
CHAPTER 1

Differential graded coalgebras

1.1. Graded coalgebras

Definition 1.1.1. A (coassociative) graded coalgebra is the data of a graded vector space
C = ⊕n∈ZC

n and of a morphism of graded vector spaces ∆: C → C ⊗ C, called coproduct,
whic satifies the coassociativity equation:

(∆⊗ IdC)∆ = (IdC ⊗∆)∆: C → C ⊗ C ⊗ C .

Definition 1.1.2. Let (C,∆) and (B,Γ) be graded coalgebras. A morphism of graded coal-
gebras f : C → B is a morphism of graded vector spaces that commutes with coproducts, i.e.

Γf = (f ⊗ f)∆: C → B ⊗B.

Example 1.1.3. Let C = K [t] be the polynomial ring in one variable t (of degree 0). The linear
map

∆: K [t]→ K [t]⊗K [t], ∆(tn) =
n∑
i=0

ti ⊗ tn−i,

gives a coalgebra structure (exercise: check coassociativity).
For every sequence fn ∈ K, n > 0, it is associated a morphism of coalgebras f : C → C defined
as

f(1) = 1, f(tn) =
n∑
s=1

∑
(i1,...,is)∈Ns

i1+···+is=n

fi1fi2 · · · fists.

The verification that ∆f = (f ⊗ f)∆ can be done in the following way: Let {xn} ⊂ C∨ = K [[x]]
be the dual basis of {tn}. Then for every a, b, n ∈ N we have:

〈xa ⊗ xb,∆f(tn)〉 =
∑

i1+···+ia+j1+···+jb=n

fi1 · · · fiafj1 · · · fjb ,

〈xa ⊗ xb, f ⊗ f∆(tn)〉 =
∑
s

∑
i1+···+ia=s

∑
j1+···+jb=n−s

fi1 · · · fiafj1 · · · fjb .

Note that the sequence {fn}, n ≥ 1, can be recovered from f by the formula fn = 〈x, f(tn)〉.

Definition 1.1.4. A graded coalgebra (C,∆) is called cocommutative if tw ◦∆ = ∆, where
tw : C ⊗ C → C ⊗ C is the twist map.

Example 1.1.5. The polynomial coalgebra of Example 1.1.3 is cocommutative.

Example 1.1.6. Let C be a graded coalgebra with coproduct ∆: C → C ⊗ C. Then the
convolution product defined as

Hom∗K (C,K )×Hom∗K (C,K )→ Hom∗K (C,K ), (f, g) 7→ µ(f ⊗ g)∆,

where µ : K ×K → K is the product, is an associative product. Thus the dual of a coalgebra is
an algebra.

� In general the dual of an algebra is not a coalgebra (with some exceptions, see e.g. Exam-

ple 1.1.16). Heuristically, this asymmetry comes from the fact that, for an infinite dimensional

vector space V , there exist a natural map V ∨ ⊗ V ∨ → (V ⊗ V )∨, while does not exist any

natural map (V ⊗ V )∨ → V ∨ ⊗ V ∨.
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Example 1.1.7. The dual of the coalgebra C = K [t] (Example ??) is exactly the algebra of
formal power series A = K [[x]] = C∨. Every coalgebra morphism f : C → C induces a local
homomorphism of K -algebras f t : A → A. The morphism f t is uniquely determined by the
power series f t(x) =

∑
n>0 fnx

n and then every morphism of coalgebras f : C → C is uniquely
determined by the sequence fn = 〈f t(x), tn〉 = 〈x, f(tn)〉.
The map f 7→ f t is functorial and then preserves the composition laws.

Definition 1.1.8. Let (C,∆) be a graded coalgebra; the iterated coproducts ∆n : C → C⊗n+1

are defined recursively for n ≥ 0 by the formulas

∆0 = IdC , ∆n : C ∆−→ C ⊗ C IdC ⊗∆n−1

−−−−−−−→ C ⊗ C⊗n = C⊗n+1.

Lemma 1.1.9. Let (C,∆) be a graded coalgebra. Then:
(1) For every 0 ≤ a ≤ n− 1 we have

∆n = (∆a ⊗∆n−1−a)∆: C →
⊗n+1

C.

(2) For every s ≥ 1 and every a0, . . . , as ≥ 0 we have

(∆a0 ⊗∆a1 ⊗ · · · ⊗∆as)∆s = ∆s+
P
ai .

(3) If f : (C,∆)→ (B,Γ) is a morphism of graded coalgebras then, for every n ≥ 1 we have

Γnf = (⊗n+1f)∆n : C →
⊗n+1

B.

Proof. [1] If a = 0 or n = 1 there is nothing to prove, thus we can assume a > 0 and use
induction on n. we have:

(∆a ⊗∆n−1−a)∆ = ((IdC ⊗∆a−1)∆⊗∆n−1−a)∆ =

= (IdC ⊗∆a−1 ⊗∆n−1−a)(∆⊗ IdC)∆ =
= (IdC ⊗∆a−1 ⊗∆n−1−a)(IdC ⊗∆)∆ = (IdC ⊗(∆a−1 ⊗∆n−1−a)∆)∆ = ∆n.

[2] Induction on s, being the case s = 1 proved in item 1. If s ≥ 2 we can write

(∆a0 ⊗∆a1 ⊗ · · · ⊗∆as)∆s = (∆a0 ⊗∆a1 ⊗ · · · ⊗∆as)(IdC ⊗∆s−1)∆ =

(∆a0 ⊗ (∆a1 ⊗ · · · ⊗∆as)∆s−1)∆ = (∆a0 ⊗∆s−1+
P

i>0 ai)∆ = ∆s+
P
ai .

[3] By induction on n,

Γnf = (IdB ⊗Γn−1)Γf = (f ⊗ Γn−1f)∆ = (f ⊗ (⊗nf)∆n−1)∆ = (⊗n+1f)∆n.

�

Lemma 1.1.10. Let (C,∆) be a graded coalgebra. Then for every n ≥ 0 we have

ker ∆n+1 = {x ∈ C | ∆(x) ∈ (ker ∆n)⊗ (ker ∆n)}.

Proof. The formula

∆n+1 = (∆n ⊗ Id)∆ = (Id⊗∆n)∆ .

implies the inclusion ⊃. Conversely, notice that ∆(x) = 0 if and only if every homogeneous
component of x belongs to ker ∆n+1 Let x ∈ ker ∆n+1 homogeneous and write ∆(x) =

∑r
i=1 xi⊗

yi with r minimum. Then the vectors xi are linearly independent and the same holds for the
vectors yi. The conclusion is now immediate fro the above formula. �

Definition 1.1.11. Let (C,∆) be a graded coalgebra. A morphism of graded vector spaces
p : C → V is called a cogenerator of C if for every c ∈ C there exists n ≥ 0 such that
(⊗n+1p)∆n(c) 6= 0 in

⊗n+1
V . Equivalently, p : C → V is a cogenerator of C is the map

C →
∏
n≥0

⊗n+1
V, c 7→ (c,∆c,∆2c, . . .),

is injective.

Example 1.1.12. In the notation of Example 1.1.3, the natural projection K [t] → K ⊕ K t is
a cogenerator.

Proposition 1.1.13. Let p : B → V be a cogenerator of a graded coalgebra (B,Γ). Then every
morphism of graded coalgebras φ : (C,∆) → (B,Γ) is uniquely determined by its composition
pφ : C → V .
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Proof. Let φ, ψ : (C,∆) → (B,Γ) be two morphisms of graded coalgebras such that pφ =
pψ. In order to prove that φ = ψ it is sufficient to show that for every c ∈ C and every n ≥ 0
we have

(⊗n+1p)Γn(φ(c)) = (⊗n+1p)Γn(ψ(c)).
By Lemma 1.1.9 we have Γnφ = (⊗n+1φ)∆n and Γnψ = (⊗n+1ψ)∆n. Therefore

(⊗n+1p)Γnφ = (⊗n+1p)(⊗n+1φ)∆n = (⊗n+1pφ)∆n =

= (⊗n+1pψ)∆n = (⊗n+1p)(⊗n+1ψ)∆n = (⊗n+1p)Γnψ.

�

Definition 1.1.14. A graded coalgebra (C,∆) is called nilpotent if ∆n = 0 for n >> 0. It is
called locally nilpotent if it is the direct limit of nilpotent graded coalgebras or equivalently
if C = ∪n ker ∆n.

Example 1.1.15. The vector space

K [t] = {p(t) ∈ K [t] | p(0) = 0} =
⊕

n>0
K tn

with the coproduct

∆: K [t]→ K [t]⊗K [t], ∆(tn) =
n−1∑
i=1

ti ⊗ tn−i,

is a locally nilpotent coalgebra. The projection K [t]→ K [t], p(t)→ p(t)− p(0), is a morphism
of coalgebras.

Example 1.1.16. Let A = ⊕Ai be a finite dimensional graded associative K -algebra and let
C = A∨ = Hom∗(A,K ) be its graded dual. Since A and C are finite dimensional, the pairing
〈c1 ⊗ c2, a1 ⊗ a2〉 = (−1)a1 c2〈c1, a1〉〈c2, a2〉 gives a natural isomorphism C ⊗C = (A⊗A)∨ and
we may define ∆ as the transpose of the multiplication map µ : A ⊗ A → A. Then (C,∆) is a
graded coalgebra. Note that C is nilpotent if and only if A is nilpotent.

Lemma 1.1.17. Let (C,∆) be a locally nilpotent graded coalgebra. Then every projection p : C →
ker ∆ is a cogenerator of C.

Proof. �

Definition 1.1.18 ([104, p. 282]). A graded coalgebra (C,∆) is called connected if there is
an element e ∈ C such that ∆(e) = e ⊗ e (in particular deg(e) = 0) and C = ∪+∞

r=0FrC, where
FrC is defined recursively in the following way:

F0C = K e, Fr+1C = {x ∈ C | ∆(x)− e⊗ x− x⊗ e ∈ FrC ⊗ FrC}.

Example 1.1.19. In the notation of the above definition, according to Lemma 1.1.10 we have
e = 0 if and only if FrC = ker ∆r. In particular every locally nilpotent coalgebra is connected.

1.2. Comodules and coderivations

Definition 1.2.1. Let (C,∆) be a graded coalgebra. A C-comodule is the data of a graded
vector space M and two morphisms of graded vector spaces

φ : M →M ⊗ C, ψ : M → C ⊗M

such that:
(1) (IdM ⊗∆)φ = (φ⊗ IdC)φ : M →M ⊗ C ⊗ C,
(2) (∆⊗ IdM )ψ = (IdC ⊗ ψ)ψ : M → C ⊗ C ⊗M ,
(3) (ψ ⊗ IdC)φ = (IdC ⊗ φ)ψ : M → C ⊗M ⊗ C.

Example 1.2.2. If F : (D,Γ)→ (C,∆) is a morphism of graded coalgebras, then the maps

φ = (IdD ⊗ F )Γ: D → D ⊗ C, ψ = (F ⊗ IdD)Γ: D → C ⊗D,

give a structure of C-comodule on D.
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Definition 1.2.3. Let (C,∆) be a graded coalgebra and

φ : M →M ⊗ C, ψ : M → C ⊗M

a C-comodule. A linear map d ∈ Homn
K (M,C) is called a coderivation of degree n if it satisfies

the coLeibniz rule
∆d = (d⊗ IdC)φ+ (IdC ⊗ d)ψ.

In the above definition we have adopted the Koszul sign convention: i.e. if x, y ∈ C,
f, g ∈ Hom∗(C,D), h, k ∈ Hom∗(B,C) are homogeneous then (f⊗g)(x⊗y) = (−1)g xf(x)⊗g(y)
and (f ⊗ g)(h⊗ k) = (−1)g hfh⊗ gk.

In these notes we are mainly intersted to C-comodules structure induced by a morphism
of graded coalgebras F : (D,Γ) → (C,∆). In this case, a morphism of graded vector spaces
d ∈ Homn(C,D) is a coderivation of degree n if and only if

∆d = (d⊗ F + F ⊗ d)Γ.

The coderivations of degree n with respect a coalgebra morphism F : C → D form a vec-
tor space denoted Codern(C,D;F ). For simplicity of notation we denote Codern(C,C) =
Codern(C,C; Id). In other terms

Codern(C,C) = {f ∈ Homn
K (C,C) | ∆f = (f ⊗ IdC + IdC ⊗ f)∆}.

Lemma 1.2.4. Let C be a graded coalgebra. Then Coder∗(C,C) =
⊕

n Codern(C,C) is a graded
Lie subalgebra of Hom∗K (C,C).

Proof. We only need to prove that Coder∗(C,C) is closed under the graded commutator.
This is straightforward and left to the reader. �

Example 1.2.5. For every k ≥ −1 consider the differential operator

fk : K [t]→ K [t], fk = t

(
d

dt

)k+1

.

Then every fk is a coderivation with respect the coproduct

∆̃ : K [t]→ K [t]⊗K [t], ∆̃(tn) =
n∑
i=0

(
n

i

)
ti ⊗ tn−i.

Using the definition of binomial coefficicnts(
n

k

)
=

1
k!

k−1∏
i=0

(n− i),
(
n

0

)
= 1,

we have for every n ≥ 0 and every k ≥ 0

∆̃(fk−1(tn))
k!

= ∆̃(
(
n

k

)
tn−k+1) =

∑
i≥0

(
n

k

)(
n− k + 1

i

)
ti ⊗ tn−k−i+1,

(fk−1 ⊗ Id)∆̃(tn)
k!

=
∑
j≥k

(
n

j

)(
j

k

)
tj−k+1 ⊗ tn−j =

∑
i≥0

(
n

i+ k − 1

)(
i+ k − 1

k

)
ti ⊗ tn−k−i+1,

(Id⊗ fk−1)∆̃(tn)
k!

=
∑
i≥0

(
n

i

)(
n− i
k

)
ti ⊗ tn−k−i+1,

and the conclusion follows from the straightforward equality(
n

k

)(
n− k + 1

i

)
=
(

n

i+ k − 1

)(
i+ k − 1

k

)
+
(
n

i

)(
n− i
k

)
.

Notice that
[fn, fm] = fn ◦ fm − fm ◦ fn = (n−m)fn+m.

Notice that the Lie subalgebra generated by fk is the same of the Lie algebra generated by the
derivations gh = zh+1 d

dz of K [z].
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Lemma 1.2.6. Let C θ−→D ρ−→E be morphisms of graded coalgebras. The compositions with θ
and ρ induce linear maps

ρ∗ : Codern(C,D; θ)→ Codern(C,E; ρθ), f 7→ ρf ;

θ∗ : Codern(D,E; ρ)→ Codern(C,E; ρθ), f 7→ fθ.

Proof. Immediate consequence of the equalities

∆Eρ = (ρ⊗ ρ)∆D, ∆Dθ = (θ ⊗ θ)∆C .

�

Lemma 1.2.7. Let C θ−→D be morphisms of graded coalgebras and let d : C → D be a coderiva-
tion (with respect to the comodule structure induced by θ). Then:

(1) For every n

∆n
D ◦ d = (

n∑
i=0

θ⊗i ⊗ d⊗ θ⊗n−i) ◦∆n
C .

(2) If p : D → V is a cogenerator, then d is uniquely determined by its composition pd : C →
V .

Proof. The first item is a straightforward induction on n, using the equalities ∆n = Id⊗
∆n−1 and θ⊗i∆i−1

C = ∆i−1
D θ.

For item 2, we need to prove that pd = 0 implies d = 0. Assume that there exists c ∈ C such
that dc 6= 0, then there exists n such that p⊗n+1∆n

Ddc 6= 0. On the other hand

p⊗n+1∆n
Ddc = (

n∑
i=0

(pθ)⊗i ⊗ pd⊗ (pθ)⊗n−i) ◦∆n
Cc = 0.

�

For later use we point out that if α : C → C be a nilpotent coderivation of degree 0. Then
the map

eα =
∑
n≥0

αn

n!
: C → C

is a morphism of coalgebras, as follows immediately from the easy formula

eα ⊗ eα =
∑
n≥0

1
n!

(α⊗ Id + Id⊗ α)n ∈ Hom0(C ⊗ C,C ⊗ C).

Definition 1.2.8. A differential graded coalgebra is the data of a differential graded algebra
C together a coderivation dC ∈ Coder1(C,C), called differential, such that d2

C = 0. A morphism
of differential graded coalgebras is a morphism of graded coalgebras commuting with differentials.

1.3. The reduced tensor coalgebra

Given a graded vector space V , we denote T (V ) =
⊕

n>0

⊗n
V and by p : T (V ) → V the

projection with kernel
⊕

n≥2

⊗n
V .

The reduced tensor coalgebra generated by V is the graded vector space T (V ) endowed
with the coproduct a : T (V )→ T (V )⊗ T (V ):

a(v1 ⊗ · · · ⊗ vn) =
n−1∑
r=1

(v1 ⊗ · · · ⊗ vr)⊗ (vr+1 ⊗ · · · ⊗ vn).

We can also write

a =
+∞∑
n=2

n−1∑
a=1

aa,n−a,

where

aa,b :
a+b⊗

V →
a⊗
V ⊗

n−a⊗
V, aa,b(v1⊗· · ·⊗va⊗w1⊗· · ·⊗wb) = (v1⊗· · ·⊗va)⊗(w1⊗· · ·⊗wb),
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The coalgebra (T (V ), a) is coassociative, locally nilpotent and the projection p : T (V )→ V
is a cogenerator: in fact, for every s > 0,

as−1(v1 ⊗ · · · ⊗ vn) =
∑

1≤i1<i2<···<is=n

(v1 ⊗ · · · ⊗ vi1)⊗ · · · ⊗ (vis−1+1 ⊗ · · · ⊗ vn)

and then
ker as−1 =

⊕s−1

i=1
V ⊗i, (⊗sp)as−1(v1 ⊗ · · · ⊗ vs) = v1 ⊗ · · · ⊗ vs.

Exercise 1.3.1. Let µ :
⊗s

T (V ) → T (V ) be the multiplication map. Prove that for every
v1, . . . , vn ∈ V

µas−1(v1 ⊗ · · · ⊗ vn) =
(
n− 1
s− 1

)
v1 ⊗ · · · ⊗ vn.

For every morphism of graded vector spaces f : V → W the induced morphism of graded
algebras

T (f) : T (V )→ T (W ), T (f)(v1 ⊗ · · · ⊗ vn) = f(v1)⊗ · · · ⊗ f(vn)

is also a morphism of graded coalgebras.
If (C,∆) is a locally nilpotent graded coalgebra then, for every c ∈ C, there exists n > 0

such that ∆n(c) = 0 and then it is defined a morphism of graded vector spaces
∞∑
n=0

∆n : C → T (C).

Proposition 1.3.2. Let (C,∆) be a locally nilpotent graded coalgebra, then:
(1) The map

∑
n≥0 ∆n : C → T (C) is a morphism of graded coalgebras.

(2) For every graded vector space V and every morphism of graded vector spaces f : C → V
there exists a unique morphism of graded coalgebras F : C → T (V ) such that pF = f .
Moreover

F =
∞∑
n=1

(⊗nf)∆n−1 : C → T (C)→ T (V ).

Proof. [1] We have∑
n≥0

∆n

⊗
∑
n≥0

∆n

∆ =
∑
n≥0

n∑
a=0

(∆a ⊗∆n−a)∆

=
∑
n≥0

n∑
a=0

aa+1,n+1−a∆n+1 = a

∑
n≥0

∆n


where in the last equality we have used the relation a∆0 = 0.
[2] The unicity of F is clear since the projection p is a cogenerator. For the existence it is
sufficicnt to consider F as the composition of the morphisms of graded coalgebras∑

n≥0

∆n : C → T (C), T (f) : T (C)→ T (V ).

�

Corollary 1.3.3. Let U, V be graded vector spaces. Given a morphism f : T (U)→ V of graded
vector spaces, the linear map F : T (U)→ T (V ):

F (v1 ⊗ · · · ⊗ vn) =
n∑
s=1

∑
1≤i1<i2<···<is=n

f(v1 ⊗ · · · ⊗ vi1)⊗ · · · ⊗ f(vis−1+1 ⊗ · · · ⊗ vis),

is the unique morphism of graded coalgebras lifting f .

Example 1.3.4. Let A be an associative graded algebra. Consider the projection p : T (A)→ A,
the multiplication map µ : T (A)→ A and its conjugate

µ∗ = −µT (−1), µ∗(a1 ⊗ · · · ⊗ an) = (−1)n−1µ(a1 ⊗ · · · ⊗ an) = (−1)n−1a1a2 · · · an.
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The two coalgebra morphisms T (A) → T (A) induced by µ and µ∗ are isomorphisms, the one
inverse of the other.
In fact, the coalgebra morphism F : T (A)→ T (A)

F (a1 ⊗ · · · ⊗ an) =
n∑
s=1

∑
1≤i1<i2<···<is=n

(a1a2 · · · ai1)⊗ · · · ⊗ (ais−1+1 · · · ais)

is induced by µ (i.e. pF = µ), µ∗F (a) = a for every a ∈ A and for every n ≥ 2

µ∗F (a1 ⊗ · · · ⊗ an) =
n∑
s=1

(−1)s−1
∑

1≤i1<i2<···<is=n

a1a2 · · · an =

=
n∑
s=1

(−1)s−1

(
n− 1
s− 1

)
a1a2 · · · an =

(
n−1∑
s=0

(−1)s
(
n− 1
s

))
a1a2 · · · an = 0.

This implies that µ∗F = p and therefore, if F ∗ : T (A) → T (A) is induced by µ∗ then pF ∗F =
µ∗F = p and then F ∗F is the identity.

Proposition 1.3.5. Let (C,∆) be a locally nilpotent graded coalgebra, V a graded vector space
and

F =
∞∑
n=1

(⊗nf)∆n−1 : C → T (V )

the morphism of coalgebras lifting f ∈ Hom0(C, V ). For every q ∈ Homk(C, V ), the linear map

Q =
∞∑
n=0

(
n∑
i=0

(f⊗i ⊗ q ⊗ f⊗n−i)∆n : C → T (V )

is the unique F -coderivation lifting q, i.e. q = pQ. In particular the map

Coder∗(C, T (V );F )→ Hom∗(C, V ), Q 7→ pQ,

is an isomorphism of vector graded vector spaces.

Proof. The map Q is the composition of the coalgebra morphism
∑

∆n : C → T (C) and
the map

R : T (C)→ T (V ), R =
∑
i,j≥0

f⊗i ⊗ q ⊗ f⊗j .

It is therefore sufficient to prove that R is a T (f)-coderivation, i.e. that satisfies the coLeibniz
rule

(R⊗ T (f) + T (f)⊗R)a = aR.

Denoting Rn =
∑
i+j=n−1 f

⊗i ⊗ q ⊗ f⊗j we have, for every a, n

aa,n−aRn = (Ra ⊗ f⊗n−a + f⊗a ⊗Rn−a)aa,n−a.

Taking the sum over a, n− a we get the proof. �

Corollary 1.3.6. Let V be a graded vector space. Every q ∈ Homk(T (V ), V ) lifts to a coderiva-
tion Q ∈ Coderk(T (V ), T (V )) given by the explicit formula

Q(a1 ⊗ · · · ⊗ an) =

=
∑
i,l

(−1)k(a1+···+ai)a1 ⊗ · · · ⊗ ai ⊗ q(ai+1 ⊗ · · · ⊗ ai+l)⊗ · · · ⊗ an.

Proof. Apply Proposition 1.3.5 with the map f = p : T (V ) → V equal to the projection
(and then F = Id). �

Remark 1.3.7. Let Q be the coderivation of T (V ) lifting a morphism q ∈ Hom∗(T (V ), V ). It
is a immediate consequence of the above corollary that Q(

⊗n
V ) ⊂

⊕n
k=1

⊗k
V .

Moreover if q = (q1, q2, q3, . . .) with qk :
⊗k

V → V and qk = 0 for every k ≤ r, then
Q(
⊗n

V ) ⊂
⊕n−r

k=1

⊗k
V .
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Definition 1.3.8. Given a graded vector space V the Gerstenhaber product

Hom∗K (T (V ), V )×Hom∗K (T (V ), V )→ Hom∗K (T (V ), V ), (f, g) 7→ f ◦ g,

is defined as f ◦ g = fG, where G ∈ Coder∗(T (V ), T (V )) is the unique coderivation lifting g.
The Gerstenhaber bracket is defined as

[f, g] = f ◦ g − (−1)f gg ◦ f, f, g ∈ Hom∗K (T (V ), V ).

Notice that if F ∈ Coder∗(T (V ), T (V )) is the coderivation lifting f , then pFG = f ◦ g,
pgF = g ◦ f and then p[F,G] = [f, g]. Therefore the isomorphism Coder∗(T (V ), T (V )) '
Hom∗K (T (V ), V ) commutes with brackets and then the Gerstenhaber bracket gives a structure
of graded Lie algebra.

Given f ∈ Homa
K (V ⊗n+1, V ) and g ∈ Homb

K (V ⊗m+1, V ), considered as elements of Hom∗K (T (V ), V )
via the natural inclusion V ⊗n ⊂ T (V ) and V ⊗m ⊂ T (V ) we have f ◦ g ∈ Homa+b

K (V ⊗n+m, V ),

f ◦ g(v0⊗· · ·⊗ vn+m) =
n∑
i=0

(−1)b(v0+···+vi−1)f(v1⊗· · ·⊗ vi−1⊗ g(vi⊗· · ·⊗ vi+m)⊗· · ·⊗ vn+m).

1.4. Symmetrization and unshuffles

Given a graded vector space V , the twist map extends naturally, for every n ≥ 0, to an action
of the symmetric group Σn on the graded vector space

⊗n
V . More explicitely, for v1, . . . , vn

homogeneous vectors and σ ∈ Σn we have:

σtw(v1 ⊗ · · · ⊗ vn) = ±(vσ−1(1) ⊗ · · · ⊗ vσ−1(n)),

where the sign is the signature of the restriction of σ to the subset of indices i such that vi has
odd degree.

Definition 1.4.1. The Koszul sign ε(V, σ; v1, . . . , vn) = ±1 is defined by the relation

σ−1
tw (v1 ⊗ · · · ⊗ vn) = ε(V, σ; v1, . . . , vn)(vσ(1) ⊗ · · · ⊗ vσ(n))

For notational simplicity we shall write ε(σ; v1, . . . , vn) or ε(σ) when there is no possible
confusion about V and v1, . . . , vn.

Remark 1.4.2. The twist action on
⊗n(Hom∗(V,W )) is compatible with the conjugate of the

twist action on Hom∗(V ⊗n,W⊗n). This means that

σtw(f1 ⊗ · · · ⊗ fn) = σtw ◦ (f1 ⊗ · · · ⊗ fn) ◦ σ−1
tw ,

where ◦ is the composition product.

Definition 1.4.3. The symmetric powers of a graded vector space V are defined as⊙n
V =

⊗n
V

I
,

where I is the subspace generated by all the vectors v − σtw(v), σ ∈ Σn, v ∈
⊗n

V . We will
denote by π :

⊗n
V →

⊙n
V the natural projection and

v1 � · · · � vn = π(v1 ⊗ · · · ⊗ vn).

Definition 1.4.4. Denote by N :
⊙n

V →
⊗n

V the map (see next Lemma 1.4.5):

N(v1 � · · · � vn) =
∑
σ∈Σn

ε(σ; v1, . . . , vn)(vσ(1) ⊗ · · · ⊗ vσ(n))

=
∑
σ∈Σn

σtw(v1 ⊗ · · · ⊗ vn), v1, . . . , vn ∈ V.

Lemma 1.4.5. The map N is well defined, it is injective and its image is the subspace (
⊗n

V )Σn

of twist-invariant tensors.
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Proof. Consider the map N ′ :
⊗n

V →
⊗n

V :

N ′(v1 ⊗ · · · ⊗ vn) =
∑
σ∈Σn

σtw(v1 ⊗ · · · ⊗ vn), v1, . . . , vn ∈ V.

It is clear that
1
n!
N ′ :

⊗n
V → (

⊗n
V )Σn

is a projection and then ⊗n
V = (

⊗n
V )Σn ⊕ ker(N ′).

Denote as above by I the subspace generated by all the vectors v − σtw(v), σ ∈ Σn, v ∈
⊗n

V .
Since N ′(v) = N ′(σtwv) we have I ⊂ ker(N ′). For every v ∈

⊗n
V we can write

v =
N ′

n!
v +

(
v − N ′

n!
v

)
=
N ′

n!
v +

1
n!

∑
σ∈Σn

(v − σtwv).

This shows that Im(N ′) + I =
⊗n

V and this implies that kerN ′ = I and N ′ = Nπ. �

Lemma 1.4.6. Let (C,∆) be a graded cocommutative coalgebra. Then the image of ∆n−1 is
contained in the set of Σn-invariant elements of

⊗n
C and therefore

∆n−1 = N
π

n!
∆n−1.

Proof. The twist action of Σn on
⊗n

C is generated by the operators twa = IdNa C ⊗tw⊗
IdNn−a−2 C , 0 ≤ a ≤ n− 2; since tw ◦∆ = ∆, according to Lemma 1.1.9 we have:

twa∆n−1 = twa(IdNa C ⊗∆⊗ IdNn−a−2 C)∆n−2

=(IdNa C ⊗∆⊗ IdNn−a−2 C)∆n−2 = ∆n−1.

�

Definition 1.4.7. The set of unshuffles of type (p, q) is the subset S(p, q) ⊂ Σp+q of permu-
tations σ such that σ(i) < σ(i+ 1) for every i 6= p. Equivalently

S(p, q) = {σ ∈ Σp+q | σ(1) < σ(2) < . . . < σ(p), σ(p+ 1) < σ(p+ 2) < . . . < σ(p+ q)}.

The unshuffles are a set of representatives for the left cosets of the canonical embedding of
Σp × Σq inside Σp+q. More precisely for every η ∈ Σp+q there exists a unique decomposition
η = στ with σ ∈ S(p, q) and τ ∈ Σp × Σq.

Lemma 1.4.8. For every v1, . . . , vn ∈ V and every a = 0, . . . , n we have

N(v1 � · · · � vn) =
∑

σ∈S(a,n−a)

ε(σ)N(vσ(1) � · · · � vσ(a))⊗N(vσ(a+1) � · · · � vσ(n)).

Proof.

N(v1 � · · · � vn) =
∑
η∈Σn

η−1
tw (v1 ⊗ · · · ⊗ vn)

=
∑

σ∈S(a,n−a)

∑
τ∈Σa×Σn−a

τ−1
tw σ

−1
tw (v1 ⊗ · · · ⊗ vn)

=
∑

σ∈S(a,n−a)

ε(σ)
∑

τ∈Σa×Σn−a

τ−1
tw (vσ(1) ⊗ · · · ⊗ vσ(n))

=
∑

σ∈S(a,n−a)

ε(σ)N(vσ(1) � · · · � vσ(a))⊗N(vσ(a+1) � · · · � vσ(n)).

�

Consider now two graded vector spaces V,M , a positive integer l and two maps

f ∈ Hom0(V,M), b ∈ Homk(V ⊗l,M).

Denoting by q = bN ∈ Homk(V �l,M), for every integer n ≥ l define the maps

B ∈ Homk(V ⊗n,M⊗n−l+1), Q ∈ Homk(V �n,M�n−l+1),
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by the formulas:

B(v1 ⊗ · · · ⊗ vn) =

=
n−l∑
i=0

(−1)k(v1+···+vi)f(v1)⊗ · · · ⊗ f(vi)⊗ b(vi+1 ⊗ · · · ⊗ vi+l)⊗ f(vi+l+1)⊗ · · · ⊗ f(vn).

Q(v1 � · · · � vn) =
∑

σ∈S(l,n−l)

ε(σ)q(vσ(1) � · · · � vσ(l))� f(vσ(l+1))� · · · � f(vσ(n)).

Lemma 1.4.9. In the notation above we have

BN = NQ ∈ Homk(V �n,M⊗n−l+1).

Proof. Easy and left to the reaader. �

1.5. The reduced symmetric coalgebra

For every graded vector space V we will denote S(V ) =
⊕

n>0

⊙n
V , while π : T (V ) →

S(V ) is the projection to the quotient and N : S(V ) → T (V ) is the direct sum of the maps of
Definition 1.4.4.

Lemma 1.5.1. The map l : S(V )→ S(V )⊗ S(V ),

l(v1 � · · · � vn) =
n−1∑
a=1

∑
σ∈S(a,n−a)

ε(σ)(vσ(1) � · · · � vσ(a))⊗ (vσ(a+1) � · · · � vσ(n))

is a cocommutative coproduct and the map

N : (S(V ), l)→ (T (V ), a)

is an injective morphism of coalgebras.

Proof. The cocommutativity of l is clear from definition. Since N is injective, we only
need to prove that aN = (N ⊗N)l. According to Lemma 1.4.8, for every a

aa,n−aN(v1 � · · · � vn) = N ⊗N
∑

σ∈S(a,n−a)

ε(σ)(vσ(1) � · · · � vσ(a))⊗ (vσ(a+1) ⊗ · · · ⊗ vσ(n))

and then

aN(v1 � · · · � vn) =
n−1∑
a=1

aa,n−aN(v1 � · · · � vn) = N ⊗N l(v1 � · · · � vn).

�

Definition 1.5.2. The reduced symmetric coalgebra generated by V is the graded vector space
S(V ) with the coproduct l defined in Lemma 1.5.1

l(v1 � · · · � vn) =
n−1∑
a=1

∑
σ∈S(a,n−a)

ε(σ)(vσ(1) � · · · � vσ(a))⊗ (vσ(a+1) � · · · � vσ(n)).

It is often convenient to think the reduced symmetric coalgebra as a subset of the tensor
coalgebra, via the identification provided by N . In particular S(V ) is locally nilpotent and the
projection p : S(V )→ V with kernel ⊕n>1V

�n is a cogenerator.
Moreover, since N is an injective morphism of coalgebras we have

ker ln = N−1(ker an) = N−1(⊕ni=1V
⊗i) = ⊕ni=1V

�i.

For every morphism of graded vector spaces f : V →W we have

N ◦ S(f) = T (f) ◦N : S(V )→ T (W )

and then S(f) : S(V )→ S(W ) is a morphism of graded coalgebras.

Proposition 1.5.3. Let (C,∆) be a locally nilpotent graded cocommutative coalgebra, then:
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(1) The map ∑
n>0

π

n!
∆n−1 : C → S(C)

is a morphism of graded coalgebras.
(2) For every graded vector space V and every morphism of graded vector spaces f : C → V

there exists a unique morphism of graded coalgebras F : C → S(V ) such that pF = f .
Moreover

F =
∞∑
n=1

π

n!
(⊗nf)∆n−1 : C → S(C)→ S(V ).

Proof. According to Lemma 1.4.6 we have∑
n>0

∆n−1 = N

(∑
n>0

π

n!
∆n−1

)
and the the first item is an immediate consequence of the fact that N is an injective morphism
of graded coalgebras. Similarly for every morphism of graded vector spaces f : C → V we have∑

n>0

(⊗nf)∆n−1 = N

(∑
n>0

π

n!
(⊗nf)∆n−1

)
.

�

Proposition 1.5.4. Let V be a graded vector space and C a locally nilpotent cocommutative
coalgebra. Then for every coalgebra morphism F : C → S(V ) and every integer k, the composition
with N : S(V )→ T (V ) gives an isomorphism

Coderk(C, S(V );F ) ' Coderk(C, T (V );NF ).

Proof. We need to prove that if B : C → T (V ) is a coderivation with respect to the
morphism NF , then B = NP for some P : C → S(V ). According to Proposition 1.3.5 we have

B =
∞∑
n=0

n∑
i=0

(f⊗i ⊗ b⊗ f⊗n−i)∆n : C → T (V )

where f = pNF = pF and b ∈ Homk(C, V ). According to Lemmas 1.4.6 and 1.4.9 the image of
B is contained in the image of N . �

Corollary 1.5.5. Let V be a graded vector space. Then for every integer k, the composition
with p : S(V )→ V gives an isomorphism of vector spaces

Coderk(S(V ), S(V ))→
+∞∏
i=1

Homk(V �i, V ).

More explicitely, for every sequence qi ∈ Homn(V �k, V ), i > 0, the map Q ∈ Homn
K (S(V ), S(V ))

defined as

Q(v1 � · · · � vn) =
n∑
i=1

∑
σ∈S(i,n−i)

ε(σ)qi(vσ(1) � · · · � vσ(k))� vσ(k+1) � · · · � vσ(n),

is the unique coderivation of S(V ) such that pQ =
∑
i qi.

Proof. We only need to prove that the map Q is a coderivation. By linearity it is not
restrictive to assume that qi = 0 for every i 6= l. Let b ∈ Homn(

⊗l
V, V ) be any map such

that bN = ql (e.g. b = πql/n!) and let B ∈ Codern(T (V ), T (V )) be the coderivation such that
pB = b. According to Corollary 1.3.6

B(v1 ⊗ · · · ⊗ vn) =
∑
i

(−1)k(v1+···+vi)v1 ⊗ · · · ⊗ vi ⊗ b(vi+1 ⊗ · · · ⊗ vi+l)⊗ · · · ⊗ vn,

and then Lemma 1.4.9 gives RN = NQ. �

Remark 1.5.6. The above results show in particular that:
(1) if F : S(V )→ S(W ) is a morphism of graded coalgebras, then F (V �n) ⊂

∑
i≤nW

�i;
(2) if Q : S(V )→ S(V ) is a coderivation, then Q(V �n) ⊂

∑
i≤n V

�i.
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Definition 1.5.7. Given a graded vector space V the symmetric Gerstenhaber product

Hom∗K (S(V ), V )×Hom∗K (S(V ), V )→ Hom∗K (S(V ), V ), (f, g) 7→ f ◦ g,
is defined as f ◦ g = fG, where G ∈ Coder∗(S(V ), S(V )) is the unique coderivation lifting g.

The symmetric Gerstenhaber bracket is defined as

[f, g] = f ◦ g − (−1)f gg ◦ f, f, g ∈ Hom∗K (S(V ), V ).

Given f ∈ Homa
K (V �n+1, V ) and g ∈ Homb

K (V �m+1, V ) we have f◦g ∈ Homa+b
K (V �n+m+1, V ),

f ◦ g(v0 � · · · � vn+m) =
∑

σ∈S(m+1,n)

ε(σ)f(g(vσ(0) � · · · � vσ(m))� vσ(m+1) � · · · � vσ(m+n)).

1.6. Exercises

Exercise 1.6.1. A counity of a graded coalgebra (C,∆) is a morphism of graded vector spaces
ε : C → K such that (ε ⊗ IdC)∆ = (IdC ⊗ε)∆ = IdC . Prove that if a counity exists, then it is
unique (Hint: (ε⊗ ε′)∆ =?).

Exercise 1.6.2. Let (C,∆) be a graded coalgebra. A graded subspace I ⊂ C is called a coideal
if ∆(I) ⊂ C ⊗ I + I ⊗ C. Prove that a subspace is a coideal if and only if is the kernel of a
morphism of coalgebras.

Exercise 1.6.3. Let (C,∆) be a graded coalgebra. Prove that for every a, b ≥ 0

∆a(ker ∆a+b) ⊂
⊗a+1

(ker ∆b).

Exercise 1.6.4. Let C be a graded coalgebra and d ∈ Coder1(C,C) a codifferential of degree
1. Prove that the triple (L, δ, [, ]), where:

L = ⊕n∈ZCodern(C,C), [f, g] = fg − (−1)g fgf, δ(f) = [d, f ]

is a differential graded Lie algebra.

Exercise 1.6.5. Let p : T (V )→ T (V ) be the projection with kernel K =
⊗0

V and φ : T (V )→
T (V )⊗ T (V ) the unique homomorphism of graded algebras such that φ(v) = v ⊗ 1 + 1⊗ v for
every v ∈ V . Prove that pφ = ap.

Exercise 1.6.6. Let A be an associative graded algebra over the field K . For every local
homomorphism of K -algebras γ : K [[x]]→ K [[x]], γ(x) =

∑
γnx

n, let Fγ : T (A)→ T (A) be the
unique morphism of graded coalgebras lifting the map

fγ : T (A)→ A, f(a1 ⊗ · · · ⊗ an) = γna1 · · · an.
Prove the validity of the composition formula Fγδ = FδFγ . (Hint: Example 1.1.7.)

Exercise 1.6.7. Prove that a graded coalgebra morphism F : S(U)→ S(V ) is surjective (resp.:
injective, bijective) if and only if the composition U

ı−→S(U) F−→S(V )
p−→V is surjective (resp.:

injective, bijective). (Hint: F preserves the filtrations of kernels of iterated coproducts.)

Exercise 1.6.8. Assume V finite dimensional with basis ∂1, . . . , ∂m of degree 0. Prove that

l(∂n1
1 · · · ∂nm

m ) =
∑

a1,...,am

(
n1

a1

)
· · ·
(
nm
am

)
∂a1

1 · · · ∂am
m ⊗ ∂n1−a1

1 · · · ∂nm−am
m

and deduce that the dual algebra S(V )
∨

is isomorphic to the maximal ideal of the power series
ring K [[x1, . . . , xm]], with pairing

〈∂n1
1 · · · ∂nm

m , f(x)〉 =
∂n1+···+nmf

∂xn1
1 · · · ∂x

nm
m

(0) = (
∏
i

ni!)·(coefficient of xn1
1 · · ·xnm

m in f(x)).
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