were only stated, with details promised for another
publication that unfortunately has never appeared. Since then the language of stacks
has been found to be useful in a variety of moduli and other problems. Except for a
few fragments, such as the appendix of [89] and section I.4 of [25], there had been little
foundational exposition of these ideas until the book [61] was published.

Artin [5] defined a more general notion of stack, which can be used for moduli
problems of objects with infinite automorphism groups. These have become increasingly
important in recent years, such as for moduli of vector bundles ([61] and Chapter 19)
and the construction of intrinsic normal cones to singular varieties ([10] and Chapter
17). The book of Laumont and Moret-Bailly [61] provides a systematic treatment of
stacks, with proofs of many of the main theorems in the subject. However, it presumes
quite a sophisticated background, and proceeds at a high level of difficulty.

The aim of these notes is to give a leisurely and elementary introduction to stacks
and some of their uses. Although the language is necessarily abstract, by proceeding
from examples to theory, and keeping the examples as simple as possible, we hope to
make the notes accessible to those uncomfortable with fancy terminology. One of our
goals, in fact, is to prepare a reader for [61].
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We do, however, assume the reader is familiar with basic notions about schemes,
including definitions and basic properties of smooth, étale, and flat morphisms. Many of
these notions are defined briefly in a glossary at the back of this book. Good references
for most of this material are [74] and [47], perhaps beginning with [24] or [64] — with
[EGA] as the definitive source.

In Part I we make several simplifying assumptions, which suffice to describe Deligne–
Mumford stacks and algebraic spaces. Many interesting examples, such as moduli spaces
of curves, can be worked out in this language. We give a more direct translation between
the categorical and the atlas notions of stack than had been available in the literature
before. We include descriptions of stacks of dimensions 0 and 1. We compute the Picard
group of the stack of elliptic curves, over any field and over the integers (the latter a new
result). We do not try to prove all general theorems about Deligne–Mumford stacks,
but we do include enough so that we can carry out proofs of the assertions made in [20].
Algebraic spaces are defined and studied as special cases of Deligne–Mumford stacks;
the reader need not know about them in advance.

In Part II we begin again, without the special assumptions, to define general alge-
braic (Artin) stacks. In particular, we collect here in one place the various properties
that are scattered throughout Part I. In Part II we proceed in a more concise manner,
hoping that the reader who has spent time in Part I will be prepared for this. Here we
discuss some important examples of algebraic stacks, such as moduli stacks of vector
bundles, and cone stacks. We conclude with chapters on sheaves and cohomology.

In the literature one finds many assertions that something is a stack. What is rare
is to find justification for such an assertion, such as a verification that a proposed stack
satisfies all or even some of the axioms to be a stack. (The most common reason given
for why something is a stack is to point out why it is not a scheme!) We hope that
giving a few such proofs, together with examples, will improve this situation.

At the foundations of the subject there are quite a few categorical constructions,
and verifications involve checking that many diagrams commute. Although we have left
many of these verifications as exercises, we do include a section of Answers at the end,
where the reader can find many of these worked out.

We are all familiar with the idea that a geometric object can have an intrinsic
definition as a ringed space, and that it can also be constructed from an atlas by gluing
together simple local models. Stacks also have a dual nature. Their intrinsic nature,
however, is not a space with some structure; rather, it is a category, together with
a functor from this category to a base category (usually of schemes or other familiar
geometric objects). Stacks can also be realized from a kind of atlas, called a groupoid,
that consists of a pair of objects together with five morphisms in the base category.
(In the familiar case of a manifold obtained by gluing open sets {Uα}, the two objects
are

∐
Uα and

∐
Uα ∩ Uβ , and the morphisms express the usual compatibilities among

the gluing data.) For stacks, however, the distance between their categorical nature
and an atlas is considerably greater than that between a ringed space and an atlas in
classical geometry — roughly speaking, the role of topology for ringed spaces has to be
replaced by Grothendieck’s descent theory — and it will take us a few chapters to work
this out thoroughly. We begin in Chapter 1, however, with a brief description of these
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categorical and groupoid notions, and discuss a collection of examples, which we hope
will prepare the reader for this journey.

One feature of this text, especially in Part I, is an emphasis on these atlases, or
groupoids. We believe that working explicitly with many of them leads to a better
feeling for stacks. Of course, just as with manifolds, describing a particular stack by an
atlas is often not the most revealing way to study it. However, the existence of such an
atlas is crucial, since it allows the extention of basic notions from algebraic geometry
to stacks by putting appropriate geometric conditions on the schemes and the maps
among them.

In addition to the introductory Chapter 1, we have included an Appendix C which
studies groupoids of sets. These can be thought of as descrete groupoids (or stacks).
They provide a model for the general theory, in which many of the constructions appear
in a simple setting, without geometric complications. Beginners may want to spend
some time with this appendix before reading the main text.

The text include many Examples and Exercises, which are used in similar ways;
Exercises may require more work, and Examples are more likely to be referred to later.
In both, we frequently omit phrases like “Show that”, especially for routine verifications.

Note on terminology. The notion of groupoid and the word “groupoid” originated in
the 1920’s in algebra, and in the 1950’s in geometry, mainly in the work of Ehresmann
and Haefliger; they have continued to appear in many areas of mathematics, and today
they play a role in noncommutative geometry, cf. [18]. A brief history can be found in
[16]. When the spaces involved are discrete, this notion coincides with that of a (small)
category in which all morphisms are isomorphisms. Category theorists have taken the
word groupoid to mean a category with this property, and many others have followed
this practice.1 As groupoids in the original sense play a fundamental role here, we will
use the word in its original meaning, so we will have algebraic groupoids in algebraic
geometry, topological groupoids in topology, etc. If this is not confusing enough, how-
ever, categories in which all maps are isomorphisms also appear prominently in the
development of stacks. We will say that a category is a groupoid if it has this property.

We thank the many who have contributed to this project, over the many years it
has been in progress: M. Artin, T. Beke, B. Gross, M. Hochster, K. Hulek, S. Kimura,
H. Kley, R. Kottwitz, R. Lazarsfeld, T. Leinster, S. MacLane, R. MacPherson, N. Ny-
gaard, R. Pandharipande, M. Roth, R. Street, T. Szamuely, and A. Vistoli. Thanks
also to G. Laumon and L. Moret-Bailly for sending us a preliminary version of [61].

Comments, corrections, suggestions, or contributions (say for other elementary top-
ics that could be included) are eagerly solicited!

1The reader has probably heard the joke that a group is a category with one object in which all

maps are isomorphisms. Few take this seriously — at least, no one mistakes an abelian group for some

kind of abelian category. Unfortunately for the term groupoid, this joke has been taken seriously!
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CHAPTER 1

Introduction

Our aim in this chapter is to describe informally a variety of concrete examples that
show why stacks are needed, and to illustrate some of the key ingredients of stacks.
We start with a brief discussion of the two natures of a stack: as categories, and as
atlases/groupoids. In practice it is usually easy to define the appropriate category, but
it requires some work, requiring knowledge of the geometry involved, to construct an
atlas. Then we look at examples, where these and other “stacky” features can be seen.
Many of these examples should be familiar to the reader in some setting. Some of them
were important in the early history of stacks, so reading about them will also give a
glimpse of this history. Most of these examples will reappear later in the book, and
most of the ideas seen here will be developed systematically later. Depending on a
reader’s background, statements made without proof can be accepted as facts to be
used for motivation, or proofs can be worked out as exercises.

Making the notion of stack precise requires a fair amount of rather abstract language,
including such mouthfuls as “categories fibered in groupoids”. Starting in the next
chapter we will develop this language slowly and carefully, with precise versions of
most of these and many other examples. We hope that seeing several examples will
help the reader digest what is to follow. However, we emphasize that nothing that is
done here is logically necessary for reading the rest of the book.

1. Stacks as categories

Stacks are defined with respect to some fixed category S, called the base category.
For example, S can be the category (Sch) of schemes (or schemes over some fixed base),
or (Can) of complex analytic spaces, or (Diff) of differentiable manifolds, or (Top) of
topological spaces, or even the category (Set) of sets. A stack over S will be a category
X together with a functor X→ S, satisfying some properties — most of which will be
left until later to discuss. These properties will depend, in part, on a “topology” on S.
A morphism from one X → S to another Y → S is defined to be a functor from X to
Y that commutes with the projections to S.

We start with some examples of this.

Example 1.1A. Objects (Schemes). An object X in S determines a category X,
whose objects are pairs (S, f), where S is an object in S and f : S → X is a morphism.
A morphism from (S ′, f ′) to (S, f) in X is given by a morphism g : S ′ → S such that
f ◦ g = f ′. The functor X → S takes an object (S, f) to S, and takes a morphism
from (S ′, f ′) to (S, f) to the underlying morphism from S ′ to S. It is a basic fact of
Grothendieck/Yoneda that this category X determines X up to canonical isomorphism.

1



2 Introduction

This category will be denoted by X; when the idea of stacks has been thoroughly
digested, it can be denoted simply by X, but we will avoid doing this in Part I. We will
be primarily interested in the case when X is a scheme and S is a category of schemes,
but the notion is valid for any base category S.

This example is a variation of Grothendieck’s idea of replacing a scheme X by its
functor of points. This is the contravariant functor hX from S to (Set) with hX(S) =
HomS(S,X), called the set of S-valued points of X. A morphism q : X → Y in S
determines a natural transformation from hX to hY , taking f : S → X to q ◦ f : S →
Y . Just as X can be recovered from hX , the q can be recovered from the natural
transformation.

Example 1.1B. Torsors. We start with S = (Top), the category of topological
spaces, and let G be a topological group. A G-torsor, or principal G-bundle, is a
(continuous) map E → S, with a (continuous) action of G on E, which we take to
be a right action; one requires that it be locally trivial, in the sense that S has an
open covering {Uα} such that the restriction E|Uα

is isomorphic to the trivial bundle
Uα × G → Uα. One has a category, which we denote by BG, whose objects are the
G-torsors E → S. (We will explain this notation later.) A morphism from E ′ → S ′ to
E → S is given by a pair of maps E ′ → E and S ′ → S with the map E ′ → E being
equivariant (commuting with the action of G) and the induced diagram

E ′ //

��

E

��

S ′ // S

being cartesian (this means that it commutes and the induced map from E ′ to the
fibered product S ′ ×S E is a homeomorphism). The functor from BG to S is the
obvious one that forgets the torsors, i.e., it takes an object E → S of BG to the object
S of S, and a morphism from E ′ → S ′ to E → S to the underlying map S ′ → S.

There is an important generalization of this example. If G acts on the right on a
space X, one defines a category, denoted [X/G], whose objects are G-torsors E → S,
together with an equivariant map from E to X. A morphism from E ′ → S ′, E ′ → X

to E → S,E → X is given by a pair of maps E ′ → E and S ′ → S giving a map of
torsors as above, but, in addition, the composite E ′ → E → X is required to be equal
to the given map from E ′ to X. This may look rather arbitrary now, but we will soon
see examples where these categories arise naturally. In this language, the category BG
is the same as the category [ • /G], where • is a point; and [X/{1}] (where {1} denotes
the group with one element) is the same as X. If G acts on the left on X, and we
consider left G-torsors, we have similarly a category denoted [G\X].

This example (and its generalization) extend to the setting where G is a complex
Lie group, and S is a category of smooth manifolds, or complex analytic spaces. In
algebraic geometry, we can take S to be a category of schemes (all schemes, or schemes
over a fixed base), and work with algebraic actions of algebraic groups. The major
difference in the algebraic setting is that the notion of local triviality for a torsor is
usually taken, not in the Zariski topology, but in the étale topology.
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Example 1.1C. Moduli of curves. Let S be the category of all schemes. A
family of curves of genus g is a morphism C → S of schemes which is smooth and
proper, whose geometric fibers are connected curves of genus g. The moduli stackMg

of curves of genus g has for its objects such families. A morphism from a family C ′ → S ′

to C → S is pair of morphisms C ′ → C and S ′ → S such that the induced diagram is
cartesian, as in the case of torsors. The functor fromMg to S is the obvious one that
forgets the families of curves.

In the case when S ′ = S = Spec(k), where k is a field, and C ′ = C, a curve over k,
any automorphism of C over k will determine a morphism inMg lying over the identity
morphism of Spec(k). This illustrates the important point that the morphism from S ′

to S does not determine the morphism from C ′ gto C. Everything about the algebraic
geometry of curves and their automorphisms is encoded inMg → S. It is precisely the
existence of nontrivial automorphisms that prevents Mg from “being” a scheme.

There is a more classical object, the “coarse” moduli space Mg, which is a scheme
(over Spec(Z)); see [75]. Its geometric points correspond to isomorphism classes of
curves, and it has the property that for any family of curves C → S, there is a canonical
morphism from S to Mg taking a geometric point s to the isomorphism class of the fiber
Cs. These morphisms determine a functor from Mg to the category Mg determined
by Mg. Moreover, Mg is characterized by a universal property that can be described
as follows. Any morphism from Mg to the category N of a scheme N must factor
uniquely through M g (cf. [75], §5.2); note that the morphism from M g to N is given by
a morphism from Mg to N . In the language of stacks, the space Mg will be a “coarse
moduli space” for the stack Mg.

Many important examples of stacks will be variations of this example. For example,
there is a stack Mg,n whose objects are families of curves C → S together with n

pairwise disjoint sections σ1, . . . , σn from S to C; the morphisms in Mg,n must be
compatible with these sections. There are also “compactifications”, which allow fibers
to be nodal curves, with an appropriate notion of stability. One can also replace curves
by other varieties.

The use of stacks in [20] to prove the irreducibility of the variety Mg(k) of curves of
genus g over any algebraically closed field k can be sketched as follows. Take S to be
all schemes. Suppose for the moment thatMg were represented by a scheme Mg that
is smooth over Spec(Z), and thatMg had a compactificationMg (using stable curves)

that is represented by a scheme M g that contains Mg as an open subscheme, with
M g smooth and projective over Spec(Z). The classical fact that M g(C) is connected
would imply, by a connectedness theorem of Enriques and Zariski, that all geometric
fibers Mg(k) of M g over Spec(Z) are connected. Since a nonsingular connected variety
is irreducible, the open subvariety Mg(k) would also be irreducible. Although these
assertions are all false for the coarse moduli spaces — even Mg(C) is singular — they
are true, suitably interpreted, for the corresponding stacks, and the irreducibility of the
coarse varieties Mg(k) follows.

The notion of S-valued points, discussed in Example 1.1A, can be used to make
casual set-theoretic notation rigorous. For example, if S is the category schemes over
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a base Λ, and a group scheme G over Λ acts on the right on a scheme X in S, the
associativity condition “(x · g) ·h = x · (g ·h)” is not strong enough if applied pointwise,
but it is if applied to S-valued points for all S in S. Here x, g, and h are taken to be

in hX(S), hG(S), and hG(S), and x · g denotes the composite S
(x,g)

−→ X ×Λ G
σ
−→ X,

where σ is the action. The equation “(x · g) · h = x · (g · h)” for all such x, g, and h is
equivalent to the commutativity of the diagram

X ×Λ G×Λ G
σ×1G

//

1X×m

��

X ×Λ G

σ

��
X ×Λ G

σ
// X

where m : G×Λ G→ G is the product in G; one sees this by considering the universal
case where S is X ×ΛG×ΛG, with x, g, and h the three projections. We will often use
such abbreviations in this text.

The idea of stacks as categories leads to some complications. Morphisms should
then be functors, specifically, morphism from one stack to another will be functors that
commute with the given functors to the base category. But in the world of categories,
the natural notion of isomorphism is not a strict isomorphism (bijection on the level
of objects and morphisms), but rather an equivalence of categories. So, quite different
looking categories can give rise to isomorphic stacks. While stacks are important tools in
algebraic geometry, it is not easy to do algebraic geometry on a category! For example,
we would like to say that Mg is smooth, and that it is an open substack of a smooth
compactification, whose complement is a divisor with normal crossing. And we would
like to describe line bundles and vector bundles on these stacks, and do intersection
theory on them. Only after a considerable amount of preparation will we see how to
do these things.

2. Stacks from groupoids

An algebraic stack will come from a kind of atlas, which is called a groupoid. If S
is the base category, a groupoid in S, or an S-groupoid, consists of a pair of objects U
and R in S, together with five morphisms: s (the “source”) and t (the “target”) from
R to U , e (the “identity”) from U to R, a morphism m (the “multiplication”) from the
fibered product1 R t×U,s R to R, and a morphism i (the “inverse”) from R to R, which
satisfy some natural axioms.

In fact, you already know how to write down these axioms, as follows. Take a
category in which all morphisms are isomorphisms and let U be the objects of this
category, and R the morphisms or arrows, with s and t be the usual source and target
(sending f ∈ R to its source and target respectively), e the identity (taking an object
to the identity map on it), m the composition (taking a pair f × g to g ◦ f), and i

1For this to make sense, we assume, at least for now, that the fibered product of R with itself

over U , using the two projections t and s, must exist in the category S; we usually abbreviate this to

R t×s R. Similarly whenever we write cartesian products such as U × U , we are assuming they exist

as well.
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the inverse. The axioms for a category amount to certain compatibilities among these
morphisms, such as s ◦ e = idU . If you write down these compatibilities then you get
exactly the axioms for a groupoid.

Exercise 1.1. Do this now and try to obtain axioms for a groupoid. (You can
check against the list at the beginning of Chapter 3 to see if you have missed any.)

A notation like (U,R, s, t, e,m, i) for a groupoid is too unwieldy to be practical. We
will often use the notation R ⇉ U for a groupoid with spaces U and R indicated, with
the two arrows (for s and t) standing as an abbreviation for all five maps. In fact, e
and i are uniquely determined by s, t, and m, so we often leave their construction to
the reader. When S = (Top), we call this a topological groupoid, and when S = (Can),
we call it an analytic groupoid. When S is a category of schemes, it will be called an
algebraic groupoid or a groupoid scheme.

The isotropy group Aut(x) of a point x in U is the set s−1(x) ∩ t−1(x) ⊂ R, which
is a group with product determined by m.

A morphism from a groupoid R′
⇉ U ′ to a groupoid R ⇉ U is given by a pair

(φ,Φ) of morphisms φ : U ′ → U and Φ: R′ → R commuting with all the morphisms of
the groupoid structure.

One geometric example of a groupoid, called the fundamental groupoid of a topolog-
ical space, is probably familiar to you. Although it will not play much of a role in this
book, it shows clearly the not-everywhere-defined grouplike structure of a groupoid. If
X is a topological space, its fundamental groupoid can be denoted Π(X) ⇉ X. The
elements of Π(X) are triples (x, y, σ), with x and y points of X and σ a homotopy
class of paths in X starting at x and ending at y; s and t take this triple to x and y

respectively, and m((x, y, σ), (y, z, τ)) = (x, z, σ ∗ τ), where σ ∗ τ is the usual product
coming from tracing first a path representing σ and then a path representing τ .2 This
groupoid has advantages over the usual fundamental group (which requires an arbitrary
choice of base point), particularly in the study of the Van Kampen theorem when the
intersection of the open sets involved is not connected (cf. [16]). There are also useful
variants of the fundamental groupoid, such as the groupoid Π(X,A) ⇉ A, where A is
a subset of X, and the paths connect points of A. If X is a foliated manifold, one can
require the paths and homotopy equivalences to lie within leaves of the foliation; if one
replaces homotopy equivalence by holonomy equivalence, one arrives at the holonomy

groupoid of the foliation [43].
A continuous mapping f : X → Y determines a morphism (f, F ) from the groupoid

Π(X) ⇉ X to the groupoid Π(Y ) ⇉ Y , with F (σ) = f ◦ σ. Then a homotopy
H : X × [0, 1]→ Y from f to g determines a mapping θ : X → Π(Y ), taking x in X to
the path t 7→ H(x, t). If likewise (g,G) denotes the morphism of groupoids determined
by g, this mapping θ satisfies the identities

s(θ(x)) = f(x), t(θ(x)) = g(x), and θ(s(σ)) ·G(σ) = F (σ) · θ(t(σ))

2For a general space, its fundamental groupoid is a groupoid of sets. If X has a universal covering

space, i.e., X is semilocally simply connected, then Π(X) has a natural topology so that s and t are

local homeomorphisms, and the fundamental groupoid is a topological groupoid.
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for x in X and σ in Π(X). Maps θ satisfying these identities are called 2-isomorphisms;
they will be the analogues of homotopies for groupoids.

Example 1.2A. Classical atlases. If X is a scheme, or manifold, or topological
space, and {Uα} is an open covering of X (with α varying in some index set), let
U =

∐
Uα be the disjoint union, and let R =

∐
Uα ∩ Uβ, the disjoint union of all

intersections over all ordered pairs (α, β); equivalently, R = U ×X U . The five maps are
the obvious ones: s takes a point in Uα ∩ Uβ to the same point in Uα, and t takes it to
the same point in Uβ; e takes a point in Uα to the same point in Uα∩Uα; i takes a point
in Uα ∩ Uβ to the same point in Uβ ∩ Uα; for m, if u is in Uα ∩ Uβ and v is in Uδ ∩ Uγ ,
requiring t(u) to equal s(v) says that β = δ and u = v, so we can set m(u, v) = u = v

in Uα ∩ Uγ .
The basic construction of algebraic geometry of recollement (gluing) amounts to

constructing X from a compatible collection of schemes {Uα}, with isomorphisms from
an open set Uαβ of each Uα to an open set Uβα of Uβ , satisfying axioms of compatibility.
These axioms are the same as those for constructing a manifold by gluing open subsets
of Euclidean spaces.

There is a similar atlas (groupoid) constructed from an étale covering {Uα → X},
but taking R to be

∐
Uα ×X Uβ. In fact, for any morphism U → X, one can construct

a groupoid, with R = U ×X U , with s and t the two projections, e the diagonal, i the
map reversing the two factors, and m the composite

(U ×X U)×U (U ×X U) ∼= U ×X U ×X U → U ×X U,

where the second map is the projection p1,3 to the outside factors. Applying this to the
case of an open covering U =

∐
Uα → X recovers the “gluing” atlas.

A trivial but important special case of this construction takes, for any object X of
our category S, the groupoid arising from the identity map from X to X. Here U = X,
R = X, and all the maps of the groupoid are identity maps. When S is the category
of sets, so a groupoid is identified with a category, a set is exactly a category in which
the only maps are identity maps. In this sense, one may say that schemes (or spaces)
are to stacks as sets are to (groupoid) categories.

In this collection of examples, the canonical map (s, t) : R→ U×U is an embedding
(a monomorphism), so that R defines an equivalence relation on U , and X may be
thought of as the quotient of U by this equivalent relation. In fact, algebraic spaces

are constructed from equivalence relations R → U × U with projections s and t étale.
(Any equivalence relation on a set U , in fact, determines a groupoid of sets.) One
major difference between a scheme or algebraic space and a general stack is that, for an
atlas for a stack, the morphism from R to U ×U need not be one-to-one (on geometric
points).

Example 1.2B. Group actions. Suppose an algebraic (resp. topological) group
G acts on a scheme (resp. topological space) U , say on the right. There is a natural
equivalence relation on U : two points u and v are equivalent if they are in the same
orbit: v = u · g for some g ∈ G. There is a better groupoid to construct from this
action: take R = U × G, and think of a point (u, g) in R as being a point u together
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with an arrow g from u to u · g. This indicates that we look at the atlas

U ×G ⇉ U

where s : U×G→ U is the first projection and t : U×G→ U is the action (so s(u, g) = u

and t(u, g) = u · g). For the remaining maps, e is the identity (e(u) = (u, eG)),

m
(
(u, g), (u · g, h)

)
= (u, g · h),

and i(u, g) = (u · g, g−1).
This groupoid is sometimes denoted by a semi-direct product notation U⋊G, and it

is called a transformation groupoid. This groupoid will, in fact, be an atlas for the stack
[U/G] discussed in Example 1.1B. Note that for x in U , the isotropy group Aut(x) of
the groupoid is the same as the isotropy or stabilizer group Gx for the group action.
Whenever there are fixed points, the mapping (s, t) : R→ U ×U is not an embedding:
if u ∈ U and g ∈ G, with g 6= eG and u · g = u, then (u, g) and (u, eG) have the same
image. The stack determined by this groupoid will capture the action better than the
naive quotient U/G, when this latter quotient exists. An extreme example is the action
of G on a point • ; the groupoid G ⇉ • carries the information of the group G (and the
stack BG from Example 1.1B), but the quotient space is just the point •.

An analogous groupoid G × U ⇉ U arises from a left action of a group G on U .
This groupoid, also denoted G⋉U , is defined by setting s(g, u) = u, t(g, u) = g ·u, and
m((g, u), (g′, g · u)) = (g′ · g, u). More generally, if G acts on the left on U , and H acts
on the right on U , and the actions commute in the sense that (g · u) · h = g · (u · h) for
all g ∈ G, u ∈ U , and h ∈ H , there is a groupoid

G× U ×H ⇉ U,

with s(g, u, h) = u, t(g, u, h) = g ·u ·h, and m((g, u, h), (g′, g ·u ·h, h′) = (g′ · g, u, h ·h′).
This groupoid may be denoted G⋉ U ⋊H .

Example 1.2C. Curves in projective space. Fix an integer g ≥ 2. An important
fact about moduli of curves is that curves of genus g can be uniformly embedded in
projective space. This is based on the canonical sheaf (which, for a curve, is just the
sheaf of differentials), an ample sheaf whose third tensor power is very ample. From
the classical Riemann–Roch formula, it is computed that this gives an embedding of
the curve into P5g−6. For any family of genus g curves C → S, the sheaf ω⊗3

C/S
gives rise

to an embedding of C in a projective bundle over S.
Inside the Hilbert scheme of P

5g−6 there is a locus Hilbg,3, smooth of dimension
25g2 − 47g + 21, of tricanonically embedded curves of genus g. The canonical sheaf is
preserved by automorphisms of curves, and all isomorphisms are given by projective
linear transformations. The action of the projective linear group makes

PGL5g−5 ×Hilbg,3 ⇉ Hilbg,3

an atlas forMg. More classically, the moduli space Mg (a variety of dimension 3g− 3)
is a quotient variety for this action of PGL5g−5.

The proof of irreducibility of the moduli spaces Mg(k) using stacks [20] makes use
of the existence of another atlas R ⇉ U for Mg, such that U and R are both smooth
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and have the same dimension 3g − 3 as Mg. Such an atlas exists; in fact, U can be
taken to be the disjoint union of finitely many locally closed subvarieties of Hilbg,3 and
R a corresponding disjoint union of subvarieties of PGL5g−5 × Hilbg,3. The existence
of such an atlas is an important, nontrivial fact which is linked to properties (coming
from deformation theory) of curves of genus g.

For a group action on a variety, there might exist a classical quotient variety. But
for some purposes the groupoid U ⋊ G is better. In Example 1.2C, we saw that the
groupoid has nice properties (e.g., smoothness) which do not hold for the quotient
variety.

Let us compare the stack quotient with a more classical quotient. Here for sim-
plicity the base category is taken to be (Can). If a complex Lie group G acts on a
complex space X, a categorical quotient is a complex space X/G, with a G-invariant
surjective morphism q : X → X/G that satisfies a universal property: for any complex
analytic space Y and any G-invariant morphism f : X → Y , there is a unique morphism
f̄ : X/G→ Y such that f = f̄ ◦ q.

We compare the quotients in the following example. Let G = C× act by (x, y) · t =
(xt, yt) on C2, and also on U := C2 r {(0, 0)}. Then:

(1) The map from U to P1 that sends (x, y) to [x : y] identifies P1 as the categorical
quotient U/G.

(1′) For any analytic space S, morphisms S → P1 are in bijective correspondence
with G-torsors over S equipped with a G-equivariant morphism to U , up to
G-equivariant isomorphism commuting with the morphisms to U .

(2) The categorical quotient C2/G is a point.
(2′) An analytic space S admits infinitely many G-torsors with equivariant maps to

C2, up to G-equivariant isomorphism commuting with the maps to C2, while
possessing always a unique map to a point.

(We just state these as facts for now; the techniques to give complete justifications will
come later. Precisely analogous assertions hold as well in the topological and algebraic
settings.) On U , where G acts freely, the classical quotient U/G represents the stack
quotient [U/G]. In the world of stacks, [A2/G] will contain [U/G] as a dense open
substack, as contrasted with the classical notion of categorical quotient, in which A2/G

is a point.

As one would expect from the case of manifolds, many different groupoids can be
atlases for the same stack. Example 1.2C made reference to two different groupoids for
Mg: there were maps U → Hilbg,3 andR→ PGL5g−5×Hilbg,3 (componentwise inclusion
maps), giving rise to a map of groupoids from R ⇉ U to PGL5g−5 × Hilbg,3 ⇉ Hilbg,3.
Of course, an arbitrary map of groupoids (φ,Φ) from R′

⇉ U ′ to R → U will not
determine an isomorphism of their corresponding stacks. There are two properties that
will guarantee this, the first corresponding to injectivity, the second to surjectivity. The
properties are:
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Condition 1.3(i). The diagram

R′
(s,t)

//

Φ

��

U ′ × U ′

φ×φ

��

R
(s,t)

// U × U

must be cartesian.

Condition 1.3(ii). For every u ∈ U there is a u′ ∈ U ′ and an a ∈ R such that
s(a) = φ(u′) and t(a) = u; or in other words, the morphism

V = U ′
φ×U,s R −→ U

determined by t must be surjective.

Condition (i) can be expressed in terms of S-valued points: the map hR′(S) →
hR(S) ×hU×U (S) hU ′×U ′(S) is a bijection for all S. In condition (ii), “surjective” must
be interpreted correctly. Requiring surjectivity on the naive point level is too weak,
and requiring that hV (S) → hU(S) be surjective for all S is too strong, since that is
equivalent to the existence of a splitting morphism from U to V . (For example, a fiber
bundle projection should be surjective, but it may have no global section.) What works
is to require that the map must be locally surjective, using the topology on S. That is,
we require U to have a covering {Uα → U} such that each Uα → U factors through V .

In the case where S is the category of sets (with the discrete topology), so the
groupoids are categories and maps between them are functors, condition (i) says that
this functor is fully faithful, and condition (ii) says that it is essentially surjective;
together they say that the functor is an equivalence of categories.

Example 1.4. We conclude this discussion with a geometric example. LetD = {z ∈
C | |z| ≤ 1}, and let X be the cylinder D × R, with the identification (z, φ) ∼ (z′, φ′)
if φ′ − φ = nπ, n ∈ Z, and z′ = (−1)nz.

0

π

The group S1 acts on X, by eiϑ ·(z, ϕ) = (z, ϑ+ϕ). (This is an example of a “Seifert
circle bundle”.) The group {±1} acts on D by (−1) · z = −z, and {±1} is a subgroup
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of S1 by −1 7→ eiπ. The embedding D → X, z 7→ (z, 0), is equivariant with respect to
{±1} → S1, giving a morphism of groupoids

{±1}⋉D → S1
⋉X.

Exercise 1.2. (a) Show that this morphism satisfies properties (i) and (ii), where
the base category S is (Top) or (Diff). (b) Compute the isotropy groups of these actions
at all points.

3. Triangles

Mike Artin has suggested that a quick way to get a feeling for stacks is to work out
what the moduli space of ordinary triangles should be. As in all moduli problems, it
is important to consider families of objects, in this case plane triangles up to isometry.
If S is a topological space, a family of triangles over S will be a continuous and proper
map X → S, making X a fiber bundle over S with a continuously varying metric on
fibers3, such that each fiber is (isometric to) a triangle.

The classical moduli space of triangles would simply be the set T of plane triangles,
up to isometry, suitably topologized. As a set, T consists of triples (a, b, c) of side
lengths, satisfying (strictly) the triangle inequalities, up to reordering. As a space, T is
a quotient of a subset of Euclidean space. Indeed, consider the open cone

T̃ = { (a, b, c) ∈ R
3

+
| a+ b > c, b+ c > a, c+ a > b }.

Then we have a map T̃ → T , and T inherits a topology from T̃ , the quotient topology.
To phrase this moduli problem in the categorical language, we take S to be the

category of topological spaces, and define a category T whose objects are families of
triangles X → S. A morphism in T from one family X ′ → S ′ to another family X → S

is given by a pair of (continuous) maps X ′ → X and S ′ → S such that the diagram

X ′ //

��

X

��

S ′ // S

commutes, and so that the induced maps on the fibers are isometries. The functor from
T to S is the evident one, as in the examples of Section 1.1.

The moduli problem becomes easier if we consider, instead, ordered triangles, or-
dering the sides (or, equivalently, their opposite vertices). Here the objects of the

corresponding category T̃ would be fibrations X → S as before, together with a triple
(α, β, γ) of sections that pick out the three vertices of each fiber; the morphisms are
required to be compatible with these sections. The moduli space is then the open cone

T̃ ⊂ R3. There is a universal family Ỹ ⊂ T̃ ×R2, with its projection Ỹ → T̃ , and with

the fiber over (a, b, c) in T̃ being the triangle

3That is, a continuous distance function d : X ×S X → R≥0 whose restriction to Xs × Xs is a

metric on the fiber Xs, for every s ∈ S.
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a

b

c

The essential point is that any triangle with labeled edges of lengths a, b, and c is
canonically isometric to this one: given any family X → S with three vertex sections,

there is a unique map from S to T̃ , and a unique isomorphism of X with the pullback
of this universal family. Having this universal family means, in classical language, that

T̃ is a fine moduli space. In the language of stacks, there is an isomorphism of stacks

(equivalence of categories) between T̃ and T̃ .
If we want a moduli space for unordered triangles, however, the situation is more

complicated. The symmetric group S3 acts (on the right) on T̃ by permuting the

coordinates, and the quotient space T = T̃ /S3 is the obvious candidate for a moduli
space of triangles. Its points, at least, do correspond to triangles up to isometry.

The group S3 also acts on Ỹ , compatibly with its projection to T̃ . We can therefore

construct Y = Ỹ /S3, with an induced map Y → T . If one were trying to construct a
universal family of plane triangles, this would be a first guess.

Any family of triangles X → S will determine a map from S to T , but the family
may not be isomorphic (uniquely, or even at all) to the pullback of Y → T . In classical
language, then, this moduli space T is a coarse, but not a fine, moduli space, for T.
For example, when S is the circle S1 and X → S is a family of equilateral triangles
that rotates the triangle by 120◦ in one revolution around the circle, then this is not
a constant family even though the corresponding map from S to T is constant. For
an isosceles triangle (taking S to be a point), say with sides of lengths 1, 2, and 2,
corresponding to a point t in T , there are three points (1, 2, 2), (2, 1, 2), and (2, 2, 1) in

T̃ lying over t; the action of the group includes flips over the altitude, and the fiber of
Y over t is the quotient of the triangle by this flip:

For an equilateral triangle, there is only one point of T̃ over the point t in T , and the
fiber of Y over t is the quotient of the triangle by the action of S3:
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In fact, Y → T fails to satisfy the definition of family of triangles (e.g., Y is not a
fiber bundle over T ). The problems with Y → T arise from triangles with nontrivial
automorphisms.

Exercise 1.3. Let Y ◦ → T ◦ be the restriction of Y → T to the locus T ◦ of triangles
with sides of distinct lengths. Show that Y ◦ → T ◦ is a fiber bundle and gives a universal
family: T ◦ is a fine moduli space for such triangles.

Given any family X → S of (unordered) triangles, let S̃ be the space of pairs

(s, ordering of the edges of Xs).

Then S̃ → S is a 6-sheeted covering space, in fact, a principal bundle (torsor) under

the symmetric group S3. If X̃ → S̃ is the pullback of the given family X → S by the

covering map S̃ → S, we have a commutative diagram

S̃
//

��

T̃

��
S // T

where the map S̃ → T̃ commutes with the action of S3. This is exactly the data for

an object of the stack [T̃ /S3] described in Section 1.1: the stack T is isomorphic to the

quotient stack [T̃ /S3]. (The reader may verify that the functor from T to [T̃ /S3] is an

equivalence of categories.) The transformation groupoid T̃ ×S3 ⇉ T̃ will be an atlas
for this stack.

As in this example, it frequently happens that a coarse moduli space can be con-
structed as a quotient U/G of a space U by the action of a group G. This crude quotient
space cannot capture the geometry of the moduli problem near points u of U where the
stabilizer Gu = {g ∈ G| g · u = u} is not trivial. The stack is designed to remember
some part of the group action. The group action is not part of the information carried
by the stack, however. Indeed, if it were, we would just be studying equivariant spaces.

Here is quite a different atlas for the same stack. By a plane triangle we mean a
triangle embedded in R

2. Let G be the Lie group of isometries of R
2, which is the

3-dimensional group generated by rotations, reflections, and translations. Let V be the
space of (unordered) plane triangles, which is a 6-dimensional manifold.4 We have a
universal family Z ⊂ R2× V of plane triangles over V . Note that G acts on the left on
V , and on R2 × V , preserving Z.

4This can be constructed as a quotient of the set Ṽ of noncollinear triples in (R2)3 by the action

of S3. That V is a manifold follows from the general fact that this action is free.
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We claim that the stack T is isomorphic to the quotient stack [G\V ]. Indeed, if
X → S is an object of T, there is a principal (left) G-bundle E → S, whose fiber
over s is the space of all isometric embeddings of the fiber Xs into R

2. (Note that this

G-torsor is trivial over any open set of S on which the S3-covering S̃ → S is trivial.)
We have a G-equivariant map from E to V , since any point of E determines a plane
triangle. This gives a functor from T to [G\V ], which is an equivalence of categories.
Summarizing, we have isomorphisms of stacks:

[G\V ] ∼= T ∼= [T̃ /S3].

Note that the two corresponding atlases even have different dimensions. However,
dimV − dimG = 6− 3 and dim T̃ − dim S3 = 3− 0 are equal; this stack T will be 3-
dimensional.

We can also see a direct relation between the groupoid G×V ⇉ V and the category
T. Any family of triangles is locally planar: if X → S is a family of triangles, we can
choose an open covering {Uα} of S, with maps φα : Uα → V and an isomorphism of
X|Uα

with the pullback of Z → V . Compatible with these, there are, on Uα ∩ Uβ ,
unique maps Φαβ : Uα ∩ Uβ → G such that φβ(p) = Φβα(p) · φα(p). This gives a map
Φ:

∐
Uα ∩ Uβ → G× V , taking p in Uα ∩ Uβ to (Φβα(p), φα(p)).

Exercise 1.4. Show that {φα} and {Φαβ} determine a morphism from the groupoid∐
Uα∩Uβ ⇉

∐
Uα to the groupoid G×V ⇉ V . The first is an atlas for S as in Example

1.2A, the second an atlas for [G\V ].

The following exercise shows how the two atlases for T are related.

Exercise 1.5. The set Ṽ of noncollinear triples in (R2)3 has a right action of
S3 compatible with the left action of G. Construct morphisms of groupoids from the

groupoid G×Ṽ ×S3 ⇉ Ṽ to the groupoid G×V ⇉ V and to the groupoid T̃×S3 ⇉ T̃ ,
and show that they satisfy Conditions 1.3(i)–(ii).

Exercise 1.6. How do the results of this section change if one replaces isometry
(congruence) of triangles by similarity?

4. Conics

We want to classify conics; for us a conic will be a curve which is isomorphic to the
curve defined by a homogeneous polynomial of degree two in P

2. Here we take S to be
schemes over C.

There are just three isomorphism classes of plane conics. Let x, y, z be the homoge-
neous coordinates on P2, and identify a plane conic with the homogeneous polynomial
that defines it (identifying two polynomials if one is a nonzero multiple of the other).
The isomorphism classes are

(1) N : nonsingular conics, e.g. x2 + y2 + z2,
(2) L : pairs of two different lines, e.g. xy,
(3) D: double lines, e.g. x2.
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Therefore, in some sense the moduli space of plane conics is just a set {N,L,D} of
three points.

If M were a fine moduli space for conics, then the morphisms from a scheme S to
M would be in one-to-one correspondence with the families of conics over S. If M were
even a coarse moduli space, any family of conics over S would determine a morphism
from S to M .

We can first see that if {N,L,D} is such a moduli space, then it cannot carry the
discrete topology. In the one parameter family defined by xy+ tz2, for t ∈ C, the conic
Ct is smooth for t 6= 0 and a pair of two different lines for t = 0. The corresponding
map from C to {N,L,D} sends C r 0 to N and 0 to L; this shows that L must be in
the closure of N . Similarly the family x2 + ty2, t ∈ C, shows that D is in the closure of
L. So we’d want the closed subsets of {N,L,D} to be ∅, {D}, {D,L}, and {D,L,N}.
This cannot be a fine moduli space, (nontrivial automorphisms of the conics prevent
this), nor does it provide a course solution in algebraic geometry to the moduli problem.
This illustrates the principle that the geometric points of a stack may tell us very little
about it.

There a concrete description, familiar in algebraic geometry. One identifies the space
of plane conics with the projective space P5 of homogeneous polynomials ax2 + bxy +
cy2+dxz+eyz+fz2 of degree two in x, y, z modulo multiplication by nonzero scalars; so
a plane conic defined by this polynomial is identified with the point [a : b : c : d : e : f ]
in P5. The equation ax2 + bxy + cy2 + dxz + eyz + fz2 = 0 defines a universal family
Y ⊂ P2 × P5 over P5. The group G = PGL3 of projective linear transformations of P2

acts on the space of conics: an element of G defines an isomorphism g : P2 → P2. For
a conic Z in P2 the image g(Z) is another conic, and the restriction g|Z : Z → g(Z)
is an isomorphism. Furthermore it is easy to see that two plane conics Z and W are
isomorphic if and only if W = g(Z) for a suitable g ∈ G, and that in this case the
isomorphisms from Z to W are precisely the restrictions h|Z of those h ∈ G such that
h(Z) = W .5 From this point of view, the moduli space of conics should be a quotient
of P

5 by the group G, and we may expect the moduli stack to be the quotient stack
[P5/G].

A categorical description of the stack of planar conics is a bit more complicated. A
family of conics is a projective morphism π : C → S, flat and of finite presentation, such
that each geometric fiber is isomorphic to one of the three types of plane conics. Such a
family comes with a P2-bundle P → S, with C embedded into P as a closed subscheme6;
locally, over an affine covering {Uα} of S, there are isomorphisms P |Uα

∼= P2 × Uα of
P2-bundles, taking C|Uα

to the zeros of a degree 2 homogeneous polynomial which does
not vanish identically at any point of Uα. If E → S is the bundle of local isomorphisms
of P with P2, then E is a principal G-bundle over S, and we have a G-equivariant

5The group G = PGLn+1 acts on the left on Pn, so it acts on the right on the polynomials

Γ(Pn,O(m)) of degree m by the formula (F · g)(x) = F (g · x).
6In fact, P may be taken to be the projective bundle P(E) of lines in the rank 3 vector bundle

E := π∗(ω
∨
C/S), where ωC/S is the relative dualizing sheaf. A reader to whom this is unfamiliar can

take this added structure of an embedding in a P
2-bundle as part of the definition. Note that for a

general base scheme S our notion of projective is that of [EGA II.5.5].
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morphism from E to P5 that takes a point s to the image of Cs ⊂ Ps, which is a conic
in P2, i.e., a point in P5. This pair (E → S, E → P5) is an object of the category [P5/G],
and indicates why the stack of planar conics should be isomorphic to the quotient stack
[P5/G].

An important part of a moduli problem is to describe the automorphism groups
of its objects. When the solution is a quotient by a group action, this is the same as
describing the stabilizers of representative points. For conics, we have the three cases:

(1) N : x2 +y2+z2; the stabilizer consists of the complex orthogonal 3×3 matrices
(i.e, those A such that tA ·A = I, up to scalars . This group has dimension 3.

(2) L: xy = 0; the stabilizer consists of all invertible 3 × 3 matrices A modulo
scalars, where A is of the form




∗ 0 ∗
0 ∗ ∗
0 0 ∗



 or




0 ∗ ∗
∗ 0 ∗
0 0 ∗



 .

It has dimension 4.
(3) D: x2 = 0; the stabilizer is the set of all matrices of the form




∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗



 .

Its dimension is 6.

In general, if a smooth algebraic group G of dimension k acts freely on a smooth
variety of dimension d, then the quotient (when it exists) will be smooth of dimension
equal to d − k. This is not true in the naive world if the action is not free, but it will
remain true in the stack world. A smooth orbit for the action will correspond to a
“point” in the quotient and the dimension of this point will be equal to the dimension
of the orbit minus k.

In the case of conics, G = PGL3 has dimension 8, and the action ofG on P5 has three
orbits corresponding to the isomorphism types N,L,D of conics. The corresponding
orbits are smooth of dimensions 5, 4 and 2 respectively. Therefore the quotient consists
of three points: an open one, N , of dimension 5−8 = −3; in its closure another point L
of dimension 4− 8 = −4; and in its closure the point D of dimension 2− 8 = −6. Note
that these dimensions are precisely the negatives of the dimensions of the automorphism
groups of conics in N , L and D respectively. (For an algebraic group H , the dimension
of the stack BH = [ • /H ] will be − dimH .)

As with triangles, the atlas we have given is only one of many. For example, one
could take U to be the conics passing through the point [0 : 0 : 1]. This is a hyperplane
in P5, defined by the vanishing of the coefficient of z2. Take R to be the subset of U×G
consisting of those pairs (u, g) such that u · g is also in U . There is a natural groupoid
structure s, t, e, m, i on U and R so that the inclusion of U in P

5 and the inclusion
of R in P5 × G determines a morphism of groupoids from R ⇉ U to P5 × G ⇉ P5;
this morphism satisfies Condition 1.3(i)–(ii). Note that this groupoid is not of the form
U ×H ⇉ U , for any action of a group H on U .
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5. Elliptic curves

Elliptic curves have been a fruitful area for the development of moduli problems, as
well as stacks (e.g., [71], [21]). We will devote Chapter 12 to elliptic curves, including
the cases of arbitrary characteristic and over Z. Here we sketch a few of the ideas,
working in the category S of schemes over C.

It is known classically that an elliptic curve E over C is classified up to isomorphism
by a value j ∈ C known as the j-invariant, and all complex numbers occur. The
(coarse) moduli space for isomorphism classes of elliptic curves should therefore be C

(the complex plane, or, to an algebraic geometer, the affine line A1). However, the
j-line is not a fine moduli space, as we will soon see; and, in fact, no fine moduli space
exists.

A family of elliptic curves is a smooth and proper morphism C → S, whose geometric
fibers are connected curves of genus 1, together with a section σ : S → C. We often
abbreviate this data to C → S, or sometimes even C. A morphism from C ′ → S ′ to
C → S is pair of morphisms C ′ → C and S ′ → S such that the diagrams

C ′

��

// C

��

S ′

��

// S

��

S ′ // S C ′ // C

commute, and the first (and therefore the second) is cartesian. This determines the
categoryM1,1, and the functor to S is the obvious one.

The section σ determines an origin in each fiber, which then gets the structure of an
abelian variety; the section is called the zero section, or the identity section.7 Note that
every elliptic curve comes with an involution, written p 7→ −p, that takes a point to its
inverse with respect to this group structure. For instance, if f(x) is a cubic polynomial
over the complex numbers with 3 distinct roots, then y2 = f(x) is the equation of (an
affine model of) an elliptic curve E. When S = Spec C and C is the elliptic curve E,
the identity section is the point at infinity, and the involution sends (x, y) to (x,−y).

One reason that A1 is not a fine moduli space is that there are non-trivial families
whose fibers (at closed points) are all isomorphic – so-called isotrivial families. The
corresponding map from S to a moduli space would be constant, and, if the moduli
space were fine, the family would have to be trivial.

Exercise 1.7. Fix a cubic polynomial f(x) with 3 distinct roots, and let E be the
elliptic curve defined by y2 = f(x). We take S = A1 r {0}, with coordinate t. Let
C → S be the family of elliptic curves defined by the equation

ty2 = f(x).

(1) Every fiber of this family is isomorphic to E.
(2) This family has only finitely many sections, hence is non-trivial.

Another reason that A1 cannot be a fine moduli space is that there are natural line
bundles that one can obtain on a scheme S given any family of elliptic curves over

7In fact, the family gets the structure of a group scheme over S (see [48], §2).
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S. One such line bundle assigns to a family C → S the normal bundle to the section
S → C. This assignment is natural in that sense that a morphism from C ′ → S ′

to C → S determines an isomorphism of the line bundle on S ′ with the pullback of
the corresponding line bundle on S. (Such data, with an appropriate compatibility
condition, is what is meant by a line bundle on the stackM1,1.) Such line bundles are
not always trivial, as we will see. But there are no nontrivial (algebraic or analytic)
line bundles on A

1, so these line bundles cannot be pulled back via a morphism to A
1.

One can study such line bundles without the formal language of stacks, and this is
what Mumford did in [71]. He showed that there are exactly 12 such bundles (up to
isomorphism), all tensor powers of the one just discussed. In stack language, this will
say that Pic(M1,1) is Z/12Z.

In this seminal paper, Mumford introduced the notion of a “modular family”. This
is a collection {πα : Cα → Sα} of families of elliptic curves, with the following property:
each Sα must be a smooth curve, and, moreover, any first-order deformation of the
fiber of πα at s ∈ Sα must be captured by some tangent to Sα at s. The idea is that
these {Sα} should be étale over the ideal moduli space (which cannot exist). This can
be expressed by the assertion that, for any diagram

Spec(Γ/I)
� _

��

// Sα

��

Spec(Γ) //

99
s

s
s

s
s

s

M1,1

with Γ an Artin C-algebra, I an ideal in Γ such that I2 = 0, the dotted arrow can
be filled in uniquely to make the diagram commute. Precisely, this says that for any
family of elliptic curves π : C → Spec(Γ), any morphism f̄ : Spec(Γ/I) → Sα, and
any isomorphism of families ϑ̄ : C ⊗Γ Γ/I → Spec(Γ/I) f̄ ×πα

Cα, there is a unique

morphism f : Spec(Γ) → Sα lifting f̄ and a unique isomorphism of families ϑ : C →
Spec(Γ) f×πα

Cα lifting ϑ̄.8

A modular family {πα : Cα → Sα} can be called a covering if every elliptic curve
is isomorphic to some fiber of some πα. (This makes {Sα} an étale covering of the
nonexistent moduli space.)

We will see how a covering modular family determines an algebraic groupoid, which
in fact is an atlas for the moduli stack M1,1.

To construct modular families, we need a few facts from the theory of elliptic curves,
as found say in [85] when the base is a point, supplemented by [19] or [48] for families.
Any elliptic curve can be embedded in the projective plane, with its chosen origin taken
to the point [0 : 1 : 0], and with an equation y2z = x3 + Axz2 + Bz3, with A and B

complex numbers such that the form on the right vanishes at three distinct points in

8This condition makes Sα what is called a universal deformation space at each of its points. Note

that the first-order deformations of an elliptic curve E are parametrized by H1(E, TE) = H1(E,OE),

which is 1-dimensional. That each Sα must be smooth and 1-dimensional therefore follows from the

lifting property to be a modular family, as it identifies complete local rings on Sα at C-points with

universal deformation rings for the fibers of πα.
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the projective line. We write this in affine coordinates:

y2 = x3 + Ax+B, (4A3 + 27B2 6= 0).

This is a family over E ⊂ P2 ×W over W = {(A,B) ∈ C2 | 4A3 + 27B2 6= 0}, called a
Weierstrass family.9 The j-invariant is given by10

j = 1728 ·
4A3

4A3 + 27B2
.

All j-invariants (elliptic curves) occur in this family, but it is 2-dimensional, so it cannot
be a modular family. We will look at some 1-dimensional families by restricting this to
various lines, first a diagonal line, and then a horizontal and a vertical line.

The family

C0 : y2 = x3 +
27

4
·

j

1728− j
(x+ 1)

over S0 = A1 r {0, 1728} has the virtue that the j-invariant of the fiber over j is
j. However, this family cannot be extended smoothly across the two deleted points.
In fact, any modular family that contains a curve with j-invariant 0 or 1728 must
have curves with nearby j-invariants appearing multiple times. This is a hint of the
“stackiness” of this moduli problem: 0 and 1728 are precisely the j-invariants of the
elliptic curves which possess additional automorphisms besides the identity and the
involution p 7→ −p.

Consider the family C1 → S1 with

C1 : y2 = x3 + Ax+ 1

and A ∈ S1 = {A ∈ A1 | 4A3 +27 6= 0}. This attains every j-invariant except j = 1728.
The family C2 → S2 with

C2 : y2 = x3 + x+B

with B ∈ S2 = {B ∈ A1 | 4 + 27B2 6= 0} attains every j-invariant but j = 0.

Exercise 1.8. These two families satisfy the conditions to be modular families.

Together, these two families form a covering modular family.

Exercise 1.9. Show that the morphism from S1∐S2 to the affine line given by the
j-invariant is unramified except over 0 and 1728, and show that the ramification index
is 3 over j = 0 and 2 over j = 1728.

To make an atlas, we want to glue S1 and S2, and we must keep track of where
an elliptic curve appears in both families. In the stack world, we don’t just take an
equivalence relation on S1∐S2; rather, we keep track of automorphisms. That is, for α
and β in {1, 2}, we consider the scheme Rα,β that parametrizes isomorphisms between
Cα and Cβ. Loosely speaking,

Rα,β = {(u, v, φ) | u ∈ Sα, v ∈ Sβ, and φ : (Cα)u
≃
→ (Cβ)v}.

9In fact, any family C → S of elliptic curves is, locally in the Zariski topology, isomorphic to the

pullback of E →W by a morphism from S to W .
10In [71] Mumford replaces j by 1728− j.
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There are projections s : Rα,β → Sα, taking (u, v, φ) to u, and t : Rα,β → Sα, taking
(u, v, φ) to v. Define

U = S1 ∐ S2

and take R to be the disjoint union of these four Rα,β :

R = R1,1 ∐ R1,2 ∐ R2,1 ∐ R2,2.

Then we have maps s and t from R to U . The multiplication m comes by composing the
isomorphisms, taking (u, v, φ)× (v, w, ψ) to (u, w, ψ ◦ φ). The identity e takes u ∈ Sα

to (u, u, id), where id is the identity map on (Cα)u; and the inverse i takes (u, v, φ) to
(v, u, φ−1). It is a straightforward exercise to verify that this forms a groupoid R ⇉ U .
This will be an atlas for the stack M1,1.

If two elliptic curves are given in Weierstrass form, y2 = x3 + Ax + B and y2 =
x3 + A′x+ B′, it is a general fact that any isomorphism between them must be of the
form (x, y) 7→ (λx, µy) for some λ, µ ∈ C∗ (see [85], §III.3, and see [19], §1 for the
version in families). So, for instance, we can express R1,1 as the scheme consisting of
all {(A,A′, λ, µ)} such that

µ2x3 + µ2Ax+ µ2 = λ3x3 + λA′x+ 1.

In particular, µ2 = 1 and λ3 = 1; setting γ = µ/λ we have A′ = γ4A and γ can be any
sixth root of unity. Let φγ denote the map (x, y) 7→ (γ2x, γ3y). Then

R1,1
∼= S1 × µ6

by associating (A, γ4A, φγ) in R1,1 to (A, γ) in S1 × µ6.

Exercise 1.10. Deduce, in a similar fashion, that R2,2 is isomorphic to S2×µ4 and
that R1,2 and R2,1 can each be identified with the complement of 13 points in the affine
line. (In fact the isomorphisms of curves can all be expressed conveniently in terms of
the φγ.)

We want to see how this groupoid R ⇉ U can tell us about moduli of elliptic curves,
i.e., about the category M1,1. We have a family C → U , with C = C1 ∐ C2, and this
contains every elliptic curve at least once. For any S and any map φ : S → U , we can
pull back this family C → U to get a family on S, namely C ×U S → S. However, this
fails two basic criteria to be a universal family:

(1) Two different maps φ1 : S → U and φ2 : S → U may determine isomorphic
families on S.

(2) Some families over S may not be pullbacks from any morphisms from S to U .

As far as (1) is concerned, an isomorphism from the first pullback to the second deter-
mines (and is determined by) a morphism ψ : S → R that takes a point s to the given
isomorphism from Cφ1(s) to Cφ2(s). In short, we have

ψ : S → R with s ◦ ψ = φ1 and t ◦ ψ = φ2.

An extreme example of this occurs with S = R, φ1 = s, φ2 = t, in which case ψ is the
identity.
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Taking S = S0 = A1 r {0, 1728}, the family C0 → S is an example of the failure of
(2): it is not the pullback from any map from S to U . However, it is locally a pullback:
near any j in S, there is a disk ∆ containing j and a morphism ∆ → U so that the
restriction of the family to ∆ is isomorphic to the pullback of the family C → U . This
works in the analytic category, but not in the algebraic category, if one uses the Zariski
topology. Indeed, the only nonempty Zariski open sets in S are the complements of
finite sets. But one can find a variety S ′, with a surjective morphism ρ : S ′ → S, which
is locally an analytic isomorphism — this makes it étale — together with a morphism
φ : S ′ → U , with an isomorphism ϑ from the pullback of C0 → S to S ′ via ρ with the
pullback of C → U via φ.

Exercise 1.11. Show that S ′ = { a ∈ A1

C
| a 6= 0, 4a6 + 27 6= 0 } is such a variety

(with family y2 = x3 + a2x + 1), and with the map ρ : S ′ → S given by a 7→ 1728 ·
4a6/(4a6 + 27), and φ : S ′ → S1 ⊂ U given by a 7→ A(a) = a2.

For such a “covering” ρ : S ′ → S (or S ′ a disjoint union of disks in the analytic
case), we have a groupoid S ′×S S

′
⇉ S ′. For any point (s′, s′′) in S ′×S S

′, with s their
common image in S, we have isomorphisms Cs′

∼= (C0)s
∼= Cs′′.

Exercise 1.12. Show that these fiberwise isomorphisms are given by a (unique)
global isomorphism of (φ◦p1)

∗(C) with (φ◦p2)
∗(C) on S ′×SS

′. This defines a morphism
Φ from S ′×S S

′ to R with s◦Φ = φ◦p1 and t◦Φ = φ◦p2. Show that (φ,Φ) determines
a morphism from the groupoid S ′ ×S S

′
⇉ S ′ to the groupoid R ⇉ U .

Note that S ′ ×S S
′
⇉ S ′ is an atlas for S, and R ⇉ U is supposed to be an atlas

for M1,1, so the groupoid morphism of the exercise can be regarded as a geometric
realization of the morphism from (the stack corresponding to) S to the stack M1,1.

This picture can be reversed. Given an étale surjective map ρ : S ′ → S, and a
morphism (φ,Φ) from S ′ ×S S

′
⇉ S ′ to the groupoid R ⇉ U , one gets a family φ∗(C)

of elliptic curves on S ′ and an isomorphism p∗
1
(φ∗C)

≃
→ p∗

2
(φ∗C) on S ′ ×S S

′, satisfying
a compatibility identity on S ′ ×S S

′ ×S S
′. It is the theory of descent that implies that

such a family is the pullback of a family on S (that is moreover unique up to unique
isomorphism).

This example contains another fundamental insight of Grothendieck: Zariski open
coverings {Vα} of a variety or scheme S should be replaced not just by

∐
Vα → S, but

by arbitrary collections of étale morphisms Vα → S whose (Zariski open) images cover
S. When the base category is a category of schemes, the topology we will usually use
— the étale topology — has these étale maps as its basic open sets.

Also by the theory of descent, the determination of Pic(M1,1) can be reduced to
the concrete computation of the the group of line bundles L on U equipped with iso-

morphisms ϕ : s∗L
≃
→ t∗L on R such that ϕ satisfies a natural compatibility condition

on R t×s R, up to isomorphism of such pairs (L, ϕ). The latter group is described
by a finite amount of data: U has only trivial line bundles (since its components are

Zariski open subsets of the affine line), and an isomorphism s∗L
≃
→ t∗L then given by

an invertible function on R. So, Pic(M1,1) is the quotient of the group of elements of
O∗(R) satisfying the compatibility condition on R t×s R by the subgroup of elements
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of the form t∗χ/s∗χ, with χ ∈ O∗(U). A tedious calculation yields an isomorphism
PicM1,1

∼= Z/12Z. This calculation will be carried out (using slightly different atlases)
in Chapter 12.

In the analytic category, one has a modular family E → H of elliptic curves over
the upper half plane H whose fiber over τ in H is the elliptic curve Eτ = C/Λτ , with
Λτ the lattice Z + Z · τ . An isomorphism from Eτ to Eτ ′ is given by multiplication by a
unique complex number ϑ such that ϑ ·Λτ = Λτ ′. A corresponding atlas is the groupoid
R ⇉ H, where R = {(τ, τ ′, ϑ) ∈ H × H × C | ϑ · Λτ = Λτ ′}. In fact, Mumford uses
this analytic modular family in [71] to give a calculation of Pic(M1,1) ∼= Z/12Z in the
analytic category.

Exercise 1.13. Show that this analytic groupoid R ⇉ H is isomorphic to the
transformation groupoid SL2(Z)⋉H coming from the standard action of SL2(Z) on H:

(
a b

c d

)

· τ =
aτ + b

cτ + d
.

6. Orbifolds

Orbifolds, sometimes called V -manifolds, provide another good introduction to some
of the notions involved with stacks. In fact, the moduli stack of triangles, or any
situation where a finite group acts on a manifold, gives rise to an orbifold. An orbifold
is often described as a space that is locally a quotient of a manifold by a finite group, but
this description is too crude: to give an orbifold, one must describe these local group
actions, at least up to some equivalence. We will see that this extra data amounts to
the difference between an ordinary space and a stack. (In fact, the underlying space
corresponds to the coarse moduli space of the stack.)

As a simple example, let X be a Riemann surface, and let x1, . . . , xn be a finite set
of points of X, and let m1, . . . , mn be positive integers, each greater than or equal to
2. Take a neighborhood Vi of xi biholomorphic to a disk, and choose an isomorphism
Vi
∼= Ui/Gi, where Ui is a disk, and Gi is the cyclic group of mth

i roots of unity, acting
by rotation; take all the neighborhoods Vi to be disjoint.

x1

U1

z1 7→z
m1

1−−−→
x2

U2

z2 7→z
m2

2←−−−

At any other point x of X, choose any neighborhood of x biholomorphic to a disk and
not containing any of the points xi. These data determine an orbifold structure on the
Riemann surface. Although the underlying (coarse) space is the original surface X, the
orbifold structure is different, at any point xi with mi > 1. (See [69] for more on these
Riemann surface orbifolds.)

For an explicit example, let X = S2 = C ∪ {∞}, with one point p1 =∞, and with
m1 = m. This is sometimes called the m-teardrop.
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We turn next to a precise definition of an orbifold, following Haefliger [43], §4.
(Compare Kawasaki’s variation [49] of Satake’s original [80].) We will define a complex
analytic orbifold, although similar constructions work in other categories, cf. [70].

One starts with a topological space X. The data to give an orbifold structure to X
consists of an open covering {Vα} of X, together with homeomorphisms Vα

∼= Gα\Uα,
where Uα is a connected complex manifold (usually taken to be an open set in Cn),
Gα is a finite group of analytic automorphisms of Uα, and Gα\Uα denotes the set of
orbits, with the quotient topology inherited from Uα. (The action of Gα on Uα is
assumed to be effective, i.e., Gα ⊂ Aut(Uα).) This data must satisfy the following
compatibility condition: if u ∈ Uα, and u′ ∈ Uβ map to the same point in X, there
must be neighborhoods W of u in Uα, and W ′ of u′ in Uβ, and a complex analytic
isomorphism ϕ : W →W ′ taking u to u′ and commuting with the projections to X:

Uα ⊃ W
ϕ
−→ W ′ ⊂ Uβ

ց ւ
Vα ⊂ X ⊃ Vβ

Note that these germs are not part of the data for the orbifold, and they need not be
unique; rather, their existence is a condition on the data. The same idea defines when
two such data are compatible: the orbifold structure defined by the open covering {V ′

α}
with V ′

α
∼= G′

α\U
′
α is compatible if, whenever u ∈ Uα and u′ ∈ U ′

α′ map to the same
point inX, there exist neighborhoods of each point and a complex analytic isomorphism
commuting with the projections to X. An orbifold structure on X is an equivalence
class of orbifold data, where compatible data are called equivalent.

Each of the quotients Gα\Uα has the structure of complex analytic space in which
the analytic functions on V ⊂ Vα are precisely the Gα-invariant analytic functions on
the pre-image of V in Uα (cf. [17], §4). The structure sheaves of the Vα can be patched
canonically so that X inherits a complex analytic structure; it will be the “coarse”
space for the corresponding stack. If X is connected, the manifolds Uα all have the
same dimension, called the dimension of the orbifold.

Given orbifold data on X, one can construct an analytic groupoid, as follows. Set
U =

∐
Uα, and set R to be the set of triples (u, u′, ϕ), where u and u′ are points in U

with the same image in X, and ϕ is a germ of an isomorphism from a neighborhood
of u to a neighborhood of u′ over X. This R has a unique topology so that the two
projections s and t from R to U (taking (u, u′, ϕ) to u and u′ respectively) are local
homeomorphisms; this gives R the structure of a complex manifold. The other maps are
easily defined: e : U → R takes u to (u, u, id), i : R → R takes (u, u′, ϕ) to (u′, u, ϕ−1),
and m : R t×s R → R takes (u, u′, ϕ)× (u′, u′′, ψ) to (u, u′′, ψ ◦ ϕ). We will be able to
regard an orbifold as a stack by means of this atlas.

The simplest example of orbifold is a finite group quotient. Here U is a manifold,
G is a finite group with an effective action on U , and V is the quotient space G\U . In
this case R can be identified with G × U and we recover the transformation groupoid
G⋉U . For instance, if U = C2 and G = Z/2Z, with the action of its generator given by
(x, y) 7→ (−x,−y), then the quotient (analytic) space V is a quadric cone, isomorphic
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to the locus in C3 defined by the equation uv = w2. In this case the orbifold quotient
can be pictured as follows.

Z/2Z

At the vertex of the cone there is a nontrivial orbifold structure (indicated by the
arrow); the complement is a manifold.

Exercise 1.14. Construct a groupoid for the m-teardrop. Take U = U1

∐
U2, with

U1 = C and U2 = D an open disk mapping to a neighborhood of ∞ by z 7→ 1/zm.
Compute R, and s, t, m, e, and i.

Note that the canonical map from R to U ×U is never injective, unless all the maps
Uα → X are local homeomorphisms, in which case X is a manifold with its trivial
orbifold structure.

Exercise 1.15. For any u in U , the automorphism group Aut(u) = s−1(u)∩ t−1(u)
is canonically isomorphic to the isotropy group (Gα)u = {g ∈ Gα | g · u = u}, if u is
in Uα. The canonical morphism R → U × U is injective if and only if all the isotropy
groups are trivial.

For a point u in Uα, write Gu for the isotropy group (Gα)u = {g ∈ Gα | g · u = u}.
Given one germ ϕ from u to u′, over a point x in X, with u ∈ Uα and u′ ∈ Uβ , the
other possible germs have the form ϕ ◦ g, where g is in the isotropy group Gu; they
also have the form g′ ◦ ϕ for g′ in Gu′. Fixing one such ϕ determines an isomorphism
from Gu to Gu′, sending g to g′ when ϕ ◦ g = g′ ◦ϕ. This means that one can assign an
isotropy group Gx for each point x in X, defined to be Gu for any point u that maps
to x. This group is determined only up to (inner) isomorphism, since changing ϕ gives
another isomorphism of Gu with Gu′ differing by an inner automorphism. In fact, the
map g 7→ g∗, where g∗ is the induced endomorphism of the tangent space TuUα

∼= Cn,
gives an embedding Gu →֒ GLn(C) (see [17], §4), so we have an embedding of Gx in
GLn(C), unique up to conjugacy.

It is a general fact (cf. [80], p. 475), that any connected orbifold can be written
globally as a quotient of a manifold M by a Lie group G, in fact, with G = GLn(C) in
this complex case, with n the dimension of the orbifold. Let us work this out in the
language of groupoids. Let Pα → Uα be the bundle of frames, with fiber over u ∈ Uα

being the set of bases of the tangent space TuUα. This is a principal right G-bundle,
with action of g = (gij) on a frame v = (v1, . . . , vn) by (v ·g)i =

∑
j vjgji. The group Gα

acts on the left on Pα, by (τ · v)i = τ∗(vi). This action is free, and commutes with the
action of G. Therefore the quotient Mα = Gα\Pα is a manifold, and G acts in the right
on Mα. Let ρα : Mα → Vα be the canonical projections. The orbifold data determine
gluing maps from ρ−1

α (Vα ∩ Vβ) to ρ−1

β (Vα ∩ Vβ), taking the class of a frame v to the
class of the frame ϕ∗(v), for any choice of local germ ϕ. These gluing data commute
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with the action of G, so we obtain a manifold M with a right action of G = GLn(C),
and a projection from M to X that is constant on orbits.

To say that the orbifold is the same as the quotient [M/G], we should compare the
groupoid M ×G ⇉ M with the groupoid R ⇉ U defining the orbifold structure.

Exercise 1.16. Let P =
∐

α Pα, with canonical projection π : P → U . Let Q =
{(v, v′, ϕ) | v, v′ ∈ P, ϕ a germ from π(v) to π(v′)}. (a) Construct a groupoid Q ⇉ P ,
with s and t taking (v, v′, ϕ) to v and v′ respectively, and m((v, v′, ϕ), (v′, v′′, ψ)) =
(v, v′′, ψ ◦ ϕ). (b) Construct a morphism from Q ⇉ P to R ⇉ U , taking (v, v′, ϕ)
to (π(v), π(v′), ϕ), and verify that it satisfies Conditions 1.3(i)–(ii). (c) Construct a
morphism from Q ⇉ P to M×G ⇉ M , taking (v, v′, ϕ) to (v, g), where g is determined
by the equation v′i =

∑
j ϕ∗(vj)gji, and show that this morphism satisfies the same two

conditions.

The local charts on an orbifold are used to do analysis (see [7] and [34]). For exam-
ple, a differential form is given by a compatible collection of Gα-invariant differential
forms ωα on Uα. In terms of the groupoid, this is a differential form ω on U such that
s∗(ω) = t∗(ω) on R. In fact, groupoids provide a useful setting for much of the study
of orbifolds (see [33]).

It should perhaps be pointed out that some authors also use a more restricted notion
of orbifold, where the groups Gα are not allowed to include any complex reflections
(i.e. isomorphisms conjugate to those of the form (z1, . . . , zn) 7→ (ζz1, . . . , zn), where
ζ is a root of unity, cf. [78]); in this case the coarse space X actually determines the
orbifold. This rules out orbifold structures like the one we gave on a Riemann surface
at the beginning of this section, however. We have seen a similar phenomenon for
elliptic curves, where the j-line is a coarse moduli space, but the stack “remembers”
the automorphisms of the elliptic curves.

The definition we have given here works also for differentiable or topological orb-
ifolds, by replacing the word “complex analytic” by “differentiable” or “continuous”, cf.
[70]. One can give a corresponding definition in algebraic geometry, although here one
must use étale neighborhoods to describe a notion of germ of an isomorphism. There
are more general notions of orbifolds, cf. [84], where it is not required that the action
of each Gα on Uα be effective. Both of these notions can be described more easily in
the language of stacks.

7. Schemes, Functors, and Stacks

Before stacks, an approach to the study of families of algebraic objects was to
consider a contravariant functor h from the base category of schemes S to the category
of sets, with h(S) being the set of isomorphism classes of families over S. For example,
for Mg, h(S) was the set of families of curves C → S, modulo isomorphism. The
functor h is representable if there is a scheme X such that the functor h is naturally
isomorphic to the functor of points (see Example 1.1A) hX . One of the best known and
most important examples of this is the functor that assigns to a scheme S the set of
closed subschemes of Pn × S, flat over S; this is represented by a Hilbert scheme [37].
Most such functors, such as the one for moduli of curves, are not representable.
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This approach is consistent with Grothendieck’s idea of identifying a scheme with
its functor of points (see Example 1.1A). Schemes, which generalize algebraic varieties,
sit inside a larger category of (certain) functors, the top line in the following diagram
of algebraic objects:

Algebraic varieties ⊂ Schemes ⊂ Algebraic spaces

⊂ Deligne–Mumford stacks ⊂ Artin stacks

Though they won’t play a such a major role in this book, algebraic spaces are these
functors [4] [56]; they form a class of algebraic objects which generalize schemes.11

The examples in this chapter have emphasized the point that geometric problems can
lead to categories. These make up the bottom line of the diagram, the algebraic stacks.
There are two different sets of axioms which make categories suitable for doing geometry.
The focus of Part I of this book will be on Deligne–Mumford stacks, introduced by
Deligne and Mumford in their stack-based proof of the irreducibility of moduli spaces
of curves of genus g over arbitrary base fields [20]. In Part II of this book we will meet
the more general Artin stacks [5].

Stabilizer groups were an important feature in the discussion surrounding the ex-
amples. In moduli problems, the stabilizer groups are the automorphism groups of
the objects being parametrized. The main novelty of stacks, as opposed to varieties,
schemes, or spaces, is the presence of nontrivial stabilizer groups (in fact, it will be
shown that an algebraic stacks with no nontrivial stabilizers must be isomorphic to a
scheme or an algebraic space). The distinction between Deligne–Mumford stacks and
Artin stacks lies in the kind of stabilizer groups that are permitted. The stabilizer group
at a geometric point of a Deligne–Mumford stack is always a finite group, whereas an
Artin stack may have an arbitrary algebraic group (finite-type group scheme) as a geo-
metric stabilizer. Stabilizer groups thus provide the answer to the question, “What
makes something a stack and not a scheme or an algebraic space?”

Many of the examples presented in this chapter will end up being algebraic stacks.
The stacks Mg and Mg are famous examples of Deligne–Mumford stacks. Stacks
[X/G], described in Example 1.1B in a topological setting, will be algebraic stacks
when X is a scheme and G is an algebraic group; they are Artin stacks in general, and
whether they are Deligne–Mumford stacks depends on what sorts of stabilizer groups
they have. Conics form an Artin stack (positive-dimensional stabilizer groups), while
M1,1 is an important example of a Deligne–Mumford stack (finite stabilizer groups).
If a nonsingular complex variety is endowed with an orbifold structure, then it gives
rise to a Deligne–Mumford stack. We will come back to these examples repeatedly
throughout this book. Especially in the early chapters, this core collection of examples
will serve as a counterbalance to the abstractions required in order to reach an answer
to the question, “What is an algebraic stack?”

11There is actually a condition for a scheme to be an algebraic space: it must be quasi-separated,

i.e., have quasi-compact diagonal (see the Glossary). This is really only a technical condition, since

the schemes that one meets in practice are always quasi-separated.
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Answers to Exercises

1.1. One axiom states that the composition of two arrows has the source of the
first arrow as source and the target of the second arrow as target: s ◦m = s ◦ pr

1
and

t ◦m = t ◦ pr
2

as maps R t×s R→ U .

1.2. (a) D × S1 → X, (z, eiϑ) 7→ (z, ϑ) is a 2-sheeted covering map, so satisfies the
surjectivity requirement. (b) On X the group Aut(x) is trivial for x not on the central
line, and it is {±1} for x = (0, ϑ).

1.3. The key fact is that Ỹ → Y and T̃ → T , restricted to the pre-images of T ◦,
are local homeomorphisms. With this, one sees that Y ◦ → T ◦ is a family of triangles.
Any family of triangles with sides of distinct lengths is fiberwise uniquely identified
with the pullback of Y ◦ → T ◦. That this gives a homeomorphism of families can be
checked locally; locally we can make a choice of ordering of the vertices and argue as

in the case of the universality property for Ỹ → T̃ .

1.4. The commutative diagram

(Uα ∩ Uβ ∩ Uγ) φα
×V Z

(p,Φβα(p)·z)

��

(p,Φγα(p)·z)

,,ZZZZZZZ

(Uα ∩ Uβ ∩ Uγ) φγ
×V Z

(Uα ∩ Uβ ∩ Uγ) φβ
×V Z

(p,Φγβ(p)·z)
22ddddddd

X|Uα∩Uβ∩Uγ

∼

::
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u

∼
44iiiiiiiiiiiii

∼

55

yields the crucial identity Φγα(p) = Φγβ(p) · Φβα(p).

1.5. The map of groupoids from G × Ṽ × S3 ⇉ Ṽ to G × V ⇉ V is given by
φ(ṽ) = v and Φ(g, ṽ, π) = (g, v), where g ∈ G and ṽ ∈ Ṽ , with v the triangle having

vertices ṽ. Given (g, v) ∈ G × V , a point in Ṽ × Ṽ lying over (v, g · v) ∈ V × V is
determined by choosing an ordering ṽ of the vertices of v, and a re-ordering π ∈ S3 of

g · ṽ, hence Condition 1.3(i) is fulfilled. The map Ṽ → V is a topological covering map;
hence Condition 1.3(ii) is satisfied by choosing the identity element (e, v) of G× V .

1.6. For the category T, take the same objects, but for morphisms allow the induced
maps on fibers to be isometries followed by homotheties (multiplications by a positive

scalar). Replace T̃ by its intersection with the plane a + b + c = 1, and enlarge G by
allowing homotheties. The resulting stack has dimension 2.

1.7. Under the substitution s2 = t, sections correspond to maps g : A1 r {0} → E

satisfying g(−s) = −g(s), but g must be a constant map, so sections are in bijective
correspondence with 2-torsion points of E.
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1.8. That C1 → S1 is modular can be shown using the criterion on p. 17: for any c in
Γ, denote by c̄ the image in Γ/I. Any elliptic curve over Γ has the form y2 = x3 +ax+b
for some a and b in Γ (see [19], §2). An isomorphism of y2 = x3 + Ax + 1 with
y2 = x3 + āx + b̄ over Γ/I has the form (x, y) 7→ (λ̄x, µ̄y) for units λ̄ and µ̄ in Γ/I;
these satisfy the equations λ̄3 = µ̄2 = b̄ and āλ̄ = µ̄2A. Using the fact that 2 and 3
are invertible in Γ, one verifies that there are unique liftings λ, µ and A of λ̄, µ̄ and A
with λ3 = µ2 = b and aλ = µ2A. Then (λ, µ) determine the required isomorphism of
y2 = x3 +Ax+ 1 with y2 = x3 + ax+ b over Γ, as required. A similar argument applies
to the second family, solving equations λ3 = µ2 = aλ and b = µ2B for λ, µ and B.

1.9. For S1, j = 1728 ·4A3/(4A3 +27), and this has ramification index 3 over j = 0.

1.10.

R1,1 = {(A, λ2A, λ, µ) | A ∈ S1, λ
3 = 1, µ2 = 1};

R2,2 = {(B, µ2B, µ2, µ) | B ∈ S2, µ
4 = 1};

R1,2 = {ρ−4, ρ6, ρ2, ρ3) | ρ 6= 0, ρ12 6= −27/4}.

1.11. Note that ρ∗(C0) is the family y2 = x3 + a6x + a6, and an isomorphism ϑ

from ρ∗(C0) to φ∗(C) is given by (λ, µ) = (a−2, a−3).

1.12. The isomorphism on S ′ ×S S
′ can be constructed as the composite

(φ ◦ p1)
∗C (ρ ◦ p1)

∗C0 (ρ ◦ p2)
∗C0 (φ ◦ p2)

∗C

p∗
1
φ∗C p∗

1
ρ∗C0

∼
oo p∗

2
ρ∗C0

∼
// p∗

2
φ∗C

1.13. An isomorphism is given by ( a b
c d ) × τ 7→ (τ, τ ′, ϑ), where τ ′ = aτ+b

cτ+d
and

ϑ = 1

cτ+d
. Note that although ± ( a b

c d ) have the same action on H, the sign is determined
by ϑ.

1.14. R1,1
∼= U , R1,2

∼= R2,1
∼= Dr{0}, R2,2

∼= Z/mZ×D, with (k, z) corresponding
to (z, e2πik/mz, e2πik/m) inR2,2. The product onR2,2 takes (k, z)×(l, e2πik/mz) to (k+l, z).

1.15. For any (u, u, ϕ) ∈ Aut(u), with u ∈ Uα, the given ϕ extends to an automor-
phism of Uα given by the action of unique g ∈ Gα, such that g(u) = u.

1.16. The morphism of groupoids from Q ⇉ P to R ⇉ U is given by π : P → U

and (v, v′, ϕ) 7→ (π(v), π(v′), ϕ), and Condition 1.3(i) is immediate. The morphism of
groupoids from Q ⇉ P to M×G ⇉ M is given by v 7→ [v] and (v, v′, ϕ) 7→ ([v], g) with
g such that ϕ∗(v) ·g = v′. To verify Condition 1.3(i): say v ∈ Pα and v′ ∈ Pβ are frames
over points with the same image x ∈ X. Fix a germ ϕ from u := π(v) to π(v′); for any
other germ ψ the germ ϕ−1 ◦ ψ extends uniquely to the action of some h ∈ (Gα)u, and
the condition now follows from the fact that (Gα)u acts freely on π−1(u) with quotient
ρ−1

α (x). Since P → U and P → M have local sections (one is a bundle projection, the
other is a surjective local homeomorphism), Condition 1.3(ii) is satisfied in both cases.
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CHAPTER 2

Categories fibered in groupoids

This chapter sets up the first structures which will play a role in the theory of stacks.
There is a base category, which for us will usually be a category of schemes. Over the
base category we will consider categories where generally an object consists of an object
of the base category plus some extra structure. Usually we are motivated by a moduli
problem, so we could be considering a scheme S together with a geometric object such
as a family of curves, on S.

We will start off by providing a host of examples of such categories to provide insight
into the abstract definitions and constructions that follow. Most of these examples will
end up being algebraic stacks. One feature that we will be able to observe immediately,
however, is that we are always looking at objects or structures that can be pulled back
along an arbitrary morphism of schemes. This statement is formalized by the notion
of fibered category. Actually it is more important for the theory of stacks to consider
a somewhat stronger notion, that of categories fibered in groupoids. For this, two basic
axioms detailed in §2.3 assert that pullbacks of objects exist, up to a canonical isomor-
phism, and that these objects themselves are allowed to have additional automorphisms.
It is this latter feature that makes CFGs (categories fibered in groupoids) well suited
for the study of moduli problems. In the chapters that follow we will be developing the
extra conditions to be satisfied for a CFG to be a stack, and eventually for a stack to
be an algebraic stack.

1. The base category S

We have seen that stacks are defined over a base category S. Usually this will be
a category of schemes, either all schemes (Sch) or schemes (Sch/Λ) over a fixed base
scheme Λ. Often we take Λ = Spec(k), for k a field, or more generally a (commutative)
base ring. This may be restricted to a smaller category, say schemes of finite type over
k. For example, S may be taken to be the category of quasi-projective schemes over the
complex numbers. For technical reasons, it is sometimes convenient to allow schemes
that are merely locally of finite type over k. It is important, however, that S be closed
under formation of arbitrary fiber products X ×Z Y . In particular, one cannot limit
oneself to reduced, irreducible varieties; nilpotent elements in the structure sheaves
must be allowed. We write X × Y for X ×Λ Y . All schemes will be understood to be
in S unless otherwise stated. (See the Glossary for some basic notions about schemes
and morphisms.)

29
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We will sometimes abuse language by regarding Λ as a point, even if Λ is not Spec
of a field. For example, we will say that G is an algebraic group instead of saying that
G is a group scheme over Λ.

It can be useful, especially in a first reading, to take S to be the category of analytic
spaces, where constructions are often easier, or even the category of topological spaces.
Another variation is important, and is that taken in [61]: S can be the category of
affine schemes. This is consistent with the point of view that any scheme or scheme-like
object should be constructible from affine schemes, or that a scheme is determined by
knowing all morphisms of affine schemes into it. We will not take this track, however,
at least at this stage. (With this variation, one has to distinguish between schemes in
S and general schemes.)

The base category S will come with a Grothendieck topology. For us this will mean
that we have a notion of a covering of a scheme S, which is a collection of morphisms
{Uα → S}, such that each point of S is in the image of at least one of these maps.
(See the Glossary for precise definition.) The topologies that we may consider are: (1)
the Zariski topology, where the Uα → S are open embeddings; (2) the étale topology,
where each of the maps is étale; (3) the smooth topology, where each map is smooth;
(4) the flat topology, where each map is flat and locally of finite presentation. The
relevant topology will generally be the étale topology; we will eventually see results
that say we can just as well use the smooth or flat topology. (The Zariski topology is
used only in examples.) A single map U → S is called a covering map if {U → S} is
a covering. Any covering {Uα → S} determines a covering map U =

∐
Uα → S, which

can often be used in place of the covering. When we have a notion of triviality, we will
say that something is trivial in the étale topology when its pullback to each Uα in such
a covering is trivial; this will be equivalent to the single pullback to U =

∐
Uα being

trivial.
In Chapters 2 and 3, in fact, the topology on S will be used only in some examples,

for which one needs a notion of “locally trivial” in some topology. The general discussion
here makes sense when S is any category with fiber products. The topology will come
into play in a serious way in Chapter 4 when we state the definition of a stack. Only
when the final axioms for a Deligne–Mumford stack are introduced in Chapter 5 will
the fact that S is a category of schemes be used.

2. Examples

A stack is not any kind of space with some structure; rather, it is a category. A stack
(over S) is a category X together with a functor p : X→ S, satisfying some properties.
A category together with a functor to another category, with an appropriate notion of
pullbacks, is known as a fibered category. Our fibered categories will all be fibered
over S. First we look at some examples of such categories — many of which will turn
out to be stacks, at least with appropriate added hypotheses (such as a condition to be
locally trivial, or some stability condition). We will describe the objects and morphisms
in the category X. Usually the compositions of morphisms will be obvious. The easy
verifications that X is a category, and p a functor, are left to the reader.
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Example 2.1. Let X be a scheme (understood to be in S). Then X determines a
stack, which we will denote for now by X. An object in the category X is a scheme S
together with a morphism f : S → X. A morphism from the object f ′ : S ′ → X to the
object f : S → X is a morphism of schemes g : S ′ → S such that f ◦g = f ′. Composites
are defined in the obvious way. The functor p : X → S takes the object f : S → X to
the scheme S; a morphism from f ′ : S ′ → X to f : S → X is taken to the corresponding
morphism from S ′ to S.

One case deserves special mention. Let us consider S = (Sch/Λ). When X = Λ,
then X is the category S itself, and p is the identity functor. For then an object is a
scheme S over Λ, i.e., equipped with a structure map S → Λ, together with a morphism
f : S → Λ. This has to be a morphism over Λ, and that means that f must be equal to
the structure map of S. In other words, an object of Λ is a scheme S with its structure
map to Λ, i.e., an object of S.

Example 2.2. For a nonnegative integer g, there is a categoryMg, the moduli stack
of curves of genus g. The objects of Mg are smooth projective morphisms π : C → S,
whose geometric fibers are connected curves of genus g. A morphism from π′ : C ′ → S ′

to π : C → S is a morphism from C ′ to C and a morphism from S ′ to S making a
cartesian diagram with π′ and π. If a fiber product CS′ = C ×S S

′ is fixed, this is the
same as giving an isomorphism of C ′ → S ′ with CS′ → S ′. The map from Mg to S
takes the family π : C → S to S, and a morphism to the constituent map S ′ → S.
Composites are defined in the evident way:

C ′′ //

��

C ′ //

��

C

��

S ′′ // S ′ // S

noting that the outer diagram is cartesian if each of the inner diagrams is cartesian.

Example 2.3. Let G be an algebraic group (i.e., a group scheme over Λ). This
defines a category BG, whose objects are principal G-bundles. A principal G-bundle,
or torsor, is a pair of schemes S and E with a morphism from E to S and a right action
E × G → E of G on E. The trivial G-torsor over S is that with E = S × G, with
the right action of G on the second factor G only, and E → S the first projection.
If f : T → S is any morphism, we have a pullback f ∗E over T . This is defined by
f ∗E = T ×S E, with induced map to T and induced action of G. We require that a
G-torsor be locally trivial in the given topology on S. This means that there exists a
covering map f : T → S such that the pullback f ∗E is trivial (isomorphic to the trivial
G-torsor on T ). We will usually work with the étale topology, meaning f should be
étale and surjective.

The category BG has these G-torsors as its objects. A morphism from a G-torsor
E ′ → S ′ to a G-torsor E → S is given by a morphism S ′ → S and a G-equivariant
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morphism E ′ → E such that the diagram

E ′ //

��

E

��

S ′ // S

is cartesian. As in Example 2.2, if a pullback of E → S by S ′ → S is fixed, this is the
same as specifying an isomorphism of E ′ → S ′ with this pullback. Compositions and
the mapping to S are defined as in Example 2.2.

Example 2.4. Let h : S → (Set) be any contravariant functor from our category of
schemes to the category of sets. This determines a category which we denote for now
by h. The objects of h are pairs (S, α), with S a scheme in S and α an element of
the set h(S). A morphism from (S ′, α′) to (S, α) is a map ϕ : S ′ → S in S such that
h(ϕ) : h(S)→ h(S ′) maps α to α′. The projection from h to S takes (S, α) to S.

Example 2.1 is a special case of Example 2.4. In fact, a scheme X determines a
contravariant functor hX from S to (Set), the functor of points hX(S) = HomS(S,X).
Then X is the category hX .

Many of the stacks that are met in practice are variations of these four examples.
Here are a few of these:

Example 2.5. There is a categoryMg,n of n-pointed curves of genus g. Its objects
are smooth projective morphisms π : C → S, whose geometric fibers are connected
curves of genus g, together with disjoint sections σ1, . . . , σn. (These sections are mor-
phisms σi : S → C such that π◦σi = idS, which give n distinct points in each geometric
fiber.) Morphisms are defined as in Example 2.2, with the added requirement that the
sections of the first family are mapped to the sections of the second. The projection to
S is defined as in Example 2.2.

Recall, an elliptic curve is a curve of genus 1 together with a chosen point (the
identity element for the group structure). ThenM1,1 is the category of elliptic curves.

Example 2.6. Suppose an algebraic group G acts (on the right) on a scheme X.
There is a category denoted [X/G], whose objects are G-torsors E → S (with action
E × G → E), together with an equivariant morphism from E to X. Morphisms are
defined as in Example 2.3, with the additional condition that the map from E ′ to E
must form a commutative triangle with the maps to X. The functor p : [X/G] → S
again maps (E → S, E → X) to S. Note that when X = Λ, we recover the category
BG, i.e., [Λ/G] = BG.

Example 2.7. For a positive integer n, let Vn be the category of vector bundles of
rank n. The objects are vector bundles E → S, and the morphisms from (E ′ → S ′) to
(E → S) are given by a cartesian diagram as in Example 2.3, that identifies E ′ → S ′

via a bundle isomorphism with a pullback bundle E×S S
′ → S ′. The functor to S takes

E → S to S.
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Example 2.8. For a positive integer n, let Cn be the category of covering spaces of
degree n. An object is a finite étale morphism X → S of degree n, and a morphism
from X ′ → S ′ to X → S is again a cartesian diagram.

Let X and Y be categories over S. A morphism from X to Y is a functor f : X→ Y

commuting with the given functors to S. Functors between two categories X and Y do
not necessarily form a set; rather, they form a category. The objects are functors from
X to Y, and the morphisms are natural transformations between functors; recall that
a natural transformation from f1 to f2 assigns to each object x in F a morphism from
f1(x) to f2(x) in G, which is compatible with morphisms (see the Glossary). Given
categories X and Y, and projection functors p : X → S and q : Y → S, we denote
by HOM(X,Y) the following category. The objects are functors f : X → Y satisfying
q ◦ f = p. The morphisms from f1 to f2 are natural isomorphisms from f1 to f2 such
that, for all objects x in F , the isomorphism from f1(x) to f2(x) maps (via q) to the
identity map in S from p(x) = q(f1(x)) to p(x) = q(f2(x)). A morphism f : X→ Y of
categories over S will be called an isomorphism if it is an equivalence of categories.

Example 2.9. Here are some examples of morphisms:

(1) A morphism f : X → Y of schemes determines a functor f : X → Y , that
takes a scheme S → X over X to the composite S → X → Y . Conversely, if
ϕ : X → Y is a functor over S, applying ϕ to the identity map X → X (an
object in X), gives a map f : X → Y (the image object in Y ), and one verifies
easily that ϕ = f . In other words,

HOM(X, Y ) = HomS(X, Y ).

(This means that the category on the left is just a set, meaning it has no maps
besides identity maps.)

(2) A homomorphism ϕ : G→ G′ of algebraic groups determines a functor BG→
BG′ that takes a G-torsor π : E → S to the G′-torsor

EG′ = E ×G G′ = E ×G′/{(x, ϕ(g)g′) ∼ (x · g, g′)}, 1

assuming that these quotient schemes exist (see Remark 2.17, below). This is
given a right action of G′ by (x, g′) · h′ = (x, g′h′), and projection EG′ → S

by (x, g′) 7→ π(x). Note that if the pullback of E → S by a map T → S is
isomorphic to the trivial bundle T ×G→ T , then the pullback of EG′ → S by
the same map is isomorphic to the trivial bundle T ×G′ → T . In the familiar
setting where Λ = Spec k for k a field, G an algebraic group over k, and E → S

described by means of a covering S ′ → S and cocycle data S ′×S S
′ → G, then

this cocycle data composed with ϕ serves as cocycle data for the G′-torsor EG′ .
(3) There is a canonical morphism from Vn to BGLn that sends a vector bundle to

its associated principal bundle of frames. A vector bundle E → S comes with a
(right) GLn-action. This induces an action on the n-fold product E×SE · · ·×S

1Here, as frequently throughout these notes, we use set-theoretic notation to describe various

morphisms or compatibilities, trusting that the reader can construct the correct scheme-theoretic

morphisms or commutative diagrams.
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E (the diagonal action). The associated principal bundle is the open subscheme
of E ×S E · · · ×S E of n-tuples of vectors that are linearly independent.

(4) If an algebraic group G acts on a scheme X, there is a canonical morphism
from X to [X/G]. This takes an object f : S → X of X to the object with
trivial torsor S ×G→ S, with map S ×G→ X given by (s, g) 7→ f(s) · g.

(5) There is a canonical morphism from Mg,n+1 to Mg,n, that simply forgets the
last section, and a morphism from Mg,n to Mg that forgets all the sections.
The morphism fromMg,1 toMg can be regarded as the universal curve.

(6) There is a morphism from BG to Cn, where G = Sn is the symmetric group.
This takes a G-torsor E → S to the covering {1, ..., n} ×G E → S.

Exercise 2.1. Verify that the map BGLn → Vn of (3) is an isomorphism, i.e., an
equivalence of categories. Do the same for the map BSn → Cn of (6).

The above examples will be the most important for our discussions. However, we
indicate next some of the many variations, a few of which will be discussed later. Some
of these are related to an important goal in many moduli problems, that of constructing
appropriate compactifications. Others are used to “rigidify” a given moduli problem.

Example 2.10. A compactification Mg of Mg (g ≥ 2) by stable curves [20]. The
objects are projective flat morphisms π : C → S. Each geometric fiber of π must be a
connected, reduced curve of arithmetic genus g, with at most nodes (ordinary double
points) as singularities. There is a further stability condition, that any irreducible com-
ponent of a fiber which is a nonsingular curve of genus 0 must meet other components
in at least 3 points. This is a category over S. (Eventually we will see that it is a
Deligne–Mumford stack, proper over the base scheme.)

Example 2.11. A compactification Mg,n of Mg,n. The objects are projective flat
morphisms π : C → S, together with n disjoint sections σi. Each geometric fiber of π
must be a connected curve of arithmetic genus g, with at most nodes as singularities,
and the n points picked out in the fiber by the sections must be nonsingular points.
There is, again, a stability condition: we must have 2g+n− 2 > 0, and any irreducible
component of a geometric fiber of π that is nonsingular of genus 0 must have at least
3 markings, i.e., points at which it meets other components or points given by the
sections.

Example 2.12. Consider Λ = Spec(C). Let X be a smooth projective variety, and
β a class in the homology group H2(X,Z). We have a category Mg,n(X, β), whose
objects consist of smooth projective families of curves π : C → S, together with n

distinct sections σi as in Example 2.6, together with a morphism µ : C → X with the
property that, for each closed point s in S, the induced map µs : Cs = π−1(s) → X

maps the fundamental class of the curve Cs to β, i.e., µ∗[Cs] = β.

Example 2.13. An important tool in quantum cohomology is Kontsevich’s com-
pactification Mg,n(X, β) of Mg,n, (X, β). The objects are π : C → S with σi as in
Example 2.11, and µ : C → X as in Example 2.12. In this case the stability condition
is that any component that is nonsingular of genus 0 and is mapped to a point by µ
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must have three markings among the points where it meets other components or the
points given by the n sections.

Example 2.14. Consider the category Hilbg,r, whose objects consist of projective
families C → S of curves as in Example 2.2 together with N = (2r−1)(g−1) generating
sections of the line bundle ω⊗r

C/S
, such that the induced map from C to P

N−1

S is a

closed embedding; these are defined up to multiplication by scalars as in the preceding
example. Here ωC/S is the relative canonical line bundle, or dualizing sheaf; it is the
sheaf of relative differentials Ω1

C/S if C is smooth over S. We usually assume g ≥ 2 and
r ≥ 2.

Example 2.15. Consider smooth families of curves π : C → S over with a Jacobi

level n structure. This is an isomorphism of each H1(Cs; Z/nZ) with (Z/nZ)2g, that
is symplectic, i.e., takes the cup product pairing (with values in H2(Cs; Z/nZ) = Z/nZ)
to the canonical symplectic pairing on (Z/nZ)2g; these isomorphisms must vary nicely in
the family, which means that they are given by a symplectic isomorphism ofR1π∗(Z/nZ)
with the trivial sheaf (Z/nZ)2g.

Example 2.16. There is a category Qcoh, where an object of Qcoh over S in S is
a quasicoherent sheaf E on S. A morphism from E ′ on S ′ to E on S over f : S ′ → S is a
morphism of sheaves E → f∗E

′ on S such that the corresponding morphism f ∗E → E ′

of sheaves on S ′ determined by adjunction is an isomorphism.

Remark 2.17. We explain why the definition of morphism in Example 2.16 is
phrased in terms of a morphism of sheaves E → f∗E

′, and not directly by means of an
isomorphism isomorphism of sheaves f ∗E → E ′ of sheaves on S ′. The reason is that
f∗E

′ is well-defined as a sheaf, while the pullback f ∗E is only defined up to (canonical)
isomorphism. It is important to be precise about what consistutes a morphism between
two objects in any category; in this instance, the most convenient formulation is by
means of the push-forward sheaf.

It happens quite frequently that an object of a category is defined only up to canon-
ical isomorphism. This is the case, for instance, with fiber products in the category of
schemes. It is also the case with some of the objects of HOM categories in Example
2.9. We now summarize the “fine print” concerning these examples.

In (2), the existence of the quotient scheme EG′ is an honest mathematical require-
ment. It is satisfied when G and G′ are affine group schemes (over the base Λ). Then
the construction of EG′ , which can be achieved using descent (see Appendix A), will use
the fact that E → S admits a local trivialization, making EG′ locally a product with
G′. The quotient EG′, when it exists, is defined up to canonical isomorphism; hence (2)
describes an object of HOM(BG,BG′) up to canonical isomorphism. In (3) one could,
with care, make sense of E×S · · ·×SE as a well-defined scheme (Spec of a tensor product
of sheaves of OS-algebras) and thereby obtain a particular object of HOM(Vn,BGLn).
That this is possible is not important, and it is more natural to view the example as
giving an object of HOM(Vn,BGLn) defined up to canonical isomorphism. Examples
(4) and (6) describe objects of HOM categories up to canonical isomorphism, because
of the use of fiber products and group quotients, respectively.
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Example 2.18. Let X be a scheme (over a base Λ), and fix a functor X ×− from
(Sch/Λ) to (Sch/Λ). Then one has categories VX,n and CohX , generalizing the example
of vector bundles (Example 2.7). An object of VX,n is a vector bundle of rank n on
X × S, with morphisms given by cartesian diagrams as usual. An object of CohX is
a quasicoherent sheaf E on X × S that is finitely presented and flat over S. (This
will be a coherent sheaf when X is a finite-type scheme and S is Noetherian, the case
that is usually of interest.) A morphism from E ′ to E over f : S ′ → S is a morphism
E → (1X × f)∗E

′ which by adjunction gives an isomorphism (1X × f)∗E → E ′. The
functor, sending a vector bundle to its sheaf of sections, is a morphism VX,n → CohX .
There are variants in which one imposes a stability condition.

One can also make stacks out of families of varieties of higher dimension. Important
examples are principally polarized abelian varieties, K3 surfaces, etc. We will consider
a few of these examples later.

3. CFGs over S

The first requirement for a category X with p : X → S to be a stack is that it is a
category fibered in groupoids over S, which we will abbreviate to CFG, or CFG/S.
This means that the following two axioms must be satisfied:

Definition 2.19. A category fibered in groupoids over a base category S is a cate-
gory X with functor p : X→ S satisfying the following two axioms:

(1) For every morphism f : T → S in S, and object s in X with p(s) = S, there
is an object t in X, with p(t) = T , and a morphism ϕ : t → s in X such that
p(ϕ) = f .

(2) Given a commutative diagram in S

U

g

��

h

##G
G

G
G

G
G

S

T
f

;;
w

w
w

w
w

w
w

with ϕ : t → s in X mapping to f : T → S, and η : u → s in X mapping to
h : U → S, there is a unique morphism γ : u → t in X mapping to g : U → T

such that η = ϕ ◦ γ:
u

γ

��
�

�

�

�

� η

##H
H

H
H

H
H

s

t
ϕ

;;
w

w
w

w
w

w
w

Axiom (2), applied with U = T , h = f , and g = 1T , implies that the object t with
ϕ : t→ s guaranteed by the first axiom is determined up to canonical isomorphism. So
Axiom (1) can be regarded as saying that pullbacks of objects exist, and Axiom (2)
then tells us that these pullbacks are unique up to canonical isomorphism.
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In the exampleMg, the pullback of a family C → S by T → S is the fibered product
CT = T ×S C → T (which is unique up to canonical isomorphism). The verification
of Axiom (2) comes down to the universality property of the fibered product. Given a
diagram

CU //___
**

��

CT //

��

C

��
U // T // S

with cartesian right-hand square and cartesian outer square, there is a unique dashed
arrow making the left-hand square commute and making the curved arrow the com-
posite of the top two horizontal arrows. Notice that the left-hand square must then be
cartesian.

We leave it to the reader to verify, using similar reasoning, that these Axioms (1)
and (2) are satisfied in each of the other examples that we have seen so far.

Exercise 2.2. Show that Axioms (1) and (2) are equivalent to (1) and

(2′) For every morphism f : T → S in S, and morphisms ϕ : t → s and ϕ′ : t′ → s

in F with p(ϕ) = f = p(ϕ′), there is a unique morphism ϑ : t → t′ in F over
1T such that ϕ = ϕ′ ◦ ϑ.

For an object S in S, we denote by XS the subcategory of X whose objects map
to S, and whose morphisms map to the identity map 1S. It follows from Axiom (2)
that every morphism in XS is an isomorphism. (Given a morphism ϕ : t → s in FS,
take u = s, and η = 1s to get an inverse γ for ϕ.) Recall that a groupoid is a category
in which every morphism is an isomorphism. This explains the terminology category

fibered in groupoids: it follows from the axioms that the category XS is a groupoid.
When two more axioms are satisfied, to be given in Chapter 4, a CFG qualifies as a
full-fledged stack — which gives it the right to discard the awkward name “category
fibered in groupoids.” Still more will be required for a stack to be an algebraic stack,
of either Deligne–Mumford or Artin type.

The next result provides the link between two notions of “S-valued points” of a
stack. First, we have the fiber XS just introduced. In a moduli problem, where X is a
category of families of geometric objects, then XS will be the category of objects over S.
But just as for schemes with its functor of points, we can consider the fibered category
S and look at the category HOM(S,X). When X is a category fibered in groupoids,
these two notions are equivalent.

Proposition 2.20. Let X be a category fibered in groupoids over a base category S.
Let X be an object of S. Then the functor from HOM(X,X) to XX, given by evaluation

at the object (X, 1X) of X, is surjective (on objects) and fully faithful. In particular it

is an equivalence of categories.

Proof. We show that the functor is fully faithul and essentially surjective. In fact,
the functor is surjective. Given an object x of XX , we apply Axiom (1) to every object
(S, f : S → X) ofX to obtain an associated object x(S,f) of XS and morphism x(S,f) → x

over S → X. For X and the identity morphism 1X we choose x(X,1X ) = x. Whenever



38 Categories fibered in groupoids

(T, g : T → X) is another object of X, with morphism T → S in X, we obtain from
Axiom (2) a unique morphism x(T,g) → x(S,f) making a commutative triangle with the
morphisms x(T,g) → x and x(S,f) → x. The association of the object x(S,f) to (S, f) and
the morphism x(T,g) → x(S,f) to T → S, is a functor from X to X; the verification of this
uses the uniqueness assertion of Axiom (2). The functor is an object of HOM(X,X)
which, when evaluated at (X, 1X), produces x.

To see that the functor is fully faithful, consider a pair of objects (functors) h and h′

in HOM(X,X). To give a morphism in HOM(X,X) from h to h′ is to give a morphism
h(S, f)→ h′(S, f) in XS for every object (S, f : S → X) of X, such that for any object
(T, g : T → X) in X and morphism T → S → X in X the square

h(T, g) //

��

h(S, f)

��

h′(T, g) // h′(S, f)

commutes.
Set x = h(X, 1X) and x′ = h′(X, 1X). Suppose that two morphisms α, β : h ⇒ h′

in the category HOM(X,X) yield the same morphism ϕ : x → x′ when evaluated at
(X, 1X). Then the commutative square for S → X → X, where the second map is 1X ,
yields

h(S, f) //

��

x

ϕ

��
h′(S, f) // x′

where the left-hand map is α(S, f) or β(S, f). By the uniqueness assertion of Axiom (2),
we have α(S, f) = β(S, f). Now let ϕ : x→ x′ be an arbitrary morphism in XX ; we need
to exhibit a morphism α : h⇒ h′ in the category HOM(X,X) which, when evaluted at
(X, 1X), produces ϕ. Given an object (S, f) of X, we define α(S, f) : h(S, f)→ h′(S, f),
using Axiom (2), to be the unique morphism over 1S whose composite with h′(S, f)→ x′

is equal to the composite h(S, f)→ x→ x′. Now given T → S in X, we have a diagram

h(T, g) //

α(T,g)

��

h(S, f) //

α(S,f)

��

x

ϕ

��
h′(T, g) // h′(S, f) // x′

where the right-hand square and outer square commute. Again by Axiom (2) it follows
that the left-hand square commutes. �

If x is an object of X over X, then we will frequently use the same symbol x to
denote a morphism X → X which yields x when evaluated at (X, 1X). So, for instance,
if X = BG and E → X is a G-torsor, then we will have E : X → BG. This morphism
(functor between categories) is determined up to a canonical natural isomorphism of
functors).
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The proof of Proposition 2.20 makes heavy use of the existence of choices of pullbacks
of a given object of X. It is convenient to formalize the existence of pullbacks in the
form of a pullback (or change of base) functor. Let f : T → S be a morphism in S. For
every object s in XS, fix an object t in XT with t → s as in Axiom (1); we then use
the common notation f ∗(s), or sometimes sT or s|T , for this object t, and call it the
pullback. If we have a morphism ϕ : s′ → s in XS, it follows from Axiom (2) that there
is a unique morphism ψ from f ∗(s′) to f ∗(s) in XT such that the diagram

f ∗(s′) //

ψ

��

s′

ϕ

��
f ∗(s) // s

commutes; this map ψ is denoted f ∗(ϕ). These choices determine a functor f ∗ from
XS to XT , called the change of base functor. If f : S → S is the identify morphism,
we choose f ∗ to be the identity. If f : T → S and g : U → T , there is a canonical
natural isomorphism of functors g∗ ◦ f ∗ ∼= (f ◦ g)∗ from XS to XU . In addition, these
isomorphisms satisfy the expected “cocycle” compatibility condition with a third map
h : V → U , specifically that the diagram

h∗ ◦ (g∗ ◦ f ∗) ∼= h∗ ◦ (f ◦ g)∗ ∼= ((f ◦ g) ◦ h)∗

‖ ‖
(h∗ ◦ g∗) ◦ f ∗ ∼= (g ◦ h)∗ ◦ f ∗ ∼= (f ◦ (g ◦ h))∗

commutes.
It is often simplest to think of X as the collection of groupoids XS, together with the

pullbacks f ∗ : XS → XT for morphisms f : T → S. This has all the essential information.
By using the original definition as one category with a functor to S, however, one avoids
having to verify these cocycle conditions. Note that in Example 2.4 (and therefore also
in Example 2.1), the only morphisms in the categories XS are the identity morphisms;
it is the presence of nontrivial automorphisms in the other examples that make general
stacks richer than ordinary schemes or functors to sets.

Remark 2.21. In the previous section we introduced the first of a series of axioms
for a category to be a stack, namely that it should be a category fibered in groupoids
over the base category. A more general notion, that of being a fibered category, appears
in the literature; the difference is that the fibers are allowed to be arbitrary categories,
rather than categories whose morphisms are all isomorphisms (groupoids). We outline
the differences between the two notions here.

In a fibered category, Axiom (2) of Definition 2.19 is not required to hold for all
diagrams and given morphisms. Rather, a morphism ϕ : t→ s over f : T → S is defined
to be cartesian if, for every U and u, the conclusion of Axiom (2) holds. Then, a fibered
category is defined as a category X with a functor to a base category S, such that for
every morphism f : T → S in S and object s in X over S, there exists an object t in X

over T and a cartesian morphism ϕ : t→ s in X over f .
A CFG is then a fibered category in which all the morphisms are cartesian. Some

of our examples of CFG sit inside larger fibered categories. In the stack of elliptic
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curves M1,1, for instance, we may allow arbitrary commutative diagrams C ′ → C,
S ′ → S as morphisms, rather than only cartesian diagrams. This produces a bigger
category, which is a fibered category (this bigger category won’t be an algebraic stack).
Similarly, the categories Vn, Qcoh, VX,n, and CohX sits inside larger categories, where
we allow arbitrary morphisms, not only morphisms that identify a sheaf over S ′ with
the pull-back of a sheaf over S.

Algebraic stacks are always categories fibered in groupoids, so we will not have
much use for more general fibered categories. However we point out that the theory
of descent (Appendix A) could be stated in the language of fibered categories. For
instance, Theorem A.2 could be abbreviated to the statement that the fibered category
of quasi-coherent sheaves over schemes is a stack (for the fpqc or fppf topology on
schemes). In this book, we choose instead to present the results in Appendix A in an
explicit manner, and we make the convention that stacks will be categories fibered in
groupoids satisfying additional hypotheses.

An important remark is that a morphism of CFGs f : X → Y is an isomorphism
(equivalence of categories) if and only if there exists a morphism in the other direction
g : Y→ X, together with 2-isomorphisms g ◦ f ⇒ 1X and f ◦ g ⇒ 1Y. Indeed, there is
the familiar statement, stated as Proposition B.1, that a functor between categories is
an equivalence of categories if and only if it is fully faithful and essentially surjective.
Following the proof of Proposition B.1, we need to assign to each object t of Y (over
some T in S) an object g(t) of X . By essential surjectivity there exists an object t̃
of X and an isomorphism f(t̃) → t; the isomorphism will be over some isomorphism

ϕ : T̃ → T , possibly not the identity. But then we define g(t) to be (ϕ−1)∗t̃ and have
an isomorphism f(g(t)) → t over 1T . The rest of the verification can be copied from
the proof of Proposition B.1.

4. 2-commutative diagrams

Given CFGs X and Y over a base category S, we have seen that morphisms of
CFGs from X to Y (which are functors) form a category HOM(X,Y), with natural
isomorphisms of functors as morphisms in HOM(X,Y). It will come as no surprise,
then, that the natural way to compare two morphisms in X to Y is to say that they are
isomorphic. Often the morphisms will be canonically isomorphic. But it happen much
more rarely that the morphisms will actually be equal.

This is particularly the case when the morphisms that we are comparing are got-
ten by composing other morphisms. Most “commutative” diagrams won’t actually
commute! Rather, they will commute “up to” a natural isomorphism. We give some
examples of this.

Example 2.22. Here are some diagrams of CFGs.



2-commutative diagrams 41

(1) Let G, G′, and G′′ be affine algebraic groups, and let

G //

  A
A

A
A

A
A

A
A

G′

��

G′′

be a commutative diagram of algebraic group homomorphisms. Then there is
a diagram of CFGs

BG //

##G
G

G
G

G
G

G
G

BG′

��

BG′′

which commutes up to a canonical natural isomorphism. For instance, if G′′ =
G and the homomorphsm G → G′′ = G is the identity, then the composite
BG → BG′ → BG will not be equal, but only naturally isomorphic, to the
identity 1BG.

(2) Consider the pair of morphisms fromMg,2 toMg,1 which forget the first, resp.
the second section. These fit into a diagram

Mg,2
//

��

Mg,1

��
Mg,1

//Mg

an honest example of a diagram that actually commutes! However, there is a
similar operation on n-pointed stable curves of genus g (Example 2.11), which
forgets one of the sections σi of π : C → S and collapses any components of
the fibers of π which are thereby made unstable. The corresponding diagram

Mg,2
//

��

Mg,1

��

Mg,1
//Mg

commutes up to a canonical natural isomorphism. That is, the results of
forgetting and stabilizing the two markings in either order are canonically
isomorphic.

Definition 2.23. A diagram of CFGs is said to be 2-commutative if it commutes
up to a given isomorphism in the relevant HOM category; it is strictly commutative

if it commutes exactly. An isomorphism between two objects in HOM(X,Y) is called
a 2-morphism, or 2-isomorphism. (We recall, HOM(X,Y) is a groupoid, i.e., every
morphism in HOM(X,Y) is an isomorphism.)
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If f , g : X → Y are morphisms, a 2-morphism can be denoted by f ⇒ g. That a
diagram is 2-commutative can be indicated by marking it with ⇒. So, for instance,

BG //

!!D
D

D
D

D
D

D
D

D
BG′

��

⇒

and

Mg,2
//

��
⇒

Mg,1

��

BG′′ Mg,1
//Mg

In fact, CFGs over S form a 2-category, a richer structure than just a category. In
a 2-category there are objects (in this case, CFGs), morphisms (which, for CFGs, are
functors), and 2-morphisms, which for CFGs we have just introduced in Definition 2.23.
The formalism of 2-categories is not necessary in these early chapters; the reader who
wants to look ahead can turn to Appendix B. For now, the main point is that CFGs
are part of a structure that is different from an ordinary category. So, for instance
in the next section when we discuss fiber products of CFGs, we cannot just use the
standard notion of fiber products in a category; a dedicated discussion of the topic will
be required.

Exercise 2.3. Consider Λ = Spec(k) where k is an algebraically closed field. Let
G be a finite group.

(i) Consider the morphism f : Λ → BG which assigns to a scheme S the trivial
G-torsor S×G. Show that the automorphism group of f in HOM(Λ, BG) can
be identified with G.

(ii) Show that the automorphism group of 1BG can be identified with the center
Z(G) of G.

Representative 2-commutative diagrams will be

G //

��
⇒

Λ

��
and

BG
1BG

//

1BG ""D
D

D
D

D
D

D
D

D
BG

1BG

��

⇒

Λ // BG BG

Diagrams such as the first one will appear in the next section. The second diagram
actually links up with a more advanced topic, group actions on a stack. A finite group
H can act on BG, with every h ∈ H acting by the identity map 1BG, so that the
“quotient” is the classifying stack of a group which is a nontrivial extension of H by
G. (This will be a sort of quotient that generalizes how H can act on a point with
stack quotient [ • /H ] = BH .) In fact we get precisely the extensions which classically
are classified by group cohomology H2(H,Z(G)). The point is that the usual condition
for a group action x · (hh′) = (x · h) · h′ is replaced by 2-commutative diagrams with
a further requirement on the 2-morphisms ⇒, and these will amount to the cocycle
condition of group cohomology.
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5. Fiber products of CFGs

We come to an important construction of CFGs, the fiber product. We will have
2-cartesian diagrams which, just as for schemes, are diagrams which express the fact
that one CFG is isomorphic to the fiber product of a pair of CFGs over a third CFG.
Also, as in the usual setting, there will be a universal property characterizing such
diagrams. However, this property relies heavily upon the notion of 2-morphism that
has just been introduced. So for this reason we prefer to give a direct construction
of the fiber product of CFGs, which will satisfy a “strict” universal property, and to
define 2-cartesian diagrams as those involving a CFG that is isomorphic to “the” fiber
product of the given CFGs. Afterwards, we will give the universal property as an
optional remark.

Definition 2.24. Given X, Y, and Z, all CFGs over S, and morphisms f : X→ Z

and g : Y → Z, the fiber product X ×Z Y is the category whose objects are triples
(x, y, α), where x is an object in X, y is an object in Y (over the same S in S), and α
is an isomorphism from f(x) to g(y) in Z (over the identity on S). A morphism from
(x′, y′, α′) to (x, y, α) is given by morphisms x′ → x in X and y′ → y in Y (over the
same morphism S ′ → S in S), such that the diagram

f(x′) //

α′

��

f(x)

α

��

g(y′) // g(y)

commutes. Compositions of morphisms are defined in the obvious way, and there is an
obvious projection from X×Z Y to S.

We have two canonical projections p and q from X ×Z Y to X and Y. There is a
2-commutative diagram

X×Z Y
p

~~}}
}
}
}
}
}
} q

  B
B

B
B

B
B

B
B

X

f
  B

B
B

B
B

B
B

B
B

⇒ Y

g
~~||

|
|
|
|
|
|
|

Z

where ⇒ indicates a 2-morphism f ◦ p⇒ g ◦ q. This 2-morphism is given by α: for an
object ξ = (x, y, α) in X×Z Y, we have f ◦ p(ξ) = f(x) and g ◦ q(ξ) = g(y), so α is an
isomorphism of f ◦ p(ξ) with g ◦ q(ξ).

Example 2.25. Here are some examples of fiber products of CFGs.

(1) If X, Y , and Z are objects and X → Z and Y → Z are morphisms in S, then

X ×Z Y ∼= X ×Z Y .

Indeed, the fibers over any object S of both sides are sets, and the bijection
between them is a result of the usual universal property of the fiber product.
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(2) Recall that Λ is simply the base category S = (Sch/Λ). The product of X and
Y will be X ×Λ Y. An object is an object of X and an object of Y (over the
same object S in S). A morphism is a morphisms in X and a morphism in Y

(over the same morphism in S). This product will also be denoted X×Y. In
case Y = X we have a diagonal morphism ∆X : X→ X×X, sending an object
s to (s, s) and a morphism ϕ to (ϕ, ϕ).

(3) Let G be an algebraic group. Consider a morphism E : S → BG corresponding
(Proposition 2.20) to a G-torsor E → S. There is also the morphism triv : Λ→
BG which assigns to every scheme T the trivial G-torsor T×G→ T . The fiber
product S×BG Λ, we claim, is isomorphic to E. This fact will be expressed by
saying there is a 2-cartesian diagram

E //

��
⇒

Λ

triv

��
S

E

// BG

Indeed, an object of the fiber product, over a scheme T , is a morphism T → S

together with a G-equivariant isomorphism of ET (the given pullback of E
to T ) with T × G. The identity section T → T × G corresponds, via this
isomorphism, to a section of ET → T , giving rise to T → ET → E, an object
of E. Conversely, given T → E, we obtain a section of ET → T from the
fact that ET is a fiber product of T with E over S. Finally, G-equivariance
uniquely determines uniquely the isomorphism ET ∼= T ×G.

(4) We had noted in Example 2.9(5) that the forgetful morphism from Mg,1 to
Mg can be regarded as the universal curve. This example points out why. Let
C → S be a family of curves of genus g. Then we claim S×Mg

Mg,1
∼= C, i.e.,

there is a 2-cartesian diagram

C //

��
⇒

Mg,1

forgetful

��

S
C

//Mg

An object over T of the fiber product consists of a morphism T → S, a family
of curves C ′ → T with section σ, and an isomorphism ϑ : CT ∼= C ′ over T . The
section σ, composed with ϑ and projection to C is a morphism T → C, so we
have a map

S ×Mg
Mg,1 → C.

A map the other way assigns to f : T → C the family of curves CT → T with
section induced by f . The composition of these maps in one order is equal to
1C , and in the other order is naturally isomorphic, by ϑ, to 1S×MgMg,1

.

Exercise 2.4. If each of X, Y and Z is a CFG/S, then X ×Z Y is also a CFG/S.
[Hint: show that it satisfies the CFG axioms (1) and (2′) (Exercise 2.2).]
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Remark 2.26. In any fiber product of the form S×XT , we get a category that has
no nontrivial morphisms. This is because S and T are categories with no nontrivial
morphisms. (By a CFG with “no nontrivial morphisms” we mean one whose fibers are
sets, i.e., categories with only identity morphisms. Then, between any two objects t and
s there will be precisely one morphism over f : T → S when t = f ∗(s) and otherwise
no morphism over f .) So, in the discussion in (3) there is no mention of morphisms.
Whereas, in (4) there are nontrivial morphisms in the fiber product: as a category,
S ×Mg

Mg,1 is equivalent but not isomorphic to the category C.
In fact, for any CFG X the category HOM(X, S) is a set. Later we will see instances

where, to a CFG X, we can associate a scheme M , with morphism X → M , inducing
set bijections HOM(X, X) = HomS(M,X) for all schemes X. For X =Mg we will be
able to take M = Mg, the classical moduli space of curves of genus g.

The fiber product satisfies the following strict universal property: given maps
u : W → X, v : W → Y, together with a natural isomorphism f ◦ u ⇒ g ◦ v, there is
a unique map (u, v) : W → X ×Z Y with p ◦ (u, v) = u and q ◦ (u, v) = v, so that the
natural isomorphism from f ◦ u to g ◦ v is the one determined by f ◦ p⇒ g ◦ q (by the
identities f ◦ u = f ◦ p ◦ (u, v)⇒ g ◦ q ◦ (u, v) = g ◦ v).

Notice that strict universal property involves maps to X and Y and a 2-morphism
of the composite maps to Z. These are precisely the data to determine a 2-commutative
diagram

W
u

��~~
~
~
~
~
~
~

v

  @
@

@
@

@
@

@
@

X

f
��?

?
?

?
?

?
?

?

⇒ Y

g
��~~

~
~
~
~
~
~

Z

(1)

Now we say that the diagram (1) is 2-cartesian (or is a fiber diagram, or a pullback
diagram) if the morphism (u, v) : W → X ×Z Y determined by the strict universal
property, is an isomorphism of CFGs. We have met some 2-cartesian diagrams in
Example 2.25. Here is one more.

Exercise 2.5. Given a CFG X over S, define the inertia CFG to be the following
category, which will be denoted IX. An object of IX is a pair (s, σ) where s is an
object of X (over some S in S), and σ is an isomorphism s → s over 1S. A morphism
(s′, σ′) → (s, σ) is a morphism s′ → s (over some f : S ′ → S) such that f ∗(σ) = σ′.
There is a functor i : IX→ X which forgets σ.

(i) IX is a CFG.
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(ii) There is a 2-cartesian diagram

IX
i

//

i

��

X

∆X

��

X
∆X

//

⇒

X×X

(iii) Let Λ = Spec(k) where k is an algebraically closed field, and let G be a finite
group. For X = BG, we have IX ∼= [G/G] where G acts on itself by conjugation.

The next two exercises gather some basic facts about fiber products which are
familiar from the cas of schemes (or objects of a general category).

Exercise 2.6. Given morphisms X → Y, Y → Z, and W → Z, construct an
isomorphism of CFGs (equivalence of categories) between X×Y (Y×ZW) and X×ZW.

Exercise 2.7. Given f : X→ Z and g : Y→ Z, we have morphisms f×g : X×Y→
Z× Z and a diagonal morphism Z→ Z× Z. Construct an isomorphism of CFGs

X×Z Y ∼= (X×Y)×Z×Z Z.

The corresponding 2-cartesian diagrams are

X×Z W //

��

Y×Z W //

��

W

��

X //

⇒

Y //

⇒

Z

and

X×Z Y //

��

Z

��
X×Y //

⇒

Z× Z

Example 2.27. Suppose we are given morphisms X→ U← Y→ V← Z of CFGs
over S. Define a category X ×U Y ×V Z whose objects are (x, y, z, α, β), with x, y, z
objects in X, Y, Z, respectively, over some S in S; α is a map from the image of x to
the image of y in U, and β is a map from the image of y to the image of z in V, all over
1S. Morphisms are defined as in the case of fiber products. Then we have isomorphisms
(these are, in fact, isomorphisms of categories)

X×U (Y×V Z) ∼= X×U Y×V Z ∼= (X×U Y)×V Z.
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Projections to X×U Y and to Y×V Z give rise to a diagram

X×U Y×V Z //

��

Y×V Z //

��

Z

��
X×U Y //

��

Y //

��

⇒

V

X //

⇒

U

The upper-left square (which, in fact, strictly commutes) is 2-cartesian; this can be seen
by an application of Exercise 2.6.

Remark 2.28. The strict universal property characterizes X×ZY up to an isomor-
phism of categories. This is too strict: the natural notion of isomorphism of CFGs is an
equivalence of categories. There is a more natural universal property, which we should
emphasize is not required for the material in this book. A diagram (1) is 2-cartesian
if and only if the following universality condition is satisfied. Given a CFG U, define a
category

HOM

(

U,

Y

↓
X → Z

)

whose objects are triples (m,n, δ) where m : U → X and n : U → Y are morphisms,
and δ is a 2-morphism from f ◦m to g ◦ n. A morphism from (m,n, δ) to (m′, n′, δ′)
will consist of a pair of 2-morphisms m ⇒ m′ and n ⇒ n′ such that the composite
2-morphism f ◦m⇒ g ◦ n⇒ g ◦ n′ is equal to the composite f ◦m⇒ f ◦m′ ⇒ g ◦ n′.
There is a functor

HOM(U,W) −→ HOM

(

U,

Y

↓
X → Z

)

which sends h : U → W to (u ◦ h, v ◦ h, f ◦ u ◦ h ⇒ g ◦ v ◦ h) and h ⇒ h′ to the pair
consisting of u ◦ h⇒ u ◦ h′ and v ◦ h⇒ v ◦ h′. The universality condition is that this
functor should be an equivalence of categories for any CFG U.

Answers to Exercises

2.1. If one constructs a principal GLn-bundle by means of transition functions, the
vector bundle is constructed from the same transition functions. The same idea works
in (6). In both cases, note that G is the automorphism group of the fiber.

2.2. To prove (2), chose by (1) some γ0 : u→ t over g. Using (2′) for h, one obtains
θ : u→ u over 1U with η = ϕ◦γ0 ◦ θ. Then γ = γ0 ◦ θ is a solution. If γ and γ′ were two
solutions, applying (2′) to the morphism g, one finds τ : u→ u over 1U with γ′ = γ ◦ τ .
Since ϕ ◦ γ ◦ τ = ϕ ◦ γ, the uniqueness for maps over h implies that τ = 1u.
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2.3. For (i), by Proposition 2.20 this is the automorphism group of the trivial G-
torsor G over Λ. This is G. Directly, g0 ∈ G corresponds to the automorphisms (s, g) 7→
(s, g0g) of S×G, for arbitrary S. For (ii), consider a 2-morphism α : 1BG → 1BG, that is,
a specification of automorphisms of G-torsors E → S compatible with the morphisms
in BG. Restricted to trivial G-torsors S×G, these must be of the form (s, g) 7→ (s, g0g)
for some g0 ∈ G. But every G-torsor is locally trivial, so α is completely determined
by g0, and it remains to see that g0 is constrained to lie in the center Z(G). For the
trivial G-torsor G over Λ, the automorphism corresponding to g0 is g 7→ g0g. For any
h ∈ G we have an isomorphism in BG sending G to G by g 7→ hg. Compatibility forces
hg0g = g0hg for any h ∈ G, i.e., g0 ∈ Z(G). By descent, any g0 ∈ Z(G) determines an
automorphism of an arbitrary G-torsor E → S.

2.4. Given h : T → S and an object s = (x, y, α) in X ×Z Y over S, to find a
morphism t→ s over h, choose x′ → x and y′ → y over h, and use Axiom (2) for Z to
find a morphism α′ : f(x′)→ g(y′) over 1T so that the diagram

f(x′) //

α′

��

f(x)

α

��

g(y′) // g(y)

commutes. Then we have t = (x′, y′, α′)→ s over h. To prove Axiom (2′), suppose we
have (x, y, α) → (x0, y0, α0) and (x′, y′, α′) → (x0, y0, α0) over h. This means we have
x → x0 and x′ → x0 in X, y → y0 and y′ → y0 in Y, all over h, and a commutative
diagram

f(x) //

α1

��

f(x0)

α

��

f(x′)oo

α2

��

g(x) // g(x0) g(x′)oo

in Z, with the horizontal maps over h. From (2′) for X and Y we get morphisms x→ x′

and y → y′. We need to know that the left square in the diagram

f(x) //

α

��

f(x′)

α′

��

// f(x0)

α

��

g(x) // g(x′) // g(x0)

commutes. This follows from the fact that the large rectangle commutes, and the
uniqueness in Z of maps from f(x) to f(x′) over 1T with given maps to g(x0) over h.

2.5. For (i), if ϕ : t→ s is a morphism in X over f : T → S then we have (t, f ∗(σ))→
(s, σ) in IX over f . Let, now, g : U → T be a morphism, h = f ◦ f , and morphisms
ϕ : (t, τ) → (s, σ) and η : (u, υ) → (s, σ) in IX over f and h, respectively. Axiom (2)
dictates a unique morphism γ : u → t in X. Since γ∗(τ) = γ∗(ϕ∗(σ)) = η∗(σ) = υ,
we have γ : (u, υ) → (t, τ) in IX. For (ii), we have a 2-morphism ∆X ◦ i ⇒ ∆X ◦ i,
(s, σ) 7→ σ × 1s : (s, s) → (s, s), hence a morphism IX → X ×X×X X. A map the
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other way is given by (s, s′, σ × σ′) 7→ (s, σ′−1 ◦ σ). One composition is the identify
1IX . The other composition is naturally isomorphic to 1X×X×XX by (s, s′, σ × σ′) 7→
[1s × σ

′ : (s, s, σ′−1 ◦ σ, 1s) → (s, s′, σ × σ′)]. For (iii), define IBG → [G/G] by sending
(E → S, σ : E → E) to the torsor E → S together with map E → G which sends e ∈ E
to the unique g ∈ G such that σ(e) = e · g. This is an isomorphism of categories.

2.6. There is a morphism X ×Y (Y ×Z W) → X ×Z W sending (x, (y, z, β), α) to
(x, z, β ◦ g(α)), where g denotes the morphism Y → Z, and a morphism X ×Z W →
X ×Y (Y×Z W) sending (x, z, γ) to (x, (f(x), z, γ), 1x), with f the morphism X → Y.
One composition is 1X×ZW, while the other composition is naturally isomorphic to
1X×Y(Y×ZW) by the pair consisting of the identity of the morphism X×Y(Y×ZW)→ X

and the natural isomorphism from X ×Y (Y ×Z W) → X ×Z W → Y ×Z W to X ×Y

(Y×ZW)→ Y×ZW given by (x, (y, z, β), α) 7→ [(α, 1z) : (f(x), z, β ◦g(α)) ∼= (y, z, β)].

2.7. To an object (x, y, α) in X ×Z Y, assign the object ((x, y), g(y), α× 1g(y)) in
(X ×Y) ×Z×Z Z. To an object ((x, y), z, α × β) in (X × Y) ×Z×Z Z, assign the object
(x, y, β−1◦α) in X×ZY. As in the previous exercise, the composition of these morphisms
in one order is identity, and in the other order is naturally isomorphic to identity.
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CHAPTER 3

Groupoids and Atlases

For an atlas for a stack, one has schemes R and U , with a morphism from R to
U ×U (not usually an embedding). Conditions are put on these data that, in case R is
contained in U × U , make R an equivalence relation. This is the notion of a groupoid

scheme, which is the subject of this chapter (cf. [30]). These will be the atlases (or
groupoid presentations) for stacks.

1. Groupoid schemes

A groupoid scheme, or algebraic groupoid,1 consists of two schemes and five
morphisms, satisfying several properties. One has a scheme U , a scheme R, two mor-
phisms s and t from R to U , a morphism e from U to R, a morphism m : R t×s R → R

(where R t×s R denotes the fiber product R×U R constructed from the two maps t and
s), and a morphism i : R → R, satisfying the five properties listed below.

All of this makes sense over an arbitrary base category S, and then one defines
a groupoid object in S. A key example to keep in mind is a groupoid set. This
notion coincides precisely with the notion of a small category in which all morphisms
are isomorphisms. From this example one can in fact figure out what the axioms must
be. Here are the axioms:

(1) The composites U
e

−→ R
s

−→ U and U
e

−→ R
t

−→ U are the identity maps on
U :

U
e

//

1U ��@
@

@
@

@
@

@
R

s

��

U
e

//

1U ��@
@

@
@

@
@

@
R

t

��
U U

(2) If pr
1

and pr
2

are the two projections from R t×s R to R, then s ◦ m = s ◦ pr
1

and t ◦ m = t ◦ pr
2
:

R t×s R
m

//

pr
1

��

R

s

��

R t×s R
pr

2
//

m

��

R

t

��
R s

// U R
t

// U

1The second choice of “algebraic groupoid” compares nicely with “algebraic group”, and is common

in the literature. It does conflict with the use of groupoid for a kind of category. In category language,

cf. [65], what we call a groupoid scheme is an “internal groupoid in the category of schemes”.
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(3) (Associativity) The two maps m◦ (1R×m) and m◦ (m×1R) from R t×s R t×s R

to R are equal:

R t×s R t×s R
1R×m

//

m×1R

��

R t×s R

m

��
R t×s R

m
// R

(4) (Unit) The two maps m ◦ (e ◦ s, 1R) and m ◦ (1R, e ◦ t) from R to R are equal to
the identity on R:

R
(e◦s,1R)

//

1R
$$H

H
H

H
H

H
H

H
H

H
H

R t×s R

m

��

R
(1R,e◦t)

//

1R
$$H

H
H

H
H

H
H

H
H

H
H

R t×s R

m

��
R R

(5) (Inverses) i ◦ i = 1R, s ◦ i = t and (therefore) t ◦ i = s, and m ◦ (1R, i) = e ◦ s

and m ◦ (i, 1R) = e ◦ t:

R
i

//

1R ��?
?

?
?

?
?

?
?

R

i

��

R
i

//

s
��?

?
?

?
?

?
?

?
R

t

��

R
(1R,i)

//

s

��

R t×s R

m

��

R

t

��

(i,1R)
// R t×s R

m

��
R R U e

// R U e
// R

Note by (1) that s and t are always surjective. These axioms have some redundancy,
but others could be added. For example:

Exercise 3.1. (a) Show that i ◦ e = e. (b) Show that m ◦ (e, e) = e. (c) Show that
m ◦ (i ◦ pr

2
, i ◦ pr

1
) = i ◦ m. (d) Show that the diagrams of axiom (2) are cartesian.

Example 3.1. Any morphism U → X of schemes determines a groupoid scheme.
For this, take R = U ×X U , with s and t the two projections, e the diagonal map, and
i the map switching the two factors. Identifying R t×s R with U ×X U ×X U , the map
m is the projection onto the first and third factors.

Example 3.2. If U = Λ (the base scheme) then the axioms for a groupoid scheme
reduce to axioms for R to be a group scheme over Λ (with multiplication m : R×R → R,
identity section e : Λ → R, and inverse map i : R → R).

Example 3.3. An important example of a groupoid scheme arises whenever an
algebraic group G acts on the right on a scheme U . Set R = U×G, and let s : U×G → U

be projection and t : U ×G → U the action. The map e : U → U ×G takes u to (u, eG),
where eG is the identity element of G. The map i takes (u, g) to (u · g, g−1), and

m
(
(u, g), (u · g, h)

)
= (u, gh).

We may identify R t×s R with U × G × G by the map
(
(u, g), (u · g, h)

)
7→ (u, g, h).

Under this identification, m becomes the map (u, g, h) 7→ (u, gh).
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Example 3.3′. For a left action, we have a groupoid scheme with R = G×U , s the
projection, t the action, e(u) = (eG, u), i(g, u) = (g−1, g · u), and m

(
(g, u), (h, g · u)

)
=

(hg, u).

A groupoid scheme can be denoted (U, R, s, t, m, e, i), or more simply R ⇉ U . We
call the groupoid scheme an étale groupoid scheme if the two morphisms s and t

are étale. Similar terminology is used for other adjectives such as smooth or flat. The
groupoid scheme for M1,1 in Example 3.10 is an étale groupoid scheme. The groupoids
X × G ⇉ X and G × X ⇉ X (Examples 3.9 and 3.9′) are étale groupoids when G

is étale over the base field (e.g., a finite group), and are smooth groupoids when G is
smooth (e.g., an algebraic group over a field).

A morphism of groupoid schemes from (U ′, R′, s′, t′, m′, e′, i′) to (U, R, s, t, m, e, i)
is a pair (φ, Φ), where φ : U ′ → U and Φ: R′ → R are morphisms of schemes. These are
required to be compatible with the structure morphisms defining each groupoid scheme,
in the obvious sense: s ◦Φ = φ ◦ s′, t ◦ Φ = φ ◦ t′, e ◦ φ = Φ ◦ e′, m ◦ (Φ×Φ) = Φ ◦m′,
and i ◦ Φ = Φ ◦ i′.

Example 3.4. If G acts on U , and H acts on V , and θ : G → H is a homomorphism
of algebraic groups, and φ : U → V is an equivariant map (so φ(u, g) = φ(u) · θ(g) for
u ∈ U and g ∈ G), this determines a morphism (φ, Φ) from the groupoid scheme
U × G ⇉ U to V × H ⇉ V , with Φ(u, g) = (φ(u), θ(g)).

2. Groupoids and CFGs

It will be possible to go back and forth between algebraic groupoids and CFGs. An
algebraic groupoid will describe a CFG, much the way that a scheme can be described
by patching. But this goes via a process that requires several steps; these will be
presented over the course of this chapter and the next chapter. We start with the easier
direction, that of producing an algebraic groupoid from a CFG.

Proposition 3.5. Let X be a CFG, U a scheme, and u : U → X a morphism.

Assume given an isomorphism between U ×XU and R for some scheme R. Then R and

U form a groupoid scheme, with the pair of projection maps

s, t : R ∼= U ×X U ⇉ U.

and the following additional maps:

(i) e : U → R is the composite U → U ×X U ∼= R, where the first map sends h to

(h, h, 1u(h)),
(ii) m is the map from U ×X U ×X U ∼= R t×U,s R to U ×X U ∼= R given by

(h, h′, h′′, ϕ, ϕ′) 7→ (h, h′′, ϕ′ ◦ ϕ),

(iii) i : R ∼= U ×X U → U ×X U ∼= R, where (h, h′, ϕ) 7→ (h′, h, ϕ−1).

In the definition of m, notice that we make use of the isomorphism U ×X U ×X

U ∼= R t×U,s R of Example 2.27. We also repeatedly use the correspondence between
morphisms of schemes and morphisms of the associated CFGs (Example 2.9(1)).
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Proof. We have to verify the axioms. We verify the Associativity axiom (3) and
leave the verification of the other axioms to the reader. Let

(h, h′, h′′, h′′′, ϕ, ϕ′, ϕ′′)

be an object of U ×X U ×X U ×X U , which is identified with R t×s R t×s R. If we apply
m × 1R, we get (h, h′′, h′′′, ϕ′ ◦ ϕ, ϕ′′). Applying m produces (h, h′′′, ϕ′′ ◦ (ϕ′ ◦ ϕ)). If,
intead, we apply 1R × m and then m, we get (h, h′′′, (ϕ′′ ◦ ϕ′) ◦ ϕ). Since composition
of morphisms in the category X is associative, we have ϕ′′ ◦ (ϕ′ ◦ϕ) = (ϕ′′ ◦ϕ′) ◦ϕ. So,
the two maps m ◦ (1R × m) and m ◦ (m × 1R) are equal. �

According to Proposition 2.20, to specify the morphism u : U → X is equivalent to
specifying an object of X over U . We are adopting the notational convention to use
the same symbol for both the object and the morphism; this means that for a given
morphism f : S → U of schemes, u(S, f) will be the (chosen) pullback f ∗(u). Now
Proposition 3.5 can be interpreted as saying that an object u of X over a scheme U

determines an algebraic groupoid, provided that the corresponding fiber product of U

with itself over X is isomorphic to a scheme.
Fiber products of schemes over a target CFG will occur so frequently, that they

deserve a special notation. We introduce this now.

Definition 3.6. Let X be a CFG over a base category S of schemes. Let U and
V be schemes, and let u and v be objects of X over U and over V , respectively. These
determine morphisms (which are unique up to canonical 2-isomorphisms) u : U → X

and v : V → X. The symmetry CFG of u and v is the fiber product U u×X,v V . It
will be denoted SymX(u, v).

By Remark 2.26, the CFG SymX(u, v) has sets as fibers. Concretely, the fiber over
S is the set of triples (f, g, ϕ) where f : S → U and g : S → V are morphisms and
ϕ : f ∗(u) → g∗(v) is an isomorphism in XS. To say that SymX(u, v) is isomorphic to T

for some scheme T is to say that the set of triples (f, g, ϕ) is naturally isomorphic to
the set of morphisms S → T . This condition only depends on the isomorphism class of
u and the isomorphism class of v.

According to Proposition 3.5, now, if SymX(u, u) is isomorphic to a scheme, then
it determines an algebraic groupoid.

Definition 3.7. Let X be a CFG, U a scheme, and u an object of XU . If there
is a scheme R and an isomorphism SymX(u, u) ∼= R, then the groupoid R ⇉ U of
Proposition 3.5 will be called the symmetry groupoid of u.

The notation SymX(u, u) ⇉ U could be used to denote the symmetry groupoid,
although we will tend to avoid doing this, because it hides the fact that there is a
nontrivial hypothesis in Proposition 2.20, that the fiber product of U with itself over X

should be isomorphic to a scheme.
The notions of symmetry CFG and symmetry groupoid also make sense over an

arbitrary base category S. The symmetry groupoid of u, when it exists, will be a
groupoid object in S.

Here are some examples of symmetry groupoids.
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Example 3.8. Suppose X = X. Let f : U → X be a morphism, determining (by
composition with f) a morphism f : U → X. The fiber product U×X U is isomorphic to
U ×X U by Example 2.25(1). So, the corresponding symmetry groupoid is the algebraic
groupoid of Example 3.1.

Example 3.9. For X = [X/G], we take U = X with the trivial G-torsor X × G

and action map X × G → X. The corresponding f : X → [X/G] maps h : S → X to
the torsor S ×G → S with equivariant map S ×G → X, (s, g) 7→ h(s) · g (cf. Example
2.9(4)). So an object of X ×[X/G] X consists of h, h′ : S → X, and G-equivariant
S × G → S × G, (s, g) 7→ (s, ϕ(s)g) (for some ϕ : S → G) such that the diagram

S × G

(s,ϕ(s)g) ##G
G

G
G

G
G

G
G

h(s)·g
// X

S × G

h′
(s)·g

>>
}

}
}

}
}

}
}

}

commutes, i.e., h′(s) ·ϕ(s) = h(s). In other words, h′(s) = h(s) ·ϕ(s)−1. So, we identify
X ×[X/G] X with X ×G so that h, h′, and S×G

∼→ S×G as above are sent to (h, ϕ−1).
Then, s is the first projection and t is the group action. We have e = (1X , eG). To
compute m, say ((h, ϕ−1), (h′, ϕ′−1)) is an object of X×[X/G]X×[X/G]X. The composite
isomorphism S × G → S × G is (s, g) 7→ (s, ϕ′(s)ϕ(s)g). The inverse of ϕ′(s)ϕ(s)
is ϕ(s)−1ϕ′(s)−1, so m sends ((h, ϕ−1), (h′, ϕ′−1)) to (h, ϕ−1ϕ′−1). Similarly, i sends
(h, ϕ−1) to (h · ϕ−1, ϕ). We have reproduced the algebraic groupoid of Example 3.3.

In particular, for X = BG we can take U = Λ and obtain the groupoid scheme
G ⇉ Λ with m : G × G → G the multiplication of G and i : G → G the inverse.

Example 3.9′. There is a similar story for X = [G\X], again with U = X. We
take f to be the morphism X → [G\X] which sends h : S → X to G × S → S

and G × S → X, (g, s) 7→ g · h(s). An object of X ×[G\X] X is given by h, h′, and
G × S → G × S, (g, s) 7→ (gϕ(s), s) such that ϕ(s)h′(s) = h(s). Again it is convenient
to rewrite this as h′(s) = ϕ(s)−1h(s), so that X ×[G\X] X ∼= G × X, with this object
going to (ϕ−1, h). So the algebraic groupoid is G × X ⇉ X where s is projection, t is
action, e = (eG, 1X), m((ϕ−1, h), (ϕ′−1, h′)) = (ϕ′−1ϕ−1, h), and i(ϕ−1, h) = (ϕ, ϕ−1 · h).

Example 3.10. Consider the CFG of elliptic curves X = M1,1 over S = (Sch/C).
Recall from §1.5 the modular families Cα → Sα of elliptic curves and the schemes Rα,β

of pairs of points of Sα, Sβ with isomorphism of the corresponding elliptic curves. The
modular families are an object of M1,1 over U := S1∐S2. We claim that Sα×M1,1

Sβ
∼=

Rα,β. Then it follows that U ×M1,1
U ∼= R where R :=

∐
1≤i,j≤2

Ri,j, and we recover the

algebraic groupoid R ⇉ U that we had claimed would be an atlas for M1,1.
The morphism Sα → M1,1 associates to T → Sα the family of elliptic curves

T ×Sα
Cα → T . This comes with a section σα : T → T ×Sα

Cα. We need to exhibit
a bijection between isomorphisms ϕ : T ×Sα

Cα → T ×Sj
Cj over T and morphisms

T → Rα,j . For this, it suffices to treat the case that T is affine, T = Spec(A). We
have an isomorphism ϕ∗O(3σβ) ∼= O(3σα). This is determined up to automorphism
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of O(3σα), i.e., an element of O∗(T ×Sα
Cα) = A∗. Expressing each family of curves

by an equation in Weierstrass form corresponds to a particular kind of choice of basis
for the space of global sections of O(3σβ), resp. O(3σα). With respect to these bases,
pullback of global sections by ϕ corresponds to an element of PGL3(A). The Weierstrass
equations constrain this to be of diagonal form, say with diagonal entries λ, µ, 1, and
we are reduced to the computations of §1.5.

The first step in turning a groupoid scheme into a stack is to associate, in a simple
way, a CFG to a given groupoid scheme R ⇉ U . This CFG will be denoted [R ⇉ U ]pre.
It won’t quite be a stack, but it will be a prestack, a term that will be defined in §4.1
and that explains our choice of notation. A further step called stackification will be
required to turn this prestack into a stack. If the groupoid scheme satisfies certain
hypotheses, then this stack will be an algebraic stack. These steps will make up the
other half of the dictionary between algebraic stacks and groupoid schemes.

Definition 3.11. Let R ⇉ U be a groupoid scheme. The associated prestack

will be the CFG [R ⇉ U ]pre defined as follows. An object over a scheme S is a morphism
g : S → U . A morphism over f : S ′ → S from g′ : S ′ → U to g : S → U is a morphism
γ : S ′ → R satisfying s◦γ = g′ and t◦γ = g ◦f . If g : S → U is an object of [R ⇉ U ]pre

then the identity morphism 1g is given by e ◦ g : S → R. Composition of morphisms in
[R ⇉ U ]pre is defined using the multiplication map of the groupoid, as follows. If we
have a pair of composable morphisms as pictured
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f ′
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N
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q
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then t◦γ′ = g′◦f ′ = s◦γ◦f ′, so there is an induced morphism (γ′, γ◦f ′) : S ′ → R t×sR.
Now we define γ ◦ γ′ = m(γ′, γ ◦ f ′).

Exercise 3.2. (i) With this definition, [R ⇉ U ]pre is a category, i.e., composition
of morphisms is associative. (ii) This category, with the obvious functor to S, is a CFG,
with the pullback of an object determined just by composing morphisms of schemes.

Example 3.12. Let G be an algebraic group, and consider the classifying stack
BG. We have already seen that Λ ×BG Λ ∼= G, and the associated groupoid scheme
is G ⇉ Λ. Now [G ⇉ Λ]pre is equivalent to the category of trivial G-torsors. Indeed,
there is just one object over any S in S, and isomorphisms from this object to itself
correspond bijectively with morphisms S → G.

We see concretely why an extra step is necessary to recover the stack BG. What
goes wrong with [G ⇉ Λ]pre is that all the nontrivial G-torsors are missing! Indeed,
the definition of G-torsor includes the requirement to be locally trivial for the given
topology (in the first examples, this will be the étale topology). So far, the topology
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has not entered into any of our constructions. The topology will play an essential role
in the definition of a stack, and in the procedure for recovering a stack from an atlas
presentation.

3. Constructions with groupoid schemes

Groupoid schemes provide a means of carrying out explicit constructions which
mirror what takes place in the world of stacks. Because of their explicit nature, carrying
out these constructions provides a good way of getting a sense of how stacks behave.
We focus on three concrete constructions.

Example 3.13. There is an algebraic groupoid realization of fiber products. Let
R ⇉ U , R′

⇉ U ′, and R′′
⇉ U ′′ be groupoid schemes, and let morphisms of groupoid

schemes (φ′, Φ′) and (φ′′, Φ′′) to R ⇉ U from R′
⇉ U ′, resp. from R′′

⇉ U ′′, be given.
Then the category

(1) [R′
⇉ U ′]pre ×[R⇉U ]pre [R′′

⇉ U ′′]pre

is isomorphic to the category

(2) [R′ ×U R ×U R′′
⇉ U ′ ×U R ×U U ′′]pre.

This is the groupoid where, in these fiber products the scheme to the left of U maps to
U by a “target” map, and the scheme to the right maps by a “source” map (e.g., the
first fiber product involves R′ mapping to U by t ◦ Φ′) and where the source and tar-
get maps send (r′, r, r′′) to (s′(r′), m(Φ′(r′), r), s′′(r′′)) and (t′(r′), m(r, Φ′′(r′′)), t′′(r′′)),
respectively. Indeed, an object over S of the fiber product (1) is a map S → U ′,
a map S → U ′′, and an isomorphism (map S → R whose composition with s is
S → U ′ → U and whose composition with t is S → U ′′ → U). That is precisely a

morphism S → U ′ ×U R ×U U ′′. A morphism over S̃ → S from (ũ′, r̃, ũ′′) to (u′, r, u′′)
will be a pair of morphisms, i.e., R′- and R′′-valued points over T . Calling these r′ and
r′′, the compatibility condition is the commutativity of the following square:

φ′(ũ′)
Φ

′
(r′)

//

r̃

��

φ′(u′)

r

��zzu
u

u

u

u

φ′′(ũ′′)
Φ

′′
(r′′)

// φ′′(u′′)

The middle factor R in R′ ×U R×U R′′ corresponds to a choice of dotted arrow, so that
r̃ and r are recovered as compositions of arrows — this accounts for the appearance of
m in the formulas for the source and target maps of the groupoid scheme (2). We have
an isomorphism on the level of objects and morphisms; from this the reader can work
out the formulas for the identity, multiplication, and inverse in (2).

Exercise 3.3. Work this out explicitly in the case that the morphisms (φ′, Φ′) and
(φ′′, Φ′′) are both the morphism (eG, 1Λ) from Λ ⇉ Λ to G ⇉ Λ. The result should be
a groupoid presentation for G (in the sense of Example 3.8). Notice that the correct
answer is not Λ ×G Λ ⇉ Λ ×Λ Λ.
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Example 3.14. Given R′
⇉ U ′ and R′

⇉ U , a morphism γ : U ′ → R will associate
to every object of [R′

⇉ U ′]pre a morphism in [R ⇉ U ]pre (by composition with γ). We
can give an explicit description of the category

(3) HOM([R′
⇉ U ′]pre, [R ⇉ U ]pre).

The objects are morphisms (φ, Φ) of groupoid schemes. The morphisms from (φ, Φ) to

(φ̃, Φ̃) corespond bijectively with morphisms of schemes γ : U ′ → R satisfying s◦γ = φ,

t ◦ γ = φ̃, and m(γ ◦ s, Φ̃) = m(Φ, γ ◦ t).

Every morphism of groupoid schemes will determine a morphism of stacks. The
converse is not true, as we have seen. For instance, given a G-torsor on a scheme X,
a corresponding morphism X → BG will be (isomorphic to) one that comes from a
morphism from X ⇉ X to G ⇉ Λ only when the given G-torsor is trivial. However,
if we take U → X to be an étale cover which trivializes the given G-torsor, and R =
U ×X U (Example 3.1), then R ⇉ U will be a different atlas for X (Example 3.8), and
there will exist a morphism from R ⇉ U to G ⇉ Λ reproducing, up to isomorphism,
the given morphism X → BG.

Example 3.14 will yield, as an application, a method for computing the set of 2-
morphisms between a pair of morphisms of stacks. If f and g are morphisms of stacks
X′ → X, represented concretely by morphisms of groupoids from R′

⇉ U ′ to R ⇉ U ,
then any 2-morphism f ⇒ g will come from a unique morphism in the HOM-category
(3) of associated CFGs. Now we know that this HOM-category can be described entirely
in terms of morphisms of schemes.

Example 3.15. Here is a general construction which produces a new groupoid
scheme starting with a groupoid scheme R ⇉ U and a morphism U ′ → U . This
construction encapsulates refinements of atlases (e.g., when U ′ → U is an étale covering
map), as well as the atlases of sub-CFGs (e.g., when U ′ is an open subscheme of U).
First, we recall that a morphism of groupoid schemes R′

⇉ U ′ to R ⇉ U that satisfies
Conditions 1.3(i)–(ii) corresponds, morally at least, to an isomorphism of stacks. Given
R ⇉ U and an arbitrary morphism U ′ → U , we choose the R′ dictated by Condition
1.3(i). Then we obtain a groupoid scheme R′

⇉ U ′, where R′ = R ×U×U (U ′ ×U ′), the
projection to U ′ × U ′ is (s′, t′), and m′((r, u′

1
, u′

2
), (r̃, u′

2
, u′

3
)) = (m(r, r̃), u′

1
, u′

3
).

Exercise 3.4. In case R ⇉ U is the atlas for M1,1 (Example 3.10) and U ′ =
Spec(C) is a point mapping to u0 ∈ U , then R′ will be Aut(E0) where E0 is the elliptic
curve corresponding to the point u0.

To continue the discussion of Example 3.15, suppose now that U ′ →֒ U is the
inclusion of a (locally closed) subscheme, and suppose further that

(4) s−1(U ′) = t−1(U ′).

Then R′ will be equal to s−1(U ′). When R ⇉ U is an atlas for an algebraic stack X,
there will be a dictionary between algebraic substacks of X and subschemes U ′ of U

satisfying (4). Substacks of an algebraic stack will play a role analogous to subschemes
of a scheme. For instance, for [X/G], these will be the [Y/G] as Y ranges over the
G-invariant subschemes of X.
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Just as a complex algebraic variety is made up of a collection of points (satisfying
the defining equations of the variety), a stack satisfying appropriate hypotheses (e.g., a
reduced Deligne–Mumford stack, separated and of finite type over Spec(C)) will have
“points”, each of which is a copy of BG for some finite group G. The moduli stacks of
curves and complex orbifolds described the Introduction can be thought of in this way,
and one can thus get a rough picture of what a stack “looks like”.

Condition (4) is significant; it fails, e.g., if U ′ is a point of U (for general R ⇉ U).
The next exercise indicates how to “saturate” U ′ to a bigger subscheme which will satisfy
(4). So, for instance, in Exercise 3.4, a point of U will determine a point-like closed
substack, isomorphic to B(Aut(E0)). The next exercise will tell us how to produce the
corresponding closed subscheme of U that satisfies (4).

Exercise 3.5. Let U ′
0

be a subscheme of U . Define U ′ = t(s−1(U ′
0
)). This satisfies

(4), at least as subsets of R. [Hint: both sides are equal to pr
2
((s ◦ pr

1
)−1(U ′

0
)).]

In good cases, the U ′ produced in Exercise 3.5 will make sense as a subscheme
of U , and (4) will hold as an equality of subschemes of R. For instance, usually s

and t will be étale, or smooth, or flat and locally of finite presentation. Any of these
is enough to guarantee that s and t are open morphisms. Then, whenever U ′

0
is an

open subscheme of U , the scheme U ′ produced in Exercise 3.5 will be a larger open
subscheme of U . It will satisfy the equality (4): both s−1(U ′) and t−1(U ′) will be equal
to the same open subscheme R′ ⊂ R. There will be a corresponding open substack,
having a groupoid presentation R′

⇉ U ′. It will further emerge that the groupoid
scheme R′

0
:= R ×U×U (U ′

0
× U ′

0
) ⇉ U ′

0
that arises by applying the construction of

Example 3.15 to the morphism U ′
0
→ U , is another groupoid presentation for this

substack.
In the next chapter, when we have the stackification [R ⇉ U ] of [R ⇉ U ]pre at our

disposal, we will give statements concerning these stacks [R ⇉ U ] which are analogous
to the statements appearing in Examples 3.13 through 3.15.

Answers to Exercises

3.1. (a) i ◦ e = m ◦ (e ◦ s ◦ (i ◦ e), i ◦ e) = m(e ◦ t ◦ e, i ◦ e) = m(e, i ◦ e) = e.
(b) m ◦ (e, e) = m ◦ (e ◦ s ◦ e, e) = m ◦ (e ◦ s, 1R) ◦ e = e. (c) Copy a proof that
(f · g)−1 = g−1 · f−1 in a group, or better, in a groupoid, with arrows f : x → y,
g : y → z. Start with the analogue of (g · f)−1 · (g · f) = 1x, which is the identity
m ◦ (m, i ◦m) = e ◦ s ◦m. Corresponding to ((g · f)−1 · g) · f = 1x, we have the identity
m ◦ (pr

1
, m ◦ (pr

2
, i ◦ m)) = e ◦ s ◦ m [which is true since m ◦ (pr

1
, m ◦ (pr

2
, i ◦ m)) =

m ◦ (m ◦ (pr
1
, pr

2
), i ◦ m)) = m ◦ (m, i ◦ m)]. Next write (g · f)−1 · g = f−1, and prove

the identity m ◦ (pr
2
, i ◦ m) = i ◦ pr

1
. Finally, multiply on the right by g−1. This gives

m ◦ (i ◦ pr
2
, i ◦ pr

1
) = m ◦ (i ◦ pr

2
, m ◦ (pr

2
, i ◦ m)) = m ◦ (m ◦ (i ◦ pr

2
, pr

2
), i ◦ m)) =

m ◦ (e ◦ t ◦ pr
2
, i ◦ m)) = m ◦ (e ◦ t ◦ pr

2
, i ◦ m)) = m ◦ (e ◦ s ◦ i ◦ m, i ◦ m)) = i ◦ m, as
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required. (d) The left-hand square comes from the following diagram with fiber squares

R t×s R
(i◦pr

1
,m)

∼
//

pr
1

��

R t×s R
pr

2
//

pr
1

��

R

s

��
R

i

∼
// R

t
// R

while a similar diagram takes care of the right-hand square.

3.2. Given S ′′′ → S ′′ → S ′ → S, a triple of composable morphisms gives rise to
(γ′′, γ′ ◦ f ′′, γ ◦ f ′ ◦ f ′′) → R t×s R t×s R t×s R. Applying m ◦ (1R ×m) = m ◦ (m× 1R)
gives associativity of composition of morphisms in [R ⇉ U ]pre.

3.3. This is Λ ×Λ G ×Λ Λ ⇉ Λ ×Λ G ×Λ Λ, which is G ⇉ G.

3.4. We have R′ = (s, t)−1(u0, u0), which is the automorphism group of E0.

3.5. We have s−1(t(s−1(U ′
0
))) = pr

2
(pr−1

1
(s−1(U ′

0
))) = pr

2
(m−1(s−1(U ′

0
))). The last

step, showing this equals t−1(t(s−1(U ′
0
))), uses the fact from Exercise 3.1(d) that R t×sR

is, by (pr
2
, m), isomorphic to the fiber product of t : R → U with itself.



Version: 13 October 2006

CHAPTER 4

Stacks and Stackification

In this chapter we will endow our base category S with an additional structure, a
Grothendieck topology. Using Grothendieck topologies it makes sense to speak of sheaves
over a category. To a topological space, for instance, one associates the category of all
open sets with inclusion maps. A sheaf over a topological space is given in terms of
this category. Reflecting upon the definition of sheaves, one discovers that the essential
notion needed to write down what a sheaf is, is that of a covering family. For the
category associated with a topological space, these are just families of inclusions that
cover the image.

Several of our examples drawn from algebraic geometry have illustrated the short-
comings of the usual Zariski topology. For many groupsG (e.g., finite groups), G-torsors
are almost never locally trivial for the Zariski topology. When we encountered modular
families of elliptic curves and noted the property that every family can be analytically
locally obtained from these by pullback, it was shown by example that this statement
is no longer true in the algebraic setting if we use the Zariski topology. What works in
both of these cases is to interpret “locally” to mean locally for the étale topology, which
is a Grothendieck topology. For the formal definition of a Grothendieck topology see
the Glossary.

A category endowed with a Grothendieck topology is called a site. Thus it makes
sense to speak of sheaves on a site. We use the topology on S to define what it means for
a CFG over S to be a stack. In fact, there will be two stack axioms. If a CFG satisfies
only the first it is called a prestack. If the CFG is that associated with a presheaf as
in Example 2.4, then the stack axioms reduce to the sheaf axioms. In this way, stacks
appear as generalizations of sheaves.

In our “key case”, where S is the category of schemes over the base scheme Λ, we
put the étale topology on S. In this topology a family of maps {Ui → S} is a covering
family if all structure maps Ui → S are étale and

∐
i Ui → S is surjective.

1. The stack axioms

Definition 4.1. A site is a category together with a Grotendieck topology. When
the choice of Grothendieck topology on a category S is understood, we will often omit
explicit mention of it and refer, e.g., to a CFG over a site S.

Let F → S be a CFG over a site S. The key case is that of S being the category of
schemes over Λ with the étale topology, where Λ a fixed base scheme. The reader may
consider only this case at a first reading. Another good example to keep in mind is the
category of open subsets of a topological space, and inclusions of open subsets.

59



60 Stacks and Stackification

Let x and y be objects of F over the same object S of S. Recall, if T is any scheme
over S, with structural map f : T → S, there are pullbacks f ∗(x) and f ∗(y), each
defined up to canonical isomorphism. We define a presheaf IsomF(x, y) by setting

IsomF(x, y)(T ) = {isomorphisms from f ∗(x) to f ∗(y) in FT}.

Because this is defined for T equipped with a structural map to S, it is a presheaf
on the category S. (More common notation, in this context, would be S/S, the slice

category of schemes over S.) The definition appears to depend on choices of pullbacks
f ∗(x) and f ∗(y), but if x̄ and ȳ denote other choices of pullbacks, then using the
canonical isomorphisms x̄ ∼= f ∗(x) and ȳ ∼= f ∗(y) we can canonically identify the set
of isomorphisms x̄ → ȳ with the set of isomorphisms f ∗(x) → f ∗(y). To be a presheaf
means there are restriction maps: given g : U → S and a morphism h : U → T such that
g = f ◦ h, then there is a unique morphism ψ : g∗(x) → g∗(y) in FU whose composite

with g∗(y) → f ∗(y) is equal to the composite g∗(x) → f ∗(x)
ϕ
→ f ∗(y) for some given

ϕ ∈ IsomF(x, y)(T ). Then h∗ϕ is this morphism ψ.
The category S inherits a Grothendieck topology from S, in which a set of mor-

phisms in S is deemed a covering family if the collection of underlying morphisms of
schemes in S is a covering family. The first of the stack axioms is that this presheaf is
a sheaf for this inherited topology.
Axiom 1. If {Tα → T} is a covering family in the category of schemes over S, then

IsomF (x, y)(T ) →
∏

α

IsomF(x, y)(Tα) ⇉

∏

α,β

IsomF(x, y)(Tα ×T Tβ)

is an exact sequence of sets.1

Definition 4.2. A CFG F which satisfies Axiom 1 (for every S and pair of objects
x and y over S) is called a prestack.

Let us verify Axiom 1 in some of our examples. For Mg, given two families π : C → S

and π′ : C ′ → S, and given T → S, then IsomMg
(π, π′)(T ) is the set of isomorphisms

T×SC → T×SC
′ over T . Let {Tα → T} be a covering family. Let {Tα×SC → Tα×SC

′}
be isomorphisms. The condition to pull back by either projection to the same element
of IsomMg

(π, π′)(Tα ×T Tβ) for every α and β is equivalent to the equality of the two
composite morphisms, involving the two projections:

∐

α,β

Tα ×T Tβ ×S C ⇉

∐

α

Tα ×S C → T ×S C
′.

By descent for morphisms to a scheme (Proposition A.13), this condition implies there
is a unique morphism T ×S C → T ×S C

′ whose composite with
∐
Tα ×S C → T ×S C

is that indicated above. This morphism is an isomorphism because it becomes an
isomorphism after faithfully flat base change (by [EGA IV.2.7.1]).

To verify that BG is a prestack, we use descent for morphisms as above to prove the
existence of an isomorphism given one locally. It remains to see that it is G-equivariant,

1A sequence of sets A → B ⇉ C is exact if A is mapped bijectively onto the set of elements in B

which have the same image in C by the two maps from B to C.
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but this amounts to checking equalities of morphisms, and again we use descent for
morphisms (actually just the uniqueness part of descent for morphisms). The same
argument applies for Mg,n: we use descent for morphisms to produce the isomorphism,
and then the uniqueness assertion of descent for morphisms to check compatibilities of
the sections. Similar arguments apply for [X/G], Vn (vector bundles), Cn (n-sheeted
coverings) and the other variants of moduli stacks Mg, Mg,n, Mg,n(X, β).

The same kind of argument also applies to the CFG [R ⇉ U ]pre obtained from a
groupoid scheme R ⇉ U . In this CFG, we recall, a morphism is given by a map to R.
So, if R ⇉ U is any groupoid scheme, the CFG [R ⇉ U ]pre is a prestack.

2. Stacks

A prestack is a stack if it satisfies a descent-type hypothesis, to the effect that an
object can be constructed locally by gluing. We make use of projection maps p1 : Tα×T

Tβ → Tα and p2 : Tα×T Tβ → Tβ , or for T ′ → T , projection maps p1, p2 : T ′′ → T ′ where
T ′′ = T ′ ×T T

′.
Axiom 2. If {Tα → T} is a covering family, then given any collection of objects
tα over Tα and isomorphisms ϕαβ : p∗

1
tα → p∗

2
tβ over Tα ×T Tβ satisfying the cocycle

condition, there is an object x over T and for each α, an isomorphism λα : xα → tα,
where xα denotes a pullback to Tα. These isomorphisms are required to satisfy the
natural compatibility condition on Tα ×T Tβ.

The cocycle condition states that, with projections p12 : Tα×T Tβ×T Tγ → Tα×T Tβ ,
etc., the diagram

p∗
12
p∗

1
tα

p∗
12
ϕαβ

// p∗
12
p∗

2
tβ p∗

23
p∗

1
tβ

p∗
23
ϕβγ

��
p∗

13
p∗

1
tα

p∗
13
ϕαγ

// p∗
13
p∗

2
tγ p∗

23
p∗

2
tγ

commutes, where the equal signs denote canonical isomorphisms of pullbacks. The
natural compatibility condition on Tα ×T Tβ is the commutativity of the following
diagram

p∗
1
xα

p∗
1
λα

// p∗
1
tα

ϕαβ

��
p∗

2
xβ

p∗
2
λβ

// p∗
2
tβ

(again involving a canonical isomorphism of pullbacks denoted with an equal sign).

Definition 4.3. A CFG F is a stack if it satisfies both Axiom 1 and Axiom 2.

In Axiom 2, the tuple of objects xα, together with isomorphisms ϕαβ satisfying the
cocycle condition, is called a descent datum. If the conclusion of Axiom 2 holds,
we say the descent datum is effective. The condition in Axiom 2 can alternatively
be expressed by writing T ′ for the disjoint union of all the Tα, and then speaking of a
single object over T ′ and an isomorphism of its pullbacks to T ′′ = T ′×T T

′. In practice
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this gives an equivalent formulation of Axiom 2. But this involves two subtleties. First,
the disjoint union of the Tα is not required to exist in the category S. Second, if we
restate Axiom 2 using only one-element covering families, then there will be no provision
requiring a choice of objects ti over Ti, for some collection of i, to determine an object
over

∐
Ti. The category of schemes has arbitrary disjoint unions. The second issue is

avoided when the following hypothesis is satisfied.
Hypothesis. We suppose S is the category of schemes over Λ with the étale topology,
and F is a CFG which satisfies: for any collection of schemes Sα, if we set S =

∐
α Sα,

then some (or equivalently, any) choice of change of base functors FS → FSα
determines

an equivalence of categories

FS →
∏

α

FSα
.

(The product category, on the right, is the category whose objects are tuples of objects
in FSα

for each α, and whose morphisms are tuples of morphisms.)
Assuming the Hypothesis, Axiom 2 is equivalent to:

Axiom 2′. If f : T ′ → T is a covering map (meaning that {f} is a one-element covering
family), and x′ is any object over T ′, with isomorphism ϕ : p∗

1
x′ → p∗

2
x′ satisfying the

cocycle condition p∗
23
ϕ ◦ p∗

12
ϕ = p∗

13
ϕ, then there exists an object x over T and an

isomorphism f ∗x→ x′ over T ′ such that p∗
2
λ = ϕ ◦ p∗

1
λ.

The Hypothesis is satisfied by all of CFGs over schemes that we have seen as ex-
amples. An advantage of Axiom 2′ is that it nicely parallels many assertions from the
theory of descent (Appendix A). For instance, when G is an affine group scheme over
the base scheme Λ, then Axioms 1 and 2′ are implied by (a) and (b), respectively, of
Corollary A.16. This gives us the first of several examples of stacks that we now list:

(1) BG is a stack, for any affine group scheme G over Λ.
(2) X is a stack for any scheme X: Axioms 1 and 2 follow from descent for mor-

phisms to X.
(3) More generally, if F = h is the CFG associated to a presheaf h on S, then the

stack axioms for F are equivalent to the sheaf axioms.
(4) Combining the first two examples, the CFG [X/G] is a stack, for any affine

group scheme G acting on a scheme X, respectively.
(5) The following are stacks: Mg and Mg for g ≥ 2; Mg,n and Mg,n for 2g+n ≥ 3;

Mg,n(X, β). To show these are stacks, use Proposition A.18 to verify Axiom 2′,
applied to the relative dualizing sheaf of a family of (stable or smooth) curves;
the relative dualizing sheaf twisted by the sections; or twisted by the pullback
of an ample line bundle on the projective variety X.

(6) The CFG Vn is a stack by Proposition A.11. The CFG Sn is a stack by
Proposition A.12.

The hypothesis that G is an affine group scheme is a convenient one because it is
satisfied for the most common linear algebraic groups (GLn, PGLn, etc.), as well as for
finite groups. However the assertions can be generalized to the case G quasi-affine by
appealing to the more general descent result Proposition A.17.
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Exercise 4.1. Which of the following CFGs are prestacks? Which are stacks? (a)
the CFG of families of (smooth) genus 0 curves. (b) The category of finite flat covers
E → S of degree d (for some integer d). (c) The CFG associated with the presheaf
whose sections on S are the isomorphism classes of families of elliptic curves over S.
(d) The category of projectivized vector bundles P(V ) → S.

If F and G are stacks, then a morphism of stacks from F to G will be just a morphism
f : F → G of CFGs. We say f is an isomorphism when it is an isomorphism of CFGs
(i.e., an equivalence of categories). If F , G, and H are stacks, and F → H and G → H
are morphisms, then F ×H G is a stack. Checking this involves just routine verificaion
of axioms, e.g., a descent datum for F×HG consists of a descent datum for F , a descent
datum for G, and compatible isomorphisms in H; by Axiom 2 for F and G we produce
objects and by Axiom 1 for H we produce an isomorphism, which taken together show
that the descent datum for F ×H G is effective.

Remark 4.4. The stack axioms for a CFG on a general site can be stated in
a way that avoids any reference to the presheaf IsomF(x, y). It will be convenient
to have these reformulations below, in §4.4. For Axiom 1, the CFG axioms let us
identify isomorphisms f ∗(x) → f ∗(y) in FT with morphisms f ∗(x) → y over f : T → S.
Moreover the axiom applies in case x is an object over T rather than over S (by applying
the axiom as stated to the objects x and f ∗(y) over T ). So the axiom is equivalent to:

For any f : T → S, objects y over S and t over T , covering family {Tα → T} and
morphisms tα → t over Tα → T , let tαβ → tα and tαβ → tβ be morphisms over the
respective projections from Tαβ := Tα×T Tβ such that the composite morphisms to t are
equal. Then, composition with tα → t induces a bijection between morphisms t → y

over f and tuples (tα → y)α over Tα → S such that the diagram

tαβ //

��

tβ

��
tα // y

commutes, for every α and β.
There is also a restatement of Axiom 2. Pullbacks in a CFG are only determined up

to isomorphism, so there is no loss of generality in assuming every isomorphism ϕαβ in
the axiom to be the identity. This means objects tαβ are given, each with a morphism
to tα identifying tαβ with p∗

1
tα and a morphism to tβ identifying tαβ also with p∗

2
tβ. We

introduce Tαβγ := Tα ×T Tβ ×T Tγ. If tαβγ → tαβ is a morphism over p12 : Tαβγ → Tαβ ,
then the CFG axioms dictate a unique tαβγ → tβγ over p23 making a commutative
square with tβ. Axiom 2, restated, is that in the diagram

tαβγ

||yy
y
y
y

""E
E

E
E

E



��
tαβ

�� ""E
E

E
E

E
E

tαγ
yy

||yy

EE

""E
E

tβγ

||yy
y
y
y

��
tα tβ tγ
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if the two curved arrows, defined to be the unique morphisms over p13 making the
left-hand square resp. right-hand square commutative, are equal (this is the cocycle
condition), then there exists an object t over T and morphisms tα → t such that the
composites tαβ → tα → t and tαβ → tβ → t are equal, for every α and β.

3. Stacks from groupoid schemes

Given a groupoid scheme R ⇉ U , we saw that the associated CFG [R ⇉ U ]pre

is a prestack. For instance, Example 3.10 shows that [G ⇉ Λ]pre is equivalent to the
category of trivial G-torsors. A general G-torsor is only locally trivial, which means
that Axiom 2 will fail.

In this case, it is clear how to proceed. We enlarge the category to contain all
the locally trivial G-torsors, and we obtain the category BG which is (at least for
an interesting class of group schemes G) a stack. In this section, we imitate this
construction for a general groupoid scheme. There will be a notion of (R ⇉ U)-torsor.
This will be a stack when the groupoid satisfies a hypothesis that allows a result from
the theory of descent to be applied, akin to requiring G to be affine or at least quasi-
affine over the base scheme.

There are two main ideas that underlie the definition we are about to give. First, we
are trying to imitate the case ofBG, with its natural morphism Λ → BG (corresponding
to the trivial G-torsor S×G→ S for every S in S). If T is a scheme and T → BG is a
morphism, corresponding to the G-torsor E → T , then as we saw in Example 2.25(3)
we have a 2-cartesian diagram

E //

��

Λ

��
T // BG

So in the case of general R ⇉ U representing (eventually) a stack F we should be aiming
to construct T×FU . The second main idea is to focus on the diagonal (s, t) : R ⇉ U×U ,
which will captures some intrinsic properties of the stack. For instance, in the case of
F = X, arbitrary U , and R = U ×X U (Example 3.1), the morphism R → U × U

is obtained by base change from the diagonal of X. Hence properties of X that are
encoded in the diagonal show up as properties of R ⇉ U×U (e.g., X separated implies
R → U × U is a closed embedding).

Consider the prestack [R ⇉ U ]pre. A typical descent datum, as in Axiom 2′, would
consist of a morphism ϕ : T ′ → U (object over T ′) and a morphism Φ: T ′′ → R satis-
fying s ◦ Φ = ϕ ◦ p1 and t ◦ Φ = ϕ ◦ p2 (morphism from the pullback by p1 : T ′′ → T ′

to the pullback by p2 : T ′′ → T ′), required to satisfy the cocycle condition; this, it can
be checked, is precisely the condition for (ϕ,Φ) to be a morphism of groupoid schemes
from T ′′ → T ′ to R ⇉ U . One approach to get a stack would be add all such morphisms
of groupoid schemes as extra objects. This would need to be done carefully, e.g., there
need to be isomorphisms between objects over T defined relative to different covering
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schemes T ′. We will comment on such an approach below, in Remark 4.15. The con-
ceptually simpler approach that we take is to put restrictive hypotheses on T ′ → T to
make it more canonical; these will eventually identify it with projection from T ×F U .

Locally, we can say what this needs to be. Over T ′, we have — at least on some
formal level — identifications of T ′ ×F U with (T ′ × U) ×F×F F , and then with (T ′ ×
U) ×U×U R. That is, we want to replace T ′ → T with a scheme over T which, upon
pullback by T ′ → T , becomes isomorphic to T ′×U,sR. This is a scheme over T ′×U (by
the first projection to T ′, and by the second projection composed with t to U) which
is obtained by base change from the relative diagonal R → U × U . We will be able to
apply descent and get a scheme over T × U , provided that R → U × U belongs to a
class of morphisms which satisfies effective descent. We focus on the class of quasi-affine

morphisms, for which the needed descent result is Proposition A.17.
Below we use notation for projections pr

1
, pr

2
, pr

12
, etc., from fiber products, and

we adopt the convention that in any ×U R the map is the source map s and in any
R×U the map is the target t.

Definition 4.5. Let R ⇉ U be a groupoid scheme. Then an étale locally trivial

(R ⇉ U)-torsor over T consists of a scheme E over T with a morphism ϕ : E → U and
a morphism a : E ×U R→ E over T which satisfy ϕ ◦ a = t ◦ pr

2
. Further, we require:

(identity) a ◦ (1E, e ◦ ϕ) = 1E ,
(multiplication) a ◦ (1E ×m) = a ◦ (a× 1R),
(inverse) a ◦ (a, i ◦ pr

2
) = pr

1
.

There must exist étale surjective T ′ → T with a map T ′ → U and an isomorphism
λ : T ′ ×T E → T ′ ×U R over T ′ such that t ◦ pr

2
◦λ = ϕ ◦ pr

2
and λ ◦ (1T × a) =

(1T ×m) ◦ (λ× 1R).

The conditions of Definition 4.5 can be expressed by the commutativity of the
diagrams

E
(1E ,e◦ϕ)

//

1E
##H

H
H

H
H

H
H

H
H

H
E ×U R

a

��

E ×U R×U R
1E×m

//

a×1R

��

E ×U R

a

��

E ×U R
(a,i◦pr

2
)
//

pr
1

&&M
M

M
M

M
M

M
M

M
M

M
M

E ×U R

a

��
E E ×U R

a
// E E

Together, they imply that

E ×U R
pr

2
//

pr
1

��
a

��

R

s

��
t

��
E

ϕ
// U

(1)

is a morphism of groupoid schemes. The groupoid scheme structure on the left is
with identity morphism (1E, e ◦ ϕ), inverse morphism (a, i ◦ pr

2
), and multiplication

m : (E×U R) a×pr
1
(E×U R) → E×U R defined by ((x, r), (a(x, r), r′)) 7→ (x,m(r, r′)).



66 Stacks and Stackification

We note that the square (1) is cartesian with either pair of vertical morphisms (the left-
hand morphisms, by construction, and the right-hand morphisms, by an application of
the “inverse” condition of Definition 4.5).

The local triviality requirement dictates morphisms of groupoid schemes

T ′ ×T E ×U R
λ×1R

//

pr
12

��
1T ′×a

��

T ′ ×U R×U R
pr

3
//

pr
12

��
1T ′×m

��

R

s

��
t

��
T ′ ×T E

λ
// T ′ ×U R

t◦pr
2

// U

such that the composite morphism of groupoid schemes is the same as that which we
obtain by making a base change of the morphisms E ×U R ⇉ E by T ′ → T and
composing with the morphism of groupoid schemes in (1). In particular, the large
outer square is cartesian by either pair of vertical maps. The right half of the diagram
has a natural groupoid scheme structure derived from the morphism T ′ → U . The
right-hand square is cartesian (by either pair of vertical maps). In the left-hand square
the horizontal maps are isomorphisms. The maps pr

12
and 1T×m identify T ′×UR×UR

with the fiber product of T ′ ×U R with itself over T ′. Consequently, the maps pr
12

and
1T ×a identify T ′×T E×U R with the fiber product of T ′×T E with itself over T ′. Since
this isomorphism is derived by base change by the étale surjective morphism T ′ → T ,
we see that we have an isomorphism

(pr
1
, a) : E ×U R

∼→ E ×T E

(it is an isomorphism because it becomes an isomorphism after after étale surjective
base change). In other words, E ×U R ⇉ E is an atlas for T , and (1) is a morphism
of groupoid schemes to R ⇉ U . Notice that this is a morphism of groupoid schemes
which induces cartesian diagrams (by selecting the left-hand pair or right-hand pair of
vertical maps in the diagram).

There is an obvious CFG structure on (R ⇉ U)-torsors, in which a morphism over
S → T is a diagram

D ×U R //

�� ��

E ×U R //

�� ��

R

�� ��
D //

��

E //

��

U

S // T

such that the bottom square is cartesian (and hence so is the upper-left square, by
either set of vertical morphisms).

Proposition 4.6. Let R ⇉ U be a groupoid scheme over Λ. Assume that the

relative diagonal (s, t) : R→ U × U is quasi-affine. Then the CFG of (R ⇉ U)-torsors
is a stack for the étale topology on schemes over the base scheme Λ.

Proof. In any object (1) in the category of (R ⇉ U)-torsors, the scheme E is
quasi-affine over T × U (by its structure map to T and map ϕ to U). This is because
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after base change by T ′×U → T×U , it is identified with a morphism T ′×UR → T ′×U
which is obtained via base change from the quasi-affine relative diagonal (s, t):

T ′ ×U R //

��

R

(s,t)

��

T ′ × U // U × U

Now we imitate the use of descent for schemes in Corollary A.16. Given a descent
datum for an étale cover T ′ → T , descent for schemes quasi-affine over their base
schemes (Corollary A.17) provides a scheme E quasi-affine over T × U . The action
map a : E ×U R → E is obtained using descent for morphisms. The compatibility of a
with the map E → U and the additional conditions (identity, multiplication, inverse)
all hold since they hold after base change by T ′ → T . Moreover, the local triviality
condition holds since it holds on the cover. �

Definition 4.7. Let R ⇉ U be a groupoid scheme whose relative diagonal R →
U × U is quasi-affine. Then the associated stack, denoted [R ⇉ U ], is defined to
be the category of (R ⇉ U)-torsors (which is indeed a stack, according to Proposition
4.6).

The “second half” of the dictionary between groupoid schemes and algebraic stacks,
mentioned in the previous chapter, will be the statement that a given algebraic stack
F is isomorphic to the stack [R ⇉ U ] coming from a suitable cover U → F . (As in
Proposition 3.5, R is taken so R ∼= U ×F U .) So these are an important class of stacks
to understand.

The hypothesis (s, t) quasi-affine is satisfied in many common situations. We list
a few of these. First, whenever s and t are étale, and (s, t) is quasi-compact and
separated, then it is quasi-affine; this is because any quasi-finite separated morphism
is quasi-affine [EGA IV.18.12.12]. If s and t are themselves quasi-affine, then (s, t)
will be quasi-affine provided R is quasi-separated, because it can be factored through
R × R. For instance, the groupoid scheme X × G ⇉ X arising from a group action
has this property whenever G is a group scheme, quasi-affine over Λ, and X is quasi-
separated over Λ. (Any locally Noetherian scheme is quasi-separated over an arbitrary
base scheme, so this applies to most group actions met in practice.)

Exercise 4.2. Show that BG is isomorphic (as a CFG) to the stack [G ⇉ Λ],
where G is an affine group scheme over Λ. Do the same for [X/G].

4. Stackification via torsors

Let R ⇉ U be a groupoid scheme. There is a natural morphism of CFGs from
[R ⇉ U ]pre to [R ⇉ U ]. To an object T → U in [R ⇉ U ]pre we associate the natural
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groupoid structure that is obtained by pullback:

T ×U R ×U R
pr

3
//

pr
12

��
1T ×m

��

R

s

��
t

��
T ×U R

t◦pr
2

// U

(2)

The scheme T ×U R with morphism t◦pr
2

to U and morphism 1T ×m : T ×RU×U R →
T ×U R are an object of [R ⇉ U ]. Given a morphism γ : T ′ → R over f : T ′ → T ,
between objects g′ : T ′ → U and g : T → U (meaning, we recall, s ◦ γ = g′ and
t ◦ γ = g ◦ f), we define Γ: T ′ ×U R → R by Γ = m(i ◦ γ × 1R). Then we send the
morphism γ to the morphism

T ′ ×U R×U R
(f◦pr

1
,Γ)×1R

//

pr
12

��
1T ′×m

��

T ×U R×U R

pr
12

��
1T×m

��

T ′ ×U R
(f◦pr

1
,Γ)

// T ×U R

(3)

in [R ⇉ U ].
In the case [G ⇉ Λ], this associates to an object T (i.e., T → Λ) the trivial G-torsor

T ×G→ T . A morphism γ : T → G over 1T is sent to the G-equivariant isomorphism
T ×G→ T ×G, (x, g) 7→ (x, γ(x)−1g).

Exercise 4.3. Consider the descent datum of [R ⇉ U ]pre over T given by a mor-
phism of groupoid schemes (ϕ,Φ): (T ′′ → T ′) → (R ⇉ U) (as discussed in §4.3).
According to Proposition 4.6, this descent datum must be effective in [R ⇉ U ], so it
must lead to an object E → T . Show that E can be obtained from the following recipe.
The scheme T ′ ×U R is quasi-affine over T ′ × U . The two pullbacks to T ′′ × U can be
identified with T ′′

s◦Φ×s R and T ′′
t◦Φ×s R. Then the isomorphism

T ′′
s◦Φ×U R

ψ
→ T ′′

t◦Φ×U R

given by ψ = (pr
1
, m(i ◦ Φ × 1R)) is a descent datum which by Proposition A.17

determines E, quasi-affine over T × U , and an isomorphism λ : T ′ ×T E → T ′ ×U R.
The action a : E ×U R → E is then determined by descent for morphisms of schemes
by the requirement that a ◦ pr23 : T ′ ×T E ×U R → E is equal to the composite

T ′ ×T E ×U R
λ×1R−→ T ′ ×U R×U R

1T ′×m
−→ T ′ ×U R

λ−1

−→ T ′ ×T E
pr

2−→ E.

Definition 4.8. Let F0 be a CFG/S. Then a stackification of F0 is a stack F
together with a morphism of CFGs b : F0 → F such that for any stack G the functor

HOM(F ,G) → HOM(F0,G)

induced by composition with b is an equivalence of categories.

We wish to assert that the stack of (R ⇉ U)-torsors is a stackification of [R ⇉ U ]pre.
To do this, we first need a preliminary result.



Stackification via torsors 69

Proposition 4.9. Let F0 be a CFG, let F be a stack, and let b : F0 → F be a

morphism of CFGs which, as a functor, is full and faithful. If, for every object T in S
and every object x of F over T there exists a covering family {Tα → T} and for every

α an object tα in F0 and a morphism b(tα) → x over Tα → T , then F is a stackification

of F0 (by the morphism b).

Proof. To show that HOM(F ,G) → HOM(F0,G) is essentially surjective, we sup-
pose that f0 : F0 → G is given. Let x be as in the statement of the proposition. So there
is a covering family {Tα → T}, with morphisms b(tα) → x. Set Tαβ = Tα ×T Tβ and
Tαβγ = Tα ×T Tβ ×T Tγ . Choose tαβ → tα over Tαβ → Tα. By the CFG axioms there is
a unique morphism b(tαβ) → b(tβ) over Tαβ → Tβ whose composite with the morphism
to x is equal to the composite b(tαβ) → b(tα) → x, and since b is fully faithful this is
the image under b of a morphism tαβ → tβ. Now let tαβγ → tαβ be any morphism over
Tαβγ → Tαβ and let tαβγ → tβγ be the unique morphism over Tαβγ → Tβγ making a com-
mutative diagram with tβ . The unique morphism tαβγ → tαγ over Tαβγ → Tαγ making a
commutative diagram with tα transforms via b to the unique morphism b(tαβγ) → b(tαγ)
whose composite with the morphism to x is equal to b(tαβγ) → b(tαβ) → x. This in
turn is equal to the composite b(tαβγ) → b(tβγ) → x, equal to the image under b of the
unique morphism tαβγ → tαγ making a commutative diagram with tγ. So we have a
commutative diagram

tαβγ

||yy
y
y
y

""E
E

E
E

E

��
tαβ

�� ""E
E

E
E

E
E

tαγ
yy

||yy

EE

""E
E

tβγ

||yy
y
y
y

��
tα tβ tγ

If we apply f0 we get a similar commutative diagram in G. Since G is a stack, it follows
from Axiom 2 (restated, as in Remark 4.4) that there is an object y, together with
morphisms f0(tα) → y, making commutative diagrams with the f0(tαβ). We define
f(x) = y.

It remains to specify how morphisms transform under f , and to supply a natural
isomorphism f ◦ b ⇒ f0. Let S → T be a morphism, x an object of F over T , and u

an object of F over S. Suppose f(x) = y, with {Tα → T}, tα, tαβ → tα, tαβ → tβ, and
f0(tα) → y are as above. Suppose f(u) = v, with {Sγ → S}, sγ, sγδ → sγ, sγδ → sδ,
and f0(sγ) → v, analogously. Now consider a morphism u→ x over S → T . We define
f(u→ x) to be the morphism v → y characterized as follows. For each α and γ let Sαγε
be a collection of objects over Sγ×T Tα (with ε in an indexing set that depends on α and
γ) such that for each fixed γ the collection {Sαγε → Sγ} is a covering family. An example
of such a family is {Sγ×T Tα → Sγ}. For each α, γ, and ε, let sαγε → sγ be a morphism
over Sαγε → Sγ Now there is a unique morphism b(sαγε) → b(tα) over Sαγε → Tα whose
composite with b(tα) → x is equal to the composite b(sαγε) → b(sγ) → u → x. As b is
fully faithful this is b applied to a unique morphism sαγε → tα. We may apply f0 and
compose with the morphism f0(tα) → y to get a morphism

f0(sαγε) → y.
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This, we claim, gives rise to a unique morphism v → y by Axiom 1, restated as in
Remark 4.4; this we take to be f(u→ x).

To verify this we consider Sαγεβδη := Sαγε×SSβδη, with sαγεβδη → sαγε lying over the
first projection map and as usual a unique morphism sαγεβδη → sβδη whose image under
b makes a commutative diagram with v. This last morphism can be obtained by starting
with the unique morphism sαγεβδη → sγδ over Sαγεβδη → Sγδ making a commutative
diagram with sγ, and then selecting the unique morphism over Sαγεβδη → Sαγε making
the diagram below with sδ commute

sγδ

��

sαγεβδηoo_ _ _

��

sγδ

��

sαγεβδηoo

��
�

�

�

sγ sαγεoo sδ sβδηoo

Then a diagram chase shows that after applying f0 it gives a commutative diagram
with v. To be able to apply Axiom 1 to get a morphism v → y, we must verify that
the two morphisms f0(sαγεβδη) → y in the following diagram, going via f0(sαγε) and via
f0(sβδη), are equal:

f0(sαγεβδη)

xxpp
p
p
p
p

�� &&M

M

M

f0(sαγε)

&&N
N

N
N

N
N

f0(sβδη)
MM

M

&&MM
M

f0(tαβ)

xxqq
q
q
q
q

��

f0(tα)

��

f0(tβ)

wwpp
p
p
p
p
p
p

y

There is a unique morphism b(sαγεβδη) → b(tαβ) whose composite with the morphism to
x is equal to the composite b(sαγεβδη) → b(sγδ) → u → x. This morphism is b applied
to some morphism sαγεβδη → tαβ. If we can show that the composite with the map
to tα is equal to sαγεβδη → sαγε → tα, and analogously for the maps to tβ, then the
dotted arrow above will make both of the upper squares in the diagram commute and
the required equality of morphisms will follow. By faithfulness it suffices to verify these
assertions after applying b. For the first assertion, both composites, further composed
with b(tα) → x, are equal to the composite b(sαγεβδη) → b(sγ) → u → x, and hence
they are equal. Similarly, both composites to b(tβ) are equal.

We claim that the morphism v → y thus produced is independent of the choice
of covering families {Sαγε → Sγ}. For this, it suffices to check that the morphism
produced is unchanged by refinement (i.e., replacing Sαγε → Sγ by Sαγελ → Sαγε → Sγ ,
where {Sαγελ → Sαγε} is a covering family) and also unchanged by a change of maps
to the Tα, i.e., re-indexing Sαγε as Sαβγλ and replacing Sαβγλ → Tα with some other
map Sαβγλ → Tβ. We leave the case of refinements as an exercise: the first step is
that, if we choose sαγελ → sαγε over Sαγελ → Sαγε, then the morphism b(sαγελ) → b(tα)
that is stipulated above is the composite b(sαγελ) → b(sαγε) → b(tα). Let us treat
changes of maps to the Tα. The maps Sαβγλ → Tα and Sαβγλ → Tβ determine a
map Sαβγλ → Tαβ . There is a unique morphism b(sαβγλ) → b(tαβ) whose composite
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with the map to x is equal to the composite b(sαβγλ) → b(sγ) → u → x. Therefore
the composite morphism b(sαβγλ) → b(tαβ) → b(tα) is the morphism stipulated in
the construction. Analogously, the composite morphism to b(tβ) is as stipulated in
the construction applied to Sαβγλ → Tβ. The maps f0(sαβγλ) → f0(tα) → y and
f0(sαβγλ) → f0(tβ) → y are then equal, since they both factor through f0(tαβ).

We have, indeed, produced a functor f . Indeed, if w → u is a morphism in F0

over R → S, with image z → v in G, then the composite z → v → y is seen to
satisfy the criteria characterizing the image under f of the composite w → u→ x. For,
if {Rπ → R} is a covering family, with Rγπι → Rπ ×S Sγ, then we take Rαγεπι over
Rγπι×Sγ

Sγαε such that for every fixed π, γ, and ι, {Rαγεπι → Rγπι} is a covering family.
We use the characterization of f(w → x) coming from the Rαγεπι. Let us suppose
f(w → u) is constructed using rγπι → rπ and rγπι → sγ. Now choose rαγεπι → rγπι
over Rαγεπι → Rγπι, and let rαγεπι → sαγε be the unique morphism over Rαγεπι → Sαγε
whose composite with sαγε → sγ is equal to the composite rαγεπι → rγπι → sγ. We have

rαγεπι
wwoo

o
''OOO

rγπι
yyttt ''OO

OO
O

sαγε

wwooo
oo

%%J
J

J

rπ sγ tα

which, upon applying b, commutes with w → u → x, and upon applying f0, commutes
with z → v → y, so the latter is equal to f(w → x). It follows immediately from
the construction that f(1x) = 1y. When x = b(t) we have f0(b(t)) in G, with maps
f0(tα) → f0(b(t)) such that both composites f0(tαβ) → f0(b(t)) are equal. Hence there
is a unique isomorphism f0(b(t)) → y compatible with the morphisms from the f0(tα).
If u = b(s) and we have a morphism u → x equal to b applied to some s → t, then
the composite v ∼→ f0(b(s)) → f0(b(t))

∼→ y satisfies the criterion which characterizes
f(u→ x). Hence we have a natural isomorphism f0 ◦ b⇒ f .

We now show that the functor between HOM categories is fully faithful. Let f
and g be morphisms F → G, and let f0 = f ◦ b and g0 = g ◦ b. Given a natural
isomorphism f0 ⇒ g0 we need to show it is produced by a unique natural isomorphism
f ⇒ g. Let b(tα) → x be as in the hypothesis. If we set y = f(x) and z = g(x)
then the given natural isomorphism yields morphisms f0(tα) → g0(tα) → z. With
tαβ → tα and tαβ → tβ such that the composite morphisms to x are equal, we have
the composite f0(tαβ) → f0(tα) → z equal to f0(tαβ) → g0(tαβ) → z, which is equal to
f0(tαβ) → f0(tβ) → z. So, by Axiom 1, restated as in Remark 4.4, there is a uniquely
determined isomorphism y → z. Naturality is the condition that v → y → z is equal
to v → w → z, where u → x is a morphism over some S → T , and v = f(u) and
w = g(u). We introduce Sαγε and sαγε as above; notice that the image v → y of u→ x

under f has the property that the composite f0(sαγε) → f0(sγ) → v → y is equal to
the composite f0(sαγε) → f0(tα) → y, and that a similar assertion holds with g0 in
place of f0 and w → z in place of v → y. To verify naturality, it suffices by Axiom 1
to verify that the composite f0(sαγε) → f0(sγ) → v → y → z is equal to the composite
f0(sαγε) → f0(sγ) → v → w → z, for every α, γ, and ε This is now a routine diagram
chase, using the naturality of f0 ⇒ g0 and the fact that the morphism y → z, resp.
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v → w, is characterized by its fitting in a commutative diagram with f0(tα) → g0(tα),
resp. with f0(sγ) → g0(sγ). �

Exercise 4.4. Supply the details to the argument that the morphism v → y (image
of u→ x under f) is unchanged by refinement.

Proposition 4.10. Let R ⇉ U be a groupoid scheme with quasi-affine relative

diagonal (s, t) : R → U × U . Then the morphism b : [R ⇉ U ]pre → [R ⇉ U ] defined in

(2) and (3) is a stackification.

Proof. We use Proposition 4.9. By the definition of [R ⇉ U ], every object is
locally isomorphic to an object in the image of b. So, it remains only to show b is fully
faithful. Morphisms in [R ⇉ U ]pre from g′ : T ′ → U to g : T → U over f : T ′ → T

are morphisms γ : T ′ → R satisfying s ◦ γ = g′ and t ◦ γ = g ◦ f . In [R ⇉ U ],
the morphisms over f from b(g′) to b(g) are diagrams (3) in which Γ: T ′ ×U R → R

satisfies s ◦ Γ = g ◦ f ◦ pr
1
, t ◦ Γ = t ◦ pr

2
, and m(Γ × 1R) = Γ ◦ (1T ′ × m). The

functor b sends γ to m ◦ (i ◦ γ × 1R). We define a map the other way sending Γ
to i ◦ Γ ◦ (1T ′, e ◦ g′). Composing the two maps in one order we have γ mapping to
i ◦m(i ◦ γ, e ◦ g′) = i ◦m(i ◦ γ, e ◦ t ◦ i ◦ γ) = γ. In other order, Γ is sent to

m ◦ (Γ × 1R) ◦ [(1T ′, e ◦ g′) × 1R] = Γ ◦ (1T ′ ×m) ◦ [(1T ′ , e ◦ g′) × 1R]

= Γ ◦ (pr
1
, m(e ◦ g′ × 1R))

= Γ.

Hence b is fully faithful. �

Remark 4.11. The universal property of Definition 4.8 characterizes the stackifi-
cation — not an isomorphism of categories (this would be to strong) — but instead up
to an isomorphism of CFGs which is canonical up to a canonical 2-isomorphism. This
means: if F ′ with b′ : F0 → F ′ also satisfies the criterion of Definition 4.8 then there
exists an isomorphism i : F → F ′ and a 2-isomorphism i ◦ b⇒ b′. And if j : F → F ′ is
another isomorphism, with j ◦ b ⇒ b′, then there exists a unique 2-isomorphism i ⇒ j

such that the diagram

i ◦ b
$,QQQQQ

QQQQQ

��
b′

j ◦ b

2:
mmmmm

mmmm
m

commutes.

Now we can give statements about the stacks associated with a CFG which are
the analogues of the statements for the corresponding prestacks that have appeared in
Examples 3.11 through 3.13.

Example 4.12. Given groupoid schemes R ⇉ U , R′
⇉ U ′, and R′′

⇉ U ′′, and
morphisms of groupoid schemes (R′

⇉ U ′) → (R ⇉ U) and (R′′
⇉ U ′′) → (R ⇉ U),

then we have

[R′
⇉ U ′] ×[R⇉U ] [R

′′
⇉ U ′′] ∼= [R′ ×U R×U R

′′
⇉ U ′ ×U R×U U

′′].
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Indeed, we have a morphism from the fiber product of the associated prestacks to
[R′

⇉ U ′] ×[R⇉U ] [R′′
⇉ U ′′] (by the universal property of the fiber product). This is

readily seen to be fully faithful. Moreover any object of [R′
⇉ U ′] ×[R⇉U ] [R′′

⇉ U ′′]
becomes, after étale pullback, isomorphic to an object in the image of this morphism.
So the criterion of Proposition 4.9 is satisfied. Combining the isomorphism of Example
3.11 with Remark 4.11, we get the promised isomorphism of stacks.

Example 4.13. A morphism of groupoid schemes from R′
⇉ U ′ to R ⇉ U de-

termines, as we have seen, a morphism of associated prestacks. This in turn deter-
mines a morphism of stacks. Indeed, composition with the stackification morphism
b : [R ⇉ U ]pre → [R ⇉ U ] is a fully faithful functor (since b is a fully faithful functor)
from HOM([R′

⇉ U ′]pre, [R ⇉ U ]pre) to HOM([R′
⇉ U ′]pre, [R ⇉ U ]). This latter

category is equivalent to the category HOM([R′
⇉ U ′], [R ⇉ U ]) by the stackification

property. Consequently, to every morphism (φ,Φ) of groupoid schemes from R′
⇉ U ′

to R ⇉ U there corresponds a morphism f : [R′
⇉ U ′] → [R ⇉ U ] (determined up to

2-isomorphism). Let (φ̃, Φ̃) be another, with corresponding f̃ . Then there is a canoni-
cally induced bijection between the morphisms in HOM([R′

⇉ U ′]pre, [R ⇉ U ]pre) from

(φ,Φ) to (φ̃, Φ̃) (which were described concretely in Example 3.12) and the 2-morphisms

f ⇒ f̃ .

Example 4.14. Let a groupoid scheme R ⇉ U be given. If R′
⇉ U ′ is a groupoid

scheme with morphism of groupoid scheme to R ⇉ U satisfying Condition 1.3(i)–(ii)
(this means R′ is isomorphic to R×U×U (U ′ ×U ′) and U ′ ×U R → U is a covering map)
then we claim that the corresponding

[R′
⇉ U ′] → [R ⇉ U ]

is an isomorphism. If we follow the steps of the previous example, we see this is
associated, by the stackification property for [R′

⇉ U ′], with the composite morphism
[R′

⇉ U ′]pre → [R ⇉ U ]pre → [R ⇉ U ]. This is a composite of fully faithful functors,
hence is fully faithful. An object of [R ⇉ U ] is locally isomorphic to one coming
from [R ⇉ U ]pre. This in turn is locally isomorphic to one coming from [R′

⇉ U ′]pre.
For this last step, start with T → U . By Condition 1.3(ii), we have a covering map
T ′ := U ′×UR×U T → T . There are morphisms s̄, t̄ : T ′ → U corresponding to the maps
s, t respectively from the middle factor R. They are isomorphic objects of [R ⇉ U ]pre

over T ′. The latter is the pullback of the given object over T , while the former is in the
image of the morphism [R′

⇉ U ′]pre → [R ⇉ U ]pre.

In particular, for X a scheme we have [X ⇉ X] ∼= X (easy), so if U → X is a
covering map and R = U ×X U then [R ⇉ U ] ∼= X.

Remark 4.15. There is another point of view on the stackification of [R ⇉ U ]pre.
Recall, we have seen that a typical descent datum for this prestack has the form of
an étale cover T ′ → T and a morphism of groupoid schemes (T ′′

⇉ T ′) → (R ⇉ U)
(where T ′′ = T ′ ×T T

′). Each T ′ → T determines a category

HOM([T ′′
⇉ T ′]pre, [R ⇉ U ]pre)
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explicitly the category whose objects are morphisms of groupoid schemes and mor-
phisms are maps T ′ → R as described in Example 3.12. As the cover T ′ is refined this
category captures more of the full stackification. Indeed one finds the claim, e.g. in [89],
that a fiber [R ⇉ U ]T of the stackification will be a sort of direct limit over covering
maps T ′ → T of the categories of morphisms of groupoid schemes from T ′′

⇉ T ′ to
R ⇉ U . Certainly, any such morphism of groupoid schemes determines a morphism
from [T ′′

⇉ T ′] to [R ⇉ U ] (Example 4.13). We have just seen that [T ′′
⇉ T ′] ∼= T .

So we have T → [R ⇉ U ], i.e. (Proposition 2.20) an object of [R ⇉ U ]T .
It is beyond the scope of this text to discuss limits of categories. Just as CFGs form

a 2-category rather than just a category and therefore familiar constructions such as
the fiber product must be handled with special care, so do categories (the 2-category of
categories is one of the principal examples), making limits of categories a tricky topic.
The concrete stackification presented in this chapter is sufficient to develop the theory
of algebraic stacks. A more abstract stackification — one which applies to an arbitrary
CFG — will be given in Part II.

Answers to Exercises

4.1. The CFG in (a) is a stack; we can apply descent for projective morphisms
taking as relatively ample invertible sheaf the relative anticanonical sheaf a smooth
family of genus 0 curves. Any finite morphism is affine, so (b) is a stack. In (c)
the prestack axiom would say that two families of elliptic curves which are locally
isomorphic must be isomorphic; the existence of isotrivial families of elliptic curves
means that this CFG is not even a prestack. The CFG in (d) is a prestack by the usual
argument, descent for morphisms to a target scheme, but it is not a stack: a conic over
a non-algebraically closed field (of characteristic 6= 2) with no rational points is not the
projectivization of a vector bundle, but it becomes isomorphic to P1 after a quadratic
field extension.

4.2. In the case of G ⇉ Λ, Definition 4.5 exactly reduces to the definition of G-
torsor. In the case of X × G ⇉ X, we have ϕ : E → X which is required to satisfy
ϕ(e · g) = ϕ(e) · g for e ∈ E, g ∈ G, i.e., is G-equivariant.

4.3. T ′ ×U R and the displayed isomorphism are what result by applying the mor-
phism [R ⇉ U ]pre → [R ⇉ U ] to the given descent datum.

4.4. Let sαγελ → sαγε be a morphism over Sαγελ → Sαγε, so that the composite
sαγελ → sαγε → sγ lies over Sαγελ → Sγ . Let sαγε → tα be the morphism that is
stipulated in the proof of the proposition, i.e., such that b(sαγε) → b(tα) → x is equal
to the composite b(sαγε) → b(sγ) → u → x. Now the composite b(sαγελ) → b(sαγε) →
b(tα) → x is equal to the composite b(sαγελ) → b(sαγε) → b(sγ) → u → x. So, in the
construction applied to the refined cover, we must take as morphism over Sαγελ → Tα the
composite sαγελ → sαγε → tα. The proposition produces v → y such that the composite
f0(sαγε) → f0(sγ) → v → y is equal to f0(sαγε) → f0(tα) → y. So the composite
f0(sαγελ) → f0(sαγε) → f0(sγ) → v → y is equal to f0(sαγελ) → f0(sαγε) → f0(tα) → y,
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and thus the same morphism v → y is the unique morphism dictated by Axiom 1 for
the refined cover.
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APPENDIX A

Descent Theory

1. History and motivation

The theory of descent in modern algebraic geometry was introduced by Grothendieck
in the Séminaire Bourbaki [35], with details and proofs offered in SGA 1 [38, Exposé
VIII]. The origins of the subject go back at least to Weil, although his (less general)
results predate the modern language of schemes. This Appendix gives a self-contained
treatment of some of the more important results which are generally gathered under
the heading, “theory of descent.” Some of the easier steps are left as exercises, but all
of these are solved in the Answers.

The idea behind descent is that, under appropriate hypotheses, objects and mor-
phisms over a scheme can be described locally. An object is described (uniquely up
to canonical isomorphism) by an object on some cover, plus a gluing map satisfying
a cocycle condition. A morphism between two objects thus specified is determined by
giving a morphism locally (i.e., on the cover), which is compatible with the gluing maps.

Let us spell this out in the particular case of vector bundles on schemes, and for
simplicity, we take our covers to be Zariski covers, fine enough that they give local
trivializations. So let T be a scheme, and E a locally free sheaf of OT -modules of some
finite rank r. Then there exists a Zariski open cover (Ui) of T and isomorphisms

(1) λi : E|Ui
→ O⊕r

Ui

of OUi
-modules for each i. If we set Uij = Ui ∩ Uj, then for any pair i and j, the

isomorphisms λi and λj determine isomorphisms ϕij : O
⊕r
Uij

→ O⊕r
Uij

via the diagram

O⊕r
Uij

ϕij

��

E|Uij

λi|Uij 88
r

r
r

r
r

r

λj |Uij
&&L

L
L

L
L

L

O⊕r
Uij

(2)

Note that specifying the transition mappings ϕij is the same as giving GLr-valued
transition functions on each Uij . The ϕij satisfy the cocycle condition: ϕii is the
identity map for every i, and for every triple i, j, k, if we set Uijk = Ui ∩ Uj ∩ Uk, then
we have

(3) (ϕjk|Uijk
) ◦ (ϕij |Uijk

) = ϕik|Uijk
.

(Note that the condition that each ϕii be the identity follows from the latter condition,
applied to the triple i, i, i.)

app-1
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Now descent for locally free sheaves in the Zariski topology is a collection of asser-
tions which imply that, given an open cover (Ui), and a collection of morphisms ϕij
satisfying the cocycle condition (3), then there exists a locally free sheaf E (unique up
to canonical isomorphism) together with local trivializations (1) such that the diagram
(2) commutes for all i and j. There is a similar assertion for morphisms, to the effect
that if the locally free sheaf F also admits local trivializations µi : F|Ui

→ O⊕s
Ui

and
transition maps ψij , then there is a bijection between morphisms h : E → F of locally
free sheaves and collections of morphisms hi : O

⊕r
Ui

→ O⊕s
Ui

for all i such that the diagram

O⊕r
Uij

ϕij

��

hi|Uij
// O⊕s

Uij

ψij

��

O⊕r
Uij hj |Uij

// O⊕s
Uij

commutes, for all i and j.
The assertions just spelled out are artificially restrictive. Indeed it is not necessary

for E to be trivialized on the cover (Ui). In fact we need not restrict to locally free
sheaves; the same considerations work in the context of arbitrary quasi-coherent sheaves.
Given a Zariski open covering {Ui} of T , and a collection Ei of quasi-coherent sheaves
on Ui, with isomorphisms ϕij : Ei|Uij

→ Ej|Uij
of sheaves of OUij

-modules, satisfying the
cocycle condition (3), then there is a quasi-coherent sheaf E on T , with isomorphisms
E|Ui

→ Ei, giving rise to these transition homomorphisms. And there is a similar version
of descent for morphisms between quasi-coherent sheaves: if E comes from Ei and ϕij ,
and F comes from Fi and ψij , then there is a canonical bijection between morphisms
h : E → F and collections hi : Ei → Fi of morphisms such that ψij ◦ hi|Uij

= hj |Uij
◦ ϕij

for all i, j. We will use this fact, which is a basic construction in algebraic geometry;
a reference is [EGA 0.3.3.1].

These assertions can be stated more succinctly, avoiding all the indices, by defining
T ′ to be the disjoint union of the open sets Ui, which comes with a canonical mapping
T ′ → T . The sheaves Ei determine a sheaf E ′ on T ′. The transition functions ϕij
amount to an isomorphism

ϕ : p∗
1
(E ′) → p∗

2
(E ′)

on T ′ ×T T
′, where p1 and p2 are the projections from T ′ ×T T

′ to T ′. The cocycle
condition asserts that p∗

23
(ϕ) ◦ p∗

12
(ϕ) = p∗

13
(ϕ) on T ′ ×T T

′ ×T T
′, where

pij : T
′ ×T T

′ ×T T
′ → T ′ ×T T

′

are the projections to the corresponding factors.
A key feature of Grothendieck’s descent theory is that it extends from Zariski cov-

erings to the more general étale and smooth coverings that are required for the theory
of stacks. In fact, the appropriate morphisms to use are quite general flat morphisms.

Notation A.1. Given a morphism f : T ′ → T of schemes, set T ′′ = T ′ ×T T
′, with

its two projections p1 and p2 from T ′′ to T ′. Let T ′′′ = T ′ ×T T
′ ×T T

′, which comes
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with three projections p12, p13, and p23 from T ′′′ to T ′′. We also have three projections

q1, q2, and q3 from T ′′′ to T ′, with qi = p1 ◦ pij and qj = p2 ◦ pij, 1 ≤ i < j ≤ 3.

Descent for objects says that an object specified on a cover, together with a
patching isomorphism satisfying a cocycle condition, determines an object defined on
the base, and this object is unique up to canonical isomorphism. In more traditional
terminology, every descent datum (pair consisting of an object defined on the cover,
with a patching isomorphism satisfying the cocycle condition) is effective (determines
an object on the base); the object on the base that realizes this effectivity is called a
solution to the descent problem posed by the given datum.

Descent for morphisms says that, if we are given two sets of descent data, to-
gether with respective objects on the base (solutions to the descent data), then to give a
morphism between these objects is the same as to give a morphism between the objects
on the cover, subject to a compatibility condition.

The next theorem spells this out in the case of quasi-coherent sheaves on schemes.
Following the statement are detailed explanations of its assertions. The next two sec-
tions are devoted to the proof of the theorem, while the rest of this appendix will discuss
applications to other descent situations, especially those involving schemes instead of
quasi-coherent sheaves.

Theorem A.2. Let f : T ′ → T be a flat morphism of schemes. Assume, further,

that f is surjective and either quasi-compact or locally of finite presentation. (a) Let E ′

be a quasi-coherent sheaf on T ′ and ϕ : p∗
1
E ′ → p∗

2
E ′ an isomorphism on T ′′ such that

p∗
23
ϕ ◦ p∗

12
ϕ = p∗

13
ϕ

on T ′′′. Then there exists a quasi-coherent sheaf E on T and an isomorphism λ : f ∗E →
E ′ on T ′ satisfying

p∗
2
λ = ϕ ◦ p∗

1
λ

on T ′′. Moreover the pair consisting of the sheaf E and the isomorphism λ is unique up

to canonical isomorphism.

(b) With notation as in (a), suppose (F ′, ψ) is another descent datum with solution

given by F and µ. Then, for every morphism h′ : E ′ → F ′ on T ′ satisfying

p∗
2
h′ ◦ ϕ = ψ ◦ p∗

1
h′

on T ′′, there is a unique morphism h : E → F on T such that µ ◦ f ∗h = h′ ◦ λ on T ′.

The hypotheses on the morphism f (flat, surjective, etc.) will be discussed in Section
3. The hypothesis in (a), that p∗

23
ϕ ◦ p∗

12
ϕ = p∗

13
ϕ, means that the diagram

p∗
12
p∗

1
E ′

p∗
12
ϕ

// p∗
12
p∗

2
E ′ p∗

23
p∗

1
E ′

p∗
23
ϕ

��

p∗
13
p∗

1
E ′

p∗
13
ϕ

// p∗
13
p∗

2
E ′ p∗

23
p∗

2
E ′

commutes. The three equal signs denote canonical isomorphisms coming from the
equalities p1 ◦ pjk = qj = p2 ◦ pij.
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The conclusion in (a), that p∗
2
λ = ϕ ◦ p∗

1
σ, means that the diagram

p∗
1
f ∗E

p∗
1
λ

// p∗
1
E ′

ϕ

��

p∗
2
f ∗E

p∗
2
λ

// p∗
2
E ′

commutes.
We clarify what it means in (a) for the solution to be unique up to canonical iso-

morphism. Precisely, it means that if F is another quasi-coherent sheaf on T , and
µ : f ∗F → E ′ is an isomorphism on T ′ satisfying p∗

2
µ = ϕ ◦ p∗

1
µ on T ′′, i.e., the diagram

p∗
1
f ∗F

p∗
1
µ

// p∗
1
E ′

ϕ

��

p∗
2
f ∗F

p∗
2
µ

// p∗
2
E ′

commutes, then there is a unique isomorphism h : E → F such that µ ◦ f ∗h = λ on T ′,
i.e., the diagram

f ∗E
f∗h

//

λ
��<

<
<

<
<

<
<

f ∗F

µ
����

�
�
�
�
�

E ′

commutes. This uniqueness claim is in fact a special case of (b), applied to the identity
morphism on E ′.

The hypothesis in (b), that p∗
2
h′ ◦ ϕ = ψ ◦ p∗

1
h′, means that the diagram

p∗
1
E ′

p∗
1
h′

��

ϕ
// p∗

2
E ′

p∗
2
h′

��

p∗
1
F ′

ψ

// p∗
2
F ′

commutes.
Finally, the conclusion in (b), that µ ◦ f ∗h = h′ ◦ λ, means that the diagram

f ∗E

λ

��

f∗h
// f ∗F

µ

��

E ′

h′
// F ′

commutes.
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2. The affine case

The general case of Theorem A.2 will be reduced to the affine case, which amounts
to some elementary commutative algebra. This algebra is worked out in this section.
No Noetherian or finiteness conditions on either rings or modules are required.

We are concerned with an arbitrary homomorphism A → A′ of commutative rings
with unit, which corresponds to a morphism f : T ′ → T , with T = Spec(A) and T ′ =
Spec(A′). Let A′′ = A′⊗AA

′, and A′′′ = A′⊗AA
′⊗AA

′, so we have identifications T ′′ =
Spec(A′′) and T ′′′ = Spec(A′′′). The projections p1 and p2 from T ′′ to T ′ correspond
to the homomorphisms x 7→ x ⊗ 1 and x 7→ 1 ⊗ x from A′ to A′ ⊗A A

′. Similarly, the
projections p12, p13, and p23 from T ′′′ to T ′′ correspond to the mappings from A′ ⊗A A

′

to A′′′ = A′ ⊗A A
′ ⊗A A

′ that take x ⊗ y to x ⊗ y ⊗ 1, x ⊗ 1 ⊗ y, and 1 ⊗x ⊗ y, respectively.
Projections q1, q2, and q3 from T ′′′ to T ′ correspond to mappings A′ → A′′′ given by
x 7→ x ⊗ 1 ⊗ 1, x 7→ 1 ⊗x ⊗ 1, and 1 ⊗ 1 ⊗x, respectively.

Definition A.3. A homomorphism A → A′ of commutative rings with unit is
flat if, for any exact sequence M1 → M2 → M3 of A-modules, the induced sequence
A′ ⊗A M1 → A′ ⊗A M2 → A′ ⊗A M3 (of A′-modules) is exact. The homomorphism is
called faithfully flat if it is flat and the corresponding map Spec(A′) → Spec(A) is
surjective.

Exercise A.1. (1) Show that a flat homomorphism A→ A′ is faithfully flat if and
only if, for any nonzero A-module M , A′ ⊗A M 6= 0. (2) Show that a homomorphism
A → A′ is faithfully flat if and only if the following condition is satisfied: a sequence
M ′ → M → M ′′ of A-modules is exact if and only if the sequence A′ ⊗A M

′ →
A′ ⊗AM → A′ ⊗AM

′′ is exact.

Exercise A.2. Suppose A→ A′ is faithfully flat. (1) Show that a homomorphism
M → N of A-modules is a monomorphism (resp. epimorphism, resp. isomorphism)
if and only if the homomorphism A′ ⊗A M → A′ ⊗A N is a monomorphism (resp.
epimorphism, resp. isomorphism). (2) Show that an A-module M is finitely generated
(resp. finitely presented, resp. flat, resp. locally free of finite rank n) if and only if the
A′-module A′⊗AM is finitely generated (resp. finitely presented, resp. flat, resp. locally
free of finite rank n).

For any homomorphism A→ A′, and any A-module M , there is a canonical homo-
morphism γ : M → A′⊗AM , taking u to 1 ⊗u. There are two canonical homomorphisms
A′ ⊗AM → A′ ⊗AA

′ ⊗AM , taking x ⊗u to x ⊗ 1 ⊗u and 1 ⊗x ⊗ u, corresponding to the
two projections p1 and p2.

Lemma A.4. Let M be an A-module. If A→ A′ is faithfully flat, then

M
γ
→ A′ ⊗AM ⇉ A′ ⊗A A

′ ⊗AM

is exact, that is, the canonical homomorphism γ maps M isomorphically to the set of

elements in A′ ⊗AM that have the same image in A′ ⊗AA
′ ⊗AM by the two projection

homomorphisms. Equivalently, if one defines a homomorphism δ from A′ ⊗A M to
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A′ ⊗A A
′ ⊗AM by the formula δ(x ⊗ u) = 1 ⊗x ⊗ u− x ⊗ 1 ⊗u, then the sequence

0 →M
γ
→ A′ ⊗AM

δ
→ A′ ⊗A A

′ ⊗AM

of A-modules is exact.

Proof. By Exercise A.2 (2), it suffices to show that the sequence becomes exact
after tensoring it (on the left) over A by A′, i.e., that the sequence

0 −→ A′ ⊗AM
A′⊗γ
−→ A′ ⊗A A

′ ⊗AM
A′⊗δ
−→ A′ ⊗A A

′ ⊗A A
′ ⊗AM

is exact. Let µ : A′⊗AA
′ → A′ be the multiplication map, µ(x ⊗ y) = xy. The injectivity

of the first map A′ ⊗ γ is now immediate, since the mapping µ⊗M : A′ ⊗A A
′ ⊗AM →

A′ ⊗AM gives a left inverse to it. Suppose an element
∑
xi ⊗ yi ⊗ ui is in the kernel of

A′ ⊗ δ, i.e. ∑
xi ⊗ 1 ⊗ yi ⊗ ui =

∑
xi ⊗ yi ⊗ 1 ⊗ui.

Applying µ to the first two factors yields
∑

xi ⊗ yi ⊗ui =
∑

xiyi ⊗ 1 ⊗ui,

and
∑
xiyi ⊗ 1 ⊗ui is the image of

∑
xiyi ⊗ui in A′ ⊗A A

′ ⊗AM , as required. �

The proof of this lemma is a common one in descent theory: one makes a faithfully
flat base extension to achieve the situation where the covering map T ′ → T has a
section, in which case the assertion proves itself.

Although we don’t need it, a natural generalization of this lemma is true:

Exercise A.3. Define the Amitsur complex T • = T •(A′/A) for a homomorphism
A → A′ by setting T 0 = A, and, for n ≥ 1, T n is the tensor product of n copies
of A′ over A. Define δn : T n → T n+1 by: δ0 is the given map from A to A′, and
δn =

∑n

i=0
(−1)iǫi, where ǫi(x1 ⊗ · · ·⊗xn) = x1 ⊗ · · ·⊗ xi ⊗ 1 ⊗xi+1 ⊗ · · ·⊗ xn. This is a

complex of A-modules. Show that, for any A-module M , if A → A′ is faithfully flat,
the complex T • ⊗AM is exact.

Descent for morphisms of modules amounts to the following easy consequence of
the preceding lemma:

Lemma A.5. If A → A′ is faithfully flat, and M and N are A-modules, then the

sequence

HomA(M,N) → HomA′(A′⊗AM,A′⊗AN) ⇉ HomA′⊗AA
′(A′⊗AA

′⊗AM,A′⊗AA
′⊗AN)

is exact.

Proof. The exactness of Lemma A.4, applied toN , together with the left exactness
of Hom, gives the exactness of

HomA(M,N) → HomA(M,A′ ⊗A N) ⇉ HomA(M,A′ ⊗A A
′ ⊗A N).

Using the identifications HomA(M,P ) = HomB(B ⊗A M,P ) for any homomorphism
A → B and any B-module P , first for B = A′ and then for B = A′ ⊗A A

′, translates
this exact sequence into the exact sequence of the lemma. �
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Now let M ′ be an A′-module. We have, as we recall, projection maps p1 and p2

from Spec(A′′) to Spec(A′), where A′′ = A′ ⊗A A
′. Hence we have pullbacks p∗

1
(M ′) =

A′′ ⊗p1,A′ M ′ and p∗
2
(M ′) = A′′ ⊗p2,A′ M ′. The two pullbacks p∗

1
(M ′) and p∗

2
(M ′) can be

identified with M ′ ⊗A A
′ and A′ ⊗A M

′ respectively, where the actions of A′′ on these
modules are given by (x ⊗ y)·(u ⊗ z) = xu ⊗ yz and (x ⊗ y)·(z ⊗ u) = xz ⊗ yu respectively,
with x, y, and z in A′ and u in M ′. Similarly, the three pullbacks of M ′ by q1, q2, and
q3 to A′′′ can be identified with M ′ ⊗A A

′ ⊗A A
′, A′ ⊗AM

′ ⊗A A
′, and A′ ⊗A A

′ ⊗AM
′,

respectively, again with the diagonal actions of A′′′ = A′ ⊗A A
′ ⊗A A

′.
Suppose ϕ : M ′ ⊗A A

′ = p∗
1
(M ′) → p∗

2
(M ′) = A′ ⊗A M

′ is an isomorphism of A′′-
modules. This determines by the three pullbacks pij, isomorphisms

ϕij = p∗ij(ϕ) : q∗i (M
′) = p∗ij(p

∗
1
(M ′)) → p∗ij(p

∗
2
(M ′)) = q∗j (M

′).

For example, ϕ12 is the map from M ′⊗AA
′⊗AA

′ to A′⊗AM
′⊗AA

′ that takes u ⊗x ⊗ y

to ϕ(u ⊗x) ⊗ y; that is, if ϕ(u ⊗x) =
∑
xi ⊗ ui, then ϕ12(u ⊗x ⊗ y) =

∑
xi ⊗ui ⊗ y. Sim-

ilarly, ϕ13(u ⊗ y ⊗x) =
∑
xi ⊗ y ⊗ ui, and ϕ23(y ⊗ u ⊗x) =

∑
y ⊗ xi ⊗ui.

Descent for modules amounts to the following assertion:

Lemma A.6. Suppose A→ A′ is faithfully flat, M ′ is an A′-module, and ϕ : M ′ ⊗A

A′ → A′⊗AM
′ is an isomorphism of A′′-modules such that ϕ13 = ϕ23 ◦ϕ12 from q∗

1
(M ′)

to q∗
3
(M ′). Define the A-module M by

M = { u ∈M ′ |ϕ(u ⊗ 1) = 1 ⊗u }.

Then the canonical homomorphism λ : A′⊗AM →M ′, x ⊗ u 7→ x·u, is an isomorphism.

Proof. Let τ : M ′ → A′ ⊗AM
′ be defined by τ(u) = 1 ⊗u− ϕ(u ⊗ 1). We have an

exact sequence
0 →M →M ′ τ

→ A′ ⊗AM
′

Tensoring this on the right with A′ over A gives the top row of the following diagram:

0 // M ⊗A A
′

ψ

��

// M ′ ⊗A A
′

ϕ

��

// A′ ⊗AM
′ ⊗A A

′

A′⊗ϕ

��

0 // M ′ // A′ ⊗AM
′ // A′ ⊗A A

′ ⊗AM
′

The bottom row is the exact sequence from Lemma A.4, applied to the A-module M ′.
The map ψ is defined by ψ(u ⊗x) = x · u, and we want to show ψ is an isomorphism.
Since the rows are exact, and the right two vertical maps are isomorphisms, this con-
clusion will follow if we verify that the diagram is commutative.

The left square commutes since, for u in M and x in A′, ϕ(u ⊗x) = (1 ⊗x)ϕ(u ⊗ 1) =
(1 ⊗x)(1 ⊗u) = 1 ⊗xu. To prove that the right diagram commutes, we must show that,
for any u in M ′ and x in A′, the element u ⊗x in M ′⊗AA

′ has the same image by either
route around the square. Let ϕ(u ⊗ 1) =

∑
yi ⊗ vi, with yi ∈ A′ and vi ∈M ′. Then

ϕ(u ⊗x) = (1 ⊗x)ϕ(u ⊗ 1) =
∑

yi ⊗xvi,

so the image of u ⊗x by the lower route is
∑

1 ⊗ yi ⊗xvi −
∑

yi ⊗ 1 ⊗xvi.
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On the upper route, u ⊗x maps to the right to 1 ⊗u ⊗x − ϕ(u ⊗ 1) ⊗x = 1 ⊗u ⊗x −∑
yi ⊗ vi ⊗x, which maps down to

1 ⊗ϕ(u ⊗x) −
∑

yi ⊗ϕ(vi ⊗ x) =
∑

1 ⊗ yi ⊗ xvi −
∑

yi ⊗ϕ(vi ⊗ x).

We are therefore reduced to verifying that
∑

yi ⊗ϕ(vi ⊗x) =
∑

yi ⊗ 1 ⊗xvi.

But this is exactly the assertion that ϕ23(ϕ12(u ⊗ 1 ⊗x)) = ϕ13(u ⊗ 1 ⊗x). �

To complete the proof that the construction of this lemma solves the descent problem
for modules, i.e., that it solves case (a) of Theorem A.2, we must verify that the identity
ϕ ◦ p∗

1
λ = p∗

2
λ is satisfied. This amounts to verifying that the diagram

A′ ⊗AM ⊗A A
′
p∗
1
λ

//

κ

��

M ′ ⊗A A
′

ϕ

��

A′ ⊗A A
′ ⊗AM

p∗
2
λ

// A′ ⊗AM
′

commutes, where κ(x ⊗ u ⊗ y) = x ⊗ y ⊗u. This amounts to the identity x ⊗λ(y ⊗u) =
ϕ(λ(x ⊗u) ⊗ y), i.e., x ⊗ yu = ϕ(xu ⊗ y), or (x ⊗ y)(1 ⊗u) = (x ⊗ y)ϕ(u ⊗ 1), which follows
from the fact that u is in M .

Similarly, we want Lemma A.5 to give a proof of (b) of Theorem A.2 in the affine
case. This means that we have A′-modules M ′ and N ′, with isomorphisms

ϕ : M ′ ⊗A A
′ → A′ ⊗AM

′ and ψ : N ′ ⊗A A
′ → A′ ⊗A N

′,

and we have A-modules M and N , with isomorphisms λ : A′⊗AM →M ′ and µ : A′⊗A

N → N ′, satisfying ϕ ◦ p∗
1
λ = p∗

2
λ and ψ ◦ p∗

1
µ = p∗

2
µ. We are given a homomorphism

h′ : M ′ → N ′ of A′-modules, satisfying the identity p∗
2
(h′)◦ϕ = ψ◦p∗

1
(h′). We must show

that there is a unique homomorphism h : M → N of A-modules such that µ◦(A′⊗h) =
h′ ◦ λ. Set g′ = µ−1 ◦ h′ ◦ λ : A′ ⊗AM → A′ ⊗AN . If we show that p∗

1
(g′) = p∗

2
(g′), then

Lemma A.5 will produce a unique homomorphism h : M → N such that g′ = A′ ⊗ h.
This says that h′ ◦ λ = µ ◦ (A′ ⊗ h), as required. To conclude the proof, we calculate:

p∗
1
(g′) = p∗

1
(µ−1 ◦ h′ ◦ λ) = p∗

1
(µ)−1 ◦ p∗

1
(h′ ◦ λ) = p∗

2
(µ)−1 ◦ ψ ◦ p∗

1
(h′) ◦ p∗

1
(λ)

= p∗
2
(µ)−1 ◦ p∗

2
(h′) ◦ ϕ ◦ p∗

1
(λ) = p∗

2
(µ−1 ◦ h′) ◦ p∗

2
(λ) = p∗

2
(g′),

as required. The uniqueness assertion in (a) is a special case of (b), so the theorem is
proved in the affine case.

The overall structure of the proofs in this section is worth noting, as it will be
repeated below in the proof of Theorem A.2. First, we proved descent for morphisms in
the case of objects pulled back from the base (Lemma A.5). Then we showed that every
descent datum is effective (Lemma A.6). We saw as a formal consequence that descent
for morphisms holds in the case of an arbitrary pair of descent data, each admitting
a solution, and from this that the solution to any descent problem is unique up to
canonical isomorphism.
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3. The general case

In this section, we complete the proof of Theorem A.2. Recall that a morphism
f : T ′ → T of schemes is faithfully flat if it is flat and surjective. It is not enough
to assume f is faithfully flat for the conclusions of the theorem to hold, as we’ll see
below in Exercise A.6. To pass from the affine case (Lemmas A.5 and A.6) to the case
of general schemes we’ll need some additional hypothesis on the morphism f . In fact,
there are two additional hypotheses that we may impose, and either one will suffice to
establish descent for objects and morphisms, in the context of quasi-coherent sheaves:

(i) f is fpqc, that is, faithfully flat and quasi-compact. We recall this means that
the pre-image, under f , of any affine open subset of the base is covered by
finitely many affine open subsets.

(ii) f is fppf, that is, faithfully flat and locally of finite presentation. The impor-
tant fact needed here is that every morphism that is flat and locally of finite
presentation is open [EGA IV.2.4.6].

The notations fpqc and fppf come from the French terminology for the conditions
on f (fidèlement plat, quasi-compact and fidèlement plat, de présentation finie).

As described at the end of the previous section, to prove Theorem A.2, it suffices to
prove descent for morphisms of objects pulled back from the base and to show that every
descent datum is effective. In other words, Theorem A.2 follows from the following pair
of assertions.

Lemma A.7. Assume f : T ′ → T is (i) fpqc or (ii) fppf. Let E and F be quasi-

coherent sheaves on T . Then, for every morphism h′ : f ∗E → f ∗F on T ′ such that

p∗
1
h′ = p∗

2
h′ on T ′′ there is a unique morphism h : E → F on T such that f ∗h = h′.

Lemma A.8. Assume f : T ′ → T is (i) fpqc or (ii) fppf. Let E ′ be a quasi-coherent

sheaf on T ′ and ϕ : p∗
1
E ′ → p∗

2
E ′ an isomorphism on T ′′ such that p∗

23
ϕ ◦ p∗

12
ϕ = p∗

13
ϕ on

T ′′′. Then there exists a quasi-coherent sheaf E on T and an isomorphism λ : f ∗E → E ′

on T ′ such that p∗
2
λ = ϕ ◦ p∗

1
λ on T ′′.

Let us say that f satisfies descent for morphisms if the conclusion of Lemma A.7
is valid for f . Let us say that f satisfies effective descent if both the conclusion of
Lemma A.7 and of Lemma A.8 are valid for f . We have proved in the previous section
that every faithfully flat morphism of affine schemes satisfies effective descent. We saw
in the first section that every Zariski open covering satisfies effective descent. These
two facts will be combined to deduce what is claimed in Lemmas A.7 and A.8, namely
that every morphism that is fpqc or fppf satisfies effective descent.

The argument rests on the following two claims. Let f : S → T and g : R → S be
morphisms of schemes.

First claim: Suppose g satisfies descent for morphisms, and suppose for any morphism
g′ : R′ → S ′ obtained from g by a base change with respect to an arbitrary morphism
S ′ → S and any pair of quasi-coherent sheaves E ′ and F ′ on S ′, the map induced by
pullback g′∗ : Hom(E ′,F ′) → Hom(g′∗E ′, g′∗F ′) is injective. Then f satisfies descent for
morphisms if and only if f ◦ g satisfies descent for morphisms.



app-10 Descent Theory

To prove this, we consider the following diagram:

R×S R
ℓ

//

r1
&&M

M
M

M
M

M
M

M
M

M
M r2

&&M
M

M
M

M
M

M
M

M
M

M
R×T R

k
//

q1

��
q2

��

S ×T S

p1

��
p2

��
R

g
// S

f
// T

(4)

Given quasi-coherent sheaves E and F on T , if h′′ : g∗f ∗E → g∗f ∗F satisfies q∗
1
h′′ = q∗

2
h′′,

then r∗
1
h′′ = ℓ∗q∗

1
h′′ = ℓ∗q∗

2
h′′ = r∗

2
h′′, so by descent for morphisms for g there exists a

unique h′ : f ∗E → f ∗F such that g∗h′ = h′′. The morphism k factors as R ×T R →
R ×T S → S ×T S, a pair of morphisms each obtained from g by base change. Now
since k∗p∗

1
h′ = k∗p∗

2
h′ it follows that p∗

1
h′ = p∗

2
h′. If descent for morphisms holds for f ,

it follows that there exists a unique morphism h : E → F such that f ∗h = h′, and hence
descent for morphisms holds for f ◦ g. Conversely, suppose f ◦ g satisfies descent for
morphisms. If we are given quasi-coherent sheaves E and F on T , and if h′ : f ∗E → f ∗F
satisfies p∗

1
h′ = p∗

2
h′, then h′′ := g∗h′ satisfies q∗

1
h′′ = q∗

2
h′′, so there exists a morphism

h : E → F satisfying g∗f ∗h = h′′, and hence f ∗h = h′.

Exercise A.4. Use this first claim to show that every affine faithfully flat morphism
of schemes satisfies descent for morphisms.

Second claim: Suppose g satisfies effective descent, and suppose any morphism obtained
from g by base change satisfies descent for morphisms. Then f satisfies effective descent
if and only if f ◦ g satisfies effective descent.

We refer to the diagram (4). For the “only if” portion of the claim, we suppose f
satisfies effective descent. Now suppose we are given a quasi-coherent sheaf E ′′ on R

together with an isomorphism ϕ′ : q∗
1
E ′′ → q∗

2
E ′′ satisfying the cocycle condition

(5) π∗
13
ϕ′ = π∗

23
ϕ′ ◦ π∗

12
ϕ′

where πij : R×T R×T R → R×T R denote the various projections. By pulling back (5)
by the morphism R×S R×S R → R×T R×T R, we obtain the cocycle identity for the
cover g. So, by effective descent for the morphism g, there exists a sheaf E ′ on S together
with an isomorphism λ′ : g∗E ′ → E ′′ such that r∗

2
λ′ = k∗ϕ′ ◦ r∗

1
λ′. Now we claim there

exists a morphism ϕ : p∗
1
E ′ → p∗

2
E ′ such that q∗

2
λ′ ◦ h∗ϕ = ϕ′ ◦ q∗

1
λ′. By the first claim,

k (a composite of two pullbacks of g, as we saw in the proof of the first claim) satisfies
descent for morphisms. Now consider the morphism q∗

2
λ′−1 ◦ϕ′ ◦ q∗

1
λ′ : k∗p∗

1
E ′ → k∗p∗

2
E ′.

For the existence of ϕ as promised we must check the agreement of the two pullback
to (R ×T R) ×S×TS (R ×T R). This fiber product is identified, via the map which on
points is given by (w, x, y, z) 7→ (w, y, z, x), with the fiber product R×S R×T R×S R,
whereupon the agreement of the two pullbacks reduces to the identity

(6) π∗
14
ϕ′ = π∗

34
ϕ′ ◦ π∗

23
ϕ′ ◦ π∗

12
ϕ′.

In fact (6) is the pullback of a similar identity on R ×T R ×T R ×T R, and the latter
is deduced by combining the pullback of (5) by π123 with the pullback of (5) by π134

(here πij and πijk denote projections from quadruple fiber products). Now ϕ satisfies the
cocycle condition for the covering map f , since the map R×TR×TR→ S×T S×T S can
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be written as a composite of three morphisms, each obtained from g by base change, and
via this map the cocycle condition we are claiming pulls back to (5). By effective descent
for f there exists a quasi-coherent sheaf E on T with an isomorphism λ : f ∗E → E ′

satisfying p∗
2
λ = ϕ ◦ p∗

1
λ. Hence effective descent holds for f ◦ g.

Exercise A.5. Show, conversely, that under the hypotheses of the second claim, if
f ◦ g satisfies effective descent, then effective descent holds for f .

We now complete the proof of Lemmas A.7 and A.8. We start by letting (Ti), i ∈ I,
be an affine open cover of T . For each i, we let (T ′

i,j), j ∈ Ji be an affine open cover of

f−1(Ti).
Suppose we are in case (i) of the lemmas, that is, f is faithfully flat and quasi-

compact. Then the set Ji maybe taken to be finite, for every i. Now for each i ∈ I, the
map fi :

∐
j∈Ji

T ′
i,j → Ti is a faithfully flat morphism of affine schemes. We consider

the following commutative diagram

∐
i,j T

′
i,j

‘

fi
//

��

∐
i Ti

��

T ′
f

// T

(7)

The vertical maps are Zariski open coverings, and for such maps we know effective
descent holds. By the affine case (Lemmas A.5 and A.6), effective descent holds for
each morphism fi, hence as well for the top map in (7). By Exercise A.4, any morphism
obtained from the latter by base change satisfies descent for morphisms. So, by the
second claim, the composite map

∐
T ′
i,j → T in (7) satisfies effective descent. Again

invoking the second claim, we conclude that effective descent holds for f .
We turn to case (ii) of the lemmas, where f is fppf and hence open. Fix i ∈ I. We

let Ui,j = f(T ′
i,j) for all j ∈ Ji, so (Ui,j) is a Zariski open covering of Ti. It follows1

that each morphism T ′
i,j → Ui,j is affine, so in particular is fpqc. By case (i) of the

assertions, then, each map T ′
i,j → Ui,j satisfies effective descent. Now, to conclude, we

consider a square as in (7) but with
∐

i,j Ui,j in the upper right-hand corner, and we
reason as above except we appeal to case (i) at the second step of the deduction.

Exercise A.6. Show that Theorem A.2 (a) fails for the covering map
∐

p

Spec Zp → Spec Z.

Note that f is faithfully flat, but is neither fpqc nor fppf.

4. Categorical formulation

There is a category-theoretic approach to stating the above descent results. The
proposition in this section outlines how the results appear in this language; one often
sees them expressed this way in the literature.

1By [EGA II.1.6.2], any morphism from an affine scheme to a separated scheme is affine. Note

that each Uij is separated since it is an open subscheme of a separated, in fact affine, scheme Ti.
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Fix schemes T and T ′ and a morphism f : T ′ → T . Let C(T ) be the category of
quasi-coherent sheaves on T , with their usual morphisms as sheaves of OT -modules.
Let C(T ′/T ) be the category whose objects are pairs (E ′, ϕ) of descent data, with
a morphism from (E ′, ϕ) to (F ′, ψ) being a homomorphism h′ : E ′ → F ′ such that
p∗

2
h′◦ϕ = ψ◦p∗

1
h′. There is a canonical functor C(T ) → C(T ′/T ), taking a quasi-coherent

sheaf E on T to the pair consisting of the sheaf f ∗E and the canonical isomorphism
p∗

1
f ∗E ∼= (f ◦ p1)

∗(E) = (f ◦ p2)
∗(E) ∼= p∗

2
f ∗E ; we will sometimes use can to denote this

canonical isomorphism. (The cocycle condition p∗
13

can = p∗
13

can ◦ p∗
23

can amounts to
the compatibility of the canonical isomorphisms among pullbacks to T ′′′.)

Proposition A.9. If f : T ′ → T is an fpqc morphism or an fppf morphism of

schemes, then the induced functor from the category C(T ) of quasi-coherent sheaves of

OT -modules to the category C(T ′/T ) of descent data is an equivalence of categories.

Proof. Let (E ′, ϕ) be an object of C(T ′/T ). To give an isomorphism (f ∗E , can) ∼→
(E ′, ϕ) is, by definition, the same as to give an isomorphism λ : f ∗E → E ′ satisfying
p∗

2
λ = ϕ ◦ p∗

1
λ. So essential surjectivity of the functor is equivalent to the condition in

Theorem A.2(a).
If we have isomorphisms (f ∗E , can) ∼→ (E ′, ϕ) and (f ∗F , can) ∼→ (F ′, ψ) then The-

orem A.2(b) is the assertion that the map

HomC(T )(E ,F) → HomC(T ′/T )((E
′, ϕ), (F ′, ψ))

(obtained by applying the functor and composing with the isomorphisms) is bijective.
In the case of identity morphisms 1(f∗E,can) and 1(f∗F ,can), this is the condition for the
functor to be fully faithful. �

Remark A.10. There is a larger category C0(T
′/T ) whose objects consist of pairs

(E ′, ϕ) where E ′ is a quasi-coherent sheaf on T ′ and ϕ : p∗
1
E ′ → p2E

′ is an isomorphism.
Morphisms in C0(T

′/T ) are defined just as in C(T ′/T ), making C(T ′/T ) a full subcat-
egory of C0(T

′/T ). This subcategory has the property that, given an object (E ′, ϕ)
of C(T ′/T ), if (E ′, ϕ) → (F ′, ψ) is an isomorphism in C0(T

′/T ) then (F ′, ψ) is also in
C(T ′/T ). The verification of this fact involves a diagram chase. This fact tells us that if
the descent problem corresponding to an object (F ′, ψ) of C0(T

′/T ) admits a solution,
meaning that F ′ is isomorphic to a sheaf f ∗F compatibly with ψ, then (F ′, ψ) lies in
C(T ′/T ), i.e., ψ must satisfy the cocycle condition.

5. Faithfully flat descent

In this section we give some of the descent statements that are important for the
theory of stacks. Most of these results are rather quick consequences of Theorem A.2.
More challenging applications will be given in the last section. First we have a descent
result for vector bundles.

Proposition A.11. Let f : T ′ → T be a morphism of schemes that is fpqc or

fppf. Then: (a) Given a locally free sheaf of finite type E ′ on T ′ and an isomorphism

ϕ : p∗
1
E ′ → p∗

2
E ′ such that p∗

23
ϕ ◦ p∗

12
ϕ = p∗

13
ϕ, there exists a locally free sheaf of finite

type E on T and an isomorphism λ : f ∗E → E ′ satisfying p∗
2
λ = ϕ ◦ p∗

1
λ, and these are
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unique up to canonical isomorphism.

(b) With notation as in (a), suppose (F ′, ψ) is another descent datum with solution

given by F and µ. Then, for every morphism h′ : E ′ → F ′ satisfying p∗
2
h′ ◦ϕ = ψ ◦ p∗

1
h′

there is a unique morphism h : E → F such that µ ◦ f ∗h = h′ ◦ λ.

Proof. This follows from Theorem A.2, coupled with Exercise A.2. �

Next we turn to descent for affine schemes.

Proposition A.12. Let f : T ′ → T be a morphism of schemes that is fpqc or fppf.

(a) Given an affine morphism of schemes P ′ → T ′ and an isomorphism ϕ : P ′×T T
′ →

T ′×TP
′ over T ′′ satisfying the cocycle condition, there exists an affine morphism P → T

and isomorphism λ : T ′ ×T P → P ′ over T ′, unique up to canonical isomorphism, such

that T ′ ×T λ = ϕ ◦ (λ×T T
′).

(b) With notation as in (a), suppose (Q′, ψ) is another descent datum with solution

given by Q → T and µ. Then, for every morphism h′ : P ′ → Q′ over T ′ satisfying

(T ′ ×T h
′) ◦ ϕ = ψ ◦ (h′ ×T T

′) there is a unique morphism h : P → Q such that

µ ◦ (T ′ ×T h) = h′ ◦ λ.

We will see that descent for morphisms reduces to the statement that the functor
Hom(−, X) satisfies the sheaf axiom (for any fpqc or fppf cover), which holds for an
arbitrary scheme X.

Proposition A.13. Let f : T ′ → T be a morphism of schemes that is fpqc or fppf.

Let X be a scheme. If g : T ′ → X is a morphism of schemes such that g ◦ p1 = g ◦ p2,

then there is a unique morphism h : T → X such that h ◦ f = g.

The proof of this proposition requires some preparatory results. Below we denote by
f# : OT → f∗OT ′ the morphism of structure sheaves induced by a morphism of schemes
f : T → T ′. Let p : T ′′ → T be the composition f ◦ p1 = f ◦ p2.

Lemma A.14. Suppose f : T ′ → T is fpqc or fppf. Then the sequence

0 −→ OT

f#

−→ f∗OT

f∗p
#

1
−f∗p

#

2−→ p∗OT ′′

is exact.

Proof. By Theorem A.2(b) applied to E = F = OT and adjointness of pushfoward
and pullback, the sequence

(8) 0 −→ Γ(T,OT )
f#

−→ Γ(T, f∗OT ′)
f∗p

#

1
−f∗p

#

2−→ Γ(T, p∗OT ′′)

is exact. The sequence (8) with T replaced by any open subscheme of T is still exact,
so the sequence of sheaves is exact. �

Lemma A.15. Suppose f : T ′ → T is fpqc. Let Z be a subset of T such that f−1(Z)
is closed in T ′. Then Z is a closed subset of T .

Proof. Since f is surjective, it suffices to show that if f−1(Z) is closed, then

(9) f−1(Z) = f−1(Z)
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where Z denotes the closure of Z. It suffices to verify (9) when T and T ′ are affine, so
we may suppose T = SpecA and T ′ = SpecA′. Introduce the ideals

I =
⋂

p∈Z

p and I ′ =
⋂

p′∈f−1(Z)

p′,

corresponding to closed subsets Z ⊂ T and f−1(Z) ⊂ T ′, respectively. We have I ′∩A =
I (viewing A as a subring of A′). In other words, I fits into an exact sequence

(10) 0 −→ I −→ A −→ A′/I ′.

Tensoring (10) by A′ identifies I⊗AA
′ with the kernel of the composite of A′ → A′⊗AA

′,
x 7→ 1⊗x, with the quotient map by the ideal I ′⊗AA

′. The ideal A′⊗A I
′ has the same

radical as the ideal I ′ ⊗A A
′, since (f ◦ p1)

−1(Z) is the closed subset of T ′′ associated
with both. Thus

√
I ⊗A A′ = I ′, and (9) is established. �

Exercise A.7. If f : T ′ → T is any surjective morphism of schemes, then for any
points x and y in T such that f(x) = f(y), there exists z ∈ T ′′ such that p1(z) = x and
p2(z) = y.

Proof of Proposition A.13. By Exercise A.7, the map h that we are required
to produce is completely determined on the set-theoretic level. By Lemma A.15 in the
fpqc case, or by the fact that fppf maps are open, the map h is continuous. Finally, the
required map of structure sheaves h# : OX → h∗OT is determined uniquely by looking
at h∗ applied to the exact sequence from Lemma A.14. �

Proof of Proposition A.12. To prove (a), we need to show is the existence of
the solution to a descent problem. To give a scheme, affine over T , is the same as
giving a quasi-coherent sheaf of OT -algebras. This sheaf (as a sheaf of modules) is
constructed by descent for quasi-coherent sheaves, and is given the structure of OT -
algebra (multiplication map) using descent for morphisms of quasi-coherent sheaves.

For (b), the exactness of

(11) HomT (P,Q) → HomT ′(T ′ ×T P, T
′ ×T Q) ⇉ HomT ′′(T ′′ ×T P, T

′′ ×T Q)

is the same as the exactness of

HomT (P,Q) → HomT (T ′ ×T P,Q) ⇉ HomT (T ′′ ×T P,Q),

which follows from Proposition A.13.
As in the previous sections, the existence of the solution to a descent problem plus

exactness of (11) imply the full assertions of both statements of this proposition. �

Torsors for an affine group scheme provide an important example of affine morphisms
of schemes. We recall that if G is a group scheme over T then a left G-torsor is a scheme
E (the total space) with a map E → T (the structure map), together with a leftG-action
a : G×E → E which upon pullback by some étale cover T ′ → T becomes isomorphic to
the trivial G-torsor G×T ′ (with action of G on itself by left multiplication). Examples
are any unramified two-sheeted cover (for G = Z/2, i.e., the constant group scheme
T ×Z/2 → T over any T ) and the complement of the zero section of a line bundle (for
the multiplicative group Gm). (The same applies to right instead of left actions.) A



Non-effective descent: an example app-15

consequence of Proposition A.12 is that effective descent holds for G-torsors whenever
G is an affine group scheme over the base scheme. Note that the action of G on E is
given by a map of affine schemes, to which descent of morphisms applies.

Corollary A.16. Let f : T ′ → T be a morphism of schemes that is fpqc or fppf.

Let G be an affine group scheme over T . Then: (a) Given a G-torsor E ′ on T ′ and

an isomorphism ϕ : p∗
1
E ′ → p∗

2
E ′ over T ′′ satisfying the cocycle condition over T ′′′ there

exists a G-torsor E on T and G-equivariant isomorphism λ : f ∗E → E ′ over T ′, unique

up to canonical isomorphism, such that p∗
2
λ = ϕ ◦ p∗

1
λ.

(b) Let notation be as in (a), and suppose (F ′, ψ) is another descent datum with solution

given by F and µ. Then, for every G-equivariant isomorphism h′ : E ′ → F ′ over T ′

satisfying p∗
2
h′ ◦ ϕ = ψ ◦ p∗

1
h′ there is a unique G-equivariant isomorphism h : E → F

over T such that µ ◦ f ∗h = h′ ◦ λ.

6. Non-effective descent: an example

In this section we show how descent can fail for proper morphisms. In the next
section we will see how, with projective morphisms and suitable additional data, it is
possible to overcome this problem.

Let T be a smooth projective threefold over the complex numbers which has a 2-to-1
étale cover f : T ′ → T , such that there exists a nodal curve Z in T whose pre-image
in T ′ consists of the union of two smooth curves E and F meeting transversely at two
points that we denote P and Q.

Now form X ′ by modifying T ′ along E ∪ F . Near P , we first blow up E, and then
we blow up the proper transform of F . Near Q, we first blow up F , and then the proper
transform of E. Away from {P,Q}, the order of blow-up is irrelevant, so we can glue
these together to make a scheme X ′.

Since T ′ is a 2-to-1 cover of T it has an involution that respects the map to T .
Because of the order in which we performed the blow-ups, this involution actually
extends to an involution of X ′. Both the involution of T ′ and that of X ′ are without
fixed points. We can express the problem of trying to form the quotient of X ′ by the
involution as a descent problem. The pair consisting of the object X ′ → T ′ (in the
category of schemes over T ′), together with the isomorphism

X ′ ×T T
′ → T ′ ×T X

′

which is the identity map over the identity component of T ′′ and the involution over the
other component, is a descent datum. This descent datum, we claim, is non-effective,
i.e., there is no scheme quotient of X ′ by its involution.

Indeed, suppose X is a scheme over T with a map π : X ′ → X making

X ′ //

π

��

T ′

��
X // T

a cartesian diagram. Consider, in X ′, the pre-images A∪B of P and C∪D of Q, where
each of A, B, C, D is a rational curve. Now we make a calculation in the ring of cycles
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modulo algebraic equivalence [27, §10.3] on X. Denoting this ring by B∗(X), we have,
with a suitable labeling of the curves, equations [B] = [C] + [D] and [D] = [A] + [B] in
B∗(X ′), and hence

(12) [A] + [C] = 0

in B∗(X). Since π is finite and flat of degree 2, we find from (12) that

(13) 2π∗[A] = π∗([A] + [C]) = 0

in B∗(X). This is impossible if X is a scheme. Indeed, if U denotes an affine neighbor-
hood in X of the generic point of π(A), and if we take Y to be a a generically chosen
hypersurface of U , then the closure Y of Y in X meets π(A) properly in at least one
point. This means that [Y ] · π∗[A] is a zero-cycle class of positive degree, which is a
contradiction to (13).

Of course, the quotient of X ′ by the involution exists as an analytic space. This
analytic space quotient is, in effect, Hironaka’s example of an algebraic space which is
not a scheme (cf. [47, Exa. B.3.4.1]). So, effective descent fails for general schemes.
The category of algebraic spaces, which contains quasi-separated schemes as a full
subcategory, has the advantage over the category of schemes in that effective descent
holds for general fppf morphisms. We remark that this descent property, stated in this
text as Proposition ??2, relies on Artin’s criterion for a stack to be algebraic (Theorem
??3), whose proof is not easy!

Exercise A.8. Construct a non-effective descent datum with T a threefold over the
real numbers and f the map induced by base change via R → C. This demonstrates
that there exist an algebraic space, separated and of finite type over a field, which is
not a scheme, but which becomes a scheme after a finite extension of the base field.

7. Further descent results

Despite the failure of effective fppf (and fpqc) descent for general morphisms of
schemes, there are restricted classes of morphisms of schemes for which effective descent
is known to hold. We saw that affine morphisms form one such class of morphisms.

It is important for the theory of stacks that quasi-affine and (polarized) quasi-
projective morphisms make up two other such classes. Let us recall that a morphism
is quasi-affine if it can be factored as a quasi-compact open inclusion followed by an
affine morphism. If f : X → Y is any separated quasi-compact morphism of schemes,
then in the canonical factorization

(14) X
g
→ Spec f∗OX

h
→ Y,

g is an open inclusion if and only if f = h ◦ g is quasi-affine [EGA II.5.1.6].
Quasi-projective morphisms enjoy a similar characterization, factoring through
Proj(

⊕
f∗OX(n)). The Proj construction relies on a choice of relative ample invertible

sheaf OX(1), which must be included as part of the descent datum.

2A reference to a statement in Part II of the book, which might not appear for a while.
3Another reference to Part II of the book.
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Proposition A.17. Let f : T ′ → T be a morphism of schemes that is fpqc or fppf.

Then: (a) Given a quasi-affine morphism of schemes P ′ → T ′ and an isomorphism

ϕ : P ′ ×T T
′ → T ′ ×T P

′ over T ′′ satisfying the cocycle condition, there exists a quasi-

affine morphism P → T and isomorphism λ : T ′ ×T P → P ′ over T ′, unique up to

canonical isomorphism, such that T ′ ×T λ = ϕ ◦ (λ×T T
′).

(b) With notation as in (a), suppose (Q′, ψ) is another descent datum with solution

given by Q → T and µ. Then, for every morphism h′ : P ′ → Q′ over T ′ satisfying

(T ′ ×T h
′) ◦ ϕ = ψ ◦ (h′ ×T T

′) there is a unique morphism h : P → Q such that

µ ◦ (T ′ ×T h) = h′ ◦ λ.

Proof. Let t′ denote the morphism P ′ → T ′. We have the canonical factorization

(15) P ′ → Spec(t′∗OP ′) → T ′.

Set E ′ = t′∗OP ′ and P
′

= Spec E ′. Since f is flat, we have a canonical isomorphism
p∗

1
E ′ ∼→ (t′ ×T T

′)∗OP ′×TT
′ . Under this isomorphism, the morphisms we obtain by

pulling back (15) by p1,

(16) P ′ ×T T
′ → P

′
×T T

′ → T ′′,

constitute the canonical factorization of P ′ ×T T
′ → T ′′. Similarly,

(17) T ′ ×T P
′ → T ′ ×T P

′
→ T ′′,

gives the canonical factorization of T ′ ×T P
′ → T ′′, under the canonical isomorphism

p∗
2
E ′ ∼→ (T ′ ×T t

′)∗OT ′×TP
′.

The isomorphism ϕ : P ′×T T
′ → T ′×T P

′ determines an isomorphism ϕ̄ : P
′
×T T

′ →

T ′ ×T P
′
. Since ϕ satisfies the cocycle condition, so does ϕ̄. Now by Proposition A.12,

there is an affine morphism P → T and an isomorphism λ : T ′ ×T P → P
′
satisfying

T ′ ×T λ = ϕ̄ ◦ (λ×T T
′).

Since P
′
is isomorphic to T ′ ×T P

′, the morphism P
′
→ P is fpqc if f is fpqc and is

fppf if f is fppf. Moreover we can canonically identify P
′
×P P

′
with P

′
×T T

′. To do
this, we start with the cube with cartesian faces and extend the top face with cartesian
squares involving the isomorphism λ, as shown in the following diagram, where f̃ is
used to denote the second projection from T ′ ×T P .

T ′ ×T P
′

P
′

×T ′p2
//

T ′×Tλ
−1wwooo

ooo

P
′

λ−1zzuu
u
u
u
u

P
′
×T T

′

ϕ̄
22dddddddddddddddddddddddddddd λ−1×T T

′

//
P

′

×T ′p1

zzttt
t
t
t

T ′′ ×T P
//

wwooo
oo

o

��

T ′ ×T P

��

f̃

wwoo
o
o
o
o
o
o

P
′ λ−1

// T ′ ×T P
f̃

//

��

P

��

T ′′
p2

//
p1

vvmmmmmmmmmm
T ′

fvvmm
mmmmmm

mm

T ′

f

// T



app-18 Descent Theory

By the condition on λ, the upper triangle commutes. Using Lemma A.15 in the case
f is fpqc, or the fact that fppf morphisms are open, we see that there is a one-to-

one correspondence between open subschemes U ⊂ P and open subschemes U ′ ⊂ P
′

satisfying

(18) (P
′
×T ′ p1)

−1(U ′) = ϕ̄−1
(
(P

′
×T ′ p2)

−1(U ′)
)
.

In (15) we have P ′ realized as an open subscheme of P
′
. The pre-image of P ′ by P

′
×T ′p1,

respectively by P
′
×T ′ p2, is the image of the open inclusion in (16), respectively (17).

Now (18) holds since we have a commutative diagram

P ′ ×T T
′ //

ϕ

��

P
′
×T T

′

ϕ̄

��

T ′ ×T P
′ // T ′ ×T P

′

So there is a unique open subscheme P ⊂ P satisfying (f̃ ◦ λ−1)−1(P ) = P ′. Now
the scheme P and the restriction of λ to T ′ ×T P constitute a solution to the descent
problem posed by P ′ and ϕ. �

The large diagram in the proof of this proposition illustrates a general principle. To
give the descent datum (P ′, ϕ) is equivalent to giving a scheme P ′′ with morphism to
T ′′ and an equivalence relation

(p̃1, p̃2) : P ′′ → P ′ × P ′

compatible with (p1, p2) : T ′′ → T ′×T ′. The compatibility condition is that the diagram

P ′′
p̃i

//

��

P ′

��

T ′′
pi

// T ′

is cartesian for i = 1, 2. (To be an equivalence relation means that (p̃1, p̃2) is a locally
closed embedding4 satisfying conditions that generalize the usual conditions when S is a
set for a subset of S×S to be an equivalence relation.) We take P ′′ to be P ′×T T

′, with
p̃1 the projection map to P ′ and p̃2 the composite of ϕ and the projection T ′×T P

′ → P ′.
In the language of equivalence relations, effectivity amounts to providing a scheme P
over T and a map P ′ → P such that P ′′ ∼= P ′ ×P P

′. Many descent problems can be
stated in the language of equivalence relations (see [38]). In this appendix we stick to
the language of descent data, though in the next result, descent for quasi-projective
schemes, we employ the notation for the maps that we have just introduced:

p̃1 : P ′ ×T T
′ → P ′,(19)

p̃2 : P ′ ×T T
′ ∼→ T ′ ×T P

′ → P ′.(20)

4The correct condition is really monomorphism, but the more restrictive condition suffices for the

discussion of effectivity since the diagonal morphism of any scheme is a locally closed embedding.
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Proposition A.18. Let f : T ′ → T be a morphism of schemes that is fpqc or fppf.

Given a quasi-projective morphism of schemes P ′ → T ′, a relatively ample invertible

sheaf L′ on P ′, an isomorphism ϕ : P ′ ×T T
′ → T ′ ×T P

′ over T ′′ satisfying the cocycle

condition, and an isomorphism ω : p̃∗
1
L′ → p̃∗

2
L′ satisfying the cocycle condition on

P ′×T T
′′, where p̃1 and p̃2 are the maps of (19)–(20), there exists a scheme P with quasi-

projective morphism P → T and relatively ample invertible sheaf L, an isomorphism

λ : T ′ ×T P → P ′ over T ′ and, with f̃ : P ′ → P the composition of λ−1 and projection,

an isomorphism χ : f̃ ∗L → L′; these satisfy T ′ ×T λ = ϕ ◦ (λ×T T
′) and p̃∗

2
χ = ω ◦ p̃∗

1
χ.

The solution to the descent problem is unique up to canonical isomorphism.

As above, we set P ′′ = P ′×T T
′. If we further define P ′′′ = P ′×T T

′′ then the usual
cocycle condition on ϕ is expressed by the commutativity of the triangle

P ′′′ //

!!D
D

D
D

D
D

D
D

T ′ ×T P
′′

yytt
t
t
t
t
t
t
t

T ′′ ×T P
′

where the maps are the ones obtained from ϕ by base change. There are projection
maps p̃12 and p̃13 (obtained from p12 and p13 by base change) and p̃23 (the composite
P ′′′ → T ′ ×T P

′′ → P ′′). Now the cocycle condition on ω is that the diagram

p̃∗
12
p̃∗

1
L′

p̃∗
12
ω

// p̃∗
12
p̃∗

2
L′ p̃∗

23
p̃∗

1
L′

p̃∗
23
ω

��

p̃∗
13
p̃∗

1
L′

p̃∗
13
ω

// p̃∗
13
p̃∗

2
L′ p̃∗

23
p̃∗

2
L′

commutes.
The condition on χ is commutativity of the diagram

p̃∗
1
f̃ ∗L

p̃∗
1
χ

// p̃∗
1
L′

ω

��

p̃∗
2
f̃ ∗L

p̃∗
2
χ

// p̃∗
2
L′

where the equality f̃ ◦ p̃1 = f̃ ◦ p̃2 is a consequence of the condition on λ (as detailed in
the large commutative diagram in the proof of Proposition A.17).

Before we give the proof of this result, we recall that a quasi-projective morphism is
a morphism of finite type which factors as an open embedding followed by a map of the
form Proj(S) → X where S is a graded sheaf of quasi-coherent OX -algebras. Associated
to a separated morphism of finite type of schemes f : X → Y and an invertible sheaf L
on X is a graded sheaf of algebras S :=

⊕
n≥0

f ∗(L⊗n), open subscheme U ⊂ X, and
factorization of the restriction of f to U as

U → Proj(S) → Y.
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Now [EGA II.4.6.3] states that the map f is quasi-projective if and only if U = X and
X → Proj(S) is an open embedding. Further, for a morphism of schemes to be of finite
type is a Zariski local condition, and this is a condition that holds for any morphism if
it holds after fpqc base change ([EGA IV.2.7.1(v)]).

Proof of Proposition A.18. We introduce P ′′ = P ′ ×T T
′ as above, with mor-

phism t′′ : P ′′ → P ′. Consider the composite isomorphism

p∗
1
t′∗L

′ ∼= t′′∗p̃
∗
1
L′ t

′′

∗
ω

→ t′′∗ p̃
∗
2
L′ ∼= p∗

2
t′∗L

′

of two base-change isomorphisms and the pushforward of ω. We claim that t′∗L
′, to-

gether with this isomorphism, constitutes a descent datum, and hence determines by
Theorem A.2 a quasi-coherent sheaf S1 on T . Verifying the cocycle condition amounts
to writing down a large diagram whose commutativity results by (i) naturality of the
base change isomorphism, (ii) the property that a composite of base change morphisms
resulting from two commuting squares glued together equals the base change morphism
coming from the large outer diagram (see the Glossary), and (iii) the cocycle condition
on ω.

The same consideration applies as well to L′⊗n yielding a sheaf Sn on T , for all
n ≥ 0. So, we get a graded quasi-coherent sheaf S = ⊕n≥0Sn on T which is given an
algebra structure by using descent for morphisms of quasi-coherent sheaves.

The remainder of the argument exactly parallels the proof of Proposition A.17. We

have the canonical factorization of P ′ → T ′ through P
′
:= Proj(

⊕
t′∗L

′⊗n), with descent

datum ϕ : P
′
×T T

′ → T ′×T P
′
. A solution is given by P := Proj(S). As before there is

a uniquely determined open subscheme P ⊂ P whose pullback is the image of P ′ → P
′
.

Now P → T with T ′ ×T P → P ′ and the restriction of the invertible sheaf OP (1) to P
constitute a solution to the descent problem. �

Proposition A.18 is used to show that various families of curves determine stacks.
It is also are used to show that other moduli problems, such as abelian varieties with
various kinds of polarization, give rise to stacks.

Remark A.19. The proof of Proposition A.17 is in fact the special case L′ = OP ′

of the proof just given. In fact there is a common generalization of Propositions A.17
and A.18. This is the statement that effective descent holds for schemes equipped
with relatively ample invertible sheaves. The proof is obtained by copying the proof of
Proposition A.18 and changing “of finite type” to “quasi-compact” throughout.

A modern descent result – which is not needed in this book – stems from the study
of principal bundles on curves. Consider a scheme T with a covering by two Zariski
open subsets. Then, the cocycle condition on the transition mappings is vacuous, so any
isomorphism of objects on the overlap determines an object on T . One might expect
a similar result for the cover consisting of the formal neighborhood of a divisor on T

and the complement of the divisor. So, for instance, a vector bundle on a curve C over
a field k should be determined uniquely up to isomorphism by a vector bundle on the

complement of a k-rational point x, a vector bundle on Spec Ôx,C , and an isomorphism
on the overlap. Here is the precise result:
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Proposition A.20. Let T = SpecA be an affine scheme, and let f : T ′ → T

be the cover given by T ′ = T ′
1
∐ T ′

2
, where T ′

1
⊂ T is the complement of the divisor

corresponding to a non-zero-divisor a ∈ A and T ′
2

is Spec of the completion of A with

respect to the a-adic topology. Let T ′′ = T ′
1
×T T

′
2

with projections pi to T ′
i . Given a

quasi-coherent sheaves E ′
i on T ′

i , for i = 1 and 2 such that E ′
2
is f -regular (i.e., such that

multiplication by f induces an injective map E ′
2
→ E ′

2
) and an isomorphism ϕ : p∗

1
E ′

1
→

p∗
2
E ′

2
, there exists a locally free sheaf E on T , unique up to canonical isomorphism, with

an isomorphism λ′ : f ∗E → E ′ satisfying p∗
2
λ = ϕ ◦ p∗

1
λ.

We remark that Proposition A.20 does not follow from faithfully flat descent. In
fact, the map f is not even flat in general. What is true is that f is faithful, i.e., we
have f ∗E = 0 if and only if E = 0 for quasi-coherent E . This “faithful descent” result
is proved by Beauville and Laszlo in [9] and has important applications in conformal
field theory (see [8] for a survey) and in the geometric Langlands program.

Answers to Exercises

A.1. (1) For ⇒, a nonzero element of M determines an inclusion A/I →M , hence
an inclusion A′/IA′ → A′ ⊗AM . With m any maximal ideal containing I, it suffices to
show A′/mA′ 6= 0, and this holds by surjectivity of Spec(A′) → Spec(A). For ⇐, the
crucial fact is that p ∈ SpecA implies A/p → A′/pA′ is injective. Indeed, if the image in
A′ of some a ∈ Arp lies in pA′ then (p+aA)/p would be a nonzero A-module becoming
zero under A′ ⊗A −. Now any maximal ideal of the localization Ap/pAp ⊗A/p A

′/pA′

gives an element of SpecA′ that maps to p. The condition in (2) is readily shown to be
equivalent to that given in (1); a reference is [14, Proposition I.3.1.1].

A.2. (1) If ρ is the homomorphism, look at the exact sequence

0 → Ker(ρ) → M → N → Coker(ρ) → 0.

(2) If A′ ⊗AM is finitely generated, one can find a finitely generated free A-module F
and a morphism F → M such that A′ ⊗A F → A′ ⊗AM is surjective. Then (1) shows
that F → M is surjective. The same argument on the kernel of F → M gives the
corresponding assertion for finitely presented. The flat case follows directly from the
definitions, and the last follows from the fact that locally free of finite rank is equivalent
to flat and finitely presented. A reference for this last fact is [14, Corollary II.5.2.2].

A.3. It suffices to prove that A′ ⊗A T
• ⊗A M is exact. One can prove this as in

the lemma, or, more elegantly, by defining a chain homotopy hn : A′ ⊗A T
n ⊗A M →

A′ ⊗A T
n−1 ⊗AM by the formula hn(x ⊗ x1 ⊗ · · ·⊗ xn ⊗m) = x · x1 ⊗x2 · · ·⊗ xn ⊗m, and

verifying that hn+1 ◦ δn + δn−1 ◦ hn = 1A′⊗Tn⊗M .

A.4. Cover T by affines Ti, and let Si = f−1(Ti). Descent for morphisms holds for
each Si → Ti by the affine case, hence as well for

∐
Si →

∐
Ti. Since Zariski coverings

satisfy descent for morphisms, we may deduce descent for morphisms for
∐
Si → T ,

and then for T ′ → T .
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A.5. Given E ′ on S and ϕ : p∗
1
E ′ → p∗

2
E ′ satisfying the cocycle condition, pull back

the cocycle condition via R ×T R ×T R → S ×T S ×T S and use effective descent for
f ◦ g to conclude there exists E on T and λ′ : g∗f ∗E → g∗E ′ such that q∗

2
λ′ = k∗ϕ ◦ q∗

1
λ′.

Since k ◦ ℓ factors through the image of S in S ×T S (by the diagonal morphism), we
have r∗

2
λ′ = ℓ∗q∗

2
λ′ = ℓ∗q∗

1
λ′ = r∗

1
λ′, hence there exists λ : f ∗E → E ′ such that g∗λ = λ′.

Now k∗p∗
2
λ = q∗

2
g∗λ = k∗ϕ ◦ q∗

1
g∗λ′ = k∗(ϕ ◦ p∗

1
λ), hence p∗

2
λ = ϕ ◦ p∗

1
λ.

A.6. A non-effective descent datum is given by multiplication by p/q on the trivial
rank 1 free module on Spec Zp ⊗Z Zq, for every pair p and q of prime numbers.

A.7. What is true more generally is that if T1 and T2 are any schemes mapping to
T , with x ∈ T1 and y ∈ T2 mapping to the same point t ∈ T , then the fiber product
T1 ×T T2 contains a point z with p1(z) = x and p2(z) = y. Localizing, we may suppose
we are in the affine case with x, y, and t all closed points. Passing to closed subschemes
we are reduced to the assertion that the tensor product of two fields over a third field
is a nonzero ring and hence contains a prime ideal.

A.8. Repeat the given construction using an irreducible curve defined over R which
becomes the union of two irreducible components (meeting at nodes) after extending
the base field to C.
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APPENDIX B

Categories and 2-categories

I do not believe in categories of any kind. Duke Ellington

We begin this appendix by reviewing some basic notions about categories. The
second section defines and proves basic properties of 2-categories. These are applied in
Section 3 to the study of adjoint functors. The fourth section has the main theorem,
which spells out the appropriate notion of equivalence for 2-categories. Most of these
notions and results are known in some form in general category theory. We have tried
to present them in more concrete terms than usual, and hope that this, and a deficiency
of references, will not offend category theorists. We expect geometers will find the going
abstract enough; for a first reading, it should suffice to concentrate on the definitions,
examples, and statements of the propositions.

In the last section we make a few remarks about set theoretic foundations, and the
axiom of choice, which is used freely in the text. These are not designed to put us
in any axiomatic set-theoretical framework, but rather to explain why we avoid doing
this.

1. Categories

A category C has objects and morphisms, also called maps or mappings or
arrows. To each morphism is associated two objects, its source and its target. We
write f : X → Y to mean that f is a morphism with the object X as its source and
the object Y as its target, and we say that f is a morphism from X to Y .1 For any
morphism f from X to Y , and any morphism g from Y to Z, there must be a morphism
from X to Z, called the composite of f and g, and denoted g ◦ f or sometimes simply
gf . The following properties must be satisfied:

(a) For any object X there is a morphism 1X : X → X such that f ◦ 1X = f for
all f : X → Y and 1X ◦ g = g for all g : Y → X.

(b) For any f : X → Y , g : Y → Z, and h : Z →W , h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Exercise B.1. Identity maps, if they exist, are unique.

A map f : X → Y is an isomorphism if there is a map f−1 : Y → X such that
f−1 ◦ f = 1X and f ◦ f−1 = 1Y .

1Although the notation f : X → Y is suggested by the functional notation of set theory, it does

not mean that f assigns elements of Y to elements of X . In the category of schemes, for example, a

morphism is much more than a function on underlying sets.

app-23



app-24 Categories and 2-categories

Exercise B.2. (1) An inverse, if it exists, is unique. (2) If f : X → Y is an
isomorphism, and g : Y → Z is an isomorphism, then g ◦ f is an isomorphism, with
inverse f−1 ◦ g−1.

A subcategory C′ of a category C consists of some of the objects of C and some
of the morphisms of C, such that: (a) the source and target of any morphism in C′ is
in C′; (b) if f : X → Y and g : Y → Z are in C′, then g ◦ f is also in C′; and (c) if an
object X is in C′, then 1X is also in C′. It follows that C′ forms a category.

If C and D are categories, a (covariant) functor F from C to D assigns to each
object X in C an object F (X) in D, and to each morphism f : X → Y in C a morphism
F (f) : F (X) → F (Y ) in D, such that: (a) if f : X → Y and g : Y → Z in C, then
F (g ◦ f) = F (g) ◦F (f); (b) F (1X) = 1F (X) for all objects X of C. We write F : C → D
to mean that F is a functor from C to D.

Exercise B.3. (1) If f : X → Y is an isomorphism, then F (f) is an isomorphism,
with inverse F (f−1). (2) In the definition of functor, the property that F (1X) = 1F (X)

could be replaced by the weaker property that F (1X) is an isomorphism, or that it has
a left or a right inverse.

If F : C → D and G : D → E are functors, their composite, denoted G ◦ F or GF ,
is the functor from C to E defined by G ◦ F (X) = G(F (X)) and G ◦ F (f) = G(F (f)).
With this composition law, the categories form a category, denoted (Cat).

If F and G are functors from C to D, a natural transformation θ from F to G
assigns to each object X in C a morphism θX from F (X) to G(X) in D, such that for
any morphism f : X → Y in C, G(f) ◦ θX = θY ◦ F (f), i.e., the diagram

F (X)
F (f)

//

θX

��

F (Y )

θY

��

G(X)
G(f)

// G(Y )

commutes. The notation θ : F ⇒ G is used to indicate that θ is a natural transformation
from F to G. It is a natural isomorphism if each θX is an isomorphism, in which
case one writes θ : F

∼
⇒ G.

If F , G, and H are functors from C to D, two natural transformations θ from F to
G and η from G to H can be composed, giving a natural transformation η ◦ θ from F

to H . This is defined by setting (η ◦ θ)X = ηX ◦ θX .

Exercise B.4. (1) For fixed categories C and D, there is a category HOM(C,D) (or
HOM(Cat)(C,D)) with objects the functors from C to D, and with arrows from F to G
the natural transformations. (2) If θ is a natural isomorphism from F to G, then θ−1,
defined by (θ−1)X = (θX)−1, is a natural isomorphism from G to F , with θ−1 ◦ θ = 1F
and θ ◦ θ−1 = 1G.

A functor F : C → D is a strict isomorphism if there is a functor G : D → C such
that G ◦ F and F ◦G are the identity functors 1C on C and 1D on D.



Categories app-25

A functor F : C → D is an equivalence of categories if there is a functor G : D → C
together with natural isomorphisms θ from G ◦ F to 1C and η from F ◦G to 1D. (Note
that only the existence of G, θ, and η is required, and they need not be unique.)

A functor F : C → D is called faithful if for any morphisms f : X → Y and
g : X → Y in C, the equality of F (f) and F (g) implies the equality of f and g. A
functor F is called full if, for any objects X and Y of C, any morphism from F (X)
to F (Y ) in D has the form F (f) for some f : X → Y in C. A functor F : C → D is
essentially surjective if, for every object X in D, there is an object P in C and an
isomorphism from F (P ) to X in D.

The inclusion of a subcategory C′ in a category C is always a faithful functor. If C′

is obtained by choosing some of the objects of C, and all morphisms between them, this
inclusion is also full, and C′ is called a full subcategory.

Exercise B.5. Suppose F and G are naturally isomorphic functors. Then F is
faithful (resp. full, resp. essentially surjective) if and only if G is faithful (resp. full,
resp. essentially surjective).

Exercise B.6. If F : C → D is full and faithful, and f : X → Y is a morphism in
C, show that f is an isomorphism if and only if F (f) is an isomorphism.

Proposition B.1. A functor is an equivalence of categories if and only if it is full,

faithful, and essentially surjective.

Proof. We sketch the proof of the implication ⇐. Suppose F : C → D is the
functor. For each object X of D, choose (by an appropriate axiom of choice if necessary,
cf. Section 5) an object G(X) of C and an isomorphism ηX : F (G(X))→ X in D. For
a morphism f : X → Y in D, there is a unique morphism G(f) : G(X) → G(Y ) in C
such that F (G(f)) = ηY

−1 ◦ f ◦ ηX . Verify that G is a functor. For an object P of C,
define θP : G(F (P ))→ P to be the morphism such that F (θP ) = ηF (P ), and verify that
θ and η are natural isomorphisms. �

Exercise B.7. Complete the proof of this proposition.

Exercise B.8. Show that a functor F : C → D is an equivalence of categories if and
only if there is a functor G : D → C and natural isomorphisms θ from G ◦ F to 1C and
η from F ◦ G to 1D such that F (θP ) = ηF (P ) for all objects P in C and G(ηX) = θG(X)

for all objects X in D. In this case the data (F,G, θ−1, η) is what is called an adjoint

equivalence, cf. [65, §IV.4] and Section 3.

Exercise B.9. Let F : C → D and G : D → E be functors. (1) F and G faithful
(resp. full, resp. essentially surjective) imply GF faithful (resp. full, resp. essentially
surjective). (2) GF faithful implies F faithful; GF essentially surjective implies G
essentially surjective; GF full and F essentially surjective implies G full; GF full and
G full and faithful implies F full. (3) If GF is an equivalence of categories, and either
F is essentially surjective or G is full and faithful, then F and G are both equivalences
of categories.

Example B.2. A full subcategory C′ of C is a skeleton of C if every object of C is
isomorphic to exactly one object of C′. The inclusion C′ → C is then an equivalence of
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categories. For any category C, the choice of one object from each isomorphism class of
objects determines a skeleton C′. For example, if C is the category of finite nonempty
sets, the full subcategory whose objects are the sets {1, . . . , n} for n ≥ 1 is a skeleton
of C.

Example B.3. The product C×D of two categories C and D is the category whose
objects are pairs (X, Y ) of objects X of C, Y of D; a morphism (f, g) : (X, Y )→ (X ′, Y ′)
is a pair of morphisms f : X → X ′ in C and g : Y → Y ′ in D, with composition
induced by that in each category. One constructs similarly a product of any number of
categories.

The opposite category Cop of a category C is obtained by reversing all the arrows of
C. A contravariant functor from C to D is a covariant functor F from Cop to D. This
assigns to each object X of C an object F (X) of D, and to each morphism f : X → Y

of C a morphism F (f) : F (Y ) → F (X). These satisfy: if f : X → Y and g : Y → Z,
then F (g ◦ f) = F (f) ◦ F (g), as well as F (1X) = 1F (X) for all objects X.

Definition B.4. A commutative square

V
q

//

p

��

Y

t

��
X s

// Z

of objects and morphisms in a category C is called cartesian if it satisfies the following
universal property. For any object U and morphisms f : U → X and g : U → Y such
that sf = tg, there is a unique morphism h : U → V such that ph = f and qf = g:

U

f

��

g

##
h

  
V

q
//

p

��

Y

t

��
X s

// Z

It follows that V is unique up to canonical isomorphism: if V ′, p′ : V ′ → X, q′ : V ′ → Y

also satisfy the universal property, there is a unique isomorphism ϑ : V ′ → V such that
p′ = pϑ and q′ = qϑ.

If the diagram is cartesian, one writes V = X ×Z Y , and V is called the (or a)
fibered product of X and Y over Z. If the morphisms s and t need to be specified,
one writes V = X s×tY or V = X s×Z,tY . The morphism h : U → X×Z Y determined
by f and g is usually denoted (f, g). The projection X ×Z Y → X is often called the
pullback of the morphism Y → Z by s : X → Z.

If the category C has a final object • (so each object of C has a unique morphism
to •) then the fibered product X ×• Y is called the product of X and Y , and denoted
X × Y .
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Exercise B.10. Construct fibered products for arbitrary morphisms s : X → Z and
t : Y → Z in the category (Set) of sets and the category (Top) of topological spaces.

Exercise B.11. (1) Given morphisms s : X → Z, t : Y → Z, s′ : X ′ → Z ′, t′ : Y ′ →
Z ′, and morphisms f : X ′ → X, g : Y ′ → Y , h : Z ′ → Z, with sf = hs′ and tg = ht′,
construct a canonical morphism X ′×Z′ Y ′ → X×Z Y , whenever these fibered products
exist. (2) For any morphism f : X → Y , construct a canonical morphism X → X×Y X,
whenever this fibered product exists; it is called the diagonal morphism.

Exercise B.12. (1) For any morphism s : X → Y , the fibered product X ×Y
Y = X s×Y,1Y

Y exists and is canonically isomorphic to X. (2) There is a canonical
isomorphism ofX s×Z,tY with Y t×Z,sX, with one existing if and only if the other exists.
(3) Suppose s : X → Z, t : Y → Z, u : Y →W , and v : V →W are given, and X ×Z Y
and Y ×W V exist. If one of the fibered products (X×ZY )×Y (Y ×W V ), (X×ZY )×W V
or X ×Z (Y ×W V ) exists, then all exist and are canonically isomorphic. This fibered
product is also denoted X ×Z Y ×W V ; it is characterized by a universal property for
triples of morphisms f : U → X, g : U → Y , and h : U → V such that sf = tg and
ug = vh: there is a unique morphism (f, g, h) : U → X ×Z Y ×W V such that f , g,
and h are recovered by composing (f, g, h) with the projections to the three factors.
(4) Suppose s : X → Y , t : Y → Z, and f : W → Z are morphisms, and Y t×Z,f W
exists. Then X ts×Z,fW exists if and only if X ×Y (Y ×ZW ) exists, and then they are
canonically isomorphic. (5) Suppose morphisms X → Z, Y → Z, and Z → T are given,
and X ×T Y and Z ×T Z exist. Then X ×Z Y exists if and only if (X ×T Y )×Z×TZ Z

exists, and then they are canonically isomorphic; here X×T Y → Z×TZ is the canonical
map, and Z → Z ×T Z the diagonal map, of the preceding exercise. In particular, if
C has a final object, there is a canonical isomorphism X ×Z Y ∼= (X × Y ) ×Z×Z Z,
whenever these fibered products exist.

For an object X in a category C, define a contravariant functor hX from C to the cat-
egory (Set) of sets, that takes an object S to the set hX(S) = Hom(S,X) of morphisms
from S to X, and takes a morphism u : T → S to the mapping hX(u) : hX(T )→ hX(S)
which sends g : S → X to g ◦ u : T → X. The elements of hX(S) are called S-valued

points of X.

Exercise B.13. For any functor H : Cop → (Set), any object ζ in H(X) determines
a natural transformation from hX to H ; this assigns to an object S of C the map
from hX(S) to H(S) that takes g : S → X to H(g)(ζ). Show that every natural
transformation from hX to H arises in this way from a unique ζ in H(X).

Any morphism f : X → Y in C determines a mapping from hX(S) to hY (S) that
takes g : S → X to f ◦ g : S → Y . This determines a covariant functor

C → HOM(Cop, (Set)).

Exercise B.14. Show that this functor is full and faithful.

A functor H : Cop → (Set) is representable by an object X of C if one has a
natural isomorphism between hX and H . This is given by an element ζ in H(X) such
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that, for all S, the map hX(S) → H that takes g : S → X to H(g)(ζ) is a bijection.
(Note that one must specify bothX and ζ to represent H .) By Exercise B.14, the object
X that represents H is determined up to canonical isomorphism. This combination of
ideas is known as Yoneda’s Lemma.

If F → G and H → G are natural transformations between functors from Cop to
(Set), there is a fibered product F ×G H , which takes an object S of C to the set

(F ×G H)(S) = F (S)×G(S) H(S)

of pairs of elements in F (S) and H(S) with the same image in G(S). A morphism
u : T → S in C is sent to the map from F (S)×G(S)H(S) to F (T )×G(T )H(T ) determined
by F (u) and H(u). The fibered product F ×G H is a contravariant functor from C to
(Set). It comes equipped with natural transformations (called projections) from F×GH
to F and to H ; it is a fibered product in the category of contravariant functors from C
to (Set).

Exercise B.15. A commutative diagram as in Definition B.4 is cartesian if and
only if, for every object S in C, the corresponding diagram of S-valued points is a
cartesian diagram in the category of sets. That is, the map

hV (S) → hX(S)×hZ(S) hY (S)

is a bijection. Equivalently, the canonical natural transformation from hV to hX×hZ
hY

is a natural isomorphism.

A natural transformation F → G between contravariant functors from C to (Set) is
called representable if, for every object X in C and natural transformation hX → G,
the fibered product F ×G hX is representable. If Y is an object representing F ×G hX ,
the projection from F ×G hX to hX determines a morphism from Y to X in C.

Exercise B.16. If Y ′ is another object representing F ×G hX , the morphism from
Y ′ to X determined by F → G factors uniquely into Y ′ → Y → X, where the first
morphism is an isomorphism and the second is the morphism of the definition.

Exercise B.17. The composite of two representable natural transformations is
representable. If F → G is representable, then F ×G H → H is representable for any
natural transformation H → G. If F → G is representable, and H is representable,
then F ×G H is representable for any H → G.

If F and G are contravariant functors from C to (Set), F is a subfunctor of G if, for
every object S of C, F (S) is a subset of G(S), and, for every morphism u : T → S, the
map F (u) from F (S) to F (T ) is the restriction of the map G(u) from G(S) to G(T ).

Let π : X → Y be a morphism in a category C, and assume that a fibered product
X×Y X exists, with projections p1 and p2 from X×Y X to X. The morphism π makes
Y a quotient of X if it satisfies the following universal mapping property: for any
morphism u : X → Z such that the two morphisms u ◦ p1 and u ◦ p2 from X ×Y X to Z
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are equal, there is a unique morphism v : Y → Z such that u = v ◦ π:

X ×Y X
p2

//

p1

��

X

π

�� u

��

X
π

//

u
,,

Y

v

  
Z

For π to make Y a quotient of X amounts to the fibered product square satisfying this
dual cocartesian property as well as the cartesian property.

For more about categories, functors, and natural transformations, see [65]. For
more on representable functors, see [EGA 0.8.1].

2. 2-categories

A 2-category C has objects (denoted here X, Y , etc.), morphisms, sometimes
called 1-morphisms or arrows (denoted here f , g, etc.), and 2-morphisms (denoted
here α, β, etc.). Each morphism f has a source and target object, for which we write
f : X → Y as before, and there are identity morphisms 1X : X → X for each object X,
with compositions g ◦ f : X → Z for each f : X → Y and g : Y → Z. These objects
and morphisms are required to satisfy the category axioms; this category is called the
underlying category of the 2-category C.

A 2-morphism α has a source morphism f and a target morphism g, with both f

and g required to be morphisms with the same source and target. We write α : f ⇒ g to
mean that α is a 2-morphism with source f and target g, and we say α is a 2-morphism
from f to g. If f and g are morphisms from X to Y , this may be denoted

X

f
''

g
77

��
��

�� α Y.

There are two operations on 2-morphisms. First, if α : f ⇒ g and β : g ⇒ h are 2-
morphisms, with f , g, and h all morphisms with the same source and target, there is a
2-morphism, denoted β ◦ α, from f to h:

X
!!

��
��

�� α

==��
��

�� β
// Y ///o/o/o/o/o X

&&

88
��
��

�� β◦α Y.

Second, if α : f ⇒ f ′, with f and f ′ morphisms from X to Y , and β : g ⇒ g′, with g

and g′ from Y to Z, then there is a 2-morphism β ∗ α from g ◦ f to g′ ◦ f ′:

X
''
77

��
��

�� α Y
''
77

��
��

�� β Z ///o/o/o X
**
44

��
��

�� β∗α Z.
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As the pictures indicate, these are sometimes called vertical and horizontal composi-
tion of 2-morphisms.2 These operations are required to satisfy the following properties,
each of which is an identity between 2-morphisms:

(a) If α : f ⇒ g, β : g ⇒ h, and γ : h⇒ i, then (γ ◦ β) ◦ α = γ ◦ (β ◦ α) : f ⇒ i.
(b) For every morphism f , there is a 2-morphism 1f : f ⇒ f such that α ◦ 1f = α

for all α : f ⇒ g and 1f ◦ β = β for all β : g ⇒ f . (This 1f is unique.)
(c) For α : f ⇒ g, with f and g from X to Y , α ∗ 11X

= α = 11Y
∗ α.

(d) For f : X → Y and g : Y → Z, 1g ∗ 1f = 1g◦f .
(e) If α : f ⇒ f ′, with f and f ′ mapping X to Y , and β : g ⇒ g′, with g and

g′ mapping Y to Z, and γ : h ⇒ h′, with h and h′ mapping Z to W , then
γ ∗ (β ∗ α) = (γ ∗ β) ∗ α, as 2-morphisms from h ◦ g ◦ f to h′ ◦ g′ ◦ f ′.

(f) (Exchange) Given morphisms f , f ′, f ′′ from X to Y , morphisms g, g′, g′′ from
Y to Z, and 2-morphisms α : f ⇒ f ′, α′ : f ′ ⇒ f ′′, β : g ⇒ g′, and β ′ : g′ ⇒ g′′,
we have (β ′ ◦ β) ∗ (α′ ◦ α) = (β ′ ∗ α′) ◦ (β ∗ α). In pictures:

X
  

��
��

�� α

>>��
��

�� α
′

// Y
��

��
��

�� β

__��
��

�� β
′

// Z ///o/o/o/o/o X
%%

��
��

�� β∗α

99��
��

�� β
′∗α′

// Z

���O
�O

���O
�O

X
%%

99
��
��

��α
′◦α Y

%%

99
��
��

�� β
′◦β Z ///o/o/o/o/o X

((
66

��
��

�� Z

It follows from (a) and (b) that, for any two objects X and Y , we have a category,
denoted HOM(X, Y ) (or HOMC(X, Y )), whose objects are morphisms f : X → Y , and
whose arrows are 2-morphisms α : f ⇒ g, composed by the vertical composition.

A 2-morphism α : f ⇒ g is a 2-isomorphism if there is a 2-morphism α−1 : g ⇒ f

with α−1 ◦ α = 1f and α ◦ α−1 = 1g. Such α−1 is unique, if it exists. The notation

α : f
∼
⇒ g means that α is a 2-isomorphism. We say that morphisms f and g are 2-

isomorphic if there is a 2-isomorphism between them, and then we write f
∼
⇒ g. Given

any 2-category, one can throw away all 2-morphisms that are not 2-isomorphisms, with
the result remaining a 2-category. (Almost all 2-morphisms appearing in this book are
in fact 2-isomorphisms.)

Exercise B.18. (1) For α : f ⇒ f ′ and β : g ⇒ g′ as in the definition of β ∗ α, we
have

β ∗ α = (β ∗ 1f ′) ◦ (1g ∗ α) = (1g′ ∗ α) ◦ (β ∗ 1f ).

In particular, the ∗-product is determined by the ◦-product and the ∗-product for which
one of the factors in an identity 2-morphism. (2) When β ∗ α is defined, if α and β are
2-isomorphisms, then β ∗ α is a 2-isomorphism, with inverse β−1 ∗ α−1.

2The reader should be warned that the symbols ◦, ∗, •, ·, as well as juxtaposition, and probably

others, have been used for one or the other of these operations.
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The 2-morphisms in a 2-category are sometimes called 2-cells. In this case the
morphisms are called 1-cells, and the objects may be called 0-cells.

A diagram

V

a

��

b
//

��
��

<Dα

Y

g

��
X

f

// Z

means that a 2-morphism α : f a ⇒ g b is specified. (If the arrow is pointed in the
other direction, it indicates a 2-morphism from g b to f a.) We say that the diagram 2-

commutes when a 2-isomorphism α : f a
∼
⇒ g b is given. When f a = g b, the diagram

is said to strictly commute, and α is taken to be 1fa = 1g b; in this case the arrow ⇒
in the diagram may be replaced by an equality sign =. The same terminology is used
when the square is replaced by any polygon, with arrows starting at some vertex and
moving in opposite directions toward another vertex.

The axioms, particularly the exchange property, allow one to compose 2-morphisms
across diagrams, with the result being independent of choices. For example, given a
diagram

S
a

//

b

��
��
��

<Dα

T

c

��

d

��
��
��

=Eβ

U
e

//

&&
g

��
��

<Dγ
V

h

��

f
//

��
��

=Eδ

W

i

��
X

j
// Y

one gets a 2-morphism from j g b to i d a, by first doing γ, then α and δ (in either order),
and finally doing β. Officially, this 2-morphism is

(1i ∗ β ∗ 1a) ◦ (δ ∗ α) ◦ (1j ∗ γ ∗ 1b),

noting that δ ∗α = (δ ∗1c a)◦ (1j h ∗α) = (1i f ∗α)◦ (δ ∗1e b). Sometimes one can express
an equality among 2-morphisms by saying that the results of such pastings of polygons
around the sides of a solid polytope in 3-space are the same, but these diagrams (with
their labels) are not easy to draw, nor are they easy to manipulate to prove identities.
In fact, it is often useful to express an equality among 2-morphisms by an ordinary
commutative diagram involving 2-morphisms in a HOM-category. For example, the
above situation can be expressed by the diagram

j ◦ h ◦ c ◦ a
δ

#+P
P

P
P

P
P

P
P

P
P

P

P
P

P
P

P
P

P
P

P
P

P

j ◦ g ◦ b
γ
+3 j ◦ h ◦ e ◦ b

α
3;

n
n

n
n

n
n

n
n

n
n

n

n
n

n
n

n
n

n
n

n
n

n

δ #+P
P

P
P

P
P

P
P

P
P

P

P
P

P
P

P
P

P
P

P
P

P

i ◦ f ◦ c ◦ a
β

+3 i ◦ d ◦ a

i ◦ f ◦ e ◦ b

α
3;

n
n

n
n

n
n

n
n

n
n

n

n
n

n
n

n
n

n
n

n
n

n
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in the category HOM(S, Y ), with the central square commuting. When no confusion
is possible, we omit the identity 2-isomorphisms from the labels over double arrows; in
this example, the γ over the first double arrow is short for 1j ∗ γ ∗ 1b, and similarly for
the others. Similarly, (1) of Exercise B.18 says that the diagrams

g ◦ f
α

+3

β∗α �'
H

H
H

H
H

H
H

H

H
H

H
H

H
H

H
H

g ◦ f ′

β

��

g ◦ f

β

��

β∗α

 (
H

H
H

H
H

H
H

H

H
H

H
H

H
H

H
H

g′ ◦ f ′ g′ ◦ f
α

+3 g′ ◦ f ′

commute.

Exercise B.19. Let h : X → X be a morphism in a 2-category, and let θ : 1X
∼
⇒ h

be a 2-isomorphism. Show that θ ∗ 1h = 1h ∗ θ from h to h ◦ h, i.e., the diagram

h 1X ◦ h

θ

��
h ◦ 1X

θ

+3 h ◦ h

commutes in the category HOM(X,X).

Exercise B.20. Properties (d) and (f) say that the assignment

HOM(X, Y )× HOM(Y, Z)→ HOM(X,Z)

that takes (f, g) to g ◦ f , and (α, β) to β ∗ α, is a functor. Property (e) implies that,
for X, Y , Z and W , the diagram of categories

HOM(X, Y )× HOM(Y, Z)× HOM(Z,W )

��

// HOM(X,Z)×HOM(Z,W )

��

HOM(X, Y )× HOM(Y,W ) // HOM(X,W )

commutes. Property (c) implies that the composite functor

HOM(X, Y )→ HOM(X,X)× HOM(X, Y )→ HOM(X, Y ),

where the first takes f to (1X , f) and α to (11X
, α), is the identity functor.

We give several examples, starting with the prototype from geometry.

Example B.5. There is a 2-category (Top), whose objects are topological spaces,
whose morphisms are continuous maps, and whose 2-morphisms come from homotopies
— but here we must take appropriate equivalence classes. Given continuous maps f
and g from X to Y , a homotopy from f to g is a continuous mapping

H : X × [0, 1] → Y

with H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. Call two homotopies H0 and
H1 equivalent if there is a continuous mapping

K : X × [0, 1]× [0, 1] → Y
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with K(x, t, 0) = H0(x, t), K(x, t, 1) = H1(x, t), K(x, 0, u) = f(x), and K(x, 1, u) =
g(x) for all x ∈ X, t, u ∈ [0, 1]. (This is an equivalence relation.) A 2-morphism from
f to g is defined to be an equivalence class of homotopies from f to g.

If f , g, and h map X to Y , and H1 is a homotopy from f to g, and H2 a homotopy
from g to h, define H2 ◦H1 by

H2 ◦H1(x, t) =

{
H1(x, 2t), 0 ≤ t ≤ 1/2

H2(x, 2t− 1), 1/2 ≤ t ≤ 1
.

This passes to equivalence of homotopies, so defines the vertical composition β ◦ α of
2-morphisms. It is associative by the same calculation made to show the associativity
of fundamental groups.

If f and f ′ map X to Y , and g and g′ map Y to Z, and H1 is a homotpy from f to
f ′, and H2 is a homotopy from g to g′, define a homotopy H2 ∗H1 from g ◦ f to g′ ◦ f ′

by
(H2 ∗H1)(x, t) = H2(H1(x, t), t) x ∈ X, 0 ≤ t ≤ 1.

This passes to equivalence classes, defining the horizontal product β∗α of 2-morphisms.

Exercise B.21. Verify that these operations make (Top) into a 2-category, in which
all 2-morphisms are 2-isomorphisms.

Example B.6. There is a 2-category (CC) of chain complexes of abelian groups (and
similarly, a 2-category (CCR) of chain complexes of R-modules, for a commutative ring
R). The objects are the usual chain complexes C = C•, with boundary homomorphisms
dn : Cn → Cn−1 satisfying dn−1 ◦ dn = 0. A morphism f = f• from C to D is a
collection of homomorphisms fn : Cn → Dn, commuting with the boundary maps. A
chain homotopy α = α• from f to g is a collection of homomorphisms αn : Cn → Dn+1

such that dn+1 ◦ αn + αn−1 ◦ dn = gn − fn for all n. Call two chain homomotopies
α and β from f to g equivalent if there is a collection θ = θ• of homomorphisms
θn : Cn → Dn+2 such that

dn+2 ◦ θn − θn−1 ◦ dn = βn − αn

for all n. (This is an equivalence relation.) A 2-morphism from f to g is an equivalence
class of such chain homotopies.

If f , g, and h map C to D, α is a chain homotopy from f to g, and β is a chain
homotopy from g to h, define the chain homotopy β ◦ α from f to h by the formula
(β ◦α)n = αn+βn. This passes to equivalence classes, so defines a vertical composition
of 2-morphisms. If f and f ′ map C to D, and g and g′ map D to E, and α is a
chain homotopy from f to f ′ and β is a chain homotopy from g to g′, define the chain
homotopy β ∗ α from g ◦ f to g′ ◦ f ′ by the formula

(β ∗ α)n = gn+1 ◦ αn + βn ◦ f
′
n.

(This is equivalent to the alternative βn ◦fn+g′n+1
◦αn.) This respects the equivalence,

so defines a horizontal composition of 2-morphisms.

Exercise B.22. Verify that these objects, morphisms, and 2-morphisms satisfy the
axioms to form a 2-category.
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Example B.7. The 2-category (Grp) has groups as objects, group homomorphisms
as morphisms, and, if f and g are homomorphisms from X to Y , a 2-morphism from f

to g is an element y in Y such that

g(x) = y−1 · f(x) · y for all x ∈ X.

If z gives a 2-morphism from g to h, the composition z ◦ y from f to h is given by y · z.
If y : f ⇒ f ′, with f and f ′ from X to Y , and z : g ⇒ g′, with g and g′ from Y to Z,
then z ∗ y : g ◦ f ⇒ g′ ◦ f ′ is given by the element g(y) · z = z · g′(y) of Z.

Exercise B.23. Verify that these operations make (Grp) into a 2-category, in which
all 2-morphisms are 2-isomorphisms.

The following example, with variations, is the key example for this text.

Example B.8. Categories form a 2-category (Cat). Its objects are categories C,
its morphisms are functors F : C → D, and its 2-morphisms α : F ⇒ G are natural
transformations from F to G. If α : F ⇒ G and β : G⇒ H are natural transformations
between functors from C to D, then β ◦ α : F ⇒ H is the natural transformation that
takes an object X of C to the morphism βX ◦ αX from F (X) to H(X). If F , F ′ are
functors from C to D, with α : F ⇒ F ′, and G, G′ are functors from D to E , with
β : G⇒ G′, define β ∗ α : G ◦ F ⇒ G′ ◦ F ′ to take the object X of C to the morphism

G′(αX) ◦ βF (X) = βF ′(X) ◦G(αX)

of E .

Exercise B.24. Verify that these operations make (Cat) into a 2-category. (Not
all 2-morphisms are 2-isomorphisms.)

Thinking of groupoids of sets as categories shows that groupoids of sets form a
2-category (Gpd). More generally:

Example B.9. Let S be a category. Let (S-Gpd) be the category whose objects
are S-groupoids, whose morphisms are morphisms of S-groupoids (see Chapter 3). If
(ϕ,Φ) and (ψ,Ψ) are morphisms from R′

⇉ U ′ to R ⇉ U , define a 2-morphism from
(ϕ,Φ) to (ψ,Ψ) to be a morphism α : U ′ → R in S such that s ◦ α = ϕ, t ◦ α = ψ, and
the diagram

R′
(αs′,Ψ)

//

(Φ,αt′)

��

R t×s R

m

��
R t×s R

m
// R

commutes.

Exercise B.25. Make (S-Gpd) into a 2-category, in which all 2-morphisms are
2-isomorphisms.

Exercise B.26. There is a category whose objects are sets, with an arrow from X

to Y being a subset f of X ×Y . Define the composition of f with g from Y to Z to be
the set of (x, z) in X × Z such that there is a y in Y with (x, y) in f and (y, z) in g.
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This category can be enriched to a 2-category by defining a unique 2-cell from subsets
f and g of X × Y if f is contained in g, with no 2-cell from f to g otherwise. Verify
that this is a 2-category.

Exercise B.27. If C is a 2-category, construct a category C, whose objects are the
same as the objects of C, but whose morphisms from X to Y are equivalence classes of
morphisms f : X → Y in C, where f is equivalent to g if there is a 2-isomorphism from
f to g. Show that this is an equivalence relation, and that C is a category, with the
canonical map from the underlying category of C to C being a functor. Examples are:
the category of topological spaces with homotopy classes of mappings; the category
of groups with homomorphisms up to inner automorphism; the category of categories,
with functors up to natural isomorphism. This category C is sometimes called the
classifying category of C, see [11].

Exercise B.28. Any category C determines a 2-category, with the same objects
and morphisms, and with the only 2-morphisms being identities 1f , for morphisms f
in C.

We say that a 2-category is a 1-category if its only 2-morphisms are identities. In
this spirit, one says that a category is a 0-category if its only morphisms are identity
maps.

Exercise B.29. If C is a 2-category, a category C′ can be constructed as follows.
The objects of C′ are the objects of C; the morphisms of C′ from X to Y are the 2-
morphisms α : f ⇒ g, where f and g are maps from X to Y in C. The composite of α
followed by β is β ∗ α. Verify that C′ is a category.

Exercise B.30. (1) If C is a 2-category, and f : X → Y a morphism in C, we have,
for every object S of C, a functor

fS : HOM(S,X)→ HOM(S, Y )

taking h : S → X to f ◦ h : S → Y , and α : h⇒ h′ to 1f ∗ α : f ◦ h⇒ f ◦ h′. Similarly,
there are functors

fS : HOM(Y, S)→ HOM(X,S)

taking h : Y → S to h ◦ f : X → S and α : h⇒ h′ to α ∗ 1f : h ◦ f ⇒ h′ ◦ f .

(2) If also g : Y → Z, then (g ◦ f)S = gS ◦ fS and (g ◦ f)
S

= fS ◦ gS. If f = 1X ,
then fS = 1HOM(S,X) and fS = 1HOM(X,S). It follows that, if f is an isomorphism, then
each functor fS and fS is an isomorphism of categories.

(3) If f and g are morphisms from X to Y , and σ : f ⇒ g is a 2-morphism, then σ

determines a natural transformation σS from fS to gS (taking h : S → X to σ∗1h), and
a natural transformation σS from fS to gS (taking h : Y → S to 1h∗σ). If also τ : g ⇒ h,

then (τ ◦ σ)S = τS ◦ σS. If σ = 1f , then σS is the identity natural isomorphism on fS.
Hence, if σ is invertible, then σS is a natural isomorphism.

(4) For fixed objects X, Y , and S of C, there is a functor HOM(X, Y ) →
HOM(Cat)(HOM(S,X),HOM(S, Y )) taking f to fS and σ to σS.
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Just as two topological spaces can be homotopy equivalent, there is a notion for two
objects in any 2-category to be 2-isomorphic. In fact, there are several ways to say this:

Proposition B.10. Let f : X → Y be a morphism in a 2-category C. The following

are equivalent:

(1) There is a morphism g : Y → X together with 2-isomorphisms φ : 1X
∼
⇒ g ◦ f

and ψ : 1Y
∼
⇒ f ◦ g.

(2) There is a morphism g : Y → X and 2-isomorphisms φ : 1X
∼
⇒ g ◦ f and

ψ : 1Y
∼
⇒ f ◦ g such that 1f ∗ φ = ψ ∗ 1f (as 2-isomorphisms from f to fgf)

and φ ∗ 1g = 1g ∗ ψ (as 2-isomorphisms from g to gfg). That is, the diagrams

f 1Y ◦ f

ψ

��

g 1X ◦ g

φ

��
f ◦ 1X

φ

+3 f ◦ g ◦ f g ◦ 1Y
ψ

+3 g ◦ f ◦ g

commute, in the categories HOM(X, Y ) and HOM(Y,X) respectively.

(3) For every object S of C, the functor fS : HOM(S,X) → HOM(S, Y ) is an

equivalence of categories.

(4) The functors fX and fY are equivalences of categories.

Proof. We show first how (1) implies (3). By Exercise B.30, we have the functor

gS : HOM(S, Y )→ HOM(S,X), and we have a natural isomorphism φS : 1HOM(S,X)

∼
⇒

gS ◦ fS. Similarly, we have a natural isomorphism ψS : 1HOM(S,Y )

∼
⇒ fS ◦ gS.

Next we prove that (4) implies (2), which finishes the proof since (4) is a special
case of (3) and (1) is a special case of (2). Since fY is essentially surjective, there

is a morphism g : Y → X and a 2-isomorphism ψ : 1Y
∼
⇒ f ◦ g. Since fX is full

and faithful, there is a unique 2-morphism φ : 1X ⇒ g ◦ f such that fX(φ) is the 2-
isomorphism ψ ∗ 1f from f = 1Y ◦ f to f ◦ g ◦ f ; this φ is an isomorphism since fX(φ)
is an isomorphism (Exercise B.6). Since fX(φ) = 1f ∗ φ, we have one of the required
equations 1f ∗ φ = ψ ∗ 1f . To prove that the 2-morphisms φ ∗ 1g and 1g ∗ ψ from g to
g ◦ f ◦ g are equal in HOM(Y,X), it suffices to show that their images by the faithful
functor fY are equal, i.e., to show that 1f ∗ (φ ∗ 1g) = 1f ∗ (1g ∗ ψ). Now

1f ∗ (φ ∗ 1g) = (1f ∗ φ) ∗ 1g = (ψ ∗ 1f) ∗ 1g = ψ ∗ 1fg

= 1fg ∗ ψ = (1f ∗ 1g) ∗ ψ = 1f ∗ (1g ∗ ψ),

as required; the fourth equality used Exercise B.19. �

This proof shows that, given f , g, φ, and ψ, either of the equations 1f ∗ φ = ψ ∗ 1f
or φ ∗ 1g = 1g ∗ ψ implies the other.

Definition B.11. We call a morphism f : X → Y in a 2-category 2-invertible or
a 2-equivalence, if it satisfies the conditions of the proposition. (We do not use the
more natural term 2-isomorphism, to avoid confusion with invertible 2-morphisms.)

On the other hand, if there exists a 2-invertible morphism f : X → Y , then we call
the objects X and Y 2-isomorphic, as there is no danger of confusion in this context.
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A triple (g, φ, η) satisfying the conditions of (2) may be called a 2-inverse of f . A
quadruple satisfying the conditions of (2) is sometimes called an adjoint equivalence.
In practice, one uses (1) to check that a morphism is 2-invertible, but one uses the full
data of (2) in making constructions.

Exercise B.31. Show that the conditions of the proposition are equivalent to each
of the following:

(5) For every object S of C, the functor fS : HOM(Y, S) → HOM(X,S) is an
equivalence of categories.

(6) The functors fX and fY are equivalences of categories.
(7) The functors fX and fY are essentially surjective.

(8) There is a morphism g : Y → X and 2-isomorphisms φ : 1X
∼
⇒ g ◦ f and

η : f ◦ g
∼
⇒ 1Y such that the composition f = f ◦ 1X

φ
⇒ f ◦ g ◦ f

η
⇒ 1Y ◦ f = f

is equal to 1f , and the composition g = 1X ◦ g
φ
⇒ g ◦ f ◦ g

η
⇒ g ◦ 1Y = g is

equal to 1g.

(9) There is a morphism g : Y → X and 2-isomorphisms ψ : 1Y
∼
⇒ f ◦ g and

θ : g ◦ f
∼
⇒ 1X such that the composition f = 1Y ◦ f

ψ
⇒ f ◦ g ◦ f

θ
⇒ f ◦ 1X = f

is equal to 1f , and the composition g = g ◦ 1Y
ψ
⇒ g ◦ f ◦ g

θ
⇒ 1X ◦ g = g is

equal to 1g.

(10) There is a morphism g : Y → X and 2-isomorphisms θ : g ◦ f
∼
⇒ 1X and

η : f ◦ g
∼
⇒ 1Y such that the diagrams

f ◦ g ◦ f
θ

+3

η

��

f ◦ 1X g ◦ f ◦ g
θ

+3

η

��

1X ◦ g

1Y ◦ f f g ◦ 1Y g

commute.

It follows from Proposition B.20 in the next section, together with (9) of the pre-
ceding exercise, that if (g, φ, ψ) is a 2-inverse of f , then any other 2-inverse of f has
the form (g′, φ′, ψ′), for a unique 2-isomorphism θ : g

∼
⇒ g′ with φ′ = (θ ∗ 1f) ◦ φ and

ψ′ = (1f ∗ θ) ◦ ψ.

Exercise B.32. In the 2-category (Top), two spaces are 2-isomorphic exactly when
they have the same homotopy type. In the 2-category (Grp), two groups are 2-
isomorphic if and only if they are isomorphic groups. In the 2-category (Cat), two
categories are 2-isomorphic when they are equivalent.

Exercise B.33. Show that the condition of being 2-isomorphic is an equivalence
relation on the objects of a 2-category.

When applied to the 2-category (Cat), Proposition B.10 and Exercise B.31 give a
variety of criteria for a functor F from a category C to a category D to be an equivalence
of categories. Note that the equivalence with (9) recovers the result of Exercise B.8.
For the 2-category (Top), one recovers a criterion of Vogt [90]. The general statement,
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in the form that (1) implies (9), appears in [63], where it is attributed to a combination
of folklore and R. Street.

Definition B.12. A sub-2-category C′ of a 2-category C is obtained by selecting
some of the objects, some of the morphisms, and some of the 2-morphisms, of C, in
such a way that all identities 1X of selected objects and 1f of selected morphisms are
selected, and all composites g ◦ f and β ◦ α of selected morphisms or 2-morphisms are
selected, as is the product β ∗ α, whenever such composites or products are defined
in C. It is easy to verify that C′ is a 2-category. A sub-2-category C′ is called a full

sub-2-category of C if any morphism in C between two objects of C′ is in C′, and any
2-morphism in C between two morphisms in C′ is in C′.

Example B.13. The 2-category (Grp) of groups forms a full sub-2-category of the
2-category (Gpd) of groupoids of sets, which in turn forms a full sub-2-category of the
2-category (Cat) of categories.

Most “mappings” from one 2-category to another will not preserve all the structure
strictly; rather, the expected identities will be true only up to specified 2-isomorphisms.
These “pseudofunctors” will be studied in Section 4. We include here a brief discussion
of the stronger notion, called a 2-functor, as a warmup. A 2-functor F : C → D from
one 2-category to another assigns to each object X in C an object F (X) in D, to
each morphism f : X → Y in C a morphism F (f) : F (X) → F (Y ) in D, and to each
2-morphism α : f ⇒ g in C a 2-morphism F (α) : F (f)⇒ F (g) in D, satisfying:

(a) F (1X) = 1F (X) for all objects X of C;
(b) F (1f) = 1F (f) for all morphisms f of C;
(c) F (g ◦ f) = F (g) ◦ F (f) for f : X → Y , g : Y → Z in C;
(d) F (β ◦ α) = F (β) ◦ F (α) for α : f ⇒ g, β : g ⇒ h in C;
(e) F (β ∗ α) = F (β) ∗ F (α) when β ∗ α is defined in C.

This gives a functor between the underlying categories (called the underlying

functor). For objects X and Y of C, it also gives a functor HOM(X, Y ) →
HOM(F (X), (F (Y )) (by (b) and (d)). For example, the inclusion of a sub-2-category
in a 2-category is a 2-functor.

Exercise B.34. Construct a 2-functor from the 2-category (Top) of topological
spaces to the 2-category (Gpd) of groupoids, that takes a space X to its fundamental
groupoid.

Example B.14. There is a 2-functor from the 2-category (Top) to the 2-category
(CC) of chain complexes. This takes a topological space X to the chain complex C•(X)
of nondegenerate cubical chains.3 A continuous mapping f : X → Y is sent to the chain
mapping f• : C•(X) → C•(Y ) that takes σ to f ◦ σ. A homotopy H : X × [0, 1] → Y

3Cn(X) is the free module on the set of continuous maps σ : [0, 1]n → X , modulo the submod-

ule generated by those σ such that, for some 1 ≤ i ≤ n, σ(t1, . . . , tn) is a constant function of ti.

The boundary dn : Cn(X) → Cn−1(X) is defined by the formula dn =
∑n

i=1
(−1)i(∂0

i − ∂1
i ), where

∂ǫ
i (σ)(t1, . . . , tn−1) = σ(t1, . . . , ti−1, ǫ, ti, . . . , tn−1).
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from f to g determines a chain homotopy αH from f• to g•, by the formula

αH(σ)(t1, . . . , tn+1) = H(σ(t2, . . . , tn+1), t1).
4

Exercise B.35. Verify that αH is a chain homotopy. Show that equivalent homo-
topies from f to g determine equivalent chain homotopies from f• to g•, so a 2-morphism
in (Top) determines a 2-morphism in (CC). Show that taking X to C•(X), f to f•,
and an equivalence class of H ’s to the equivalence class of αH ’s, determines a 2-functor
from (Top) to (CC).

If F and G are 2-functors from a 2-category C to a 2-category D, a 2-natural

transformation θ from F to G assigns to each object X of C a morphism θX : F (X)→
G(X) in D, satisfying two properties. First, for all f : X → Y in C, the diagram

F (X)
F (f)

//

θX

��

F (Y )

θY

��

G(X)
G(f)

// G(Y )

must commute. This says that θ is a natural transformation between the underlying
functors on the underlying categories. The second property says that for any f, g : X →
Y and 2-morphism α : f ⇒ g in C, the two morphisms 1θY

∗F (α) andG(α)∗1θX
, pictured

by

F (X)
F (f)

++

F (g)

33
��
��

��F (α)F (Y )
θY

// G(Y ) F (X)
θX

// G(X)
G(f)

++

G(g)

33
��
��

��G(α)G(Y )

from θY ◦ F (f) = G(f) ◦ θX to θY ◦ F (g) = G(g) ◦ θX must be equal. A 2-natural
transformation is a 2-natural isomorphism if each θX is an isomorphism.

Exercise B.36. Define vertical and horizontal composition of 2-natural transfor-
mations, by the formulas: (β ◦ α)X = βX ◦ αX ; and (β ∗ α)X = G′(αX) ◦ βF (X) =
βF ′(X) ◦ G(αX), the latter when α (resp. β) is a 2-natural transformation from F to
F ′ (resp. G to G′). Show that, with these operations, 2-categories, 2-functors, and
2-natural transformations form the objects, arrows, and 2-cells of a 2-category (2-Cat).

One can call a 2-functor F : C → D a strict 2-isomorphism if there is a 2-functor
G : D → C with G◦F = 1C and F ◦G = 1D. This notion is much too strong to be useful.
Somewhat better is the following: A 2-functor F : C → D between 2-categories is a 2-

equivalence if there is a 2-functor G : D → C and there are 2-natural isomorphisms
from G ◦ F to 1C and from F ◦G to 1D.

Exercise B.37. Let F : C → D be a 2-functor. The following are equivalent:
(1) F is a 2-equivalence. (2) F determines an equivalence between the underlying
categories, and, for all objects X and Y of C, the induced functor HOM(X, Y ) →
HOM(F (X), F (Y )) is a strict isomorphism of categories.

4Readers who prefer simplices may use the method of acyclic models to obtain a similar 2-functor

involving simplicial complexes.
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These 2-functors are relatively rare in the world of 2-categories, and the notion of
“isomorphism” that appears in the preceding exercise is too strong to be very useful; a
more flexible notation is discussed in Section 4.

Definition B.15. The opposite 2-category Cop of a 2-category C is obtained by
reversing the direction of the 1- morphisms, keeping the direction of the 2-morphisms
the same. Thus if f and g are morphisms from X to Y in C, and α is a 2-morphism from
f to g, then in Cop there are morphisms f and g from Y to X, with α a 2-morphism
from f to g.

Definition B.16. A 2-commutative diagram

V

p

��

q
//

��
��

<Dθ

Y

t

��
X s

// Z

(with θ a 2-isomorphism from s p to t q) is said to be 2-cartesian if it satisfies the
following universal property: For any morphisms f : U → X and g : U → Y and 2-
isomorphism φ : sf

∼
⇒ tg, there is a morphism h : U → V and 2-isomorphisms α : f

∼
⇒

ph and β : qh
∼
⇒ g such that φ = (1t ∗ β) ◦ (θ ∗ 1h) ◦ (1s ∗ α):

U

f

��

g

##
h

  
pp
pp
4<α

��
��

DL
β

V
q

//

p

��
��
��

<Dθ

Y

t

��
X s

// Z

In addition, we must have the following uniqueness: if h′ : U → V and α′ : f
∼
⇒ ph′

and β ′ : qh′
∼
⇒ g also have φ = (1t ∗ β

′) ◦ (θ ∗ 1h′) ◦ (1s ∗ α
′), then there is a unique

2-isomorphism ρ : h
∼
⇒ h′ such that α′ = (1p ∗ ρ) ◦ α and β = β ′ ◦ (1q ∗ ρ). In this case

we will call V a fibered product of X and Y over Z, and write V = X ×Z Y , but
note that the morphisms, and especially the 2-isomorphism, are understood to be part
of the structure.

Exercise B.38. Given a diagram

X ′
s′

//

��
��
��

=Eα

Y ′
t′

//

��
��
��

=Eβ

Z ′

��
X s

// Y
t

// Z
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if the two squares are 2-cartesian, show that the resulting diagram

X ′
t′s′

//

��
��
��

=Eγ

Z ′

��
Y

ts
// Z

is also 2-cartesian, with γ = (β ∗ 1s′) ◦ (1t ∗ α). State and prove analogues of the other
parts of Exercises B.11 and B.12 for 2-cartesian diagrams.

Definition B.17. (∗) The notion of a quotient in a 2-category is more complicated
than that in an ordinary category. To define it, we need some notation for some fibered
products. Let π : X → Y be a morphism in a 2-category C, and assume there is a fibered
product X1 = X×Y X, with its projections p1 and p2 from X1 to X and 2-isomorphism
θ : π◦p1 ⇒ π◦p2. In addition, assume that there is a fibered productX2 = X×YX×YX,
with its projections q1, q2, q3 : X2 → X, with associated 2-isomorphisms

θ12 : π ◦ q1 ⇒ π ◦ q2, θ23 : π ◦ q2 ⇒ π ◦ q3.

Set θ13 = θ23 ◦ θ12 : π ◦ q1 ⇒ π ◦ q3. For 1 ≤ i < j ≤ 3 we have projections pij : X2 → X1,
with 2-isomorphisms αij : qi ⇒ p1 ◦ pij and αji : qj ⇒ p2 ◦ pij, such that the diagrams

π ◦ qi

θij

��

αij
+3 π ◦ p1 ◦ pij

θ

��
π ◦ qj

αji

+3 π ◦ p2 ◦ pij

commute. Define α1 = α13 ◦α−1

12
: π ◦ p1 ◦ p12 ⇒ π ◦ p1 ◦ p13, α2 = α23 ◦ α−1

21
: π ◦ p2 ◦ p12 ⇒

π ◦ p1 ◦ p23, and α3 = α32 ◦ α−1

31
: π ◦ p2 ◦ p13 ⇒ π ◦ p2 ◦ p23.

5

We say that π : X → Y makes Y a 2-quotient of X if it satisfies the following
universal mapping property. For any morphism u : X → Z, and any 2-isomorphism
τ : u ◦ p1 ⇒ u : p2, such that the diagram

u ◦ p1 ◦ p12

τ

��

α1
+3 u ◦ p1 ◦ p13

τ
+3 u ◦ p2 ◦ p13

α3

��
u ◦ p2 ◦ p12

α2

+3 u ◦ p1 ◦ p23
τ

+3 u ◦ p2 ◦ p23

5This data may be assembled into a cube, with X2 on one vertex, Y on the opposite vertex, three

copies of X1 on vertices adjacent to X2, three copies of X adjacent to Y , with the various projections

along the edges, and the 2-isomorphisms across the sides. To say that X → Y is a 2-quotient can

be thought of as an appropriate “2-cocartesian” property of this cube, which amounts to a descent

criterion.
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commutes, there is a morphism v : Y → Z and a 2-isomorphism ρ : u⇒ v ◦ π such that
the diagram

u ◦ p1

τ

��

ρ
+3 v ◦ π ◦ p1

θ

��
u ◦ p2

ρ
+3 v ◦ π ◦ p2

commutes. This must satisfy the following uniqueness property: if v′ : Y → Z and
ρ′ : u⇒ v′ ◦ π are another morphism and 2-isomorphism satisfying the same properties,
there is a unique 2-isomorphism ζ : v ⇒ v′ such that the diagram

u
ρ

+3

ρ′ �&
E

E
E

E
E

E
E

E

E
E

E
E

E
E

E
E

v ◦ π

ζ

��

v′ ◦ π

commutes.

Definition B.18. The opposite 2-category Cop of a 2-category C is obtained by
reversing the direction of the 1- morphisms, keeping the direction of the 2-morphisms
the same. Thus if f and g are morphisms from X to Y in C, and α is a 2-morphism from
f to g, then in Cop there are morphisms f and g from Y to X, with α a 2-morphism
from f to g.

3. Adjoints

Adjointness of functors is a familiar notion from category theory. Recall, we say
that functors F : X → Y and G : Y → X are adjoint functors, if for every pair of objects
X of X and Y of Y , we have a bijection

(1) HomX (GY,X) ∼→ HomY(Y, FX),

natural in X and Y . More specifically, we say that F is right adjoint to G, and G is left
adjoint to F . For instance, let π : S → T be a continuous map of topological spaces, so
we have functors π−1 and π∗ between the categories of sheaves on S and on T . Then
π∗ is right adjoint to π−1. In algebraic geometry, when π is a morphism of schemes and
our categories are of sheaves of OS and OT modules, then π∗ is right adjoint to π∗; the
latter defined by π∗F = (π−1F)⊗π−1OT

OS. What is less familiar (and difficult to find
in the literature) are results to the effect that adjointness repects base change. The
goal of this section is to develop the machinery to arrive at such results in a natural
way.

The reader familiar with category theory is probably aware of some equivalent for-
mulations of the notion of adjointness. For instance, the bijection (1) is completely
determined by the universal map Y → F (GY ), that is, the image of 1GY under (1)
when X = GY . There is, similarly, a universal map G(FX) → X. Conversely, a pair
of natural transformations 1Y ⇒ F ◦G and G◦F ⇒ 1X satisfying conditions analogous
to (2), below, uniquely determines the adjointness relation between F and G. The
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connections among the various notions of adjointness will be spelled out in detail in
section 3.2.

Here we use the language of 2-categories to develop the concept of adjointness and
properties relating adjointness with base change. Specializing to the 2-category (Cat),
we recover the usual notion of adjoint functors, and specializing further to the adjoint
functors π∗ and π∗ (see Example B.22), we recover the properties concerning adjointness
and base change alluded to above.

3.1. Adjunctions. We start with the notion of adjunction, in the form of a pair
of functors and universal morphisms, abstracted to a general 2-category.

Definition B.19. Let X and Y be objects in a 2-category C. An adjunction from
X to Y is a quadruple (f, g, η, ǫ), consisting of two morphisms f : X → Y and g : Y → X

and two 2-morphisms η : 1Y ⇒ f ◦ g and ǫ : g ◦ f ⇒ 1X , such that (1f ∗ ǫ) ◦ (η ∗ 1f) = 1f
and (ǫ ∗ 1g) ◦ (1g ∗ η) = 1g; that is, the following diagrams commute:

1Y ◦ f
η

+3 f ◦ g ◦ f

ǫ

��

g ◦ 1Y
η

+3 g ◦ f ◦ g

ǫ

��
f f ◦ 1X g 1X ◦ g

(2)

For those who prefer diagrams in 3 dimensions, we can rephrase (2) as the condition
that in each diagram below, the “front” faces and “back” faces compose to the same
2-morphism. In the left-hand diagram, the dashed arrow is f : X → Y , and in the
right-hand diagram it is g : Y → X, with the obvious 2-morphisms understood for the
“back” faces that border the dashed arrow.

Y

ǫ

�� ��?
?

?
?

?
?

?
g

1Y
//

η

��

Y Y

g
  A

A
A

A
A

A
A

A

1Y
//

**U
U

U
U

U
U

U
U

U
U

U

η

��

Y
g

  A
A

A
A

A
A

A
A

ǫ

��
X

f
>>

}
}

}
}

}
}

}
}

1X

//

44i
i

i
i

i
i

i
i

i
i

i

X

f

>>
}

}
}

}
}

}
}

}

X

??
�

�
�

�
�

�
�

f

1X

// X

The 2-morphism η is called the unit of the adjunction, and ǫ the counit.

Exercise B.39. Suppose (f, g, η, ǫ) is an adjunction from X to Y in a 2-category
C, and V is any object in C.

(1) If a : V → X and b : V → Y are morphisms in C, there is a canonical bijection

{ 2-morphisms from g ◦ b to a } ←→ { 2-morphisms from b to f ◦ a}.

This takes a 2-morphism θ : g◦b⇒ a to the composite b = 1Y ◦b
η
⇒ f ◦g◦b

θ
⇒ f ◦a; the

inverse takes a 2-morphism π : b⇒ f ◦a to the composite g ◦ b
π
⇒ g ◦f ◦a

ǫ
⇒ 1X ◦a = a.

Verify that these are inverse bijections.
(2) There is an adjunction (fV , gV , ηV , ǫV ) from HOM(V,X) to HOM(V, Y ) in the

2-category (Cat). Here fV , gV , ηV , and ǫV are the functors and natural transforma-
tions defined in Exercise B.30, Similarly, there is an adjunction (gV , fV , ηV , ǫV ) from
HOM(Y, V ) to HOM(X, V ).
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Proposition B.20. If (f, g, η, ǫ) and (f, g′, η′, ǫ′) are adjunctions from X to Y ,

there is a unique 2-isomorphism θ : g
∼
⇒ g′ such that (1f ∗θ)◦η = η′ and ǫ′ ◦(θ∗1f ) = ǫ:

1Y
η

+3

η′ �&
E

E
E

E
E

E
E

E

E
E

E
E

E
E

E
E

f ◦ g

θ

��

g ◦ f
ǫ

+3

θ

��

1X

f ◦ g′ g′ ◦ f
ǫ′

8@
y

y
y

y
y

y
y

y

y
y

y
y

y
y

y
y

Proof. Define θ to be the composition

g = g ◦ 1Y
η′

⇒ g ◦ f ◦ g′
ǫ
⇒ 1X ◦ g

′ = g′.

To see that the first diagram commutes, consider the diagram

1Y
η′

+3

η

��

f ◦ g′ 1Y ◦ f ◦ g
′

η

��

f ◦ g′

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

f ◦ g f ◦ g ◦ 1Y
η′

+3 f ◦ g ◦ f ◦ g′
ǫ

+3 f ◦ 1X ◦ g
′ f ◦ g′

The left rectangle commutes by the exchange property, and the right trapezoid com-
mutes by an adjunction property of η and ǫ. The bottom row is 1f ∗ θ. Similarly, the
commutativity of the second diagram is seen from the diagram

g ◦ f

K
K

K
K

K
K

K
K

K
K

K
K

K
K

K
K

K
K

K
K

g ◦ 1Y ◦ f
η′

+3 g ◦ f ◦ g′ ◦ f
ǫ

+3

ǫ′

��

1X ◦ g
′ ◦ f g′ ◦ f

ǫ′

��
g ◦ f g ◦ f ◦ 1X g ◦ f

ǫ
+3 1X

To see that θ is an isomorphism, define θ′ : g′ ⇒ g to be the composite

g′ = g′ ◦ 1Y
η
⇒ g′ ◦ f ◦ g

ǫ′

⇒ 1X ◦ g = g.

It suffices to show that θ′◦θ = 1g and θ◦θ′ = 1′g. By symmetry, θ′ satisfies the identities
(1f ∗ θ

′) ◦ η′ = η and ǫ ◦ (θ′ ∗ 1f) = ǫ′. Hence the composite θ′ ◦ θ satisfies the identities
(1f ∗ (θ′ ◦ θ)) ◦ η = η and ǫ ◦ ((θ′ ◦ θ) ∗ 1f) = ǫ, and similarly for θ ◦ θ′. It therefore
suffices to prove the following uniqueness assertion: if θ : g ⇒ g satisfies (1f ∗ θ) ◦ η = η

(and ǫ ◦ (θ ∗ 1f ) = ǫ), then θ = 1g. For this, consider the diagram

g g ◦ 1Y
η

+3 g ◦ f ◦ g
ǫ

+3

1g∗1f ∗θ

��

1X ◦ g

θ

��

g

θ

��
g g ◦ 1Y η

+3 g ◦ f ◦ g
ǫ

+3 1X ◦ g g

The left rectangle commutes by assumption, the middle square commutes by the ex-
change property, and the right square commutes by property (c) of 2-categories. Read-
ing around the diagram, one finds 1g = θ ◦ 1g, so θ = 1g, as required. �
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Given a morphism f : X → Y in a 2-category, this proposition justifies the use of
the notation (f, f ′, ηf , ǫf) for an adjunction from X to Y , and to call (f ′, ηf , ǫf) (or
sometimes just f ′) a left adjoint of f . This notation is particularly useful when we
want to compare adjoints for several morphisms. Whenever we have two composable
morphisms, each with a left adjoint, the composite can be given the adjoint structure
of the following exercise.

Exercise B.40. Suppose (f, f ′, ηf , ǫf ) is an adjunction from X to Y , and
(g, g′, ηg, ǫg) is an adjunction from Y to Z. Define an adjunction (g ◦ f, f ′ ◦ g′, ηgf , ǫgf )
from X to Z, where ηgf is the composite

1Z
ηg

⇒ g ◦ g′ = g ◦ 1Y ◦ g
′ η

f

⇒ g ◦ f ◦ f ′ ◦ g′,

and ǫgf is the composite

f ′ ◦ g′ ◦ g ◦ f
ǫg

⇒ f ′ ◦ 1Y ◦ f = f ′ ◦ f
ǫf

⇒ 1X .

Verify that (g ◦ f, f ′ ◦ g′, ηgf , ǫgf ) is an adjunction from X to Z.

3.2. Adjoint functors. When applied to the 2-category (Cat) of categories, the
notion of adjunction we have been discussing coincides with the usual notion of adjoint
functors. In this context, an adjunction (F,G, η, ǫ) from a category X to a category Y
consists of functors F : X → Y , G : Y → X , and natural transformations η : 1Y ⇒ F ◦G

and ǫ : G ◦ F ⇒ 1X , such that the composite F = 1Y ◦ F
η
⇒ F ◦ G ◦ F

ǫ
⇒ F ◦ 1X = F

is the identity on F , and G = G ◦ 1Y
η
⇒ G ◦ F ◦G

ǫ
⇒ 1X ◦G = G is the identity on G.

We say that G is a left adjoint of F , and F is a right adjoint of G, when this data
is specified. If a given F has a left adjoint, it is unique up to a natural isomorphism,
by Proposition B.20.

Exercise B.41. For every object X of X , F (ǫX)◦ηF (X) = 1F (X). For every object Y
of Y , ǫG(Y )◦G(ηY ) = 1G(Y ). For every morphism a : X → X ′ of X , a◦ǫX = ǫX′◦G(F (a)).
For every morphism b : Y → Y ′ of Y , F (G(b)) ◦ ηY = ηY ′ ◦ b.

The usual definition an adjoint pair of functors prescribes, for every pair of objects
X ∈ X and Y ∈ Y , a bijection

φY,X : HomX (G(Y ), X)→ HomY(Y, F (X)),

between the morphisms from G(Y ) to X in X and the morphisms from Y to F (X)
in Y , which is natural in X and Y ; that is, for any morphisms a : X → X ′ in X and
b : Y ′ → Y in Y , the diagrams

HomX (G(Y ), X)
φY,X

//

aG(Y )

��

HomY(Y, F (X))

F (a)Y

��

HomX (G(Y ), X)
φY,X

//

G(b)X

��

HomY(Y, F (X))

bF (X)

��

HomX (G(Y ), X ′)
φY,X′

// HomY(Y, F (X ′)) HomX (G(Y ′), X)
φY ′,X

// HomY(Y ′, F (X))

commute. Equivalently, for c : G(Y )→ X in X , and any a : X → X ′ and b : Y ′ → Y ,

φY ′,X′(a ◦ c ◦G(b)) = F (a) ◦ φY,X(c) ◦ b.
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These two notions of adjoints coincide, for fixed functors F and G. Given η and ǫ,
define φY,X : Hom(G(Y ), X)→ Hom(Y, F (X)) by the formula

φY,X(c) = F (c) ◦ ηY ,

i.e., φY,X(c) is the composite Y
ηY
→ F (G(Y ))

F (c)
→ F (X). The inverse map from

Hom(Y, F (X)) to Hom(G(Y ), X) is defined by

φY,X
−1(d) = ǫX ◦G(d),

i.e., φY,X
−1(d) is the composite G(Y )

G(d)
→ G(F (X))

ǫX→ X. Conversely, given natural
bijections φY,X for all X and Y , define η and ǫ by the formulas

ηY = φY,G(Y )(1G(Y )), ǫX = φF (X),X
−1(1F (X)).

Exercise B.42. Verify that the maps φY,X and φY,X
−1 defined from η and ǫ are

inverse bijections, natural in X and Y . Verify that the maps ηY and ǫX defined from
a collection {φY,X} define natural transformations η : 1Y ⇒ F ◦G and ǫ : G ◦ F ⇒ 1X ,
such that (F,G, η, ǫ) defines an adjoint from X to Y . Verify that these correspondences
{φY,X} ↔ (η, ǫ) are inverse bijections.

3.3. Base change.

Definition B.21. Suppose we have a 2-commutative diagram

W

q

��

g
//

��
��

<Dα

Y

p

��
X

f

// Z

in a 2-category, and that each of the morphisms p and q is part of an adjunction
(p, p′, ηp, ǫp) and (q, q′, ηq, ǫq). Define a base change 2-morphism6

cα : p′ ◦ f ⇒ g ◦ q′

to be the composite

p′ ◦ f = p′ ◦ f ◦ 1X
ηq

⇒ p′ ◦ f ◦ q ◦ q′
α
⇒ p′ ◦ p ◦ g ◦ q′

ǫp

⇒ 1Y ◦ g ◦ q
′ = g ◦ q′.

If f and g are also part of adjunctions (f, f ′, ηf , ǫf ) and (g, g′, ηg, ǫg), define a 2-
morphism

α′ : g′ ◦ p′ ⇒ q′ ◦ f ′

to be the composite

g′ ◦ p′ = g′ ◦ p′ ◦ 1Z
ηf

⇒ g′ ◦ p′ ◦ f ◦ f ′ cα⇒ g′ ◦ g ◦ q′ ◦ f ′ ǫg

⇒ 1W ◦ q
′ ◦ f = q′ ◦ f.

6In category theory, α and cα are called mates of each other, see [51]. Category theorists often

write adjunctions in the order (f ′, f, η, ǫ), with the left adjoint preceding the right adjoint.
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Exercise B.43. (1) If p and q have left adjoints, show that the following diagram
commutes:

f 1Z ◦ f
ηp

+3 p ◦ p′ ◦ f

cα

��

f ◦ 1X
ηq

+3 f ◦ q ◦ q′
α

+3 p ◦ g ◦ q′

If f and g also have left adjoints, show that the following diagrams commute:

p′ p′ ◦ 1Z
ηf

+3 p′ ◦ f ◦ f ′

cα

��

g′ ◦ p′ ◦ f

cα

��

α′

+3 q′ ◦ f ′ ◦ f
ǫf

+3 q′ ◦ 1X

1Y ◦ p
′

ηg
+3 g ◦ g′ ◦ p′

α′

+3 g ◦ q′ ◦ f ′ g′ ◦ g ◦ q′
ǫg

+3 1W ◦ q
′ q′

(2) Deduce that cα is equal to the composite

p′ ◦ f = 1Y ◦ p
′ ◦ f

ηg

⇒ g ◦ g′ ◦ p′ ◦ f
α′

⇒ g ◦ q′ ◦ f ′ ◦ f
ǫf

⇒ g ◦ q′ ◦ 1X = g ◦ q′.

(3) The correspondence of Exercise B.39, applied to the adjunction (p, p′, ηp, ǫp)
takes cα : p′ ◦ f ⇒ g ◦ q′ to a 2-morphism from f to p ◦ g ◦ q′. Show that this morphism

is the composite f = f ◦ 1X
ηq

⇒ f ◦ q ◦ q′
α
⇒ p ◦ g ◦ q′. The inverse of the correspondence

of Exercise B.39, applied to the adjunction (g, g′, ηg, ǫg), produces a 2-morphism from

g′ ◦ p′ ◦ f to q′. Show that this is g′ ◦ p′ ◦ f
α′

⇒ q′ ◦ f ′ ◦ f
ǫf

⇒ q′.

Exercise B.44. (1) Consider a diagram

U

r

��

i
//

��
��

<Dβ

W

q

��

g
//

��
��

<Dα

Y

p

��
V

h

// X
f

// Z

in a 2-category C. Define γ : (f ◦ h) ◦ r ⇒ p ◦ (g ◦ i) to be the composite

(f ◦ h) ◦ r = f ◦ h ◦ r
β
⇒ f ◦ q ◦ i

α
⇒ p ◦ g ◦ i = p ◦ (g ◦ i).

If p, q, and r have left adjoints, show that the diagram

p′ ◦ f ◦ h

cα

��

p′ ◦ (f ◦ h)
cγ

#+O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

g ◦ q′ ◦ h
cβ

+3 g ◦ i ◦ r′ (g ◦ i) ◦ r′

commutes.
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(2) Dually, given a diagram

U

r

��

i
// W

q

��

g
// Y

p

��
V

h

// X

����|� β

f

// Z

����|� α

define γ : p ◦ (g ◦ i)⇒ (f ◦ h) ◦ r to be the composite

p ◦ (g ◦ i) = p ◦ g ◦ i
α
⇒ f ◦ q ◦ i

β
⇒ f ◦ h ◦ r = (f ◦ h) ◦ r.

If f , g, h, and i have adjoints, show that the following diagram commutes:

h′ ◦ f ′ ◦ p

cα

��

(f ◦ h)′ ◦ p
cγ

#+O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

h′ ◦ q ◦ g′
cβ

+3 r ◦ i′ ◦ g′ r ◦ (g ◦ i)′

Example B.22. Let

W
g

//

q

��

Y

p

��
X

f

// Z

be a commutative diagram of schemes. Then there is a natural base change morphism

p∗f∗F → g∗q
∗F .

A detailed treatment of the construction and properties of base change morphisms for
sheaves on schemes is given in the Glossary.

4. Pseudofunctors

In this section we consider 2-categories in their natural generality, where one rarely
has equality of morphisms; in their place are identities among 2-isomorphisms. Al-
though the definitions and assertions are natural enough, the verifications involve con-
siderable diagram chasing, much of which is left to the interested (and determined)
reader.

Definition B.23. If C and D are 2-categories, a (covariant) pseudofunctor F

from C to D assigns to each object X of C an object F (X) of D, to each morphism
f : X → Y of C a morphism F (f) : F (X) → F (Y ) in D, and to each 2-morphism
α : f ⇒ g a 2-morphism F (α) : F (f)⇒ F (g). In addition, we must have:

(1) for morphisms f : X → Y , g : Y → Z of C, a 2-isomorphism

γf,g = γFf,g : F (g ◦ f)
∼
⇒ F (g) ◦ F (f);

(2) for each object X of C, a 2-isomorphism

δX = δFX : F (1X)
∼
⇒ 1F (X).
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These must satisfy the following conditions:

(a) For morphisms f : W → X, g : X → Y , h : Y → Z in C, we have the equality

(1F (h) ∗ γf,g) ◦ γgf,h = (γg,h ∗ 1F (f)) ◦ γf,hg

of 2-morphisms from F (h ◦ g ◦ f) to F (h) ◦ F (g) ◦ F (f):

F (h ◦ g ◦ f)
γf,hg

+3

γgf,h

��

F (h ◦ g) ◦ F (f)

γg,h

��

F (h) ◦ F (g ◦ f)
γf,g

+3 F (h) ◦ F (g) ◦ F (f)

(This can also be described by saying that the two ways to move down in the
diagram

F (X)
F (f)

//

F (gf)

((

F (hgf)

$$

F (Y )
F (g)

//

F (hg)

((

F (Z)
F (h)

// F (W )

agree.)
(b) For a morphism f : X → Y in C, we have the equalities

(1F (f) ∗ δX) ◦ γ1X ,f = 1F (f) = (δY ∗ 1F (f)) ◦ γf,1Y

of 2-morphisms from F (f) to F (f) ◦ 1F (X) = F (f) = 1F (Y ) ◦ F (f):

F (f) F (f) ◦ 1F (X) F (f) 1F (Y ) ◦ F (f)

F (f ◦ 1X)
γ1X ,f

+3 F (f) ◦ F (1X)

δX

KS

F (1Y ◦ f)
γf,1Y

+3 F (1Y ) ◦ F (f)

δY

KS

(c) For any morphism f in C, F (1f) = 1F (f); and, if α : f ⇒ g and β : g ⇒ h in C,
we have the equality

F (β ◦ α) = F (β) ◦ F (α)

of 2-morphisms from F (f) to F (h).
(d) If f, f ′ : X → Y , α : f ⇒ f ′, g, g′ : Y → Z, and β : g ⇒ g′ in C, then

(F (β) ∗ F (α)) ◦ γf,g = γf ′,g′ ◦ F (β ∗ α),

an equality of 2-morphisms from F (g ◦ f) to F (g′) ◦ F (f ′):

F (g ◦ f)

γf,g

��

F (β∗α)
+3 F (g′ ◦ f ′)

γf ′,g′

��

F (g) ◦ F (f)
F (β)∗F (α)

+3 F (g′) ◦ F (f ′)

We write F : C → D to denote that F is a pseudofunctor from C to D, with associated
2-isomorphisms δFX and γFf,g.
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Note by (c) that a pseudofunctor determines (honest) functors

HOM(X, Y ) −→ HOM(F (X), F (Y ))

for any objects X and Y in C. Note however that F does not induce a functor between
the underlying categories of C and D.

An important special case of this is when C is an ordinary category, regarded as a
2-category by specifying that its only 2-morphisms are identities. In this case there is
no need to specify what F does to 2-morphisms in C, and conditions (c) and (d) can
be omitted.

In the text, the situation of a contravariant pseudofunctor from an ordinary
category C to a 2-category D arises. This can be defined to be a pseudofunctor from
the opposite category Cop to D. Explicitly, the changes are: for a morphism f : X → Y

one has F (f) : F (Y )→ F (X), and for f : X → Y , g : Y → Z one has γf,g : F (g ◦ f)
∼
⇒

F (f) ◦ F (g), and the two conditions become:

(a) (γf,g ∗ 1F (h)) ◦ γgf,h = (1F (f) ∗ γg,h) ◦ γf,hg;
(b) (δX ∗ 1F (f)) ◦ γf,1X

= 1F (f) = (1F (f) ∗ δY ) ◦ γ1Y ,f .

Exercise B.45. If F : C → D and G : D → E are pseudofunctors, there is a com-
posite pseudofunctor G ◦ F . This takes an object X to G(F (X)), a morphism f to
G(F (f)), and a 2-morphism ρ to G(F (ρ)); and one sets γG◦F

f,g = γG
F (f),F (g)

◦G(γFf,g) and

δGFX = δG
F (X)
◦G(δFX). Verify that this defines a pseudofunctor. Show that 2-categories,

with pseudofunctors as morphisms, form a category.

Exercise B.46. Construct a pseudofunctor B from the 2-category (Grp) of groups
to the 2-category (Cat) that takes a group G to the category BG of G-torsors (where
a group G is regarded as a topological group with the discrete topology).

Definition B.24. If F and G are pseudofunctors from C to D, a pseudonatural

transformation α from F to G consists of

(1) For each object X in C, a morphism αX : F (X)→ G(X) in D.
(2) For each morphism f : X → Y in C, a 2-isomorphism

τf = ταf : G(f) ◦ αX
∼
⇒ αY ◦ F (f)

in D. This is displayed in the diagram

F (X)
F (f)

//

αX

��
��
��

@Hτf

F (Y )

αY

��

G(X)
G(f)

// G(Y )

These must satisfy:

(a) For morphisms f : X → Y , g : Y → Z of C, we have an equality

(1αZ
∗ γFf,g) ◦ τgf = (τg ∗ 1F (f)) ◦ (1G(g) ∗ τf ) ◦ (γGf,g ∗ 1αX

)
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of 2-morphisms from G(gf) ◦ αX to αZ ◦ F (g) ◦ F (f):

G(g ◦ f) ◦ αX

τgf

��

γG
f,g

+3 G(g) ◦G(f) ◦ αX
τf

+3 G(g) ◦ αY ◦ F (f)

τg

��

αZ ◦ F (g ◦ f)
γF

f,g

+3 αZ ◦ F (g) ◦ F (f)

(b) For any object X of C, we have the equality

(1αX
∗ δFX) ◦ τ1X

= δGX ∗ 1αX

of 2-morphisms from G(1X) ◦ αX to αX ◦ 1F (X) = αX = 1G(X) ◦ αX :

G(1X) ◦ αX
δG
X

+3

τ1X

��

1G(X) ◦ αX

αX ◦ F (1X)
δF
X

+3 αX ◦ 1F (X)

(c) For f, g : X → Y , and a 2-morphism ρ : f ⇒ g in C, we have the equality

τg ◦ (G(ρ) ∗ 1αX
) = (1αY

∗ F (ρ)) ◦ τf

of 2-morphisms from G(f) ◦ αX to αY ◦ F (g):

G(f) ◦ αX
τf

+3

G(ρ)

��

αY ◦ F (f)

F (ρ)

��

G(g) ◦ αX τg
+3 αY ◦ F (g)

Exercise B.47. If F ,G,H are pseudofunctors from C to D, one can compose pseudo-
natural transformations α from F to G and β from G to H to get a pseudonatural
transformation β ◦ α from F to H . This is defined by setting (β ◦ α)X = βX ◦ αX and

τ
β◦α

f = (1βY
∗ ταf ) ◦ (τβf ∗ 1αX

). Show that this composition is associative, and has iden-
tities, so that the pseudofunctors from C to D and the pseudonatural transformations
between them form the objects and morphisms of a category.

Definition B.25. Suppose C and D are 2-categories, F and G are pseudofunctors
from C to D, and α and β are pseudonatural transformations from F to G. A modifi-

cation Θ from α to β assigns to each object X of C a 2-morphism ΘX : αX ⇒ βX :

F (X)

αX
++

βX

33

��
��

�� ΘX G(X).

This must satisfy the property that for any morphisms f, g : X → Y and 2-morphism
ρ : f ⇒ g in C, we have the equality

(ΘY ∗ F (ρ)) ◦ ταf = τβg ◦ (G(ρ) ∗ΘX)
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of 2-morphisms from G(f) ◦ αX to βY ◦ F (g):

G(f) ◦ αX
G(ρ)∗ΘX

+3

τα
f

��

G(g) ◦ βX

τ
β
g

��

αY ◦ F (f)
ΘY ∗F (ρ)

+3 βY ◦ F (g)

We write Θ: α ⇛ β to indicate that Θ is a modification from α to β. We call a
modification an isomodification if each ΘX is a 2-isomorphism. In this case we write

Θ: α
∼

⇛ β.

Note that each of the conditions on pseudofunctors, pseudonatural transformations,
and modifications is stated as an equality of 2-morphisms.

Exercise B.48. Show that the property of a modification in Definition B.25 follows
from the property

(ΘY ∗ 1F (f)) ◦ τ
α
f = τ

β

f ◦ (1G(f) ∗ΘX)

for any morphism f : X → Y in C.

Exercise B.49. If Θ: α ⇛ β and Ξ: β ⇛ γ, with α, β, and γ pseudonatural
transformations from F to G, there is a modification Ξ◦Θ: α ⇛ γ, defined by (Ξ◦Θ)X =
ΞX ◦ΘX . If Θ: α ⇛ α′, with α, α′ : F ⇒ G, and Ξ: β ⇛ β ′, with β, β ′ : G⇒ H , there
is a modification Ξ ∗ Θ: β ◦ α ⇛ β ′ ◦ α′, defined by (Ξ ∗ Θ)X = ΞX ∗ ΘX . For fixed
2-categories C and D, these operations, together with those of Exercise B.47, make the
pseudofunctors from C to D into the objects of a 2-category PSFUN(C,D), with arrows
given by pseudonatural transformations, and 2-cells given by modifications.

When α and β are 2-natural transformations between 2-functors F and G, the
condition on a modification simplifies to the equation ΘY ∗ F (ρ) = G(ρ) ∗ΘX .

Exercise B.50. (∗) Given modifications Θ: α ⇛ α′ and Ξ: β ⇛ β ′ between 2-
natural transformations α, α′ : F ⇒ F ′, β, β ′ : G ⇒ G′, with 2-functors F, F ′ : C → D,
G,G′ : D → E , define a modification Ξ ⋄Θ: β ∗ α ⇛ β ′ ∗ α′ by the formula

(Ξ ⋄Θ)X = G′(ΘX) ∗ ΞF (X) = ΞF ′(X) ∗G(ΘX).

Show that 2-categories, 2-functors, 2-natural transformations, and modifications form
the objects, arrows, 2-cells, and 3-cells of a 3-category: in addition to the underlying
2-category structure formed by the objects, arrows, and 2-cells, the three operations ◦,
∗, and ⋄ on 3-cells satisfy the following associativity, exchange, and unity identities:7

(a) Γ◦ (Ξ◦Θ) = (Γ◦Ξ)◦Θ, Γ∗ (Ξ∗Θ) = (Γ∗Ξ)∗Θ, and Γ⋄ (Ξ⋄Θ) = (Γ⋄Ξ)⋄Θ;
(b) (Ξ′ ◦Ξ) ∗ (Θ′ ◦Θ) = (Ξ′ ∗Θ′) ◦ (Ξ ∗Θ), (Ξ′ ∗Ξ) ⋄ (Θ′ ∗Θ) = (Ξ′ ⋄Θ′) ∗ (Ξ ⋄Θ),

(Ξ′ ◦ Ξ) ⋄ (Θ′ ◦Θ) = (Ξ′ ⋄Θ′) ◦ (Ξ ⋄Θ);

7In each identity it is assumed that one, and hence the other, side of the equation is defined.
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(c) each 2-cell α has an identity 3-cell 1α : α ⇛ α, and the following identities are
satisfied: 1β ∗ 1α = 1β◦α when β ◦ α is defined; 1β ⋄ 1α = 1β∗α when β ∗ α is
defined; in addition, if Θ: α ⇛ β, α, β : f ⇒ g, f, g : X → Y , then

Θ ◦ 1α = Θ = 1β ◦Θ,Θ ∗ 11f
= Θ = 11g

∗Θ,Θ ⋄ 111X
= Θ = 111Y

⋄Θ.

A formal definition of 3-categories (equivalent to that in the preceding exercise) can
be found in [12], §7.3, but note that 2-categories, pseudofunctors, and pseudonatural
transformations, and modifications do not form a 3-category, only something weaker
called a (Gray) tricategory [32]. In fact, in contrast with Exercise B.36, 2-categories,
pseudofunctors, and pseudonatural transformations do not form a 2-category. In any
case, we have will have no need for the formalism of 3-categories.

Note that a 2-functor F is just a pseudofunctor for which the associated 2-
isomorphisms γFf,g and δFX are identities. A 2-natural transformation α : F ⇒ G be-
tween 2-functors is a pseudonatural transformation such that ταf is an identity for all
morphisms f .

Exercise B.51. For fixed 2-categories C and D, the 2-functors, 2-natural transfor-
mations, and modifications determine a sub-2-category 2-FUN(C,D) of the 2-category
PSFUN(C,D).

Exercise B.52. For any 2-category C, construct a 2-functor

C → 2-FUN(Cop, (Cat)).

The following theorem gives the notion of “isomorphism” between 2-categories that
one is likely to meet in practice.

Theorem B.26. Let F : C → D be a pseudofunctor between 2-categories. The

following are equivalent:

(1) (i) Every object of D is 2-isomorphic to an object of the form F (P ) for some

object P in C; (ii) For any objects P and Q in C, every morphism from F (P ) to F (Q)
is 2-isomorphic to a morphism of the form F (a), for some morphism a : P → Q in C;
(iii) For morphisms a and b from P to Q in C, any 2-morphism from F (a) to F (b) has

the form F (ρ) for a unique 2-morphism ρ : a⇒ b in C.
(2) There is a pseudofunctor G : D → C, together with four pseudonatural transfor-

mations:

α : G ◦ F ⇒ 1C, α′ : 1C ⇒ G ◦ F, β : F ◦G⇒ 1D, β ′ : 1D ⇒ F ◦G,

and four isomodifications:

Θ: 1FG
∼

⇛ β ′ ◦ β, Θ′ : 11D

∼

⇛ β ◦ β ′, Ξ: 1GF
∼

⇛ α′ ◦ α, Ξ′ : 11C

∼

⇛ α ◦ α′.

(3) As in (2), but with the additional identities:

1β ∗Θ = Θ′ ∗ 1β, 1β′ ∗Θ′ = Θ ∗ 1β′, 1α ∗ Ξ = Ξ′ ∗ 1α, 1α′ ∗ Ξ′ = Ξ ∗ 1α′.

(These are modifications from β to β ◦β ′ ◦β, from β ′ to β ′ ◦β ◦β ′, from α to α ◦α′ ◦α,

and from α′ to α′ ◦ α ◦ α′, respectively.)
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Note that conditions (ii) and (iii) of (1) say that every induced functor HOM(P,Q)→
HOM(F (P ), F (Q)) is a an equivalence of categories.

Proof. This is at least a folk theorem in 2-category theory, cf. [62, §2.2], but
since it is not easy to find a reference, we will sketch a proof. That (2) implies (1)
is quite straightforward. First we show that (2) implies (i) of (1). Since ΘY is a 2-
isomorphism 1FG(Y ) ⇒ β ′

Y ◦ βY and Θ′
Y is a 2-isomorphism 1Y ⇒ βY ◦ β

′
Y , it follows

that βY and β ′
Y are 2-equivalences, for any object Y of D. In particular, Y is 2-

isomorphic to F (G(Y )). Note, similarly, that αX and α′
X are 2-equivalences, for any

object X of C. Now we show the remainder of (2) ⇒ (1), namely, that every functor
HOM(P,Q) → HOM(F (P ), F (Q)) determined by F is an equivalence of categories.
Following this by the functor HOM(F (P ), F (Q))→ HOM(GF (P ), GF (Q)) induced by
G, and then by the functors

HOM(GF (P ), GF (Q))
(α′

P )
GF (Q)

−→ HOM(P,GF (Q))
(αQ)

P

−→ HOM(P,Q),

each of which is an equivalence of categories by Proposition B.10 and Exercise B.31,
one obtains a functor from HOM(P,Q) to itself. A natural isomorphism of this functor
with the identity functor is given by sending f : P → Q to

αQ ◦GF (f) ◦ α′
P

τα′

f
⇒ αQ ◦ α

′
Q ◦ f

Ξ
′

Q
−1

⇒ 1Q ◦ f = f ;

the naturality is proved by a use of property (c) for the pseudonatural transformation
α′. It follows that HOM(P,Q) → HOM(F (P ), F (Q)) is full and faithful, and, by the
same applied to G, that HOM(F (P ), F (Q)) → HOM(GF (P ), GF (Q)) is also full and
faithful; it then follows from Exercise B.9 that each of them must also be an equivalence
of categories.

We will show how to use (1) to construct all the data needed for (3). Then 25
identities among 2-isomorphisms must be verified to prove (3): 7 to prove that G is a
pseudofunctor, 3 each to prove that α, α′, β, and β ′ are pseudonatural transformations,
4 to verify that Θ, Θ′, Ξ, and Ξ′ are modifications, and 4 for the last conditions stated
in (3). A few of these identities will be immediate from the construction, but most
require – at least without a more sophisticated categorical language – tracing around
rather large diagrams in various HOM categories. The key that makes it all work is a
careful use of Proposition B.10.

For each object X of D, use (i) and Proposition B.10 to choose an object G(X)
in C together with morphisms βX : F (G(X)) → X and β ′

X : X → F (G(X)), and with

2-isomorphisms ΘX : 1FG(X)

∼
⇒ β ′

X ◦ βX and Θ′
X : 1X

∼
⇒ βX ◦ β

′
X , such that the two

conditions

1βX
∗ΘX = Θ′

X ∗ 1βX
and 1β′

X
∗Θ′

X = ΘX ∗ 1β′

X

are satisfied. For each morphism f : X → Y in D, use (ii) to choose a morphism

G(f) : G(X)→ G(Y ) in C, together with a 2-isomorphism λf : F (G(f))
∼
⇒ β ′

Y ◦ f ◦ βX .

Now for morphisms X
f
→ Y

g
→ Z in D, use (iii) to define γGf,g : G(g ◦ f)

∼
⇒ G(g) ◦G(f),
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by requiring F (γGf,g) to make the following diagram commute:

FG(g ◦ f)
F (γG

f,g
)

+3

λgf

��

F (G(g) ◦G(f))
γF

G(f),G(g)

+3 FG(g) ◦ FG(f)

λg∗λf

��

β ′
Z ◦ g ◦ f ◦ βX β ′

Z ◦ g ◦ 1Y ◦ f ◦ βX
Θ

′

Y

+3 β ′
Z ◦ g ◦ βY ◦ β

′
Y ◦ f ◦ βX

For each object X in D, define δGX : G(1X)
∼
⇒ 1G(X) by requiring F (δGX) to make the

following diagram commute:

FG(1X)
F (δG

X)
+3

λ1X

��

F (1G(X))

δF
G(X)

��

β ′
X ◦ βX 1FG(X)

ΘX

ks

For f : X → Y in D, define τβf : f ◦ βX
∼
⇒ βY ◦ FG(f) and τ

β′

f : FG(f) ◦ β ′
X

∼
⇒ β ′

Y ◦ f
to make the following diagrams commute:

f ◦ βX
τ

β
f

+3 βY ◦ FG(f)

λf

��

FG(f) ◦ β ′
X

τ
β′

f
+3

λf

��

β ′
Y ◦ f

1Y ◦ f ◦ βX
Θ

′

Y

+3 βY ◦ β
′
Y ◦ f ◦ βX β ′

Y ◦ f ◦ βX ◦ β
′
X β ′

Y ◦ f ◦ 1X
Θ

′

X

ks

For each object P in C, use (ii) to choose a morphism αP : GF (P )→ P , together with

a 2-isomorphism µP : F (αP )
∼
⇒ βF (P ). For each morphism a : P → Q in C, ταa : a◦αP

∼
⇒

αQ ◦GF (a) is determined so F (ταa ) makes

F (a ◦ αP )
F (τα

a )
+3

γF
αP ,a

��

F (αQ ◦GF (a))
γF

GF (a),αQ
+3 F (αQ) ◦ FGF (a)

µQ

��

F (a) ◦ F (αP )
µP

+3 F (a) ◦ βF (P )

τ
β

F (a)

+3 βF (Q) ◦ FGF (a)

commute. Similarly choose α′
P : P → GF (P ) with µ′

P : F (α′
P )

∼
⇒ β ′

F (P )
, and determine

τα
′

a : GF (a) ◦ α′
P

∼
⇒ α′

Q ◦ a so F (τα
′

a ) makes

F (GF (a) ◦ α′
P )

F (τα′

a )
+3

γF
α′

P
,GF (a)

��

F (α′
Q ◦ a)

γF
a,α′

Q
+3 F (α′

Q) ◦ F (a)

µ′Q
��

FGF (a) ◦ F (α′
P )

µ′
P

+3 FGF (a) ◦ β ′
F (P )

τ
β′

F (a)

+3 β ′
F (Q)
◦ F (a)
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commute. For f, g : X → Y , and ρ : f ⇒ g in D, define G(ρ) : G(f) ⇒ G(g) by
requiring that F (G(ρ)) makes the diagram

FG(f)
F (G(ρ))

+3

λf

��

FG(g)

λf

��

β ′
Y ◦ f ◦ βX ρ

+3 β ′
Y ◦ g ◦ βX

commute. Finally, define, for each object P in C, 2-isomorphisms ΞP : 1GF (P )

∼
⇒ α′

P ◦αP
and Ξ′

P : 1P
∼
⇒ αP ◦ α

′
P , determined by the commutativity of the diagrams

F (1GF (P ))
F (ΞP )

+3

δF
GF (P )

��

F (α′
P ◦ αP )

γF
αP ,α′

P
+3 F (α′

P ) ◦ F (αP )

µ′
P
∗µP

��

1FGF (P )
ΘF (P )

+3 β ′
F (P )
◦ βF (P )

and

F (1P )
F (Ξ

′

P
)
+3

δF
P

��

F (αP ◦ α
′
P )

γF
α′

P
,αP
+3 F (αP ) ◦ F (α′

P )

µP ∗µ′
P

��

1F (P )
Θ

′

F (P )

+3 βF (P ) ◦ β
′
F (P )

This completes the construction of the data. To prove each of the required iden-
tities, one writes it as a diagram, in which the maps are 2-isomorphisms between two
morphisms, usually in C, that should commute. By the faithfulness of F on the HOM
categories, it suffices to prove this after applying F . One then uses the diagrams just
constructed to see what this means, obtaining a large diagram that should commute.
Finally, one finds a way to subdivide this large diagram into smaller diagrams that
commute by properties of F and properties of 2-categories, especially the exchange
property. �

Exercise B.53. Complete the proof of this proposition.

Definition B.27. A pseudofunctor F : C → D is a pseudoequivalence if it sat-
isfies the equivalent conditions of the proposition.

Exercise B.54. Show that the composite of two pseudoequivalences is a pseudo-
equivalence. Being pseudoequivalent is therefore an equivalence relation on 2-categories.

There are several generalizations of these notions and results. The conditions on
pseudofunctors F and pseudonatural transformations α can be weakened, by allowing
the associated γFf,g, δ

F
X , and ταf (or sometimes their inverses) to be only 2-morphisms, not

2-isomorphisms. Such are called lax functors and lax natural transformations. There is
also a notion of a bicategory, in which the associativity equality γ◦(β◦α) = (γ◦β)◦α of
morphisms is replaced by a 2-isomorphism, and similarly for the equalities f = f ◦1X =
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1Y ◦ f for a morphism f : X → Y . (In a bicategory, each HOM(X, Y ) is a category,
but removing the 2-cells from a bicategory does not leave a category.) Theorem B.26
generalizes to the setting of bicategories, cf. [62]. Bicategories, 3-categories, and lax
notions are discussed in [12, §7].

5. Two remarks on set theory

The reader will have noticed that our discussion of categories is framed entirely in
the language of “naive set theory” — indeed, sets were not mentioned at all, except
in examples. In naive set theory, a set is prescribed by knowing the elements in the
set. In this sense, the objects and morphisms of a category (and the 2-morphisms of a
2-category) form sets, since these objects, morphisms (and 2-morphisms) are assumed
to be precisely defined. Thus a category is a permissible object in a category, since we
know what a category is, and so we have the category (Cat) of categories, which is a
2-category (cf. B.8). And, of course, this leads to Bertrand Russell’s famous paradox
about the set of all sets.

This problem is not particular to stacks, and those who have made peace with this
problem in other areas need not fret about it when studying stacks.8 The fact that
category theory plays a prominent role in the study of stacks, however, brings these
problems closer to the surface. And, just as going from objects to categories causes
the problem about the set of all sets, going from ordinary categories to 2-categories
increases the difficulty. Our aim in this section is to discuss these problems briefly,
and point out how to get around them. In this setting, one is not working with sets
as collections of well-defined objects, but within an axiomatic set theory, usually taken
today to be Zermelo-Fraenkel theory. We also discuss our use of the axiom of choice.

5.1. Categories. We have the need to consider three basic types of set-theoretic
structures: sets, categories and 2-categories. If we would like to consider the category
of all sets, for example, it is clear that categories cannot be sets. Similarly, if we need to
consider the 2-category of all categories, then 2-categories cannot be categories. In spite
of Russell’s paradox, we would like to do all usual set-theoretic operations (products,
disjoint unions, power sets etc.) not only with sets, but also with categories (less so
with 2-categories). For this it is necessary to introduce some set-theoretic hierarchy.

We may require all sets to be sets in the usual sense, i.e., the sets given by the
axioms of Zermelo-Fraenkel. Then we postulate the existence of classes and require
categories to be classes. More precisely, the collection of all morphisms in a category
is required to be a class — after all, a category can be thought of as its collection of
morphisms with a partially defined binary operation, the objects are then defined in
terms of the identity morphisms. We require classes to satisfy the same list of axioms as
sets. Besides the existence of sets and classes, we moreover postulate the existence of 2-

classes and require 2-categories to be 2-classes; note that 2-categories may be identified
with their collection of 2-arrows.

8We quote the footnote on the first page of the revised version [EGA I′]: “Nous considérons les

catégories d’un point de vue ‘naif’, comme s’il s’agissait d’ensembles et renvoyons à SGA, 4, I pour les

questions de logique liées à la théorie des catégories, et la justification du langage que nous utilisons.”
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Alternatively, (more precisely?) the required set-theoretic hierarchy may be intro-
duced via the theory of universes, cf. [65], §I.6, and [SGA4] §I. One postulates the
existence of three universes, U0, U1 and U2 and requires that U0 ∈ U1 ∈ U2. Recall that
all universes are actually sets (and thus consist of sets). We then use all sets in U0 as
sets, all sets in U1 as classes and all sets in U2 as 2-classes. In other words, we require
all sets (as the term is used in the book) to be in U0, all categories to be in U1 and all
2-categories to be in U2. If a category happens to be in U0, we call it small.

For many applications this notion of small is too restrictive. We find much more
useful the notion of essential smallness. A category is called essentially small if its
collection of isomorphism classes (i.e. its collection of objects up to isomorphism) is in
U0, i.e. is a set. When fibered categories are introduced, one can require the fibers to
be essentially small. These and the other groupoids that appear can be taken to be
essentially small.

We will not mention these set-theoretic issues in the main body of the book. The
reader who thinks in this language is invited to check that none of our constructions
with categories leave the universe U1, and that every time we construct a set from a
category we obtain a set in U0.

5.2. The axiom of choice. The only essential way in which we use the axiom of
choice is the following: we want a functor which is faithful, full, and essentially surjective
to have an inverse (a functor in the other direction such that both compositions are
naturally isomorphic to the identities). This is important because the natural notion
of isomorphism between stacks is expressed by such an equivalence. Note that this
actually uses the axiom of choice for classes of sets. This use of the axiom of choice can
be avoided if one understands that whenever we call two categories C1 and C2 equivalent

, this means that there exists a chain of categories and equivalences

C1 ←− D1 −→ D2 ←− . . .←− Dn −→ C2 .

In effect, this amounts to localizing the 2-category of categories at the equivalences
(For a discussion of similar localizations, see [28]). We prefer not to do this, but rather
assume that all equivalences have inverses. In view of these remarks, this use of the
axiom of choice may be viewed as merely a device of notational convenience.

We also remark that even though many general statements in the book formally
require the axiom of choice for their validity, in any specific application one usually has
more or less canonical choices at one’s disposal. For example, the fibered product of
schemes may be constructed in a canonical way, cf. [EGA I]; we do not need the axiom
of choice to pick an object satisfying the universal mapping property of fibered product.
Similarly, the construction of quotient sheaves can be carried out in a canonical way by
sheafifying (using an explicit sheafification construction) a given quotient presheaf.

In short, the reader can choose whatever set-theoretic foundations he or she is
comfortable with: we do not discuss them in the text. As with other areas of algebra
or geometry, the notions and theorems about stacks change very little with changes in
logical foundations.
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Answers to Exercises

B.1. If f ◦ a = f for all f , and b ◦ g = g for all g, then a = b ◦ a = b.

B.2. (1) If g ◦ f = 1X and f ◦ h = 1Y , then g = g ◦ 1Y = g ◦ (f ◦ h) = (g ◦ f) ◦ h =
1X ◦ h = h. (2) follows similarly from associativity.

B.7. For ⇒, given G, θ, and η, a morphism f : F (P ) → F (Q) has uniquely the
form f = F (a), where a : P → Q is given by a = θQ ◦ G(f) ◦ θ−1

P . For any object X
in D, the isomorphism ηX : FG(X)→ X shows that F is essentially surjective. Details
can be found in [65, §IV.4].

B.8. This is exactly what the proof of the proposition produces.

B.10. Take X ×Z Y = {(x, y) ∈ X × Y | s(x) = t(y)}, with the induced topology
in the topological case.

B.13. A natural transformation θ from hX to H assigns to every object S of C a
mapping θS from hX(S) to H(S). Applied to S = X, one gets ζ as θX(1X). For any S
and g : S → X, θS(g) = θS(hX(g)(1X)) = H(g)(θX(1X)) = H(g)(ζ), so θ is determined
by ζ .

B.18. Both parts follow readily from the exchange property.

B.19. By (1) of the preceding exercise, (θ ∗ 1h) ◦ (11X
∗ θ) = (1h ∗ θ) ◦ (θ ∗ 11X

).
Since 11X

∗ θ = θ ∗ 11X
= θ is invertible, the required equation follows.

B.25. Given α from (ϕ,Φ) to (ψ,Ψ) and β from (ψ,Ψ) to (ω,Ω), define β◦α : U ′ →
R to be the composite

U ′ (α,β)

−→ R t×s R
m
−→ R.

Given (ϕ′,Φ′) and (ψ′,Ψ′) from R′′
⇉ U ′′ to R′

⇉ U ′, and a 2-morphism β from (ϕ′,Φ′)
to (ψ′,Ψ′), define α ∗ β : U ′′ → R to be the composite

U ′′ (Φβ,αψ′
)

−→ R t×s R
m
−→ R

(which is equal to m ◦ (αϕ′,Ψβ)).

B.30. In (3), the fact that σS is a natural transformation follows from the exchange
property: given ρ : h⇒ h′, (1g ∗ ρ) ◦ (σ ∗ 1h) = (σ ∗ 1h′) ◦ (1f ∗ ρ).

B.31. That (1) implies (5) and (7) implies (2) are similar to the proofs that (1)
implies (3) and (4) implies (2). To see that (7) implies (1), the essential surjectivity of

fY , applied to 1Y , provides a g : Y → X and a 2-isomorphism f ◦g
∼
⇒ 1Y ; fX essentially

surjective, applied to 1X , provides a g′ : Y → X and a 2-isomorphism f ◦ g′
∼
⇒ 1X . The

equivalence of (2), (8), (9) and (10) is seen by taking η and ψ to be inverses of each
other, and taking θ and φ to be inverses of each other.

B.34. If H : X × [0, 1] → Y is a homotopy, define a 2-morphism by the mapping
from π(X)0 to π(Y )1 that sends a point x in X to the path t 7→ H(x, t) in Y .
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B.43. That the diagrams commute follows from several applications of the exchange
property, together with the identity (1p ∗ ǫ

p) ◦ (ηp ∗ 1p) = 1p for the first diagram,
(ǫq ∗ 1q′) ◦ (1q′ ∗ η

q) = 1q′ for the second, and (1f ∗ ǫ
f) ◦ (ηf ∗ 1f) = 1f for the third. For

(2), consider the diagram

p′ ◦ f p′ ◦ 1Z ◦ f
ηf

+3 p′ ◦ f ◦ f ′ ◦ f

cα

��

ǫf
+3 p′ ◦ f ◦ 1X

cα

��

p′ ◦ f

cα

��

1Y ◦ p
′ ◦ f

ηg
+3 g ◦ g′ ◦ p′ ◦ f

α′

+3 g ◦ q′ ◦ f ′ ◦ f
ǫf

+3 g ◦ q′ ◦ 1X g ◦ q′

The left rectangle commutes by the commutativity of the first diagram in (1), and the
other squares commute by the exchange property. The map along the top is the identity
on p′ ◦ f , by the defining property of (f, f ′, ηf , ǫf ). The assertions of (3) follow from
the other two commutative diagrams of (1).

B.35. If K : X×[0, 1]×[0, 1]→ Y gives an equivalence from the homotopy H to H ′,
then θK , defined by θK(σ)(t1, . . . , tn+2) = K(σ(t3, . . . , tn+2), t2, t1) gives an equivalence
from αH to αH′ . If f , g, and h map X to Y , and H1 is a homotopy from f to g, and
H2 is a homotopy from g to h, then θK defines an equivalence between αH2

◦ αH1
and

αH2◦H1
, where K is defined by the formula K(x, s, t) = H1(x, s + 2t) if s+ 2t ≤ 1, and

K(x, s, t) = H2(x, (s+ 2t− 1)/(s+ 1)) if s+ 2t ≥ 1.

B.44. These are proved with several applications of the exchange property, as well
as the identity (1q ∗ ǫ

q) ◦ (ηq ∗ 1q) = 1q (for (1)).

B.46. This takes a homomorphism f : G → H to the functor B(f) : BG → BH

that takes a (right) G torsor E to the H-torsor E×fH = E×H/{(v ·x, y) ∼ (v, f(x)y)}.
If also g : H → K, γBf,g takes E to the isomorphism from E ×gf K to (E ×f H) ×g K

that takes (v, z) to ((v, 1), z), and δBG takes E to the isomorphism from E ×id G to
E that takes (v, x) to v · x. If a in H gives a 2-morphism from f to g, for f and g

homomorphisms from G to H , then B(a) is the natural transformation from B(f) to
B(g) that takes a G-torsor E to the map E ×f H to E ×g H , (v, y) 7→ (v, a−1y).

B.48. Use property (c) for β, together with the exchange property.

B.53. We will carry this out in one typical case, proving the first half of the pseud-
ofunctor property (b) for G, with its associated 2-isomorphisms γGf,g and δGX . That is,
we show that the diagram

G(f) G(f) ◦ 1G(X)

G(f ◦ 1X)
γG
1X,f

+3 G(f) ◦G(1X)

δG
X

KS
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commutes. Applying F , one needs the upper left square in the diagram

FG(f) F (G(f) ◦ 1G(X))
γF
1G(X)

,G(f)

+3 FG(f) ◦ F (1G(X))
δF
G(X)

+3 FG(f) ◦ 1FG(X)

ΘX

��

FG(f ◦ 1X)
F (γG

1X ,f
)

+3

λf

��

F (G(f) ◦G(1X))

F (1G(f)∗δ
G
X

)

KS

γF
G(1X ),G(f)

+3 FG(f) ◦ FG(1X)

F (δG
X

)

KS

λ1X

+3

λf∗λ1X

��

FG(f) ◦ β ′
X ◦ βX

λfpx iiiiiiiiiiiiiii

iiiiiiiiiiiiiii

β ′
Y ◦ f ◦ βX β ′

Y ◦ f ◦ 1X ◦ βX
Θ

′

X

+3 β ′
Y ◦ f ◦ βX ◦ β

′
X ◦ βX

to commute. The upper center square commutes by property (d) for F ; the upper right
square commutes by the definition of γGX ; the lower right triangle commutes by the
exchange property (e) for 2-categories. So we are reduced to showing that the outside
diagram commutes. For this we fill in the diagram differently:

FG(f) F (G(f) ◦ 1G(X))
γF
1G(X)

,G(f)

+3 FG(f) ◦ F (1G(X))

δF
G(X)

��

FG(f)

λf

��

FG(f) ◦ 1FG(X)

λf

��

ΘX
+3 FG(f) ◦ β ′

X ◦ βX

λf

��

β ′
Y ◦ f ◦ βX β ′

Y ◦ f ◦ βX ◦ 1FG(X)
ΘX

+3 β ′
Y ◦ f ◦ βX ◦ β

′
X ◦ βX

β ′
Y ◦ f ◦ 1X ◦ βX

Θ
′

X

+3 β ′
Y ◦ f ◦ βX ◦ β

′
X ◦ βX

The top square commutes by property (b) for F ; the next square down commutes by
property (c) of a 2-category; the one to its right commutes by the exchange property
(e). Finally, the lower rectangle commutes by the key property that

βX βX ◦ 1FG(X)

ΘX

��

1X ◦ βX
Θ

′

X

+3 βX ◦ β
′
X ◦ βX

commutes. Most of the other verifications are similar to this.
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APPENDIX C

Groupoids

This appendix is written for two purposes. It can serve as a reference for facts
about categories in which all morphisms are isomorphisms. More importantly, it can
be regarded as a short text on groupoids and stacks of discrete spaces. In this way it
can provide an introduction to many of the ideas and constructions that are made in
the main text, without any algebro-geometric complications.

In this appendix, all categories are assumed to be small. This is not so much for
set-theoretic reasons (cf. B §5, but rather to think and write about their objects and
morphisms as discrete spaces of points.

If X is a category, we write X0 for the set of its objects, X1 for the set of its
morphisms and s, t : X1 → X0 for the source and target map. The notation a : x → y

or x
a
→ y means that a is in X1 and s(a) = x, t(a) = y. The set of morphisms from x to

y is denoted Hom(x, y). The composition, or multiplication, is defined on the collection
X2 = X1 t×X0 s X1 of pairs (a, b) such that t(a) = s(b). We write b ◦ a or a·b for the
composition of a and b. We denote by m : X2 → X1 the map that sends (a, b) to a·b.
There is also a map e : X0 → X1 that takes every object x to the identity morphism
idx or 1x on that object. In this appendix we generally denote the category by X

•
.

Exercise C.1. Show that the axioms for a category are equivalent to the following
identities among s, t, m, and e: (i) s ◦e = idX0

= t ◦e; (ii) s ◦m = s ◦p1 and t ◦m = t ◦p2,
where p1 and p2 are the projections from X1 t×s X1 to X1; (iii) m ◦ (m, 1) = m ◦ (1, m)
as maps from X1 t×s X1 t×s X1 to X1; (iv) m ◦ (s ◦ e, 1) = idX1

= m ◦ (1, t ◦ e).

We pick a canonical one-element set and denote it pt .

1. Groupoids

Definition C.1. A category X
•

is called a groupoid if every morphism a ∈ X1

has an inverse. There exists therefore a map i : X1 → X1 that takes a morphism to its
inverse. The element i(a) is often denoted a−1.

Exercise C.2. A groupoid is a pair of sets X0 and X1, together with five maps
s, t, m, e and i, satisfying the four identities of the preceding exercise, together with:
(v) s ◦ i = t and t ◦ i = s; (vi) m ◦ (1, i) = e ◦ s and m ◦ (i, 1) = e ◦ t. Deduce from
these identities the properties: (vii) i ◦ i = idX1

; (viii) i ◦ e = e; m ◦ (e, e) = e; (ix)
i ◦m = m ◦ (i ◦ p2, i ◦ p1). Show that e and i are uniquely determined by X0, X1, s, t,
and m.

We will generally think of a groupoid X
•
as a pair of sets (or discrete spaces) X0 and

X1, with morphisms s, t, m, e, and i, satisfying these identities. Occasionally, however,
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we will use the categorical language, referring to elements of X0 as objects and elements
of X1 as arrows or morphisms. The notation X1 ⇉ X0 may be used in place of X

•
.

Definition C.2. For any x ∈ X0, the composition m defines a group structure on
the set Hom(x, x) = {a ∈ X1 | s(a) = x, t(a) = x}. This group is denoted Aut(x), and
it is called the automorphism or isotropy group of x.

A groupoid may be thought of as an approximation of a group, but where compo-
sition is not always defined.

Our first example is the prototype groupoid:

Example C.3. Let X be a topological space. Define the fundamental groupoid

π(X)
•

by taking π(X)0 = X as the set of objects and

π(X)1 = {γ : [0, 1]→ X continuous}/ ∼

as the set of arrows. Here we write γ ∼ γ′ for two paths in X if there exists a homotopy
between γ and γ′ fixing the endpoints. Then we define

s : π(X)1 −→ π(X)0, [γ] 7−→ γ(0)

and
t : π(X)1 −→ π(X)0 [γ] 7−→ γ(1).

Thus the paths γ and γ′ are composable precisely if γ(1) = γ′(0) and we have

π(X)2 = {([γ], [γ′]) ∈ π(X)1 × π(X)1 | γ(1) = γ′(0)}.

The composition of [γ] and [γ′] is defined to be the homotopy class of the path

(γ·γ′)(t) =

{
γ(2t) if 0 ≤ t ≤ 1

2

γ′(2t− 1) if 1

2
≤ t ≤ 1 ,

•
γ
−→ •

γ′

−→ •
γ·γ′

[There should be a nicely drawn picture of paths here.] Thus we have

m : π(X)2 −→ π(X)1, ([γ], [γ′]) 7−→ [γ·γ′].

Exercise C.3. Prove that π(X)
•

is a groupoid. In particular, determine the maps
e : π(X)0 → π(X)1 and i : π(X)1 → π(X)1. More generally, for any subset A of X,
construct a groupoid π(X,A)

•
, with π(X,A)0 = A and π(X,A)1 the set of homotopy

classes of paths with both endpoints in A.

It is useful to imagine any groupoid geometrically in terms of paths as suggested by
this example. (It is in examples like this that the notation a·b is preferrable to the b ◦ a

convention.)
The fundamental mathematical notions of set and group occur as extreme cases of

groupoids:

Example C.4. Every set X is a groupoid by taking the set of objects X0 to be X
and allowing only identity arrows, which amounts to taking X1 = X, too. We consider
every set as a groupoid in this way, if not mentioned otherwise.



Groupoids app-65

Example C.5. Every group G is a groupoid by taking X0 = pt and declaring the
automorphism group of the unique object of X

•
to be G. Then Aut(x) = G = X1, if x

denotes the unique element of pt . In this appendix we write X
•

= BG
•

and call it the
classifying groupoid of the group G.

The next example contains the previous two. It describes a much more typical
groupoid:

Example C.6. If X is a right G-set, we define a groupoid X ⋊ G by taking X as
the set of objects of X ⋊G and declaring, for any two x, y ∈ X,

Hom(x, y) = {g ∈ G | xg = y}.

Composition in X ⋊G is induced from multiplication in G.
More precisely, we have (X ⋊ G)0 = X and (X ⋊ G)1 = X × G. The source map

s : X×G→ X is the first projection, the target map t : X×G→ X is the action map:
t(x, g) = xg. The morphisms (x, g) and (y, h) are composable if and only if y = xg and
the multiplication is given by (x, g)·(y, h) = (x, gh):

x
(x,g)

//

(x,gh)   B
B

B
B

B
B

B
B

xg

(xg,h)

��
xgh

Thus we may identify X2 with X×G×G, with (x, g)×(xg, h) corresponding to (x, g, h),
and write

m : X ×G×G −→ X ×G, (x, g, h) 7−→ (x, gh).

The groupoid X ⋊G is called the transformation groupoid given by the G-set X.

Example C.7. If X is a left G-set, we get an associated groupoid by declaring

Hom(x, y) = {g ∈ G | gx = y}.

Thus the pair (g, x) is considered as an arrow from x to gx. The source map is again
the projection and the target map is the group action. We denote this groupoid by
G⋉X. Note that the multiplication is given by (g, x)·(h, gx) = (hg, x), which reverses
the order of the group elements.1

Exercise C.4. Suppose a set X has a left action of a group G and a right action
of a group H , and these actions commute, i.e., (gx)h = g(xh) for all g ∈ G, x ∈
X, h ∈ H ; in this case we write gxh for this common element. Construct a double

transformation groupoid G⋉X⋊H , of the formG×X×H ⇉ X, with s(g, x, h) = x,
t(g, x, h) = gxh, and m((g, x, h), (g′, gxh, h′)) = (g′g, x, hh′).

The next two examples go beyond group actions on sets:

1This notation is compatible with the composition notation b ◦ a, which is useful in the common

situation where an automorphism group of a mathematical structure is considered to act on the left,

with the product given by composition.
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Example C.8. If R ⊂ X×X is an equivalence relation on the set X, then we define
an associated groupoid R ⇉ X by taking the two projections as source and target map:
s = p1, t = p2. Composition is given by (x, y)·(y, z) = (x, z):

x
(x,y)

//

(x,z) ��?
?

?
?

?
?

?
?

y

(y,z)

��
z

For x, y ∈ X there is at most one morphism from x to y and x and y are isomorphic
in the groupoid R ⇉ X (meaning that there is an a in X1 = R with s(a) = x and
t(a) = y) if and only if (x, y) ∈ R, i.e., x and y are equivalent under the relation R.

Example C.9. Let (Gi)i∈I be a family of groups. Define an associated groupoid by
taking as objects the set X0 = I. We declare all objects to be pairwise non-isomorphic
and define, for each i ∈ I, Aut(i) = Gi. Then X1 is the disjoint union

∐
i∈I Gi and

s = t maps g ∈ Gi to i.

Example C.10. More generally, if (X
•
(i))i∈I is any family of groupoids, there is a

disjoint union groupoid X
•
=

∐
iX•

(i), with X0 =
∐

iX0(i) and X1 =
∐

iX1(i).

Example C.11. Let X0 → Y be any map of sets. Define an associated groupoid
X

•
by defining X1 to be the fibered product: X1 = X0 ×Y X0. The source is the

first projection and the target is the second projection. Call this groupoid the cross

product groupoid associated to X0 → Y . Note that this construction is a special
case of an equivalence relation (Example C.8).

Example C.12. For any set X, there is a groupoid with X0 = X, and X1 =
X × X, with s and t the two projections, and (x, y)·(y, z) = (x, z). This is also an
equivalence relation, with any two points being equivalent. This is sometimes called a
banal groupoid. It is a special case of the preceding example, with Y = pt .

Definition C.13. Given a groupoid X
•
, a subgroupoid is given by subsets Y0 ⊂

X0 and Y1 ⊂ X1 such that: s(Y1) ⊂ Y0; t(Y1) ⊂ Y0; e(Y0) ⊂ Y1, i(Y1) ⊂ Y1, and a, b ∈ Y1

with t(a) = s(b) implies a·b ∈ Y1.

Exercise C.5. Let Z be any set. Construct a groupoid withX0 the set of nonempty
subsets of Z, and with X1 = {(A,B, φ) | A,B ∈ X0 and φ : A→ B is a bijection}, and
multiplication given by (A,B, φ)·(B,C, ψ) = (A,C, ψ ◦ φ).

Exercise C.6. Let Γ be a directed graph, which consists of a set V (of vertices)
and a set E of edges, together with mappings s, t : E → V . For any a ∈ E, define
a symbol ã, called the opposite edge of a, and set s(ã) = t(a) and t(ã) = s(a). For
each v ∈ V define a symbol 1v, with s(1v) = t(1v) = v. Construct a groupoid F (Γ)

•
,

called the free groupoid on Γ, by setting F (Γ)0 = V , and F (Γ)1 is the (disjoint) union
of {1v | v ∈ V } and the set of all sequences (α1, . . . , αn), with each αi either an edge or
an opposite edge, with t(αi) = s(αi+1), such that no successive pair (αi, αi+1) has the
form (a, ã) or (ã, a) for any edge a, 1 ≤ i < n. Composition is defined by juxtaposition
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and canceling to eliminate successive pairs equal to an edge and its inverse. Verify that
F (Γ)

•
is a groupoid.

Exercise C.7. Let X
•
be a groupoid in which the multiplication map m : X2 → X1

is finite-to-one. For any commutative ring K with unity, let A = K[X
•
] be the set of

K-valued functions on X1. Define a convolution product on A by the formula

(f ∗ g)(c) =
∑

a·b=c

f(a) · f(b),

the sum over all pairs a, b ∈ X1 with a·b = c. Show that, with the usual pointwise
sum for addition, this makes A into an associative K-algebra with unity. If X

•
= BG

•
,

this is the group algebra of G. (Extending this to infinite groupoids, with appropriate
measures to replace the sums by integrals, is an active area (cf. [18]), as it leads to
interesting C∗-algebras.)

Remark C.14. There is an obvious notion of isomorphism between groupoids X
•

and Y
•
. It is given by a bijection between X0 and Y0 and a bijection between X1 and

Y1, compatible with the structure maps s, t, m (and therefore e and i). This notion
will be referred to as strict isomorphism, since it is too strong for most purposes.
We will define a more supple notion of isomorphism in the next section.

Exercise C.8. Any left action of a groups G on a set X determines a right action
of G on X by setting x · g = g−1x. Show that the map which is the identity on X, and
maps G×X to X ×G by (g, x) 7→ (x, g−1), determines a strict isomorphism of G⋉X

with X ⋊G.

Exercise C.9. Let X
•

be a groupoid. Define the groupoid X̃
•

by reversing the

direction of arrows. In other words, X̃0 = X0, X̃1 = X1, s̃ = t, t̃ = s, X̃2 = {(x, y) ∈
X1 × X1 | (y, x) ∈ X2} and m̃(x, y) = m(y, x). This is a groupoid (with ẽ = e and

ĩ = i). Show that X̃
•

is strictly isomorphic to X
•

by sending an element of X1 to its
inverse, and the identity on X0. This is called the opposite groupoid of X

•
, and is

often denoted Xopp

•
.

Exercise C.10. For a left action of a group G on a set X, define a groupoid with
X0 = X, X1 = G×X, with s(g, x) = g ·x, t(g, x) = x, andm((g, h·x), (h, x)) = (h·g, x).
Show that this is a groupoid, strictly isomorphic to the opposite groupoid of G ⋉ X.
Similarly for a right action of G on X, there is a groupoid with X0 = X, X1 = X ×G,
with s(x, g) = x ·g, t(s, g) = x, and (x ·h, g)·(x, h) = (x, h ·g); this is strictly isomorphic
to the opposite groupoid of X ⋊G.

The preceding exercises show that, although there are several possible conventions
for constructing transformation groupoids of actions of a group on a set, they all give
strictly (and canonically) isomorphic groupoids.

Exercise C.11. By a right action of a group G on a groupoid X
•
is meant a right

action of G on X1 and on X0, so that s, t are equivariant2, and satisfying ag·bg = (a·b)g

2A mapping f : U → V of right G-sets is equivariant if f(ug) = f(u)g for all u ∈ U and g ∈ G.
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for a, b ∈ X1 with t(a) = s(b), and g ∈ G; that is, m is equivariant with repect to the
diagonal action on X2. It follows that e and i are also equivariant. Construct a groupoid
X1 ×G ⇉ X0, denoted X

•
⋊G, by defining s(a, g) = s(a), t(a, g) = t(ag) = t(a)g, and

(a, g)·(b, g′) = (a·bg−1, gg′). Verify that X
•

⋊ G is a groupoid. Construct a groupoid
G⋉X

•
for a left action.

Exercise C.12. Suppose a groupoid X
•

has a left action of a group G, and a right
action of a group H , and the actions commute, i.e., (gx)h = g(xh) for g ∈ G, h ∈ H ,
and x ∈ X0 or X1. There is a natural right action of H on G ⋉ X

•
, and a left action

of G on X ⋊H . Construct a strict isomorphism between the groupoids (G⋉X
•
) ⋊H

and G⋉ (X
•
⋊H).

Exercise C.13. (∗)3 For every groupoid X
•
, construct a topological space X and

a subset A so that X
•

is strictly isomorphic to the fundamental groupoid π(X,A)
•
.

Let us consider two basic properties of groupoids:

Definition C.15. A groupoid X
•
is called rigid if for all x ∈ X0 we have Aut(x) =

{idx}.
A groupoid X

•
is called transitive if for all x, y ∈ X0 there is an a ∈ X1 with

s(a) = x and t(a) = y.

Exercise C.14. For a topological space X, π(X)
•
is rigid if and only if every closed

path in X is homotopic to a trivial path, and π(X)
•

is transitive if and only if X is
path-connected.

Exercise C.15. For group actions, the transformation groupoid is rigid exactly
when the action is free, and the groupoid is transitive when the action is transitive.

Exercise C.16. Show that every equivalence relation is rigid. Conversely, every
rigid groupoid is strictly isomorphic to an equivalence relation.

Definition C.16. A groupoid is canonically and strictly isomorphic to a disjoint
union of transitive groupoids, called its components. Call two points x and y of X0

equivalent if there is some a ∈ X1 with s(a) = x and t(z) = y, and write x ∼= y if this
is the case. This is an equivalence relation, defined by the image of X1 in X0 ×X0 by
the map (s, t). There is a component for each equivalence class; write X0/∼= for the set
of equivalence classes.

Exercise C.17. If s(a) = x and t(a) = y, the map g 7→ a−1
·g·a determines an

isomorphism from Aut(x) to Aut(y). Replacing a by another a′ with s(a′) = x and
t(a′) = y gives another isomorphism from Aut(x) to Aut(y) that differs from the first by
an inner automorphism. Hence there is a group, well-defined up to inner automorphism,
associated to each equivalence class of a groupoid: the automorphism group Aut(x) of
any of its points.

Exercise C.18. The free groupoid of a graph is rigid if and only if the graph has
no loops. It is transitive when the graph is connected.

3The (∗) means that this is a more difficult exercise, which isn’t central to understanding.
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Next we show how to count in groupoids.

Definition C.17. A groupoid X
•

is called finite if:

(1) the set of equivalence classes X0/∼= is finite;
(2) for every object x ∈ X0 the automorphism group Aut(x) is finite.

If X
•

is a finite groupoid, we define its mass to be

#X
•
=

∑

x∈X0/∼=

1

# Aut(x)
,

where the sum is taken over a set of representatives of the objects modulo isomorphism.
More generally, if each Aut(x) is finite, and the sums

∑
1

# Aut(x)
have a least upper

bound, as x varies over representatives of finite subsets of X0/∼=, define the mass #X
•

to be this least upper bound, and call X
•
tame.

Exercise C.19. Show that if G is a finite group and X a finite G-set, then X ⋊G

is finite and

#X ⋊G =
#X

#G
.

Exercise C.20. (∗) Let F be a finite field with q elements. Consider the groupoid
X

•
of vector bundles over P1

F which are of rank 2 and degree 0. The objects of this
groupoid are all such vector bundles, the morphisms are all isomorphisms of these vector
bundles. Show that this groupoid is tame but not finite, and find its mass.

Definition C.18. A vector bundle E on a groupoid X
•

assigns to each x ∈ X0

a vector space Ex, and to each a ∈ X1 from x to y a linear isomorphism a∗ : Ex → Ey,
satisfying the compatibility: for all (a, b) ∈ X2, (a·b)∗ = b∗ ◦ a∗, i.e., with z = t(b), the
diagram

Ex
a∗

//

(a·b)∗   A
A

A
A

A
A

A
A

Ey

b∗

��
Ez

commutes. For example, a vector bundle on BG
•

is the same as a representation of the
group G.

Exercise C.21. If E is a vector bundle on X
•
, construct a groupoid E

•
with E0 =∐

x∈X0
Ex, and E1 = {(a, v, w) | a ∈ X1, v ∈ Esa, w ∈ Eta, a∗(v) = w}.

2. Morphisms of groupoids

Definition C.19. A morphism of groupoids φ
•
: X

•
→ Y

•
is a pair of maps

φ0 : X0 → Y0, φ1 : X1 → Y1, compatible with source, target and composition. In the
language of categories, this is the same as a functor.

Example C.20. A continuous map of topological spaces f : X → Y gives rise to a
morphism of fundamental groupoids

π(f)
•
: π(X)

•
−→ π(Y )

•
.
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Example C.21. Let X and Y be sets. Then the set maps from X to Y are the
same as the groupoid morphisms from X to Y .

Example C.22. If G and H are groups, then the groupoid morphisms BG
•
→ BH

•

are the group homomorphisms G→ H .

Example C.23. Let X be a right G-set and Y a right H-set. Then a morphism
X ⋊G→ Y ⋊H is given by a pair (φ, ψ), where φ : X → Y and ψ : X ×G→ H , such
that:

(i) for all x ∈ X and g ∈ G, φ(x)ψ(x, g) = φ(xg);
(ii) for all x ∈ X and g and g′ in G, ψ(x, g)ψ(xg, g′) = ψ(x, gg′).

The pair (φ, ψ) induces a groupoid morphism X⋊G→ Y ⋊H by φ : X → Y on objects
and

X ×G −→ Y ×H, (x, g) 7−→ (φ(x), ψ(x, g))

on arrows. Every groupoid morphism X ⋊ G → Y ⋊ H comes about in this way. In
particular, if ρ : G → H is a group homomorphism, and φ : X → Y is equivariant

with respect to ρ (i.e., φ(xg) = φ(x)ρ(g) for x ∈ X and g ∈ G), then (φ, ψ) defines a
morphism of groupoids, where ψ(x, g) = ρ(g) for x ∈ X, g ∈ G.

For example, for any right G-set X, the map from X to a point determines a
morphism from X ⋊G to BG

•
.

Exercise C.22. A morphism φ
•
: X

•
→ Y

•
determines a mapping X0/∼= → Y0/∼=

of equivalence classes. It also determines a group homomorphism Aut(x)→ Aut(φ0(x))
for every x ∈ X0, taking a to φ1(a).

Exercise C.23. If φ
•
: X

•
→ Y

•
is a morphism, and E is a vector bundle on Y

•
,

construct a pullback vector bundle φ∗
•
(E) on X

•
.

Exercise C.24. If X
•

and Y
•

are equivalence relations, any map f : X0 → Y0

satisfying x ∼ y ⇒ f(x) ∼ f(y) determines a morphism of groupoids X
•
→ Y

•
, and

every morphism from X
•

to Y
•

arises from a unique such map.

Example C.24. If a group G acts (on the right) on a set X, there is a canonical
morphism π : X → X ⋊ G from the (groupoid of the set) X to the transformation
groupoid.

Exercise C.25. Let F (Γ)
•

be the free groupoid on a graph Γ, as in Exercise C.6.
For any groupoid X

•
, show that any pair of maps V → X0 and E → X1 comuting with

s and t determines a morphism of groupoids from F (Γ)
•

to X
•
.

Exercise C.26. If X
•

and Y
•

are groupoids, their (direct) product X
•
× Y

•
has

objects X0 × Y0 and arrows X1 × Y1, with s, t, and m defined component-wise. More
generally, if X(i)

•
is a family of groupoids, one has a product groupoid

∏
X(i)

•
.

Of course, morphisms of groupoids may be composed, and we get in this way a
category of groupoids (with isomorphisms being the strict isomorphisms considered
above). But this point of view is too narrow. In the next section we shall enlarge this
category of groupoids to a 2-category.
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Exercise C.27. Given morphisms X
•
→ Z

•
and Y

•
→ Z

•
of groupoids, construct

a groupoid V
•

with V0 = X0 ×Z0
Y0 and V1 = X1 ×Z1

Y1. Show that this is a fibered
product in the category of groupoids. (This will not be the fibered product in the
2-category of groupoids.)

Exercise C.28. If X is a set and Y
•

is a groupoid, a morphism from X to Y
•

is
given by a mapping of sets from X to Y0. A morphism from Y

•
to X is given by a

mapping of sets from Y0/∼= to X. In categorical language, the functor from (Set) to
(Gpd) that takes a set to its groupoid has a right adjoint from (Gpd) to (Set) that
takes Y

•
to Y0, and it has a left adjoint from (Gpd) to (Set) that takes Y

•
to Y0/∼=.

3. 2-Isomorphisms

Definition C.25. Let φ
•

and ψ
•

be morphisms of groupoids from X
•

to Y
•
. A

2-isomorphism from φ
•

to ψ
•

is a mapping θ : X0 → Y1 satisfying the following
properties:

(1) for all x ∈ X0: s(θ(x)) = φ0(x) and t(θ(x)) = ψ0(x);
(2) for all a ∈ X1: θ(s(a))·ψ1(a) = φ1(a)·θ(t(a)).

If x
a
−→ y, we therefore have a commutative diagram

φ0(x)

θ(x)

��

φ1(a)
// φ0(y)

θ(y)

��

ψ0(x)
ψ1(a)

// ψ0(y)

In the language of categories, this says exactly that θ is a natural isomorphism from the
functor φ

•
to the functor ψ

•
. We write θ : φ

•
⇒ ψ

•
to mean that θ is a 2-isomorphism

from φ
•

to ψ
•
.

Example C.26. Consider two continuous maps f, g : X → Y of topological spaces
and the groupoid morphisms π(f)

•
, π(g)

•
: π(X)

•
→ π(Y )

•
they induce. Every homo-

topy H : X × [0, 1] → Y from f to g induces a 2-isomorphism π(H) : π(f)
•
⇒ π(g)

•
,

which assigns to x in X the homotopy class of the path t 7→ H(x, t) in Y .

Exercise C.29. Verify that this is a 2-isomorphism from π(f)
•

to π(g)
•
.

Definition C.27. For a groupoid morphism φ
•
: X

•
→ Y

•
define the 2-isomorphism

1φ• : φ
•
⇒ φ

•
by x 7→ e(φ0(x)) from X0 to Y1. For φ

•
, ψ

•
, χ

•
from X

•
to Y

•
, and

α : φ
•
⇒ ψ

•
and β : ψ

•
⇒ χ

•
, define β ◦ α : φ

•
⇒ χ

•
by the formula x→ α(x)·β(x).

Exercise C.30. Show that these definitions define 2-morphisms. Prove that com-
position is associative, the identities defined behave as identities with respect to com-
position of 2-isomorphisms, and that every 2-isomorphism is invertible. Conclude that
for given groupoids X

•
and Y

•
the morphisms from X

•
to Y

•
together with the 2-

isomorphisms between them form a groupoid, denoted

HOM(X
•
, Y

•
).
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Example C.28. The only 2-isomorphisms between set maps are identities. For sets
X, Y , the groupoid HOM(X, Y ) is the set Hom(X, Y ) of maps from X to Y .

Exercise C.31. If Y is a set, then HOM(X
•
, Y ) is strictly isomorphic to the set

Hom(X0/∼=, Y ) of maps from X0/∼= to Y . If Y
•
is rigid, then HOM(X

•
, Y

•
) is also rigid.

If X is a set, then HOM(X, Y
•
) is strictly isomorphic to the groupoid U

•
with U0 the

set of maps from X to Y0 and U1 the set of maps from X to Y1.

In particular, for any groupoid X
•

there is a canonical morphism

π : X0 → X
•

from the set X0 to the groupoid X
•
. Although this map can be regarded as an inclusion,

we will see that it acts more like a projection. There is also a canonical morphism, called
the canonical map,

ρ : X
•
→ X0/∼=

from the groupoid X
•

to the set X0/∼=.

Exercise C.32. Let X
•

and Y
•

be equivalence relations and f
•
, g

•
: X

•
→ Y

•
mor-

phisms, given by f0, g0 : X0 → Y0. There exists a 2-isomorphism θ : f
•
⇒ g

•
if and only

if f0(x) ∼ g0(x) for all x ∈ X0, and such a 2-isomorphism is unique if it exists. It fol-
lows that the groupoid HOM(X

•
, Y

•
) is an equivalence relation, whose set of equivalence

classes has a canonical bijection with the set of maps from X0/∼= to Y0/∼=.

Example C.29. Let G and H be groups, φ, ψ : G → H group homomorphisms.
Denote by φ

•
and ψ

•
the associated morphisms of groupoids BG

•
→ BH

•
. The 2-

isomorphisms from φ
•

to ψ
•

are the elements h ∈ H satisfying ψ(g) = h−1φ(g)h, for all
g ∈ G.

The groupoid HOM(BG
•
, BH

•
) is strictly isomorphic to the transformation

groupoid Hom(G,H) ⋊ H , where H acts on the group homomorphisms from G to
H by conjugation (φ · h)(g) = h−1φ(g)h.

Example C.30. Given a G-set X and an H-set Y , and two morphisms (φ, ψ) and
(φ′, ψ′) from X ⋊ G to Y ⋊ H , as in Exercise C.23, a 2-isomorphism from the former
to the latter is a map θ : X → H satisfying: (i) φ′(x) = φ(x)θ(x) for all x ∈ X; (ii)
ψ′(x, g) = θ(x)−1ψ(x, g)θ(xg) for all x ∈ X and g ∈ G. In the equivariant case, where
ψ(x, g) = ρ(g) and ψ′(x, g) = ρ′(g) for group homomorphisms ρ and ρ′ from G to H ,
the second condition becomes ρ′(g) = θ(x)−1ρ(g)θ(x) for all x and g. Show that (φ, ψ)
is 2-isomorphic to an equivariant map exactly when there is a map θ : X → H such
that for all g ∈ G, the map x 7→ θ(x)−1ψ(x, g)θ(xg) is independent of x ∈ X. [Are
there cases where every morphism X ⋊ G → Y ⋊ H is 2-isomorphic to an equivariant
map?]

Exercise C.33. We have seen that a morphism φ
•
: X

•
→ Y

•
determines a homo-

morphism from Aut(x) to Aut(φ0(x) for every x ∈ X0. A 2-isomorphism θ : φ
•
⇒ ψ

•

determines an isomorphism Aut(φ0(x))→ Aut(ψ0(x)), taking g to θ(x)−1
·g·θ(x). This
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gives a commutative diagram

Aut(φ0(x))

��

Aut(x)

55lllllll
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Aut(ψ0(x))

Definition C.31. Given φ
•
, φ′

•
: X

•
→ Y

•
, α : φ

•
⇒ φ′

•
, and ψ

•
, ψ′

•
: Y

•
→ Z

•
,

β : ψ
•
⇒ ψ′

•
, there is a 2-isomorphism β ∗α from ψ

•
◦φ

•
to ψ′

•
◦φ′

•
, that maps x in X0 to

ψ1(α(x))·β(φ′
0
(x)) = β(φ0(x))·ψ

′
1
(α(x))

in Z1.

Exercise C.34. Verify that this defines a 2-isomorphism as claimed. Verify that
groupoids, morphisms, and 2-isomorphisms form a 2-category, i.e., that the axioms of
Appendix B, §2 are satisfied.

Exercise C.35. Let I
•

be the banal groupoid {0, 1} × {0, 1} ⇉ {0, 1}. For any
groupoids X

•
and Y

•
, construct a bijection between the morphisms

X
•
× I

•
−→ Y

•

and the triples (φ
•
, ψ

•
, θ), where φ

•
and ψ

•
are morphisms from X

•
to Y

•
and θ is a

2-isomorphism from φ
•

to ψ
•
.

4. Isomorphisms

Definition C.32. A morphism of groupoids φ
•
: X

•
→ Y

•
is an isomorphism

of groupoids if there exists a morphism ψ
•
: Y

•
→ X

•
, such that ψ

•
◦ φ

•

∼= idX•
and

φ
•
◦ψ

•

∼= idY• , where ‘∼=’ means the existence of a 2-isomorphism between the morphisms.

Example C.33. Homotopy equivalent topological spaces have isomorphic funda-
mental groupoids: a homotopy equivalence f : X → Y determines an isomorphism
π(f)

•
: π(X)

•
→ π(Y )

•
.

Exercise C.36. Let X be a path connected topological space and x ∈ X a base
point. Let G = π1(X, x) be the fundamental group of X. Then the fundamental
groupoid π(X)

•
is isomorphic to BG

•
.

Exercise C.37. Prove that every transitive groupoid is isomorphic to a groupoid
of the form BG

•
, for a group G. Every groupoid is isomorphic to a disjoint union∐

BG(i)
•
, for some groups G(i).

Exercise C.38. Let X
•

be an equivalence relation, and let Y = X0/∼= be the set
of equivalence classes. (a) Show that the canonical map X

•
→ Y is an isomorphism

of groupoids. In particular, if a group G acts freely on a set X, the transformation
groupoid X ⋊ G is isomorphic to the set of orbits. (b) Show that if Z is any set, an
isomorphism X

•
→ Z determines a bijection between Y = X0/∼= and Z.
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Exercise C.39. If X
•
and Y

•
are isomorphic groupoids, show that X

•
is rigid (resp.

transitive) if and only if Y
•

is rigid (resp. transitive).

Exercise C.40. A groupoid is rigid if and only if it is isomorphic to a set.

Exercise C.41. If φ
•
: X

•
→ Y

•
and ψ

•
: Y

•
→ Z

•
are isomorphisms, then the

composition ψ
•
◦ φ

•
: X

•
→ Z

•
is an isomorphism.

Exercise C.42. Suppose a set X has a left action of a group G and a right action
of a group H , and these actions commute. Show that, if both actions are free, then the
groupoids G⋉ (X/H) and (G\X)⋊H are isomorphic. For example, if H is a subgroup
of a group G, then the groupoid BH

•
is isomorphic to G⋉ (G/H).

Proposition C.34. A morphism of groupoids φ
•
: X

•
→ Y

•
is an isomorphism if

and only if it satisfies the following two conditions:

(1) For every x, x′ ∈ X0 and b ∈ Y1 with s(b) = φ0(x) and t(b) = φ0(x
′), there is a

unique a ∈ X1 with s(a) = x, t(a) = x′, and φ1(a) = b. That is, the diagram

X1

(s,t)
//

φ1

��

X0 ×X0

φ0×φ0

��
Y1

(s,t)
// Y0 × Y0

is a cartesian diagram of sets;

(2) For every y ∈ Y0, there is an x ∈ X0 and a b ∈ Y1 with φ0(x) = s(b) and

t(b) = y. That is, the map

X0 φ0
×Y0,s Y1 → Y0,

taking (x, b) to t(b) is surjective. Equivalently, the induced map X0/∼=→ Y0/∼=
is surjective.

In the language of categories, the first condition says exactly that the functor φ
•

is faithful and full, and the second condition says that it is essentially surjective. A
morphism of groupoids satisfying the first condition is said to be injective, and one
satisfying the second will be called surjective.

The proof is largely left as an exercise, as it is the same as the corresponding result in
category theory (Apendix B, §1). We remark only that the essential step in constructing
a morphism ψ

•
: Y

•
→ X

•
back is to choose, for each y ∈ Y0, an xy ∈ X0 and a by ∈ Y1

with s(by) = φ0(xy) and t(by) = y. Then set ψ0(y) = xy, and, for c in Y1, set ψ1(c) to
be the arrow from ψ0(s(c)) to ψ0(t(c)) such that φ1(ψ1(c)) = bs(c)·c·bt(c)

−1.
Note that the second condition is automatic whenever φ0 is surjective. In this case

one need only choose xy in X0 with φ0(xy) = y, and then one can take by = e(y).

Remark C.35. The choices in this proof are important, not so much to point out
the necessary use of an axiom of choice, but because they show that the inverse of
an isomorphism may be far from canonical. This has serious consequences when the
groupoids have a geometric structure on them. Set theoretic surjections have sections
(by the axiom of choice). But geometric surjections, even nice ones like projections
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of fiber bundles, do not generally have sections. In particular, the classification of
geometric groupoids is not as simple as it is for set-theoretic groupoids:

Corollary C.36. Every groupoid is isomorphic to a family of groups as in Exam-

ple C.9.

Exercise C.43. A morphism φ
•
: X

•
→ Y

•
is an isomorphism if and only if the

induced map X0/∼= → Y0/∼= is bijective and the induced maps Aut(x) → Aut(φ0(x))
are isomorphisms for all x ∈ X0.

Exercise C.44. If X
•
and Y

•
are isomorphic groupoids, show that X

•
is finite (resp.

tame) if and only if Y
•

is finite (resp. tame), in which case they have the same mass.

Exercise C.45. A groupoid is rigid if and only if it is isomorphic to a set.

Exercise C.46. A banal groupoid is isomorphic to a point pt ⇉ pt .

Exercise C.47. Suppose a set X has a left action of a group G and a right action
of a group H , and these actions commute. Show that the canonical morphisms from
the double transformation groupoid G ⋉ X ⋊ H to G ⋉ (X/H) (resp. (G\X) ⋊ H) is
an isomorphism if and only if the action of H (resp. G) on X is free. Deduce the result
of Exercise C.42.

Exercise C.48. Construct a groupoid X
•
from a set Z as in Exercise C.5. Let G be

the group of bijections of Z with itself. There is a canonical surjective morphism from
G⋉X0 to X

•
, taking (σ,A) to (A, σ(A), σ|A). For which Z is this an isomorphism?

Exercise C.49. Any linear map L : V → W of vector spaces (or abelian groups)
determines an action of V on W by translation: v · w = L(v) + w, and so we have
the transformation groupoid V ⋉W . If L′ : V ′ → W ′ is another, a pair of linear maps
φV : V → V ′, φW : W → W ′, such that L′

◦ φV = φW ◦ L determines a homomorphism
φ

•
: V ⋉W → V ′ ⋉W ′. (a) Show that φ

•
is an isomorphism if and only if the induced

maps Ker(L) → Ker(L′) and Coker(L) → Coker(L′) are isomorphisms. (b) Show that
V ⋉W is isomorphic to the groupoid Ker(L)⋉Coker(L) (with the trivial action), which
is isomorphic to the product of B(Ker(L))

•
and the set Coker(L).

Exercise C.50. If a group G acts on the right on groupoids X
•
and Y

•
, a morphism

φ
•
: X

•
→ Y

•
is G-equivariant if φ0 and φ1 are G-equivariant. There is then an induced

morphism X
•

⋊ G → Y
•

⋊ G. Show that, if φ
•

is an isomorphism, then this induced
morphism is also an isomorphism.

5. Fibered products

Let
Y

•

ψ•

��
X

•

φ•
// Z

•

be a diagram of groupoids. We shall construct
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(i) a groupoid W
•
;

(ii) two morphisms of groupoids p
•
: W

•
→ X

•
and q

•
: W

•
→ Y

•
;

(iii) a 2-isomorphism θ between the compositions W
•
→ X

•
→ Z

•
and W

•
→ Y

•
→

Z
•
.

The data (W
•
, p

•
, q

•
, θ) will be called the fibered product of X

•
and Y

•
over Z

•
,

notation W
•
= X

•
×Z•

Y
•
.

(1) W
•

p•

��

q•
//

��
��

=Eθ

Y
•

ψ•

��
X

•
φ•

// Z
•

The objects of W
•

are triples (x, y, c), where x and y are objects of X
•

and Z
•
, respec-

tively, and c is a morphism in Z
•
, between φ0(x) and ψ0(y):

φ0(x)
c
−→ ψ0(y)

Given two such objects (x, y, c) and (x′, y′, c′) define a morphism from (x, y, c) to

(x′, y′, c′) to be a pair (a, b), x
a
−→ x′, y

b
−→ y′, such that

φ0(x)
φ1(a)

//

c

��

φ0(x
′)

c′

��

ψ0(y)
ψ1(b)

// ψ0(y
′)

commutes in Z
•
. Composition in W

•
is induced from composition in X

•
and Y

•
.

The two projections p
•

and q
•

are defined by projecting onto the first and second
components, respectively (both on objects and morphisms).

To define θ : φ
•
◦ p

•
→ ψ

•
◦ q

•
, take θ : X0 → Y1 to be the map (x, y, c) 7→ c.

This fibered product satisfies a universal mapping property: given a groupoid
V

•
and two morphisms f

•
: V

•
→ X

•
and g

•
: V

•
→ Y

•
, together with a 2-isomorphism

τ : φcom ◦ f
•
⇒ ψcom ◦ g

•
, there is a unique morphism h

•
= (f

•
, g

•
) : V

•
→ X

•
×Z•

Y
•

such that f
•

= p
•
◦ h

•
, g

•
= q

•
◦ h

•
, and τ is determined from θ by τ = θ ∗ 1h•. In fact,

h
•

is defined by h0(v) = (f0(v), g0(v), τ(v)) for v ∈ V0, and h1(d) = (f1(d), g1(d)) for
d ∈ V1.

A 2-commutative diagram

V
•

f•

��

g•
//

��
��

<Dτ

Y
•

ψ•

��
X

•
φ•

// Z
•

means that a 2-isomorphism τ from φ
•
◦f

•
to ψ

•
◦g

•
is specified. It strictly commutes

in case φ
•
◦ f

•
= ψ

•
◦ g

•
. In this case the 2-isomorphism is taken to be ǫ : V0 → Z1 given

by ǫ = e ◦ φo ◦ f0 = e ◦ ψo ◦ g0.



Fibered products app-77

Exercise C.51. Show that a 2-commutative diagram strictly commutes exactly
when the 2-isomorphism θ : V0 → Z1 factors through Z0, i.e., θ = e ◦ θ0 for some map
θ0 : V0 → Z0.

The diagram is called 2-cartesian if it is 2-commutative and the induced map-
ping (f

•
, g

•
) : V

•
→ X

•
×Z•

Y
•

is an isomorphism. Such a V
•

will not satisfy the same
universal property as the fibered product we have constructed; but it does satisfy a uni-
versal property in an appropriate 2-categorical sense (see Exercise C.56). The universal
property just described is easier to use in practise.

The diagram is called strictly 2-cartesian if the induced mapping (f
•
, g

•
) : V

•
→

X
•
×Z•

Y
•

is a strict isomorphism.

Example C.37. Let X be a right G-set and X ⋊G the associated transformation
groupoid. Consider the diagram

X ×G
σ

//

p1

��

X

π

��

X
π

// X ⋊G,

where σ is the action map and π is the canonical map. This diagram does not strictly
commute, so we consider the 2-isomorphism η : π ◦ p1 → π ◦σ given by the identity map
on X ×G. This gives a 2-commutative diagram

(2) X ×G
σ

//

p1

��
��
��

BJη

X

π

��

X
π

// X ⋊G,

and it is not difficult to see that the corresponding map from the set X × G to the
fibered product X ×X⋊G X is a strict isomorphism. Thus X ⋊G can be considered to
be a quotient of X by G, but a much better quotient than the set-theoretic quotient,
because the set-theoretic quotient does not make the corresponding Diagram (2) a
cartesian diagram of sets (or groupoids).

Remark C.38. Diagram (2) also has a ‘dual’ property, which expresses the fact
that X ⋊G is a quotient of X by the action of G. This property is that for every set S
and every morphism f : X → S, such that f ◦p1 = f ◦σ there exists a unique morphism
f : X ⋊G→ S such that f ◦ π = f :

X ×G
σ
//

p1
// X

π
//

f
##G

G
G

G
G

G
G

G
G

G
X ⋊G

f

��
S

We refer to this property as the cocartesian property of Diagram (2). There is also a
more complicated version of this property for an arbitrary groupoid in place of the set
S, for which we refer to Exercise C.53.
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Exercise C.52. Generalize the previous example by replacing the transformation
groupoid X ⋊G by an arbitrary groupoid X

•
. In other words, construct a 2-cartesian

diagram

X1

t
//

s

��
��
��

=Eη

X0

π

��
X0

π
// X

•
.

Show in fact that X1 is strictly isomorphic to the fibered product X0 ×X•
X0. This

diagram also has a cocartesian property with respect to maps into sets S.

Exercise C.53. Show that for any groupoid X
•
, the morphism π : X0 → X

•
makes

X
•

a 2-quotient of X0 in the 2-category (Gpd) (in the sense of Definition B.17).

Exercise C.54. If X
•

= X and Y
•

= Y are sets, so φ
•

and ψ
•

are given by maps
f : X → Z0 and g : Y → Z0, then the fibered product X ×Z•

Y is strictly isomorphic to
the set

W = { (x, y, c) ∈ X × Y × Z1 | s(c) = f(x) and t(c) = g(y) }.

In the preceding exercise, if Y = X and g = f , one gets a 2-cartesian diagram

W
t

//

s

��
��
��

=E

X

f

��

X
f

// Z
•
,

with W = {(y1, y2, a) ∈ Y × Y × Z1 | f(y1)
a
−→ f(y2)}, and θ : W → Z1 is the third

projection.

Example C.39. Let W
•

be the fibered product (X ⋊ G) ×BG•
pt . From the con-

struction of the fibered product we can identify W0 with X×G and W1 with X×G×G,
with s(x, g, h) = (x, gh), t(x, g, h) = (xg, h), and (x, g, h)·(xg, g′, h′) = (x, gg′, h′).

Exercise C.55. Show that the canonical morphism α
•
: X → W

•
, defined by

α0(x) = (x, e) and α1(x) = (x, e, e), satisfies the conditions of Proposition C.34, so
α

•
is an isomorphism. Thus the diagram

X

π

��

// pt

��

X ⋊G // BG
•

is 2-cartesian. Construct a morphism β
•
: W

•
→ X by the formulas β0(x, g) = xg and

β1(x, g, h) = xgh. Verify that β
•
◦ α

•
= 1X , and construct a 2-isomorphism from α

•
◦ β

•

to 1W•
.

Note that X → X ⋊ G is the “general” quotient by G. Thus we see that every
quotient by G is a pullback from the quotient of pt by G (which is BG

•
). This justifies

calling pt → BG
•

the universal quotient by G.
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Exercise C.56. (∗) Show that a 2-commutative diagram is 2-cartesian as defined
here if and only if it is 2-cartesian in the the 2-category of groupoids, i.e., it satisfies
the universal property of Appendix B, Definition B.17.

Note how this universal mapping property characterizes the fibered product W
•

up
to an isomorphism which is unique up to a unique 2-isomorphism. This is the natural
analogue in a 2-category of the usual ‘unique up to unique isomorphism’ in an ordinary
category.

5.1. Square morphisms.

Definition C.40. A morphism of groupoids φ
•
: X

•
→ Y

•
is called square if the

diagrams

X1

φ1

��

s
// X0

φ0

��

X1

φ1

��

t
// X0

φ0

��
Y1

s
// Y0 Y1

t
// Y0

are cartesian diagrams of sets. Since s and t are obtained from each other by the
involution i, it suffices to verify that one of these diagrams is cartesian.

Exercise C.57. The morphism X ⋊G→ BG
•

of Example C.23 is square.

Exercise C.58. If X
•

is a groupoid, then any square morphism X
•
→ BG

•
makes

X
•

strictly isomorphic to a transformation groupoid associated to an action of G on
X0.

5.2. Restrictions and Pullbacks.

Definition C.41. Let X
•

be a groupoid, Y0 a set and φ0 : Y0 → X0 a map. Define
Y1 to be the fibered product (of sets)

Y1

(s,t)
//

φ1

��

Y0 × Y0

φ0×φ0

��
X1

(s,t)
// X0 ×X0.

So an element of Y1 is a triple (y, y′, a) ∈ Y0 × Y0 × X1 with φ0(y)
a
−→ φ0(y

′). Define
the structure of a groupoid on Y

•
by the rule

(y, y′, a)·(y′, y′′, b) = (y, y′′, a·b).

We get an induced morphism of groupoids φ
•
: Y

•
→ X

•
, defined by φ1(y, y

′, a) = a.
The groupoid Y

•
is called the restriction of X

•
via Y0 → X0; following [50], it may

be denoted X
•
|Y0

.4

4[The word “pullback” and the notation φ∗
0(X•

) might seem more appropriate, since “restriction”

connotes some kind of subobject, but the word pullback is used for another concept.]
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Note that by construction, Y
•
→ X

•
is injective (full and faithful). It is an isomor-

phism exactly when the image of the map Y0 → X0 intersects all isomorphism classes
of X

•
, by Proposition C.34.

Example C.42. Let X be a right G-set and U ⊂ X a subset. The restriction of
X⋊G to U is not a transformation groupoid unless U is G-invariant. Thus we see that
very natural constructions can lead out of the world of group actions.

Example C.43. If π(X)
•

is the fundamental group of a topological space X, and
A is a subset of X, then the restriction of π(X)

•
to A is the groupoid π(X,A)

•
.

Exercise C.59. Show that any morphism : X
•
→ Y

•
factors canonically into X

•
→

Y ′
•
→ Y

•
, with X0 → Y ′

0
injective, and Y ′

•
→ Y

•
an isomorphism.

Definition C.44. Let X
•

be a groupoid, and f : X0 → Z a map to a set Z such
that f ◦ s = f ◦ t. For any map Z ′ → Z, construct a pullback groupoid X ′

•
by setting

X ′
0

= X0×Z Z
′, X ′

1
= X1×Z Z

′, with s′ and t′ induced by s and t, as is m′ from m, by
means of the isomorphism X ′

1 t′×X′

0
,s′ X

′
1
∼= (X1 t×X0,s X1)×Z Z

′.

Exercise C.60. Verify that X ′
•

is a groupoid. Show that the induced morphism
X ′

•
→ X

•
is square.

5.3. Representable and gerbe-like morphisms.

Definition C.45. A morphism φ
•
: X

•
→ Y

•
of groupoids is called representable

if the induced mapping

(s, t, φ1) : X1 −→ (X0 ×X0)×Y0×Y0
Y1

is injective; that is, φ
•
is faithful as a functor between categories. The morphism is said

to be gerbe-like if this map (s, t, φ1) is surjective, and the induced map X0/∼=→ Y0/∼=
is surjective; that is, φ

•
is a full and essentially surjective functor. So a representable

and gerbe-like morphism is an isomorphism.

For any groupoid X
•
, the canonical morphism X0 → X

•
is representable (but not

usually injective). If X ′
•

is a pullback of X
•
, as defined in the last section, the map

X ′
•
→ X

•
is representable.

The canonical morphism from X
•

to X0/∼= is gerbe-like. Any surjective homomor-
phism G→ H of groups determines a gerbe-like homomorphism BG

•
→ BH

•
.

Exercise C.61. Let φ
•
: X

•
→ Y

•
be a morphism of groupoids. The following are

equivalent:

(i) φ
•

is representable;
(ii) For any set T and morphism T → Y

•
, the fibered product X

•
×Y• T is rigid;

(iii) For any rigid groupoid T
•
and morphism T

•
→ Y

•
, the fibered product X

•
×Y•T•

is rigid;
(iv) For any 2-cartesian diagram

S
•

��

//

��
��

<Dα

T
•

��
X

•

// Y
•
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with T
•

rigid, S
•

is also rigid.
(v) For any set T and morphism T → Y

•
, there is a set S and a 2-cartesian diagram

S

��

//

��
��

=Eα

T

��
X

•

// Y
•
.

Exercise C.62. Show that any morphism X
•
→ Y

•
factors canonically into a gerbe-

like morphism X
•
→ Z

•
followed by a representable morphism Z

•
→ Y

•
.

Exercise C.63. For a morphism φ
•
: X

•
→ Y

•
of groupoids, show that the following

are equivalent:

(i) φ
•

is gerbe-like;
(ii) For any morphism pt → Y

•
(given by y ∈ Y0), the fibered product X

•
×Y• pt is

non-empty and transitive.
(iii) For any morphism ψ

•
: pt → Y

•
, there is a group G and a 2-cartesian diagram

BG
•

��

//

��
��

>Fα

pt

ψ•

��
X

•

φ•
// Y

•

6. Simplicial constructions

We fix a groupoid X
•

and explain several constructions of new groupoids out of X
•
.

For any integer n ≥ 1, denote by Xn the set of n composable morphisms in X
•
, i.e.,

Xn = { (a1, . . . , an) ∈ (X1)
n | t(ai) = s(ai+1) for 1 ≤ i < n } :

∗
a1

// ∗
a2

// . . . an
// ∗

6.1. Groupoid of diagrams. Let X
•

be a groupoid. Define a new groupoid
X

•
{n}, for n ≥ 1 as follows. An object of X

•
{n} is an n-tuple of composable ar-

rows in X
•
, i.e., an element of Xn. A morphism in X

•
{n} from (a1, . . . , an) ∈ Xn to

(b1, . . . , bn) ∈ Xn is a commutative diagram in X
•

∗
a1

//

φ0

��

∗
a2

//

φ1

��

. . . an
// ∗

φn

��
∗

b1
// ∗

b2
// . . . bn

// ∗

i.e., an (n + 1)-tuple (φ0, . . . , φn) of arrows in X
•

such that φi−1·bi = ai·φi, for all
i = 1, . . . , n.

Composition in X
•
{n} is defined by composing vertically:

(φ0, . . . , φn)·(ψ0, . . . , ψn) = (φ0·ψ0, . . . , φn·ψn).

We call the groupoid X
•
{n} the groupoid of n-diagrams of X

•
.



app-82 Groupoids

Exercise C.64. Construct a strict isomorphism between X
•
{1} and the restriction

of X
•
by the map s : X1 → X0. More generally, construct a strict isomorphism between

X
•
{n} and the restriction of X

•
by the map from Xn to X0 that takes (a1, . . . , an) to

s(a1). Conclude that all of the groupoids X
•
{n} are isomorphic to X

•
.

Exercise C.65. Define a groupoid V (n)

•
with V

(n)

0
= Xn, V

(n)

1
= X2n+1,

s(a1, . . . , an, c, b1, . . . , bn) = (a−1

n , . . . , a−1

1
), and t(a1, . . . , an, c, b1, . . . , bn) = (b1, . . . , bn).

Construct a strict isomorphism between V (n)

•
and X

•
{n}. Deduce that X

•
{n}{1} is

strictly isomorphic to X
•
{2n + 1}. Prove more generally that X

•
{n}{m} is strictly

isomorphic to X
•
{(n+ 1)(m+ 1)− 1}.

Definition C.46. Define the shift of X
•

by n to be the subgroupoid X
•
[n] of

X
•
{n} defined by

(
X

•
[n]

)
0

=
(
X

•
{n}

)
0

= Xn
(
X

•
[n]

)
1

= {(φ0, . . . , φn) ∈
(
X

•
{n}

)
1
| φ1, . . . , φn are identity morphisms}.

Exercise C.66. (1) Define a groupoid W (n)

•
by W

(n)

0
= Xn, W

(n)

1
= Xn+1, with

s(a1, . . . , an+1) = (a1·a2, a3, . . . , an+1), t(a1, . . . , an+1) = (a2, a3, . . . , an+1), and

(a1, . . . , an+1)·(b1, . . . , bn+1) = (a1·b1, b2, . . . , bn+1).

(2) Construct a strict isomorphism between W (n)

•
and the cross product groupoid

Xn×Xn−1
Xn ⇉ Xn, constructed from the morphism Xn → Xn−1 that maps (a1, . . . , an)

to (a2, . . . , an). (3) Show that W (n)

•
is strictly isomorphic to X

•
{n}.

Exercise C.67. Define a morphism X
•
[n + 1] → X

•
[n] by leaving out the last

component. Prove that this morphism is square.

Exercise C.68. (∗) For 0 ≤ k ≤ n, and n ≥ 2, define dk : Xn → Xn−1 by the
formulas d0(a1, . . . , an) = (a2, . . . , an), dk(a1, . . . , an) = (a1, . . . , ak·ak+1, . . . , an) for 0 <
k < n, and dn(a1, . . . , an) = (a1, . . . , an−1). For any 1 ≤ k ≤ n, construct a groupoid
U

•
= X

•
(n, k) with U0 = Xn−1, U1 = Xn, s = dk, t = dk−1, and

(a1, . . . , an)·(b1, . . . , bn) = (a1, . . . , ak−1, ak·bk, bk+1, . . . , bn).

(1) Show that X
•
(n, k) is strictly isomorphic to X

•
(n, l) for any 1 ≤ k, l ≤ n. (2)

The formulas φ1(a1, . . . , an) = ak and φ0(a1, . . . , an−1) = s(ak) determine a morphism
φ

•
: U

•
→ X

•
. Show that this morphism is faithful and essentially surjective, but not

usually full.

6.2. Simplicial sets.

Definition C.47. A simplicial set X∗ specifies a set Xn of n-simplices for each
nonnegative integer n, together with face maps di : Xn → Xn−1 for 0 ≤ i ≤ n, and
degeneracy maps si : Xn → Xn+1 for 0 ≤ i ≤ n, satisfying the following identities:

(a) didj = dj−1di for i < j;
(b) sisj = sj+1si for i ≤ j;
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(c) disj =






sj−1di for i < j;

id for i = j, j + 1;

sjdi−1 for i > j + 1.

A groupoid X
•

determines a simplicial set X∗, called the simplicial set of the

groupoid, whose set of n-simplices is the set Xn of composable morphisms (a1, . . . , an)
in X

•
, with X0 the objects of X

•
. For n = 1, d0 = t and d1 = s are the two maps from

X1 to X0, and s0 = e is the map from X0 to X1. The general maps are defined by:

di(a1, . . . , an) =






(a2, . . . , an) if i = 0;

(a1, . . . , ai·ai+1, . . . , an) if 0 < i < n;

(a1, . . . , an−1) if i = n.

and

si(a1, . . . , an) =






(1s(a1), a1, . . . , an) if i = 0;

(a1, . . . , ai, 1t(ai)=s(ai+1), ai+1, . . . , an) if 0 < i < n;

(a1, . . . , an, 1t(an)) if i = n.

Exercise C.69. Verify (a), (b), and (c), so X∗ is a simplicial set.

A morphism φ∗ : X∗ → Y∗ of simplicial sets is given by a mapping φn : Xn → Yn
for each n ≥ 0, commuting with the face and degeneracy operators. A morphism
φ

•
: X

•
→ Y

•
of groupoids determines a morphism φ∗ : X∗ → Y∗ of their simplicial

sets, where φ0 and φ1 are the given maps, and φn(a1, . . . , an) = (φ1(a1), . . . , φ1(an)) for
n ≥ 1. If φ∗ and ψ∗ are morphisms from X∗ to Y∗, a homotopy h from φ∗ to ψ∗ is
given by a collection of maps hi : Xn → Yn+1 for all 0 ≤ i ≤ n, satisfying:

(a) d0h0 = φn and dn+1hn = ψn;

(b) dihj =






hj−1di if i < j;

djhj−1 if i = j > 0;

hjdi−1 if i = n.

(c) sihj =

{
hj+1si if i ≤ j;

hjsi−1 if i > j.

Exercise C.70. If θ : X0 → Y1 gives a 2-isomorphism between morphisms φ
•

and
ψ

•
from a groupoidX

•
to a groupoid Y

•
, show that the mappings hi : Xn → Yn+1 defined

by

hi(a1, . . . , an) = (φ1(a1), . . . φ1(ai), θ(t(ai)) = θ(s(ai+1)), ψ1(ai+1), . . . , ψ1(an))

defines a homotopy from ψ∗ to φ∗.

Definition C.48. A simplicial set X∗ satisfies the Kan condition if, for every
0 ≤ k ≤ n and sequence σ0, . . . , σk−1, σk+1, . . . , σn of n (n−1)-simplices satisfying
di(σj) = dj−1(σi) for all i < j and i 6= k 6= j, there is a σ in Xn with di(σ) = σi for all
i 6= k. This condition is the simplicial analogue of the fact that the union of n faces of
an n-simplex is a retract of the simplex. The Kan condition implies that the condition
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of being homotopic is an equivalence relation. It also implies that the homotopy groups
of the geometric realization of the simplicial set can be computed combinatorially. For
these and other facts about simplicial sets we refer to [60] and [67].

Exercise C.71. Show that the simplicial set of a groupoid satisfies the Kan condi-
tion. [For k = 0, and σ1 = (b1, . . . , bn−1) and σ2 = (c1, . . . , cn−1), the other σi are deter-
mined, and one may take σ = (c1, c

−1

1
·b1, b2, . . . , bn−1). For k = 1, σ0 = (a1, . . . , an−1)

and σ2 = (c1, . . . , cn−1), take σ = (c1, a1, a2, . . . , an−1). For k > 1, σ0 = (a1, . . . , an−1)
and σ1 = (b1, . . . , bn−1), take σ = (b1·a

−1

1
, a1, a2, . . . , an−1). ]

Definition C.49. The standard n-simplex ∆(n) is defined by

∆(n) = { (t0, . . . , tn) ∈ R
n+1 | ti ≥ 0 and

n∑

i=0

ti = 1 }.

regarded as a topological subspace of Euclidean space. For a simplicial set X∗, construct
the topological space

X =
∐

n≥0

Xn ×∆(n).

Topologically, X is the disjoint union of copies of the standard n-simplex, with one for
each n-simplex in X∗. Define the geometric realization |X∗| of X∗ to be the quotient
space X/∼ of X by the equivalence relation generated by all

(di(σ), (t0, . . . , tn−1)) ∼ (σ, (t0, . . . , ti−1, 0, ti, . . . , tn−1)

for σ ∈ Xn, (t0, . . . , tn−1) ∈ ∆(n− 1), 0 ≤ i ≤ n, and

(di(σ), (t0, . . . , tn+1)) ∼ (σ, (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1)

for σ ∈ Xn, (t0, . . . , tn+1) ∈ ∆(n + 1), 0 ≤ i ≤ n. An n-simplex σ in Xn is called
nondegenerate if it does not have the form si(τ) for τ ∈ Xn−1 and some 0 ≤ i ≤ n−1.
For each n-simplex σ there is a continuous mapping from ∆(n) to |X∗| that takes
t ∈ ∆(n) to the equivalence class of (σ, t). If σ is nondegenerate, this maps the interior
of ∆(n) homeomorphically onto its image. The space |X∗| is a CW-complex, with these
images as its cells.

A morphism φ∗ : X∗ → Y∗ determines a continuous mapping |φ∗| : |X∗| → |Y∗|.
Homotopic mappings of simplicial sets determine homotopic mappings between their
geometric realizations.

Exercise C.72. Any topological space X determines a simplicial set S∗(X),
where Sn(X) is the set of all continuous mappings σ from the standard n-simplex
to X, with (diσ)(t0, . . . , tn−1) = σ(t0, . . . , ti−1, 0, ti, . . . , tn) and (siσ)(t0, . . . , tn+1) =
σ(t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn), for σ ∈ Sn(X) and 0 ≤ i ≤ n. A continuous map-
ping f : X → Y determines a mapping S∗(f) : S∗(X)→ S∗(Y ) of simplicial sets, so we
have a functor from (Top) to the category (Sss) of simplicial sets. This functor is a right
adjoint to the geometric realization functor from (Sss) to (Top): if X∗ is a simplicial
set and Y is a topological space, there is a canonical bijection

Hom(X∗, S∗(Y ))←→ Hom(|X∗|, Y ).
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In fact, 2-isomorphisms of simplicial sets correspond to homotopies between spaces, so
one has a strict isomorphism of categories HOM(X∗, S∗(Y )) ∼= HOM(|X∗|, Y ). [See
[67], §16.]

[What is the relation between a groupoidX
•
and the (relative) fundamental groupoid

π(|X∗|, X0)•? Should we define product of simplicial sets? Should we point out that
a simplicial set is the same thing as a contravariant functor from the category V to
(Set), where V is the category with one object {0, . . . , n} for each nonnegative integer,
and with morphisms nondecreasing mappings between such sets. And/or say that both
definitions make sense for (Set) replaced by any category? Define the simplicial set I∗
and state that a homotopy is the same as X∗ × I∗ → Y∗ ([67], §6)?

There is a fancier 2-categorical notion in Barbara’s chapter on group actions on
stacks that could appear in this appendix? What else is needed in the text?]

Answers to Exercises

C.2. e(x) is determined by the category properties (i)–(iv), as the identity of the
monoid {a ∈ X1 | s(a) = x, t(a) = x}. If i(f)·f = et(f) and f ·i(f) = es(f), then
i(f) = i(f)·(f ·i′(f)) = (i(f)·f)·i′(f) = i′(f). The proofs of identities (vii)–(ix) are
similar to those in group theory.

C.6. The associativity is proved just as in the case of free groups.

C.7. The unity takes value 1 on e(X0) and 0 on the complement.

C.11. G ⋉ X
•

is G × X1 ⇉ X0, with s(g, a) = s(a), t(g, a) = t(ga), and
(g, a)·(g′, a′) = (g′g, a·g−1a′).

C.12. Each is (canonically) strictly isomorphic to a G ⋉ X
•

⋊ H , which is the
groupoid G × X1 × H ⇉ X0, with s(g, a, h) = s(a), t(g, a, h) = t(gah), and
(g, a, h)·(g′, a′, h′) = (g′g, a·g−1a′h−1, hh′).

C.13. The data s, t : X1 → X0 determine a directed graph Γ. Form X by adjoining
a disk for each identity map 1x, x ∈ X0, and a triangle for each (a, b) ∈ X2: [pictures of
disks bounding an arrow at x and a triangle with sides a, b, and a · b should be drawn
here] Take A to be the set X0 of vertices. See Section 6.2 for more general constructions.

C.17. If φa is defined by a and φa′ is defined by a′, then φa′(g) = z−1φa(g)z, with
z = a−1

·a′.

C.20. The mass is 1

(q+1)(q3−1)
.

C.21. This is the restriction of X
•

from the canonical map from E0 to X0, cf. C.41.

C.29. To verify C.25, look at the map (s, t) 7→ H(a(s), t), which has s 7→ f(a(s)) on
the bottom, s 7→ g(a(s)) on the top, t 7→ H(a(0), t) on the left side, and t 7→ H(a(1), t)
on the right.

C.32. The only possible 2-isomorphism from f
•

to g
•

is given by θ(x) =
(f0(x), g0(x)) ∈ Y1 ⊂ Y0 × Y0.



app-86 Groupoids

C.35. A morphism from X
•
× I

•
to Y

•
is given by a pair of maps f0, f1 : X0 → Y0,

and four maps f00, f01, f10, f11 : X1 → Y1, satisfying some identities. The bijection is
given by

φ0 = f0, ψ0 = f1, φ1 = f00, ψ1 = f11, θ = f01 ◦ e, f01 = φ1·θt, f10 = ψ1·iθt.

C.36. For each point y in X, choose a path ay from x to y, and map a path γ in
π(X)1 from y to z to the homotopy class of ay·γ·a

−1

z .

C.37. Choose x0 ∈ X0, and let G = Aut(x0). Then BG
•

is a subgroupoid of X
•
.

Map X
•

to BG
•

by choosing ax ∈ X1 with s(ax) = x0, t(ax) = x, with ax0
= e(x0), and

sending b ∈ X1 to ax·b·ay
−1. The map x 7→ ax is a 2-isomorphism from the composite

X
•
→ BG

•
→ X

•
to the identity on X

•
.

C.41. If α is a 2-isomorphism from φ′
•
φ

•
to 1X•

and β is a 2-isomorphism from ψ′
•
ψ

•

to 1Y• , then θ(x) = φ′
1
βφ0(x)·α(x) defines a 2-isomorphism θ from φ′

•
ψ′

•
ψ

•
φ

•
to 1X•

. In
the language of 2-categories, this is the composite of 1φ′• ∗ β ∗ 1φ• from φ′

•
ψ′

•
ψ

•
φ

•
to

φ′
•
1Y•φ•

= φ′
•
φ

•
and α from φ′

•
φ

•
to 1X•

.

C.42. Explicit isomorphisms between G ⋉ (X/H) and (G\X) ⋊ H , and 2-
isomorphisms between their composites and the identities, can be constructed from
choices of section of the maps X → X/H and X → G\X. See Exercise C.47.

C.48. When Z has at most two elements.

C.49. (a) Each is equivalent to the exactness of the sequence 0→ V →W ⊕ V ′ →
W ′ → 0, the first taking v to (L(v), φV (v)), the second taking (w, v′) to φW (w)−L(v′).
(b) A splitting of Ker(L) → V determines an isomorphism of Ker(L) ⋉ Coker(L) to
V ⋉W , to which (a) applies; and similarly for a splitting W → Coker(L). Without any
splitting (for example for abelian groups), they are isomorphic because they both have
components indexed by Coker(L), and all isotropy groups are Ker(L).

C.50. Apply the proposition.

C.53. Here s = p1 and t = p2 are the two projections from X1 to X0, with θ

given by the identity map on X1. And X2 = X1 t×X0,s X1, with q1(a, b) = s(a),
q2(a, b) = t(a) = s(b)), q3(a, b) = t(b), p12(a, b) = a, p23(a, b) = b, p13(a, b) = a·b. Each
θij is given by a map from X2 to X1; in fact θij = pij. Each αij, αji, and αi is an

identity. A morphism u
•
: X0 → Z

•
is given by map u0 : X0 → Z0, and τ : u0 ◦ s

τ
⇒ u0 ◦ t

is given by a map τ : X1 → Z1 with sτ = u0s, tτ = u0t, and τ(a·b) = τ(a)·τ(b). The
required v

•
: X

•
→ Z

•
is defined by v0 = u0 and v1 = τ ; and ρ : u

•
⇒ v

•
◦ π is given by

the map e ◦ u0 : X0 → Z1. For the uniqueness, if v′
•
: X

•
→ Z

•
and ρ′ : u

•
⇒ v′

•
◦ π are

others, the 2-isomorphism ζ : v
•
⇒ v′

•
is given by the map ζ = ρ′ : X0 → Z1.

C.55. The 2-isomorphism is given by the mapping

θ : X ×G −→ X ×G×G, (x, g) 7→ (xg, g−1, g).
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C.59. Given φ
•
: X

•
→ Y

•
, take Y ′

0
= X0 × Y0, and define Y ′

•
to be the pullback of

Y
•

by means of the projection X0 × Y0 → Y0, so Y ′
1

= Y1 ×X0 ×X0. Map X0 to Y ′
0

by
the graph of φ0 and X1 to Y ′

1
by a 7→ (φ1(a), s(a), t(a)).

C.61. The equivalence of (ii) to (v) follows from Exercise C.40; that (i) implies (ii)
follows from the construction of the fibered product X

•
×Y• T ; that (ii) implies (i) is

proved by taking T = Y0 and ψ0 the identity.

C.62. Factor the morphism into X→ : Y ′
•
→ Y

•
as in Exercise C.59. Let Z0 = Y ′

0
=

X0 × Y0, and let Z1 be the image of X1 → Y ′
1
. The canonical map from X

•
to Z

•
is

gerbe-like, and the canonical map Z
•
→ Y ′

•
(and hence Z

•
→ Y ′

•
→ Y

•
) is representable.

C.63. The equivalence of (i) and (ii) follows from the construction of fibered prod-
ucts, and the equivalence of (ii) and (iii) from Exercise C.37.

C.64. If Y
•

is the restriction, with Y0 = Xn, then Y1 consists of triples (a, b, c) with
a, b ∈ Xn, c ∈ X1, s(c) = s(a1), and t(c) = s(b1). Let Z

•
= X

•
{n}. Map Y

•
to Z

•
by

the identity Y0 = Xn = Z0 and map Y1 → Z1 by (a, b, c) 7→ (φ0, . . . , φn), where φ0 = c

and φi = a−1

i · . . . ·a−1

1
·c·b1· . . . ·bi for 1 ≤ i ≤ n.

C.65. The product in V (n)

•
is defined by

(a1, . . . , an, c, b1, . . . , bn)·(b
−1

n , . . . , b−1

1
, d, e1, . . . , en) = (a1, . . . , an, c·d, e1, . . . , en).

Set Z
•

= X
•
{n}. Map V

•
= V (n)

•
to Z

•
by V0 = Xn = Z0 and V1

to Z1 by (a1, . . . , an, c, b1, . . . , bn) 7→ (φ0, . . . , φn), where φ0 = c and φi =
an+1−i· . . . ·an·c·b1· . . . ·bi for 1 ≤ i ≤ n. There is a canonical isomorphism between
(V (n)

•
)(m) and V ((n+1)(m+1)−1)

•
, both having objects identified with Xmn+m+n and arrows

identified with X2(mn+m+n)+1.

C.66. (1) The identity e takes (a1, . . . , an) to (1sa1, a1, . . . , an) and the inverse
i takes (a1, . . . , an+1) to (a−1

1
, a1·a2, a3, . . . , an+1). (2) Let Z

•
be the cross product

groupoid, so Z0 = Xn = W
(n)

0
, and Z1 = {((a1, . . . , an), (b1, . . . , bn)) | ai = bi for i > 1}.

Map Z1 to W
(n)

1
by sending ((a1, . . . , an), (b1, . . . , bn)) to (a1·b

−1

1
, b1, . . . , bn). (3) We

have Z0 = Xn = (X
•
[n])0, and Z1 → (X

•
[n])1 by

((a1, . . . , an), (b1, . . . , ab)) 7→ (φ0, . . . , φn, a1, . . . , an, b1, . . . , bn),

with φ0 = a1·b
−1

1
and φi = 1sai

for 1 ≤ i ≤ n.

C.67. Consider the morphism W (n+1)

•
→W (n)

•
that omits the last object on objects

and arrows. This is easily checked to be square.

C.68. A strict isomorphism φ
•

from X
•
(n, k) to X

•
(n, k + 1) is given by

φ1(a1, . . . , an) = (a−1

n · . . . ·a−1

1
, a1, . . . , an−1),

with φ0(a1, . . . , an−1) = (a−1

n−1
· . . . ·a−1

1
, a1, . . . , an−2). [Should we omit this exercise?]
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C.71. For k = 0, and σ1 = (b1, . . . , bn−1) and σ2 = (c1, . . . , cn−1), the other σi
are determined, and one may take σ = (c1, c

−1

1
·b1, b2, . . . , bn−1). For k = 1, σ0 =

(a1, . . . , an−1) and σ2 = (c1, . . . , cn−1), take σ = (c1, a1, a2, . . . , an−1). For k > 1, σ0 =
(a1, . . . , an−1) and σ1 = (b1, . . . , bn−1), take σ = (b1·a

−1

1
, a1, a2, . . . , an−1).
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Glossary

This glossary does not pretend to be a course in algebraic geometry. Its purpose is
to put in one easily available place some of the notions and facts that are used in the
text. It can also be used to test of your background: if you can read this glossary, even
if all the assertions are not familiar, you should have enough background in algebraic
geometry to read the text.

1. Schemes and fibered products

A scheme is a ringed space (X,OX) that is locally of the form Spec(A), for A a
commutative ring with unit. For most purposes in this book, one can restrict attention
to the case where A has nice properties, such as Noetherian, or finitely generated over
the ground ring or field.5 Since fibered products play a prominent role, however, one
cannot stay in a category of reduced or irreducible varieties.

An open subscheme of a scheme X is an open subset U of X with its structure
sheaf OU = OX |U . A closed subscheme Y of X is the support of a quasi-coherent
sheaf I of ideals, with the structure sheaf OY = OX/I. A subscheme Y of X is given
by a locally closed subspace Y of X, which is a closed subscheme of the open subscheme
U = X r (Y r Y ).

Given schemes X, Y , and Z, with morphisms f : X → Z and g : Y → Z, there
is a fibered product, which is a scheme X ×Z Y , together with two projections
p : X ×Z Y → X and q : X ×Z Y → Y , with the f ◦ p = g ◦ q. The fibered product
is determined by the following universal property: for any scheme S and morphisms
u : S → X and v : S → Y such that f ◦ u = g ◦ v, there is a unique morphism
(u, v) : S → X ×Z Y such that u = p ◦ (u, v) and v = q ◦ (u, v). If X = Spec(A),
Y = Spec(B), and Z = Spec(C), then X ×Z Y = Spec(A⊗C B). In general, X ×Z Y is
constructed by patching (see below). For clarity, if other morphisms from X or Y to Z
are in use, the notation X f×Z,g Y or X f×g Y may be used for this fibered product.

A diagram

X ′ //

��

X

��

Y ′ // Y

5We give the definitions in their natural generality, following [EGA]; much of the simpler situation

with Noetherian hypotheses, which suffices for most applications, can be found in [47].

app-89
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is called cartesian if it commutes, and the resulting morphism from X ′ to Y ′ ×Y X

is an isomorphism. This agrees with the categorical notion of a cartesian diagram; in
particular, X ′ is determined up to canonical isomorphism.

If X → Y is a family of some kind, then X ′ = Y ′×Y X → Y ′ is called the pullback

of the family for the morphism Y ′ → Y . When Y ′ = Spec(κ(y)), for y a point in Y ,
and κ(y) the residue field of the local ring of Y at y, this pullback is the fiber of the
family at y, and is denoted f−1(y). If Y is integral, with K the quotient field of its local
rings, and Y ′ = Spec(K), the pullback is the generic fiber. When Y ′ = Spec(L), with
L an algebraically closed field, the pullback is called a geometric fiber of the family.

For any morphism f : X → Y , there is a canonical diagonal morphism ∆f =
(f, f) : X → X ×Y X.

For any scheme X, there is a contravariant functor hX from the category (Sch)
of schemes to the category (Set) of sets, that takes a scheme S to the set hX(S) =
Hom(S,X) of morphisms from S to X. The elements of hX(S) are called S-valued
points of X. For any scheme S, if hX(S) denotes the set of morphisms from S to X,
there is a canonical bijection

hX×ZY (S) ↔ hX(S) ×hZ (S) hY (S),

where the fibered product on the right is that of sets.
Schemes are often constructed by recollement, also called gluing, or patching. For

this, one has a collection Xα of schemes, with an open subscheme Uαβ of Xα for any
pair α, β, so that Uαα = Xα. In addition, one has isomorphisms ϑβα of Uαβ with Uβα.
These must satisfy the following compatibility condition: for any α, β, and γ, ϑβα maps
Uαβ ∩ Uαγ isomorphically onto Uβα ∩ Uβγ , and the diagram

Uαβ ∩ Uαγ

ϑβα
// Uβα ∩ Uβγ Uβγ ∩ Uβα

ϑγβ

��
Uαγ ∩ Uαβ

ϑγα

// Uγα ∩ Uγβ Uγβ ∩ Uγα

must commute. (It follows that ϑαα is the identity on Xα, and that ϑαβ ◦ ϑβα is the
identity on Uαβ .) Then there is a scheme X, with open embeddings ϕα : Xα → X, such
that: X is the union of the ϕ(Xα); for all α and β, ϕα(Uαβ) = ϕα(Xα) ∩ ϕβ(Xβ); and
ϕα = ϕβ ◦ ϑβα on Uαβ . The same construction works for any ringed spaces.

Let C be the category (Set) of schemes, or the category (Sch/Λ) of schemes over a
base scheme Λ. A contravariant functor F from C to the category (Set) of sets is called
a sheaf if, for every (Zariski) open covering {Uα} of a scheme X, the sequence

F (X) →
∏

F (Uα) ⇉

∏
F (Uα ∩ Uβ)

is exact; that is, any element of F (X) is determined by its restrictions to the open sets
Uα, and a collection of elements in F (Uα) that agree on the overlaps Uα∩Uβ come from
a unique element in F (X).

A representable natural transformation F → G between contravariant functors from
C to (Set) is called open if, for every scheme Z and natural transformation hZ → G,
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the functor F ×G hZ is represented by a scheme Y , and the corresponding morphism
from Y to Z is an open embedding.6

A collection of natural transformations Fα → F is an open covering if each Fα →
F is representable and open, and, for any scheme Z and natural transformation hZ → F ,
the images of the schemes representing Fα×F hZ in Z form an open covering of Z. With
these definitions we have:

Proposition (Grothendieck’s representability theorem). Let F be a contravariant

functor from C to (Set). Suppose there is a family Fα of subfunctors of F , such that

each Fα is representable, and the collection Fα → F is an open covering. Then F is

representable.

To prove this, if Xα represents Fα, the fibered products Fα ×F Fβ determine open
coverings Uαβ of Xα, together with isomorphisms ϑβα of Uαβ with Uβα. One verifies,
using triple fibered products Fα ×F Fβ ×F Fγ, that these isomorphisms satisfy the
compatibility conditions of recollement, so that X is constructed by gluing these Xα.
For details of this verification, see [EGA I′.0.4.5.4]. The same argument works in the
category of ringed spaces.

2. Morphisms

A morphism f : X → Y of schemes is an embedding7 if f factors into an isomor-
phism X → X ′ followed by the inclusion X ′ → Y of a subscheme X ′ of Y . It is an
open embedding if X ′ is an open subscheme of Y , and a closed embedding if X ′ is
a closed subscheme of Y . For a general morphism f : X → Y of schemes, the diagonal
∆f : X → X ×Y X is an embedding ([EGA I.5.3.9, ErrIII .10]).

A morphism f : X → Y is locally of finite type if for every x in X, with y =
f(x), there are affine neighborhoods U ∼= Spec(B) of x and V ∼= Spec(A) of y, with
f(U) ⊂ V , such that the induced map A = Γ(V,OY ) → B = Γ(U,OU) makes B
a finitely generated A-algebra; that is, B ∼= A[X1, . . .Xn]/I for some ideal I. The
morphism is locally of finite presentation if one can find such neighborhoods with
B of finite presentation over A; that is, B ∼= A[X1, . . .Xn]/I, with I = (F1, . . . , Fm)
for some polynomials Fi ∈ A[X1, . . .Xn]/I. When Y is locally Noetherian, these two
notions coincide. A morphism f is of finite type if every point of Y has an affine open
neighborhood V ∼= Spec(A) such that f−1(V ) is covered by a finite number of affine
open sets U ∼= Spec(B) with B a finitely generated A-algebra. This implies that the
same property holds for every affine open subset of Y ([EGA I.6.3]).

Most ordinary morphisms, such as those between algebraic varieties over a field,
will be of finite type. However, morphisms like Spec(K) → X, where K is the function
field of an integral scheme X, or morphisms like Spec(C) → Spec(Q), although not of
finite type, are often useful.

6Such a definition makes sense for any property of a morphism which is preserved by arbitrary

pullbacks and by composing on either side by an isomorphism; all of the properties of morphisms

defined in the next section have this property.
7We avoid the word “immersion” for this notion, since that word has such a different meaning in

differential geometry.
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A scheme X is quasi-compact if its underlying space has the property that every
covering by open sets has a finite subcover; equivalently, X can be covered by a finite
number of affine open subsets. (Note that Spec(A) is quasi-compact for any A, whether
Noetherian or not.) A morphism f : X → Y of schemes is quasi-compact if f−1(U) is
quasi-compact for every affine open subset U of Y . It suffices in fact that this property
holds for every U in one affine open covering of Y ([EGA I.6.6]). A morphism is of
finite type exactly when it is locally of finite type and quasi- compact.

A morphism f : X → Y is separated if the diagonal morphism ∆f : X → X ×Y X

is a closed embedding; equivalently, the image of ∆f is a closed subset of X ×Y X.
E.g., every morphism of affine schemes is separated. The valuative criterion for

separatedness asserts that f is separated if and only if (i) the diagonal X → X×Y X

is quasi-compact, and (ii) for any valuation ring R, with quotient field L, and any
morphisms Spec(R) → Y and Spec(L) → X such that the diagram

Spec(L)
� _

��

// X

f

��
Spec(R) // Y

commutes, there is at most one morphism from Spec(R) toX making the whole diagram
commute; this criterion asserts that the canonical map

HomY (Spec(R), X) → HomY (Spec(L), X)

is injective. When Y is locally Noetherian, one needs this test only when R is a discrete
valuation ring. (See [EGA II.7.2.3] for these criteria.)

A morphism f : X → Y is quasi-separated if it satisfies the first condition (i) of
the criterion for separatedness: the diagonal morphism ∆f : X → X ×Y X is quasi-
compact. Equivalently, for any affine open subsets U and V of X whose images are
contained in an affine open subset of Y , the intersection U ∩V is a finite union of affine
open subsets.

A scheme X is called separated (resp. quasi-separated) if the morphism X →
Spec(Z) is separated (resp. quasi-separated). Every locally Noetherian scheme is quasi-
separated.

A morphism f : X → Y is proper if it is separated, of finite type, and if, for any
morphism Y ′ → Y , the projection X×Y Y

′ → Y ′ is closed (i.e., the image of any closed
subset is closed). The valuative criterion for properness asserts that f is proper if
and only if (i) f is a separated morphism of finite type, and (ii) for any valuation ring
R and morphisms as in the valuative criterion for separatedness, the canonical map
HomY (Spec(R), X) → HomY (Spec(L), X) is surjective (and therefore bijective). When
Y is locally Noetherian, it suffices to verify this criterion when R is a discrete valuation
ring. (See [EGA II.7.3.8])

Recall that a homomorphism A → B of commutative rings is flat if the functor
M → B ⊗A M from A-modules to B-modules is (left) exact. A morphism f : X → Y

of schemes is flat if for every point x in X, the local ring Ox,X is flat as a module over
Oy,Y . A morphism is faithfully flat if it is flat and surjective. For the morphism from
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Spec(B) to Spec(A) coming from a homomorphism A → B, this is equivalent to the
flatness of B over A together with the assertion that the vanishing of B ⊗A M implies
the vanishing of M , for any A-module M . A morphism is fppf if it is faithfully flat
and locally of finite presentation. An important fact is that any fppf morphism is open,
i.e., the image of any open set is open [EGA IV.2.4.6]. A morphism is fpqc if it is
faithfully flat and quasi-compact.

A morphism f : X → Y is unramified if f is of locally of finite presentation and,
for every x in X, with y = f(x), one has my ·Ox = mx and κ(x) is a finite separable field
extension of κ(y). For f locally of finite presentation, this is equivalent to each of the
following assertions: (i) the diagonal morphism X → X ×Y X is an open embedding;
(ii) the sheaf Ω1

X/Y
of relative differentials vanishes; (iii) for any nilpotent ideal I in a

commutative ring Λ, and any morphism Spec(Λ/I) → X, there is at most one morphism
from Spec(Λ) to X so that the following diagram commutes:

Spec(Λ/I)
� _

��

// X

f

��
Spec(Λ) //

::
u

u

u

u

u

Y

That is, the canonical map

HomY (Spec(Λ), X) → HomY (Spec(Λ/I), X)

is injective.
A morphism f : X → Y is étale if it is unramified and flat. Equivalently, f is locally

of finite presentation and, with Λ and I as above, one can always fill in the diagram
uniquely: the canonical map HomY (Spec(Λ), X) → HomY (Spec(Λ/I), X) is bijective.

A morphism f : X → Y is smooth if it is locally of finite presentation, flat, and, for
any morphism Spec(L) → Y , with L a field, the fiber X×Y Spec(L) is regular, i.e., all its
local rings are regular local rings. Equivalently, f is locally of finite presentation, and,
with Λ and I as above, the canonical map HomY (Spec(Λ), X) → HomY (Spec(Λ/I), X)
is surjective. Equivalently, any point on X has a neighborhood U , mapped to an open
subset V of Y , such that there is a commutative diagram

U

��

� � // Spec(A[X1, . . . , Xn]/(F1, . . . , Fm))

��

V
� � // Spec(A)

with the horizontal arrows open embeddings, and with rank(∂Fi/∂Xj) ≡ m on U . For f
étale, one has the same local description but with m = n. A smooth morphism locally
factors into a composition U → V × Ar → V , where the first map is étale and the
second is the projection ([EGA IV.17.11.4]). Other characterizations and properties of
unramified, étale, and smooth morphisms can be found in [EGA IV. §17].

A morphism is said to be formally unramified, resp. formally étale, resp. for-

mally smooth if it satisfies the condition on liftings of morphisms Spec(Λ/I) → X

to Spec(Λ) → X stated above for unramified, resp. étale, resp. smooth morphisms.
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Smooth is equivalent to formally smooth and locally of finite presentation (and simi-
larly for étale, unramified). We call particular attention to morphisms that are formally

unramified and locally of finite type. This is a class of morphisms which naturally gener-
alizes embeddings. By [EGA IV.17.2.1], a morphism is formally unramified if and only
if it has trivial sheaf of relative differentials (see the section on differentials, below).

A morphism f : X → Y is affine if any point of Y has an affine open neighborhood
V such that f−1(V ) is an affine open subset of X. It follows that f−1(V ) is affine for
every affine open set V in Y . An affine morphism is separated and quasi-compact.

A morphism f : X → Y is quasi-affine if any point of Y has an affine open neigh-
borhood V such that f−1(V ) is isomorphic to a quasi-compact open subscheme of an
affine scheme. Such a morphism is automatically separated and quasi-compact.

A morphism f : X → Y is finite if it is affine, and for any affine open V ∼= Spec(A)
of Y , f−1(V ) ∼= Spec(B), with B finitely generated as an A-module. A morphism
f : X → Y is quasi-finite if it is of finite type and each fiber f−1(y) is a finite set.

If Y is locally Noetherian, the following are equivalent: (i) f is finite; (ii) f is proper
and affine; (iii) f is proper and quasi-finite [EGA III.4.4.2].

A morphism f : X → Y is projective if there is a quasi-coherent OY -module E of
finite type, such that f factors into a closed embedding X → Proj(Sym(E)) followed
by the canonical projection from Proj(Sym(E)) to Y .

An invertible sheaf is a locally free sheaf of rank one. An invertible sheaf L on
a quasi-compact scheme X is ample if, for any coherent sheaf F on X, there is an
integer n0 such that, for all n ≥ n0, the sheaf F ⊗ L⊗n is generated by its sections. If
f : X → Y is a quasi-compact morphism, an invertible sheaf L on X is f-ample if any
point of Y has an affine open neighborhood U such that the restriction of L to f−1(U)
is ample.

A morphism f : X → Y is quasi-projective if it is of finite type, and there is an
f -ample invertible sheaf. If Y is quasi-compact (or its underlying space is Noetherian),
this is equivalent to f factoring X → Proj(Sym(E)) → Y as above, but with the first
map only a locally closed embedding ([EGA II.5.3.2]). A projective morphism is proper
and quasi-projective; the converse is true if the target scheme Y is quasi-compact or its
underlying space is Noetherian ([EGA II.5.5.3]).

A morphism f : X → Y is an epimorphism if for any two morphisms g and h

from Y to any scheme Z, g ◦ f = h ◦ f implies g = h; that is, the canonical mapping
from Hom(Y, Z) to Hom(X,Z) is always injective. It is an effective epimorphism if,
whenever a morphism g̃ : X → Z is given such that g̃ ◦ p = g̃ ◦ q, where p and q are the
two projections from X ×Y X to X, then there is a unique morphism g : Y → Z with
g ◦ f = g̃; that is,

Hom(Y, Z) → Hom(X,Z) ⇉ Hom(X ×Y X,Z)

is exact. Any fppf or fpqc morphism is an effective epimorphism (see Appendix A).
A morphism f : X → Y is a monomorphism if for any morphisms g and h from any

scheme S to X, f ◦g = f ◦h implies g = h; that is, the map Hom(S,X) → Hom(S, Y ) is
always injective. Equivalently, the diagonal map ∆f : X → X ×Y S is an isomorphism
([EGA I.5.2.8]). In particular, f is separated; if it is locally of finite presentation, it is
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unramified. A morphism is radicial if, whenever S = Spec(L), for L a field, the map
Hom(S,X) → Hom(S, Y ) is always injective; equivalently, the map is injective on the
underlying sets of points, and, for every point x of X, the field extension κ(f(x)) ⊂ κ(x)
is purely inseparable ([EGA I.3.5.8]). If f is locally of finite type, it is a monomorphism
if and only if it is unramified and radicial ([EGA IV.17.2.6]).

Each of the properties of morphisms f : X → Y listed here is preserved by arbitary
base change (except epimorphism, where this is an extra condition, termed universal

epimorphism). That is, if f has the property, and Y ′ → Y is an arbitrary morphism,
then the pullback X ×Y Y

′ → Y ′ also has the property. If f : X → Y and f ′ : X ′ → Y ′

each have one of these properties, and there are morphisms from Y and Y ′ to a scheme
S, then the fibered product X×SX

′ → Y ×SY
′ also has the property. If f : X → Y and

g : Y → Z each have one of these properties, the composition g◦f also has the property;
however, in the case of projective or quasi-projective morphisms, one must assume that
Z is quasi-compact (or its underlying space is Noetherian). Any isomorphism satisfies
all the properties. There are also results that say if g : Y → Z satisfies an appropriate
condition (often separated suffices), if g ◦ f has the property, then f has the property.
And, when Y ′ → Y is surjective and satisfies an appropriate condition (faithfully flat
and quasi-compact is common), if X×Y Y

′ → Y ′ satisfies a property, then f will satisfy
the property.8

3. Differentials

We recall and collect some basic facts about sheaves of differentials. We start with
affine schemes (algebras) and the algebraic properties of modules of differentials. Then
we pass to schemes and their sheaves of relative differentials.

Attached to a surjective ring homomorphism A → B, with kernel I, is the module
I/I2, which naturally has the structure of B-module. The associated sheaf is the
conormal sheaf of SpecB in SpecA. This construction applied to the relative diagonal
gives the module of relative differentials.

Let B be an A-algebra. Then the module of differentials ΩB/A is the sheaf I/I2,
where I is the kernel of the multiplication map B⊗AB → B. It comes with a differential
map d : B → ΩB/A, defined by df = 1 ⊗ f − f ⊗ 1 for f ∈ B. This module satisfies
the following universal property: for any B-module M and map d′ : B → M which is
additive, satisfies the Leibnitz rule d′(fg) = f dg + g df , and vanishes on A, there is a
unique B-module homomorphism ϕ : ΩB/A →M such that d′ = ϕ ◦ d (see [47, II.8]).

Considering, again, a surjective ring homomorphism A→ B with kernel I, if ϕ : A→
A′ is an arbitrary ring homomorphism, we set B′ = B ⊗A A′, so A′ → B′ is also
surjective. Let I ′ denote the kernel of A′ → B′. Then there is a morphism of B-
modules I/I2 → I ′/I ′2, induced by f 7→ ϕ(f). It is natural in the sense that given

8These and related results can be found in the following sections of [EGA], listed with the cor-

responding property: locally of finite type, IV.1.3.4; locally of finite presentation, IV.1.4.3; finite

type, IV.1.5.4, quasi-compact, IV.1.1.2; separated, I.2.2; quasi- separated IV.1.2.2; proper II.5.4.2; flat

IV.2.1; faithfully flat, IV.2.2.13; unramified, étale, and smooth, IV.17.3.3; affine, II.1.6.2; quasi-affine

II.5.1.10; finite, II.6.1.5; quasi-finite, II.6.2.4; projective II.5.5.5; quasi-projective II.5.3.4; radicial I.3.5.

General references for schemes and morphisms are: [47], [24], [74], [68], [38].
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ψ : A′′ → A′ as well, with B′′ = B′ ⊗A′ A′′ ∼= B ⊗A A′′, then we get a commutative
triangle

I/I2 //

!!C
C

C
C

C
C

C
C

I ′/I ′2

||zz
z
z
z
z
z
z

I ′′/I ′′2

This is because the right-hand map sends ϕ(f) to ψ(ϕ(f)) = ψ ◦ ϕ(f).
We have a morphism of B-modules I/I2 → I ′/I ′2, or just as well, a morphism of

B′-modules (I/I2)⊗B B
′ → I ′/I ′2. This is an isomorphism when A′ is flat over A, and

also when A → B is left inverse to some B → A and the base change is induced by
some base change on B ([EGA IV.16.2.2–3]): when ϕ is flat we have

(I/I2) ⊗B B
′ ∼= I ′/I ′2,

and when B → A is a ring homomorphism, having the given A → B as left inverse,
and B′ is a B-algebra, then with A′ = A⊗B B

′ (with the induced ϕ : A→ A′),

(I/I2) ⊗B B
′ ∼= I ′/I ′2.

If A′ and B are A-algebras, and we set B′ = B ⊗A A
′, then we have

ΩB/A ⊗B B
′ ∼= ΩB′/A′.

In other words, formation of ΩB/A commutes with arbitrary base change. A reference
is [EGA 0.20.5.5]; a hint to following the (terse) proof is to apply the second conormal
sheaf isomorphism above to the diagram

B′ // B′ ⊗A′ B′ // B′

B

ffM
M
M
M
M
M

// B ⊗A B

hhQQQQ

// B

eeK
K
K
K
K
K

A

OO

// B′

OO

A

ffN
N
N
N
N
N

OO

// B

iiRRRRRRRRR

OO

There are two fundamental exact sequences on differentials. First fundamental exact

sequence: ([66, Theorem 25.1], [EGA 0.20.5.7]) Given ring homomorphisms A → B

and B → C, this is the exact sequence

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0.

This is exact on the left as well when C is a formally smooth B-algebra. Second

fundamental exact sequence: ([66, Theorem 25.2], [EGA 0.20.5.14]) As above, with
B → C surjective with kernel J , this is the exact sequence

J/J2 → ΩB/A ⊗B C → ΩC/A → 0.

If C is formally smooth over A then this is also left exact. These sequences are functorial
[EGA 0.20.5.7.3], [EGA 0.20.5.11.3]. Explicitly, this means that if A′ is an A-algebra,
and we set B′ = B ⊗A A

′ and C ′ = C ⊗A A
′ then the first fundamental exact sequence

of the primed rings fits into a commutative diagram with that above, and the same is
true for the second fundamental exact sequence when B → C is surjective.
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If f : X → Y is a locally closed embedding of schemes, then f factors through some
open subscheme Y ′ ⊂ Y with X → Y ′ a closed embedding. Now there is a quasi-
coherent sheaf of ideals I on Y ′ which defines the image of X as a subscheme. We call
f ∗(I/I2) the conormal sheaf to the embedding of X in Y . It is denoted N ∗

X/Y , or N ∗
f .

If the restriction of f to an affine open subset SpecB of X is closed embedding to some
affine open SpecA in Y then the restriction of N ∗

X/Y to SpecB is the quasi-coherent

sheaf associated to I/I2, where I is the kernel of A→ B.
For a general map of schemes X → Y , the relative diagonal X → X ×Y X is

an embedding The conormal sheaf to the relative diagonal is the sheaf of relative

differentials of X over Y . It is denoted ΩX/Y , or Ωf if f denotes the map of schemes.
Consider a cartesian diagram of schemes

X ′
f ′

//

h

��

Y ′

g

��
X

f
// Y

Then we have an isomorphism

h∗ΩX/Y
∼= ΩX′/Y ′.

When f is a locally closed embedding, there is an induced morphism

h∗N ∗
X/Y → N ∗

X′/Y ′ .

These are natural in the sense that in each case a morphism Y ′′ → Y ′ gives rise to
a commutative triangle of sheaves on X ′′ = X ×Y Y ′′ (this is immediate from the
algebraic preliminaries for the morphism of conormal sheaves, and is established for the
isomorphism of sheaves of differentials by extending the large diagram in Exercise ??).
The morphism of conormal sheaves is an isomorphism when g is flat.

The fundamental exact sequences, for schemes, read as follows. If f : X → Y and
g : Y → Z are morphisms, then there is an exact sequence of sheaves on X

f ∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

If f is formally smooth then this is left exact as well. When f is a locally closed
embedding, we have an exact sequence of sheaves on X

N ∗
X/Y → f ∗ΩY/Z → ΩX/Z → 0.

This is also left exact when g◦f is formally smooth. These exact sequences are natural in
the sense that if Z ′ → Z is a morphism and we set X ′ = X×ZZ

′ and Y ′ = Y ×ZZ
′ then

there are commutative diagrams relating the sequences for the primed and unprimed
schemes.

The sheaf Ωf , quasi-coherent in general, is of finite type when f is locally of finite
type [EGA IV.16.3.9]. If f is formally smooth and locally of finite type then Ωf is
locally free of finite type [EGA IV.17.2.3(i)]. For a smooth morphism (i.e., one that
is formally smooth and locally of finite presentation) we use the notation of relative
dimension, a locally constant function on the source. This is the rank of Ωf .
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Let X and Y be schemes over a base scheme S. Consider the fiber product X×S Y ,
with projections p to X and q to Y . Then ([EGA IV.16.4.23])

p∗ΩX/S ⊗ q∗ΩY/S
∼= ΩX×SY/S.

The following is an important consequence of the second fundamental exact se-
quence, for schemes. Let f : X → Y be a smooth morphism. Let s : Y → X be a
section of f (so f ◦ s = 1Y ). Then

N ∗
s
∼= s∗ΩX/Y .

In this situation we have, further, that s is a regular embedding, meaning that in a
neighborhood of a point y ∈ Y if we let r denote the relative dimension of f at s(y)
then s(Y ) is defined near s(y) by r equations, forming a regular sequence in the local
ring Os(y),X . This fact follows from [EGA IV.17.12.1].

4. Grothendieck topologies

A Grothendieck topology T on a category S consists of a set Cov(T ) of families
of maps {ϕα : Uα → U}α∈A, with each ϕα a morphism in S; these families, called
coverings, must satisfy the following conditions:

(1) If ϕ : V → U is an isomorphism in S, then {ϕ : V → U} is a covering.
(2) If {Uα → U}α∈A is a covering, and {Vαβ → Uα}β∈Bα

is a covering for each α,
then the family {Vαβ → U}α∈A,β∈Bα

, obtained by composition, is a covering.
(3) If {Uα → U}α∈A is a covering, and V → U is any morphism in S, each fiber

product U α×U V must exist in S, and {U α×U V → V }α∈A is a covering.
A category with a Grothendieck topology is called a site.
When S is the category (Top) of topological spaces, taking the coverings of a space

U by a family of open subspaces Uα forms a Grothendieck topology. Similarly when
S is any category of schemes which contains any open subscheme of any scheme in it,
one has the Zariski topology, where a covering is a family of Zariski open subsets Uα

of U , with each ϕα the inclusion of Uα in U , such that U is the union of these open
sets. The examples of most importance in this text are the étale topology and the
smooth topology; in these the morphisms ϕα are taken to be étale resp. smooth, with
the condition that U is the union of the images of the Uα. Similarly one has the flat

topology, also called the fppf topology, where one requires that the morphisms in a
covering are faithfully flat and locally of finite presentation.

In each of these topologies, if {Uα → U} is a covering, then the morphism V =∐
Uα → U is an fppf morphism, which means that descent (Appendix A) can be applied.

Note also that if U is a disjoint union of open schemes Uα, the family {Uα → U} is a
covering in any of these topologies.

Although this text does not require any sophisticated knowledge of Grothendieck
topologies, more can be found in [3] and [68].
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5. Sheaves and base change

Our aim here is to describe the basic base change homomorphisms for sheaves,
including compatibilities for successive base changes, for which we could not find com-
plete references. We will see that these compatibilites follow formally from properties
of adjoint functors that appear in Appendix B.

For a sheaf F on a space X, we denote its sections over an open subset U of X either
by F(U) or Γ(U,F). The stalk Fx of F at a point x in X is the direct limit lim

−→
F(U),

as U varies over open neighborhoods of x. For any continuous map f : X → Y of
topological spaces, and a sheaf F on X, there is a pushforward sheaf f∗(F) on Y ,
whose sections over an open subset V of Y are defined by the formula

f∗(F)(V ) = F(f−1(V )).

This pushforward is functorial: if also g : Y → Z, then

(g ◦ f)∗(F) = g∗(f∗(F)).

If G is a sheaf on Y , there is a sheaf f−1(G), whose sections over an open U in X

are defined to be those collections of elements (s′x)x∈U , with s′x in the stalk Gf(x), such
that for any x0 in U there is a neighborhood V of f(x0) in Y , a section s ∈ G(V ) and a
neighborhood W of x0 contained in U ∩ f−1(V ), such that s′x is the germ defined by s
at f(x) for all x in W . This gives a functor from sheaves on Y to sheaves on X, which
is a left adjoint to f∗. That is, for any sheaves F on X and G on Y , there is a canonical
bijection

Hom(f−1(G),F) ↔ Hom(G, f∗(F)).

In fact, an element on each side of this display can be identified with a collection of
maps from G(V ) to F(U), for all open U ⊂ X and V ⊂ Y with f(U) ⊂ V , such that
whenever U ′ ⊂ U and V ′ ⊂ V , with f(U ′) ⊂ V ′, the diagram

G(V ) //

��

F(U)

��

G(V ′) // F(U ′)

commutes. This bijection is natural in morphisms of sheaves on X and Y , and makes
f−1 a left adjoint of f∗, and f∗ a right adjoint of f−1, see [EGA 0.3.5, 0.3.7].

The same formula for the pushforward works when f is a morphism of ringed spaces,
and F is a sheaf of OX -modules, in which case f∗(F) is a sheaf of OY -modules. Here f∗
defines a functor f∗ : S(X) → S(Y ) from the category S(X) of sheaves of OX -modules
to the category S(Y ) of sheaves of OY -modules. A left adjoint to this functor f∗ is
denoted f ∗; this is constructed to be the functor that takes a sheaf G of OY -modules
to the sheaf

f ∗(G) := OX ⊗f−1(OY ) f
−1(G).

(Here, to be precise, one should make a choice of this tensor product.) This gives a
functor f ∗ : S(Y ) → S(X) from sheaves of OY -modules to sheaves of OX -modules, and
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one again has a canonical bijection

Hom(f ∗(G),F) ↔ Hom(G, f∗(F)),

making f∗ and f ∗ adjoint functors ([EGA 0.3.5, 0.4.4]), [47, §II.5]).
Because of the choice of tensor product in the definition, if g : Y → Z is another

morphism, and H is a sheaf of OZ-modules, then (g ◦ f)∗(H) is not strictly equal to
f ∗(g∗(H)), but there is a canonical isomorphism between them.

This adjoint pair comes equipped with canonical natural transformations ǫ =
ǫf : 1S(Y ) ⇒ f∗ ◦ f

∗, and δ = δf : f ∗ ◦ f∗ ⇒ 1S(X). For a sheaf G on Y we have a
canonical morphism ǫ : G → f∗(f

∗(G)), functorial in G; and for a sheaf F on X, we
have a canonical morphism δ : f ∗(f∗(F)) → F , functorial in F . Explicitly, a section of
G on an open V in Y determines a section of f ∗(G) on f−1(V ), and hence a section of
f∗(f

∗(G)) on V . A section of f ∗(f∗(F)) on an open U of X determines an element of
the stalk Fx at all x in U , and these come from a section of F on U .

A sheaf F of OX -modules is quasi-coherent if, for all x in X, there is a neighbor-

hood U of x and a presentation O
(I)

U → O
(J)

U → F → 0, for some (not necessarily finite)
index sets I and J . If G is quasi-coherent on Y , then f ∗(G) is always quasi-coherent
on X. If f is a quasi-compact and quasi-separated morphism of schemes, and F is
quasi-coherent on X, then f∗(F) is quasi-coherent on Y (see [EGA I.9.2.1]). With
these hypotheses, f∗ and f ∗ are adjoint functors between quasi-coherent sheaves on X
and quasi-coherent sheaves on Y .

A sheaf F of OX -modules is of finite type if any point has an open neighborhood
U on which there is a surjection On

U → F |U→ 0 for some integer n, The sheaf is
coherent if, in addition, for all open subsets U of X, the kernel of any homomorphism
Om

U → F of OU -modules is of finite type. If a scheme X is locally Noetherian, i.e., it
has a covering by open subschemes isomorphic to the Spec’s of Noetherian rings, then
OX is coherent. For any morphism f : X → Y , if G is coherent on Y , and if OX is
coherent on X, then f ∗(G) is coherent on X ([EGA 0.5.3]). If f : X → Y is a proper
morphism, with Y locally Noetherian, and F is a coherent sheaf on X, then f∗(F) is a
coherent sheaf on Y ; in fact, all the higher direct images Rnf∗(F) are coherent ([EGA

III.3.2.1]).
Now consider a commutative diagram

W

q

��

g
// Y

p

��
X

f

// Z

of ringed spaces. There is an associated base change map

p∗(f∗(F)) → g∗(q
∗(F))
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for any sheaf F of OX -modules.9 This is a formal consequence of adunction (Section
B.3). To construct this base change map, consider the diagram

S(W )

q∗

��

g∗
// S(Y )

p∗

��

S(X)
f∗

// S(Z)

This diagram strictly commutes: f∗ ◦ q∗ = (f ◦ q)∗ = (p◦g)∗ = p∗ ◦g∗. Therefore we can
take α : f∗ ◦ q∗ ⇒ p∗ ◦ g∗ to be the identity map. From Definition B.21, this gives a base
change natural transformation (2-morphism) c = cα from p∗ ◦ f∗ to g∗ ◦ q

∗. The base
change transformation p∗ ◦ f∗ ⇒ g∗ ◦ q

∗ is chararacterized either by the fact that its

adjoint with respect to p is the transformation f∗ = f∗◦1S(X)

ǫq

⇒ f∗ ◦q∗◦q
∗ = p∗◦g∗◦q

∗,

or that its adjoint with respect to g is the composite g∗ ◦ p∗ ◦ f∗
α′

⇒ q∗ ◦ f ∗ ◦ f∗
δf

⇒ q∗

(by Exercise B.43(3)).10

In this setting, these formal adjoint constructions can be made explicit. If U ⊂ Y

and U ′ ⊂ Y ′ are open subsets with p(U ′) ⊂ U , a section s in (f∗F)(U) determines a
section s′ in p∗(f∗F)(U ′), and also a section s′′ in (g∗(q

∗(F)))(U ′) = (q∗(F))(q−1(U ′)).
Show that the base change map c takes s′ to s′′, and show that c is determined by this
property. The corresponding α′ : g∗ ◦ p∗

∼
⇒ q∗ ◦ f ∗ agrees with the composition of the

canonical isomorphisms g∗ ◦ p∗ ∼= (p ◦ g)∗ = (f ◦ q)∗ ∼= q∗ ◦ f ∗ (cf. [EGA 0.3.5.5]).
Consider a commutative diagram of ringed spaces,

U

r

��

i
//

β

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

W

q

��

g
//

α

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

Y

p

��
V

h

// X
f

// Z

with two commuting squares labeled with α and β, and label the outside square with
γ:

U

r

��

g◦i
//

γ

@
@

@
@

@
@

@

@
@

@
@

@
@

@
Y

p

��
V

f◦h

// Z

It follows from Exercise B.44 that the following diagram commutes:

p ∗ ◦f∗ ◦ h∗

cα

��

p∗ ◦ (f ◦ h)∗
cγ

#+P
P

P
P

P
P

P
P

P
P

P

P
P

P
P

P
P

P
P

P
P

P

g∗ ◦ q
∗ ◦ h∗ cβ

+3 g∗ ◦ i∗ ◦ r
∗ (g ◦ i)∗ ◦ r

∗

9The same works for topological spaces, replacing pullbacks g∗ by g−1.
10See [42, XII.4, XVII.2.1] for a discussion about this point.
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One has also the opposite base change maps c′α : f ∗◦p∗ ⇒ q∗◦g
∗, c′β : h∗◦q∗ ⇒ r∗◦i

∗,
and c′γ : (f ◦h)∗◦p∗ ⇒ r∗◦(g◦i)∗. The same Exercise B.44 gives a commutative diagram

h∗ ◦ f ∗ ◦ p∗
∼

c′α
��

(f ◦ h)∗ ◦ p∗
c′γ

#+P
P

P
P

P
P

P
P

P
P

P

P
P

P
P

P
P

P
P

P
P

P

h∗ ◦ q∗ ◦ g
∗

c′
β

+3 r∗ ◦ i
∗ ◦ g∗

∼
r∗ ◦ (g ◦ i)∗

(cf. [42, XII.4.4]).
From Exercise B.43(1), we get commutative diagrams

p∗

ǫg

��

ǫf
+3 p∗ f∗ f

∗

c

��

g∗ p∗ f∗

c

��

α′

+3 q∗ f ∗ f∗

δf

��

f∗

ǫq

��

ǫp
+3 p∗ p

∗ f∗

c

��
g∗ g

∗ p∗
α′

+3 g∗ q
∗ f ∗ g∗ g∗ q

∗

δg
+3 q∗ f∗ q∗ q

∗ p∗ g∗ q
∗

The same adjoint formalism applies in the context of sheaves on arbitrary sites. It
can also be applied with higher direct images. To see this, note that if f : X → Y

and g : Y → Z are mappings, the Leray spectral sequence gives (edge homomorphism)
mappings

Rng∗(f∗F) → Rn(g ◦ f)∗(F) → g∗(R
nf∗(F))

(cf. [EGA III.12.2.5]). In particular, given a commutative diagram as above, and any
n ≥ 0, one has a natural transformation α : Rnf∗ ◦ q∗ ⇒ p∗ ◦R

ng∗, given by

Rnf∗(q∗(F)) → Rn(f ◦ q)∗(F) = Rn(p ◦ g)∗(F) → p∗(R
ng∗(F)).

By the formal properties of adjoints, this determines a natural transformation cα from
p∗ ◦Rnf∗ to Rng∗ ◦ q

∗. In particular we have homomorphisms

p∗(Rnf∗(F)) → Rng∗(q
∗(F)),

which are natural in F . One has the same compatibility as before, when two commu-
tative diagrams are pasted together, again by formal properties of adjoint functors.11

The same formalism applies when one has adjoint functors Rf∗ and Lf ∗ on derived
categories (e.g. [46], Cor. 5.11), giving natural base change maps

(Lp∗) ◦ (Rf∗)(F
·) → (Rg∗) ◦ (Lq∗)(F ·),

with the corresponding compatibilites when two commutative diagrams are combined.

11These base change maps agree with those constructed under additional hypotheses in [EGA

III.1.4.15], [EGA IV.1.7.21], and [47, §III.9.3].
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