CHAPTER 1

Differential graded coalgebras

1.1. Graded coalgebras

Definition 1.1.1. A (coassociative) graded coalgebra is the data of a graded vector space
C = @,ezC™ and of a morphism of graded vector spaces A: C — C ® C, called coproduct,
whic satifies the coassociativity equation:

(A®1de)A = (Ide ®A)A: C - CoC®C.

Definition 1.1.2. Let (C,A) and (B,I") be graded coalgebras. A morphism of graded coal-
gebras f: C'— B is a morphism of graded vector spaces that commutes with coproducts, i.e.

I'f=(f®f)A: C — B® B.

Example 1.1.3. Let C = K [t] be the polynomial ring in one variable ¢ (of degree 0). The linear
map

A K[t =K oK[t], A@") = i:t @t
=0

gives a coalgebra structure (exercise: check coassociativity).
For every sequence f,, € K, n > 0, it is associated a morphism of coalgebras f: C — C defined
as

f() =1, f") = E E firfi o fi 7.
s=1 (i1,...,i5)EN®
i1Ftis=n

The verification that Af = (f ® f)A can be done in the following way: Let {z"} C CV = K[[z]]
be the dual basis of {¢t"}. Then for every a,b,n € N we have:

<.’I,‘a®$b,Af<tn)>: Z fi1"'fiafj1”'fjb7
i1t ot His=n
@ @b fo fAl) = > > Jiv o fiadin - Ti
S G14etia=s jit-tjp=n—s
Note that the sequence {f,}, n > 1, can be recovered from f by the formula f, = (x, f(t")).

Definition 1.1.4. A graded coalgebra (C, A) is called cocommutative if two A = A, where
tw: C®C — C ® C is the twist map.

Example 1.1.5. The polynomial coalgebra of Example 1.1.3 is cocommutative.

Example 1.1.6. Let C' be a graded coalgebra with coproduct A: ¢ — C ® C. Then the
convolution product defined as

Homg (C,K) x Homg (C,K) — Homg (C,K), (f,9) — u(f ®g9)A,

where p: K x K — K is the product, is an associative product. Thus the dual of a coalgebra is
an algebra.

In general the dual of an algebra is not a coalgebra (with some exceptions, see e.g. Exam-
ple 1.1.16). Heuristically, this asymmetry comes from the fact that, for an infinite dimensional
vector space V, there exist a natural map V¥ ® V¥ — (V ® V)V, while does not exist any
natural map (V@ V)Y - VY e VY.
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Example 1.1.7. The dual of the coalgebra C = K|[t] (Example ?7?) is exactly the algebra of
formal power series A = K[[z]] = CV. Every coalgebra morphism f: C' — C induces a local
homomorphism of K-algebras ft: A — A. The morphism f* is uniquely determined by the
power series f!(z) = > nso fnz™ and then every morphism of coalgebras f: C' — C is uniquely
determined by the sequence f,, = (f!(z),t") = (x, f(t")).

The map f — f* is functorial and then preserves the composition laws.

Definition 1.1.8. Let (C,A) be a graded coalgebra; the iterated coproducts A": C' — C®n+!
are defined recursively for n > 0 by the formulas

Ide @A™ 1
-

A =Tde, A" 02 CeC C o8 — C8n+1

Lemma 1.1.9. Let (C,A) be a graded coalgebra. Then:
(1) For every 0 < a <mn—1 we have
A" = (A A"TTTYA C - QT
(2) For every s > 1 and every ag,...,as > 0 we have
(A" @AM @ - @ A%)AT = ATT2 o,
3) If f: (C,A) — (B,T) is a morphism of graded coalgebras then, for everyn > 1 we have
f= (@A C - Q"'B.
PrROOF. [1] If a = 0 or n = 1 there is nothing to prove, thus we can assume a > 0 and use
induction on n. we have:
(A" @ A" YA = ((Ide @A HA® A" 9)A =
= (Ide¢ @A '@ A" 1) (A®Idg)A =
= (Ide @A ' @ A" 1) (Ide ®A)A = (Ide (AT @ A" 1) A)A = A",
[2] Induction on s, being the case s = 1 proved in item 1. If s > 2 we can write
(A% QA" @ @ A)A* = (A QAU ® -+ @ A%)(Ide ®A 1A =
(A% @ (A" @ --- ® A%)ATHA = (A% @ ASTIHFLis0 %A = ASTI o,
[3] By induction on n,
Mf=(dp e OIf = (f@I" A = (f@ (@" /A" HA = (@ f)A™

Lemma 1.1.10. Let (C,A) be a graded coalgebra. Then for every n > 0 we have
ker A"t = {z € C | A(z) € (ker A") @ (ker A™)}.
PRrROOF. The formula
A" = (A" @ Id)A = (Id®@ A™)A.

implies the inclusion D. Conversely, notice that A(z) = 0 if and only if every homogeneous
component of x belongs to ker A"*! Let z € ker A"*! homogeneous and write A(z) = >\, 2;®
y; with 7 minimum. Then the vectors x; are linearly independent and the same holds for the
vectors y;. The conclusion is now immediate fro the above formula. O

Definition 1.1.11. Let (C,A) be a graded coalgebra. A morphism of graded vector spaces
p: C — V is called a cogenerator of C if for every ¢ € C there exists n > 0 such that
(@"TIp)Am™(c) # 0 in ®"+1 V. Equivalently, p: C' — V is a cogenerator of C is the map

+1
C— H®n v, c— (¢, Ac,A%c,...),
n>0
is injective.
Example 1.1.12. In the notation of Example 1.1.3, the natural projection K[t] — K & K¢ is

a cogenerator.

Proposition 1.1.13. Let p: B — V be a cogenerator of a graded coalgebra (B,T'). Then every
morphism of graded coalgebras ¢: (C,A) — (B,T') is uniquely determined by its composition
pp: C — V.
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PROOF. Let ¢,9: (C,A) — (B,T') be two morphisms of graded coalgebras such that p¢ =
py. In order to prove that ¢ = 9 it is sufficient to show that for every ¢ € C' and every n > 0
we have

(@" )L™ (¢(c)) = (@™ p)I™ (¥(c)).-
By Lemma 1.1.9 we have ['"¢ = (@"T1¢)A™ and Iy = (@"T1))A". Therefore
(@"Fp)I = (@"Tp)(@"T9)A" = (2" pg) A" =
= (@"TIpY)AT = (& Ip)(@" A" = (@M Ip)IM Y.
U
Definition 1.1.14. A graded coalgebra (C,A) is called nilpotent if A” =0 for n >> 0. It is

called locally nilpotent if it is the direct limit of nilpotent graded coalgebras or equivalently
if C = U,, ker A™.

Example 1.1.15. The vector space

K[t ={p(t) eK[t] | p(0) =0} =P _ Kt

>0
with the coproduct

AK[—KEKE, A=) tot",

is a locally nilpotent coalgebra. The projection K [t] — K [t], p(t) — p(t) — p(0), is a morphism
of coalgebras.

Example 1.1.16. Let A = ®A; be a finite dimensional graded associative K-algebra and let
C = AV = Hom"(A,K) be its graded dual. Since A and C are finite dimensional, the pairing
(c1 @ ea,a1 ® ag) = (—1)"%(cy, a1)(ca, az) gives a natural isomorphism C ® C' = (A® A)Y and
we may define A as the transpose of the multiplication map pu: A® A — A. Then (C,A) is a
graded coalgebra. Note that C' is nilpotent if and only if A is nilpotent.

Lemma 1.1.17. Let (C, A) be a locally nilpotent graded coalgebra. Then every projectionp: C —
ker A is a cogenerator of C.

PROOF. O

Definition 1.1.18 ([104, p. 282]). A graded coalgebra (C, A) is called connected if there is
an element e € C such that A(e) = e ® e (in particular deg(e) = 0) and C' = U, F,.C, where
F,.C is defined recursively in the following way:

F,C =Ke, FrfiC={xeC|Alx)—er—z®ec F.CQ F.C}.

Example 1.1.19. In the notation of the above definition, according to Lemma 1.1.10 we have
e = 0 if and only if F,.C' = ker A". In particular every locally nilpotent coalgebra is connected.

1.2. Comodules and coderivations

Definition 1.2.1. Let (C,A) be a graded coalgebra. A C-comodule is the data of a graded
vector space M and two morphisms of graded vector spaces

¢o: M — MR C, v M—-CM

such that:

(1) (Idyy @ A)p = (¢ @1de)p: M - M @ C @ C,
(2) (A@Idy)y = Ide@¢)p: M - C0C® M,
(3) (W®Ide)p = (Ide ® p)p: M — C @ M @ C.

Example 1.2.2. If F': (D,T') — (C,A) is a morphism of graded coalgebras, then the maps
¢p=(Idp®@ F)I': D - D®C, Yv=(F®lIldp)l': D —-C®D,

give a structure of C-comodule on D.
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Definition 1.2.3. Let (C,A) be a graded coalgebra and
¢ M — MR C, v M—-CeM

a C-comodule. A linear map d € Homg (M, C) is called a coderivation of degree n if it satisfies
the coLeibniz rule

Ad = (d®1dc)¢ + (Idc @ d)y.

In the above definition we have adopted the Koszul sign convention: i.e. if z,y € C,
f,g9 € Hom*(C, D), h,k € Hom" (B, C') are homogeneous then (f®g)(z®y) = (—1)9 f(z)@9(y)
and (f®@g)(h®k) = (-1)9"fh @ gk.

In these notes we are mainly intersted to C-comodules structure induced by a morphism
of graded coalgebras F': (D,T') — (C,A). In this case, a morphism of graded vector spaces
d € Hom"(C, D) is a coderivation of degree n if and only if

Ad=(d® F+ F®dT.

The coderivations of degree n with respect a coalgebra morphism F': C' — D form a vec-
tor space denoted Coder™(C,D;F). For simplicity of notation we denote Coder™(C,C) =
Coder™(C, C; Id). In other terms

Coder"(C,C) = {f € Homg (C,C) | Af = (f @ Id¢ + Idec @ f)A}.

Lemma 1.2.4. Let C be a graded coalgebra. Then Coder™(C,C) = @p,, Coder™(C, C) is a graded
Lie subalgebra of Homg (C, C).

PROOF. We only need to prove that Coder™(C, C) is closed under the graded commutator.
This is straightforward and left to the reader. O

Example 1.2.5. For every k > —1 consider the differential operator

d

o K[ — K[, fi :t<dt)k+1.

Then every fi is a coderivation with respect the coproduct
~ ~ n n . .
A: Kt Kt K|t A(t") = trt" .
g-koxd, A=Y (T)is

Using the definition of binomial coefficicnts

(- &e-a ()

we have for every n > 0 and every k > 0

A(fkkll(tn)) _ A((Z) k) Z 3 (Z) (n — 1: + 1) i @ gn—k—it1,

>0

(foo1 @ IDA(E™)

N\ (TN ikl o e n itk =1\ kit
t’ Rt = E Rt
k! Si\J k e i+k—1 k

(Id® fk];)ﬁ(f") -y <7Z> <” ]; Z) i @ n—k—i+l

i>0

(]

and the conclusion follows from the straightforward equality
n\(n—k+1\ _ n i+k—1 . n\ [n—i
k i C\itk-1 k i k)

[fnafm] = fn Ofm - fm Ofn = (n_m)fn-i-’rn-

Notice that the Lie subalgebra generated by fx is the same of the Lie algebra generated by the
derivations g, = z"*1 4 of K [2].

Notice that
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Lemma 1.2.6. Let C—~D-"-F be morphisms of graded coalgebras. The compositions with 6
and p induce linear maps

p«: Coder™(C, D;0) — Coder™(C, E; pf), fepf;
0% : Coder™ (D, E; p) — Coder™ (C, E; pb), [ fo.
PrROOF. Immediate consequence of the equalities
App=(p®p)Ap, Apf = (0®0)Ac.
O

Lemma 1.2.7. Let C—2D be morphisms of graded coalgebras and let d: C — D be a coderiva-
tion (with respect to the comodule structure induced by 6). Then:

(1) For every n

hod=(Q 0% ®d®6"" ") o AL
i=0
(2) Ifp: D — V is a cogenerator, then d is uniquely determined by its composition pd: C —
V.

PROOF. The first item is a straightforward induction on n, using the equalities A" =1d ®
AL and 99TALT = A0
For item 2, we need to prove that pd = 0 implies d = 0. Assume that there exists ¢ € C' such
that de # 0, then there exists n such that p®"*1 A% de # 0. On the other hand
n
P ABde = (O (p0)® @ pd @ (ph)®" ") 0 Afe = 0.
i=0
O

For later use we point out that if a: C — C be a nilpotent coderivation of degree 0. Then
the map

an
[& - .
e =) C=C
n>0
is a morphism of coalgebras, as follows immediately from the easy formula

1
e* ®e® = Zﬁ(a®1d+1d®a)" € Hom"(C ® C,C ® C).
n>0 "

Definition 1.2.8. A differential graded coalgebra is the data of a differential graded algebra
C together a coderivation d¢o € Coderl(C', C), called differential, such that d% = 0. A morphism
of differential graded coalgebras is a morphism of graded coalgebras commuting with differentials.

1.3. The reduced tensor coalgebra
Given a graded vector space V, we denote T(V) = @,,.,®"V and by p: T(V) — V the
projection with kernel ,,5, ®" V.

The reduced tensor coalgebra generated by V' is the graded vector space T(V) endowed
with the coproduct a: T(V) = T(V)T(V):

n—1
@ @Vp) =D (1@ @) @ (Vpg1 @+ B y).
r=1
We can also write
+oo n—1
a=>_ > tana
n=2 a=1
where
a+b a n—a

tap: RV = QRQVaRV,  aup(018 - @0,0w @ @) = (118 Qv,) D (w) @+ - Bwy),
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The coalgebra (T'(V'), a) is coassociative, locally nilpotent and the projection p: T(V) — V/
is a cogenerator: in fact, for every s > 0,

as_l('l)1®"'®vn): Z (Ul®"'®Uz‘1)®"‘®(Ui5,1+1®"'®vn)
1<y <ig<--<ig=n
and then

s—1 .
ko™t =(p V¥, (@peH (i@ @u) =0

Exercise 1.3.1. Let u: @°T(V) — T(V) be the multiplication map. Prove that for every
ViyeooyUp €V

s—1 n—1

e’ ® - Quy) = s_1 V1 Q- @ V.
For every morphism of graded vector spaces f: V — W the induced morphism of graded

algebras

T(f):T(V)=TW), T(f) 1@ @uvp) = flv1) @@ f(vn)

is also a morphism of graded coalgebras.
If (C,A) is a locally nilpotent graded coalgebra then, for every ¢ € C, there exists n > 0
such that A™(c) = 0 and then it is defined a morphism of graded vector spaces

> A" C—T(0).
n=0
Proposition 1.3.2. Let (C,A) be a locally nilpotent graded coalgebra, then:
(1) The map >, 5o A": C — T(C) is a morphism of graded coalgebras.
(2) For every graded vector space V' and every morphism of graded vector spaces f: C — V

there exists a unique morphism of graded coalgebras F: C — T(V) such that pF = f.
Moreover

F = i(@"f)A"_lz C—T(C)—-T(V).

PRrOOF. [1] We have

n

dar]e (Y Ar A=) > (A"@A™ YA

n>0 n>0 n>0a=0
n
n+1 n
:§ E aa+1,n+1—aA =a § A
n>0a=0 n>0

where in the last equality we have used the relation aA® = 0.
[2] The unicity of F' is clear since the projection p is a cogenerator. For the existence it is
sufficicnt to consider F' as the composition of the morphisms of graded coalgebras

Y A" C—T(C),  T(f): T(C)—T(V).

O

Corollary 1.3.3. Let U,V be graded vector spaces. Given a morphism f: T(U) — V of graded
vector spaces, the linear map F: T(U) — T(V):

Fn® - @v,) =Y > 1@ @v,) @ @ f(i,_ 1 @ @ vy,),

s=1 1<iy <ig<-<is=n

is the unique morphism of graded coalgebras lifting f.

Example 1.3.4. Let A be an associative graded algebra. Consider the projection p: T'(A) — A,
the multiplication map p: T(A) — A and its conjugate

pr=—pT(=1), pfa®--©a,)=(-1)""pla @ - ®a,) = (=1)"taaz -y
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The two coalgebra morphisms T(A) — T(A) induced by p and p* are isomorphisms, the one
inverse of the other.
In fact, the coalgebra morphism F': T(A) — T(A)

F(a1®-~-®an)zz Z (@102 -ai,) @ @ (@i, 41+ ai,)

s=1 1<i1<ig<--<is=n

is induced by p (i.e. pF' = p), p*F(a) = a for every a € A and for every n > 2

n

/J,*F(a/1®®an) :Z(_l)s—l Z aias Ay =

s=1 1<i1 <io< - <is=n
n n—1
. (n—1 sfn—1
:2(_1)8 1<s_1)a1a2-~-an: (ZO(—l) ( ) >>a1a2~--an:0.

This implies that u*F = p and therefore, if F*: T(A) — T(A) is induced by p* then pF*F =
w*F = p and then F*F is the identity.

Proposition 1.3.5. Let (C,A) be a locally nilpotent graded coalgebra, V a graded vector space
and

F=) (@ HAr":C—T(V)
n=1
the morphism of coalgebras lifting f € Hom®(C, V). For every q € Hom"(C, V), the linear map

n

Q=> (P eqe fmHA": C = T(V)

n=0 =0
is the unique F'-coderivation lifting q, i.e. ¢ = pQ. In particular the map
Coder”(C,T(V); F) — Hom"(C,V),  Q— pQ,

is an isomorphism of vector graded vector spaces.

PROOF. The map @ is the composition of the coalgebra morphism Y A": C' — T(C) and
the map

R:T(C)—>T(V), R=)Y f"eqf%.
4,j20
It is therefore sufficient to prove that R is a T'(f)-coderivation, i.e. that satisfies the coLeibniz
rule

(RRT(f)+T(f)® R)a=aR.
Denoting R, = Zi-‘,—j:n—l f® ®q® f® we have, for every a,n
aa,n—aRn = (Ra (24 f@mia + f®a o2y Rn—a)aa,n—a-

Taking the sum over a,n — a we get the proof. O

Corollary 1.3.6. Let V be a graded vector space. Every q € Hom"(T(V), V) lifts to a coderiva-
tion Q € Coder®(T(V), T(V)) given by the explicit formula
Q(a1®®an> —

= Z(_l)k(a'ﬁ‘“"ﬁ‘afi)al R ®a;® q(aiJrl R ® ai+l) ® - ® ay.
il

PROOF. Apply Proposition 1.3.5 with the map f = p: T(V) — V equal to the projection
(and then F' =1d). O

Remark 1.3.7. Let Q be the coderivation of T(V) lifting a morphism ¢ € Hom*(T(V), V). It
is a immediate consequence of the above corollary that Q(®"V) C @;._, R"V.
Moreover if ¢ = (q1,¢2,43,-..) with gx: ®kV — V and ¢qp = 0 for every k < r, then

QR"V) Cc B V.
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Definition 1.3.8. Given a graded vector space V the Gerstenhaber product

Homg (T'(V), V) x Homg (T(V), V) — Homg (T'(V), V),  (f,9) = foy,

is defined as f o g = fG, where G € Coder*(T(V),T(V)) is the unique coderivation lifting g.
The Gerstenhaber bracket is defined as

[f,9]=Ffog— (=190 f,  f g€ Homi (T(V),V).

Notice that if F' € Coder*(T(V),T(V)) is the coderivation lifting f, then pF'G = fog,
pgF = go f and then p[F,G] = [f,g]. Therefore the isomorphism Coder™(T(V),T(V)) =~

Homy (T'(V),V) commutes with brackets and then the Gerstenhaber bracket gives a structure
of graded Lie algebra.

Given f € Hom$ (V®"+1 V) and g € Hom% (V&1 V), considered as elements of Hom (T(V), V)
via the natural inclusion V& € T(V)) and V®™ C T(V) we have f o g € Hom§ (Ve +m V),

n

foglvo®-+ @vpim) = Z(_l)b(WJr”'er)f(Ul ® QU1 RgV; Q- ®Vigm) Q- ® Upim)-
i=0

1.4. Symmetrization and unshuffles

Given a graded vector space V, the twist map extends naturally, for every n > 0, to an action
of the symmetric group X,, on the graded vector space ®" V. More explicitely, for vy, ..., v,
homogeneous vectors and ¢ € ¥,, we have:

Utw(vl Q- ® Un) = i(vafl(l) QR Uafl(n))a

where the sign is the signature of the restriction of ¢ to the subset of indices ¢ such that v; has
odd degree.

Definition 1.4.1. The Koszul sign ¢(V,0;v1,...,v,) = £1 is defined by the relation
0 (V1 ®@---®v,) = e(V,0301,. .. s Un) (Vg(1) @+ @ Vg(n))

For notational simplicity we shall write e(o;v1,...,v,) or €(o) when there is no possible
confusion about V and vy,...,v,.

Remark 1.4.2. The twist action on " (Hom™*(V, W)) is compatible with the conjugate of the
twist action on Hom™(V®™ W®™). This means that

0tw(f1®"'®fn) :otwo(f1®~--®fn)oa,;1,
where o is the composition product.
Definition 1.4.3. The symmetric powers of a graded vector space V are defined as
V="

O T
where I is the subspace generated by all the vectors v — o4y (v), 0 € By, v € Q" V. We will
denote by m: @®" V — (O"V the natural projection and

V1O O Uy, :77(”1®"'®Un)~
Definition 1.4.4. Denote by N: (O"V — ®" V the map (see next Lemma 1.4.5):
N1 0 01) = 3 01 0)0o) @+ 8 )
oEX,

:ZJtW(U1®"'®Un)7 Viy..., U €VL
oceX,

Lemma 1.4.5. The map N is well defined, it is injective and its image is the subspace (Q"V)*»
of twist-invariant tensors.
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ProOF. Consider the map N': "V — Q" V:

N @ - ®uv,) = Z Ow(V1 @ @uy), v1,...,05 €V.
oeX,

—N’ ® V- ( ® V)E
®nV ® V)¥n @ ker(N').

Denote as above by I the subspace generated by all the vectors v — o4, (v), 0 € 3, v € Q" V.
Since N'(v) = N'(ow,v) we have I C ker(N'). For every veE "V we can write

It is clear that

is a projection and then

N’ N’
v—v—i—(v—v) v—i——z v—otwv
n! n! !
o€,
This shows that Im(N') + I = @" V and this implies that ker N’ = I and N’ = N. O

Lemma 1.4.6. Let (C,A) be a graded cocommutative coalgebra. Then the image of A"~1 is
contained in the set of ¥, -invariant elements of " C' and therefore

An—l _ NEAn—l
n! ’

PROOF. The twist action of ¥,, on ®" C' is generated by the operators tw, = ldge c @tw®
Id®n7a72 o 0<a<n—2;since two A = A, according to Lemma 1.1.9 we have:

W, A" = tw,(ldge ¢ ©A @ Idgn-a-2 o) A" 2
=(ldge ¢ @A @ Idgr-a-2 o)A" = A",
O

Definition 1.4.7. The set of unshuffles of type (p, ¢) is the subset S(p,q) C X,14 of permu-
tations o such that o(i) < o(i + 1) for every i # p. Equivalently

S(p,q) ={o€piy|0(1) <a(2)<...<0(p), olp+1)<op+2)<...<alp+q)}

The unshuffles are a set of representatives for the left cosets of the canonical embedding of
¥p X g inside ¥,44. More precisely for every n € ¥,,, there exists a unique decomposition
n=or with o € S(p,q) and 7 € £, x X,,.

Lemma 1.4.8. For every vy,...,v, € V and every a =0,...,n we have
N(U1®---®’Un) = Z 6(0‘)N(UU(1) @“'@UU(G))@N(UU(Q+1) @---@vg(n)).
ceS(a,n—a)
PROOF.

N(Ul@"'@'Un) — Z 'r,;wl(vl®...®7]n)
ISP

= Y Y wlenme-euw)

oceS(a,n—a) TEL  XXn_q

= Y ) Y e ® @ o)

ceS(a,n—a) TEXXEn_q
= Y d0)N@Wo1) @ O Up(a) ® N(U(a1) @+ © Ug(m))-
oceS(a,n—a)

Consider now two graded vector spaces V, M, a positive integer [ and two maps
feHom®(V,M),  beHom"(VE M).
Denoting by ¢ = bN € Homk(VQl, M), for every integer n > [ define the maps
B € Hom"(VE", M®"~1H1) Q€ Hom"(VO", MO~ 1),
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by the formulas:

B(v1®...®vn):

_ (_l)k(ﬁ+“-+7i)f(v1) ® @ f(1;) @b(Vi1 @ @ig1) @ f(Vin11) @ @ f(vp).

QUi o)=Y  €0)qs1) @ ©e1) O fVeas1) @ O f(Uo(n))-
ceS(l,n-1)

Lemma 1.4.9. In the notation above we have
BN = NQ € Hom*(von, Men—t+1y,
PRrROOF. Easy and left to the reaader. O

1.5. The reduced symmetric coalgebra

For every graded vector space V we will denote S(V) = @,,., "V, while 7: T(V) —
S(V) is the projection to the quotient and N: S(V) — T(V) is the direct sum of the maps of
Definition 1.4.4.

Lemma 1.5.1. The map [: S(V) — S(V)® S(V),

(1@ Ov) = Z Y 0)(o1) @ O Va(a) ® (Vo(ats) © -+ O Vg(n))
a=1oeS(a,n— a)

is a cocommutative coproduct and the map
N:(S(V),0) = (T(V),a)
is an injective morphism of coalgebras.

PROOF. The cocommutativity of [ is clear from definition. Since N is injective, we only
need to prove that aN = (N ® N)I. According to Lemma 1.4.8, for every a

Gan—alN(V1 O Ovy) =N&N Z €(0)(Vo1) © -+ O Vs(a)) ® (Vo(at1) @ ® Vp(n))
oceS(a,n—a)
and then

AN @ Q) =D Gan-aNW1 © - ©vp) =N NI(v1 © - © vp).

O

Definition 1.5.2. The reduced symmetric coalgebra generated by V' is the graded vector space
S(V) with the coproduct [ defined in Lemma 1.5.1

(01 ©-- O vn) Z Y )W) O O Ug(a) © (Uoatr1) @ O Up(m)).
a=1ceS(an— a)

It is often convenient to think the reduced symmetric coalgebra as a subset of the tensor
coalgebra, via the identification provided by N. In particular S(V) is locally nilpotent and the
projection p: S(V) — V with kernel @,,~1V®" is a cogenerator.

Moreover, since NN is an injective morphism of coalgebras we have

ker [" = N ' (kera”) = N~ Y (@I, V¥) = @7, VO
For every morphism of graded vector spaces f: V — W we have
NoS(f)=T(f)oN: S(V)— T(W)
and then S(f): S(V) — S(W) is a morphism of graded coalgebras.
Proposition 1.5.3. Let (C,A) be a locally nilpotent graded cocommutative coalgebra, then:
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(1) The map
Z A .o -5
n>0
is a morphism of graded coalgebras.
(2) For every graded vector space V' and every morphism of graded vector spaces f: C — V
there exists a unique morphism of graded coalgebras F: C — S(V) such that pF = f.

Moreover
o0

PROOF. According to Lemma 1.4.6 we have

ZAn—l =N (Z :;An—1>

n>0 n>0

(@" )AL C — §(C) — §(V).

3\:1

and the the first item is an immediate consequence of the fact that N is an injective morphism
of graded coalgebras. Similarly for every morphism of graded vector spaces f: C'— V we have

S (@A =N (Z j;@"fm“) .

n>0 n>0

O

Proposition 1.5.4. Let V' be a graded vector space and C a locally nilpotent cocommutative
coalgebra. Then fol" every coalgebra morphism F': C — S(V') and every integer k, the composition
with N: S(V) — T(V) gives an isomorphism

Coder®(C,S(V); F) ~ Coder®(C, T(V); NF).

PROOF. We need to prove that if B: C — T(V) is a coderivation with respect to the
morphism NF, then B = NP for some P: C — S(V). According to Proposition 1.3.5 we have

B=Y 3(fYebe fSr)A": C - T(V)

n=0 =0
where f = pNF =pF and b € Homk(C, V). According to Lemmas 1.4.6 and 1.4.9 the image of
B is contained in the image of N. O

Corollary 1.5.5. Let V' be a graded vector space. Then for every integer k, the composition
with p: S(V) — V' gives an isomorphism of vector spaces
+oo
Coder*(S(V),S(V)) — H Hom"* (V' V).
i=1
More explicitely, for every sequence ¢; € Hom™(VO* V), i > 0, the map Q € Homy (S(V), S(V))
defined as

Qv ®- Ouv,) = Z Z €(0)qi(Va(1) @ O Vo(k)) © Vo (k1) @ © VUg(n),
=1 oceS(i,n—1)

is the unique coderivation of S(V') such that pQ =", q;.

PrOOF. We only need to prove that the map @ is a coderivation. By linearity it is not
restrictive to assume that ¢; = 0 for every 7 # [. Let b € Hom" (® V,V) be any map such
that bN = ¢ (e.g. b = mq;/n!) and let B € Coder™(T(V),T(V')) be the coderivation such that
pB = b. According to Corollary 1.3.6

Bo1®@---®@vy) =Y (1M 00 @ 00 @ b(via1 @+ @ 0i4t) @+ ® U,y

and then Lemma 1.4.9 gives RN = NQ. (]

Remark 1.5.6. The above results show in particular that:
(1) if F: S(V) — S(W) is a morphism of graded coalgebras, then F(VO") C Y7, W
(2) if Q: S(V) — S(V) is a coderivation, then Q(V®™) C 3=, VO
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Definition 1.5.7. Given a graded vector space V the symmetric Gerstenhaber product

Homy (S(V),V) x Homg (S(V), V) — Homj (S(V), V), (f,9)— fogy,

is defined as f o g = fG, where G € Coder*(S(V), S(V)) is the unique coderivation lifting g.
The symmetric Gerstenhaber bracket is defined as

[fal=Fog—(-1)7gof  f.g&Homi(S5(V)V).
Given f € Hom§ (VO™ V) and g € Hom% (VO™ 1 V) we have fog € Hom§ ™ (VOr+m+1 y/),

f © g(UO (ORRRNO) vn—i—m) - Z e(a)f(g(vg(o) ©--0 Uo’(m)) © Vo (m+1) (ORRRNO) Ua(’m—i—n))'
ceS(m+1,n)

1.6. Exercises

Exercise 1.6.1. A counity of a graded coalgebra (C, A) is a morphism of graded vector spaces
e: C — K such that (e ® Idg)A = (Ide ®€)A = Ide. Prove that if a counity exists, then it is
unique (Hint: (e @ €)A =7?).

Exercise 1.6.2. Let (C, A) be a graded coalgebra. A graded subspace I C C'is called a coideal
it A(T) cC®I+1®C. Prove that a subspace is a coideal if and only if is the kernel of a
morphism of coalgebras.

Exercise 1.6.3. Let (C,A) be a graded coalgebra. Prove that for every a,b > 0
a+1
A%(ker AT ® (ker AY).

Exercise 1.6.4. Let C be a graded coalgebra and d € Coderl(C7 () a codifferential of degree
1. Prove that the triple (L, 4, [,]), where:

L = nezCoder™(C,C),  [f.9 = fg— (=177 gf, () =1d. /]
is a differential graded Lie algebra.
Exercise 1.6.5. Let p: T(V) — T(V) be the projection with kernel K = @° V and ¢: T(V) —

T(V)® T(V) the unique homomorphism of graded algebras such that ¢(v) =v®1+1® v for
every v € V. Prove that p¢ = ap.

Exercise 1.6.6. Let A be an associative graded algebra over the field K. For every local
homomorphism of K-algebras v: K[[z]] — K{[z]], v(z) = > 2", let F,: T(A) — T'(A) be the
unique morphism of graded coalgebras lifting the map

f,Y:T(A)HA, flar ® - ®ay) =nar - ay.

Prove the validity of the composition formula F.,; = FsF.,. (Hint: Example 1.1.7.)
Exercise 1.6.7. Prove that a graded coalgebra morphism F': S(U) — S(V) is surjective (resp.:

injective, bijective) if and only if the composition ULg(U)LE(V)LV is surjective (resp.:
injective, bijective). (Hint: F' preserves the filtrations of kernels of iterated coproducts.)

Exercise 1.6.8. Assume V finite dimensional with basis 01, ..., d,, of degree 0. Prove that
ni N — _
(O ...o9"m) = oL ... Ham oM aL ., gnm—am
( 1 m ) Z (Gq) (am> 1 m ® 1 m
A1yeeeyAmy

and deduce that the dual algebra S (V)v is isomorphic to the maximal ideal of the power series
ring K[[z1,...,Zy]], with pairing

n1+- 1
(ort---opm, f(x)) = oy (0) = (H n;!)-(coefficient of 7" ---zpm in f(x)).

oxT - dxp
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