CHAPTER 1

Differential graded coalgebras

1.1. Graded coalgebras

Definition 1.1.1. A (coassociative) graded coalgebra is the data of a graded vector space $C=\oplus_{n \in \mathbb{Z}} C^{n}$ and of a morphism of graded vector spaces $\Delta: C \rightarrow C \otimes C$, called coproduct, whic satifies the coassociativity equation:

$$
\left(\Delta \otimes \operatorname{Id}_{C}\right) \Delta=\left(\operatorname{Id}_{C} \otimes \Delta\right) \Delta: C \rightarrow C \otimes C \otimes C
$$

Definition 1.1.2. Let (C, Δ) and (B, Γ) be graded coalgebras. A morphism of graded coalgebras $f: C \rightarrow B$ is a morphism of graded vector spaces that commutes with coproducts, i.e.

$$
\Gamma f=(f \otimes f) \Delta: C \rightarrow B \otimes B
$$

Example 1.1.3. Let $C=\mathbb{K}[t]$ be the polynomial ring in one variable t (of degree 0). The linear map

$$
\Delta: \mathbb{K}[t] \rightarrow \mathbb{K}[t] \otimes \mathbb{K}[t], \quad \Delta\left(t^{n}\right)=\sum_{i=0}^{n} t^{i} \otimes t^{n-i}
$$

gives a coalgebra structure (exercise: check coassociativity).
For every sequence $f_{n} \in \mathbb{K}, n>0$, it is associated a morphism of coalgebras $f: C \rightarrow C$ defined as

$$
f(1)=1, \quad f\left(t^{n}\right)=\sum_{s=1}^{n} \sum_{\substack{\left(i_{1}, \ldots, i_{s}\right) \in \mathbb{N}^{s} \\ i_{1}+\cdots+i_{s}=n}} f_{i_{1}} f_{i_{2}} \cdots f_{i_{s}} t^{s}
$$

The verification that $\Delta f=(f \otimes f) \Delta$ can be done in the following way: Let $\left\{x^{n}\right\} \subset C^{\vee}=\mathbb{K}[[x]]$ be the dual basis of $\left\{t^{n}\right\}$. Then for every $a, b, n \in N$ we have:

$$
\begin{gathered}
\left\langle x^{a} \otimes x^{b}, \Delta f\left(t^{n}\right)\right\rangle=\sum_{i_{1}+\cdots+i_{a}+j_{1}+\cdots+j_{b}=n} f_{i_{1}} \cdots f_{i_{a}} f_{j_{1}} \cdots f_{j_{b}}, \\
\left\langle x^{a} \otimes x^{b}, f \otimes f \Delta\left(t^{n}\right)\right\rangle=\sum_{s} \sum_{i_{1}+\cdots+i_{a}=s} \sum_{j_{1}+\cdots+j_{b}=n-s} f_{i_{1}} \cdots f_{i_{a}} f_{j_{1}} \cdots f_{j_{b}} .
\end{gathered}
$$

Note that the sequence $\left\{f_{n}\right\}, n \geq 1$, can be recovered from f by the formula $f_{n}=\left\langle x, f\left(t^{n}\right)\right\rangle$.

Definition 1.1.4. A graded coalgebra (C, Δ) is called cocommutative if tw $\circ \Delta=\Delta$, where tw : $C \otimes C \rightarrow C \otimes C$ is the twist map.

Example 1.1.5. The polynomial coalgebra of Example 1.1.3 is cocommutative.
Example 1.1.6. Let C be a graded coalgebra with coproduct $\Delta: C \rightarrow C \otimes C$. Then the convolution product defined as

$$
\operatorname{Hom}_{\mathbb{K}}^{*}(C, \mathbb{K}) \times \operatorname{Hom}_{\mathbb{K}}^{*}(C, \mathbb{K}) \rightarrow \operatorname{Hom}_{\mathbb{K}}^{*}(C, \mathbb{K}), \quad(f, g) \mapsto \mu(f \otimes g) \Delta,
$$

where $\mu: \mathbb{K} \times \mathbb{K} \rightarrow \mathbb{K}$ is the product, is an associative product. Thus the dual of a coalgebra is an algebra.

[^0]Example 1.1.7. The dual of the coalgebra $C=\mathbb{K}[t]$ (Example ??) is exactly the algebra of formal power series $A=\mathbb{K}[[x]]=C^{\vee}$. Every coalgebra morphism $f: C \rightarrow C$ induces a local homomorphism of \mathbb{K}-algebras $f^{t}: A \rightarrow A$. The morphism f^{t} is uniquely determined by the power series $f^{t}(x)=\sum_{n>0} f_{n} x^{n}$ and then every morphism of coalgebras $f: C \rightarrow C$ is uniquely determined by the sequence $f_{n}=\left\langle f^{t}(x), t^{n}\right\rangle=\left\langle x, f\left(t^{n}\right)\right\rangle$.
The map $f \mapsto f^{t}$ is functorial and then preserves the composition laws.
Definition 1.1.8. Let (C, Δ) be a graded coalgebra; the iterated coproducts $\Delta^{n}: C \rightarrow C^{\otimes n+1}$ are defined recursively for $n \geq 0$ by the formulas

$$
\Delta^{0}=\operatorname{Id}_{C}, \quad \Delta^{n}: C \xrightarrow{\Delta} C \otimes C \xrightarrow{\mathrm{Id}_{C} \otimes \Delta^{n-1}} C \otimes C^{\otimes n}=C^{\otimes n+1}
$$

Lemma 1.1.9. Let (C, Δ) be a graded coalgebra. Then:
(1) For every $0 \leq a \leq n-1$ we have

$$
\Delta^{n}=\left(\Delta^{a} \otimes \Delta^{n-1-a}\right) \Delta: C \rightarrow \bigotimes^{n+1} C
$$

(2) For every $s \geq 1$ and every $a_{0}, \ldots, a_{s} \geq 0$ we have

$$
\left(\Delta^{a_{0}} \otimes \Delta^{a_{1}} \otimes \cdots \otimes \Delta^{a_{s}}\right) \Delta^{s}=\Delta^{s+\sum a_{i}}
$$

(3) If $f:(C, \Delta) \rightarrow(B, \Gamma)$ is a morphism of graded coalgebras then, for every $n \geq 1$ we have

$$
\Gamma^{n} f=\left(\otimes^{n+1} f\right) \Delta^{n}: C \rightarrow \bigotimes^{n+1} B
$$

Proof. [1] If $a=0$ or $n=1$ there is nothing to prove, thus we can assume $a>0$ and use induction on n. we have:

$$
\begin{gathered}
\left(\Delta^{a} \otimes \Delta^{n-1-a}\right) \Delta=\left(\left(\operatorname{Id}_{C} \otimes \Delta^{a-1}\right) \Delta \otimes \Delta^{n-1-a}\right) \Delta= \\
=\left(\operatorname{Id}_{C} \otimes \Delta^{a-1} \otimes \Delta^{n-1-a}\right)\left(\Delta \otimes \operatorname{Id}_{C}\right) \Delta= \\
=\left(\operatorname{Id}_{C} \otimes \Delta^{a-1} \otimes \Delta^{n-1-a}\right)\left(\operatorname{Id}_{C} \otimes \Delta\right) \Delta=\left(\operatorname{Id}_{C} \otimes\left(\Delta^{a-1} \otimes \Delta^{n-1-a}\right) \Delta\right) \Delta=\Delta^{n}
\end{gathered}
$$

[2] Induction on s, being the case $s=1$ proved in item 1. If $s \geq 2$ we can write

$$
\begin{aligned}
& \left(\Delta^{a_{0}} \otimes \Delta^{a_{1}} \otimes \cdots \otimes \Delta^{a_{s}}\right) \Delta^{s}=\left(\Delta^{a_{0}} \otimes \Delta^{a_{1}} \otimes \cdots \otimes \Delta^{a_{s}}\right)\left(\operatorname{Id}_{C} \otimes \Delta^{s-1}\right) \Delta= \\
& \left(\Delta^{a_{0}} \otimes\left(\Delta^{a_{1}} \otimes \cdots \otimes \Delta^{a_{s}}\right) \Delta^{s-1}\right) \Delta=\left(\Delta^{a_{0}} \otimes \Delta^{s-1+\sum_{i>0}^{a_{i}}}\right) \Delta=\Delta^{s+\sum a_{i}}
\end{aligned}
$$

[3] By induction on n,

$$
\Gamma^{n} f=\left(\operatorname{Id}_{B} \otimes \Gamma^{n-1}\right) \Gamma f=\left(f \otimes \Gamma^{n-1} f\right) \Delta=\left(f \otimes\left(\otimes^{n} f\right) \Delta^{n-1}\right) \Delta=\left(\otimes^{n+1} f\right) \Delta^{n}
$$

Lemma 1.1.10. Let (C, Δ) be a graded coalgebra. Then for every $n \geq 0$ we have

$$
\operatorname{ker} \Delta^{n+1}=\left\{x \in C \mid \Delta(x) \in\left(\operatorname{ker} \Delta^{n}\right) \otimes\left(\operatorname{ker} \Delta^{n}\right)\right\}
$$

Proof. The formula

$$
\Delta^{n+1}=\left(\Delta^{n} \otimes \operatorname{Id}\right) \Delta=\left(\operatorname{Id} \otimes \Delta^{n}\right) \Delta
$$

implies the inclusion \supset. Conversely, notice that $\Delta(x)=0$ if and only if every homogeneous component of x belongs to ker Δ^{n+1} Let $x \in \operatorname{ker} \Delta^{n+1}$ homogeneous and write $\Delta(x)=\sum_{i=1}^{r} x_{i} \otimes$ y_{i} with r minimum. Then the vectors x_{i} are linearly independent and the same holds for the vectors y_{i}. The conclusion is now immediate fro the above formula.

Definition 1.1.11. Let (C, Δ) be a graded coalgebra. A morphism of graded vector spaces $p: C \rightarrow V$ is called a cogenerator of C if for every $c \in C$ there exists $n \geq 0$ such that $\left(\otimes^{n+1} p\right) \Delta^{n}(c) \neq 0$ in $\bigotimes^{n+1} V$. Equivalently, $p: C \rightarrow V$ is a cogenerator of C is the map

$$
C \rightarrow \prod_{n \geq 0} \bigotimes^{n+1} V, \quad c \mapsto\left(c, \Delta c, \Delta^{2} c, \ldots\right)
$$

is injective.
Example 1.1.12. In the notation of Example 1.1.3, the natural projection $\mathbb{K}[t] \rightarrow \mathbb{K} \oplus \mathbb{K} t$ is a cogenerator.
Proposition 1.1.13. Let $p: B \rightarrow V$ be a cogenerator of a graded coalgebra (B, Γ). Then every morphism of graded coalgebras $\phi:(C, \Delta) \rightarrow(B, \Gamma)$ is uniquely determined by its composition $p \phi: C \rightarrow V$.

Proof. Let $\phi, \psi:(C, \Delta) \rightarrow(B, \Gamma)$ be two morphisms of graded coalgebras such that $p \phi=$ $p \psi$. In order to prove that $\phi=\psi$ it is sufficient to show that for every $c \in C$ and every $n \geq 0$ we have

$$
\left(\otimes^{n+1} p\right) \Gamma^{n}(\phi(c))=\left(\otimes^{n+1} p\right) \Gamma^{n}(\psi(c))
$$

By Lemma 1.1.9 we have $\Gamma^{n} \phi=\left(\otimes^{n+1} \phi\right) \Delta^{n}$ and $\Gamma^{n} \psi=\left(\otimes^{n+1} \psi\right) \Delta^{n}$. Therefore

$$
\begin{aligned}
\left(\otimes^{n+1} p\right) \Gamma^{n} \phi=\left(\otimes^{n+1} p\right)\left(\otimes^{n+1} \phi\right) \Delta^{n} & =\left(\otimes^{n+1} p \phi\right) \Delta^{n}= \\
& =\left(\otimes^{n+1} p \psi\right) \Delta^{n}=\left(\otimes^{n+1} p\right)\left(\otimes^{n+1} \psi\right) \Delta^{n}=\left(\otimes^{n+1} p\right) \Gamma^{n} \psi
\end{aligned}
$$

Definition 1.1.14. A graded coalgebra (C, Δ) is called nilpotent if $\Delta^{n}=0$ for $n \gg 0$. It is called locally nilpotent if it is the direct limit of nilpotent graded coalgebras or equivalently if $C=\cup_{n} \operatorname{ker} \Delta^{n}$.

Example 1.1.15. The vector space

$$
\overline{\mathbb{K}[t]}=\{p(t) \in \mathbb{K}[t] \mid p(0)=0\}=\bigoplus_{n>0} \mathbb{K} t^{n}
$$

with the coproduct

$$
\Delta: \overline{\mathbb{K}[t]} \rightarrow \overline{\mathbb{K}[t]} \otimes \overline{\mathbb{K}[t]}, \quad \Delta\left(t^{n}\right)=\sum_{i=1}^{n-1} t^{i} \otimes t^{n-i}
$$

is a locally nilpotent coalgebra. The projection $\mathbb{K}[t] \rightarrow \overline{\mathbb{K}[t]}, p(t) \rightarrow p(t)-p(0)$, is a morphism of coalgebras.

Example 1.1.16. Let $A=\oplus A_{i}$ be a finite dimensional graded associative \mathbb{K}-algebra and let $C=A^{\vee}=\operatorname{Hom}^{*}(A, \mathbb{K})$ be its graded dual. Since A and C are finite dimensional, the pairing $\left\langle c_{1} \otimes c_{2}, a_{1} \otimes a_{2}\right\rangle=(-1)^{\overline{a_{1}} \overline{c_{2}}}\left\langle c_{1}, a_{1}\right\rangle\left\langle c_{2}, a_{2}\right\rangle$ gives a natural isomorphism $C \otimes C=(A \otimes A)^{\vee}$ and we may define Δ as the transpose of the multiplication map $\mu: A \otimes A \rightarrow A$. Then (C, Δ) is a graded coalgebra. Note that C is nilpotent if and only if A is nilpotent.

Lemma 1.1.17. Let (C, Δ) be a locally nilpotent graded coalgebra. Then every projection $p: C \rightarrow$ ker Δ is a cogenerator of C.

Proof.
Definition 1.1.18 ([104, p. 282]). A graded coalgebra (C, Δ) is called connected if there is an element $e \in C$ such that $\Delta(e)=e \otimes e$ (in particular $\operatorname{deg}(e)=0$) and $C=\cup_{r=0}^{+\infty} F_{r} C$, where $F_{r} C$ is defined recursively in the following way:

$$
F_{0} C=\mathbb{K} e, \quad F_{r+1} C=\left\{x \in C \mid \Delta(x)-e \otimes x-x \otimes e \in F_{r} C \otimes F_{r} C\right\} .
$$

Example 1.1.19. In the notation of the above definition, according to Lemma 1.1 .10 we have $e=0$ if and only if $F_{r} C=\operatorname{ker} \Delta^{r}$. In particular every locally nilpotent coalgebra is connected.

1.2. Comodules and coderivations

Definition 1.2.1. Let (C, Δ) be a graded coalgebra. A C-comodule is the data of a graded vector space M and two morphisms of graded vector spaces

$$
\phi: M \rightarrow M \otimes C, \quad \psi: M \rightarrow C \otimes M
$$

such that:
(1) $\left(\operatorname{Id}_{M} \otimes \Delta\right) \phi=\left(\phi \otimes \operatorname{Id}_{C}\right) \phi: M \rightarrow M \otimes C \otimes C$,
(2) $\left(\Delta \otimes \operatorname{Id}_{M}\right) \psi=\left(\operatorname{Id}_{C} \otimes \psi\right) \psi: M \rightarrow C \otimes C \otimes M$,
(3) $\left(\psi \otimes \operatorname{Id}_{C}\right) \phi=\left(\operatorname{Id}_{C} \otimes \phi\right) \psi: M \rightarrow C \otimes M \otimes C$.

Example 1.2.2. If $F:(D, \Gamma) \rightarrow(C, \Delta)$ is a morphism of graded coalgebras, then the maps

$$
\phi=\left(\operatorname{Id}_{D} \otimes F\right) \Gamma: D \rightarrow D \otimes C, \quad \psi=\left(F \otimes \operatorname{Id}_{D}\right) \Gamma: D \rightarrow C \otimes D
$$

give a structure of C-comodule on D.

Definition 1.2.3. Let (C, Δ) be a graded coalgebra and

$$
\phi: M \rightarrow M \otimes C, \quad \psi: M \rightarrow C \otimes M
$$

a C-comodule. A linear map $d \in \operatorname{Hom}_{\mathbb{K}}^{n}(M, C)$ is called a coderivation of degree n if it satisfies the coLeibniz rule

$$
\Delta d=\left(d \otimes \operatorname{Id}_{C}\right) \phi+\left(\operatorname{Id}_{C} \otimes d\right) \psi
$$

In the above definition we have adopted the Koszul sign convention: i.e. if $x, y \in C$, $f, g \in \operatorname{Hom}^{*}(C, D), h, k \in \operatorname{Hom}^{*}(B, C)$ are homogeneous then $(f \otimes g)(x \otimes y)=(-1)^{\bar{g} \bar{x}} f(x) \otimes g(y)$ and $(f \otimes g)(h \otimes k)=(-1)^{\bar{g} \bar{h}} f h \otimes g k$.

In these notes we are mainly intersted to C-comodules structure induced by a morphism of graded coalgebras $F:(D, \Gamma) \rightarrow(C, \Delta)$. In this case, a morphism of graded vector spaces $d \in \operatorname{Hom}^{n}(C, D)$ is a coderivation of degree n if and only if

$$
\Delta d=(d \otimes F+F \otimes d) \Gamma
$$

The coderivations of degree n with respect a coalgebra morphism $F: C \rightarrow D$ form a vector space denoted $\operatorname{Coder}^{n}(C, D ; F)$. For simplicity of notation we denote $\operatorname{Coder}^{n}(C, C)=$ Coder $^{n}(C, C ; I d)$. In other terms

$$
\operatorname{Coder}^{n}(C, C)=\left\{f \in \operatorname{Hom}_{\mathbb{K}}^{n}(C, C) \mid \Delta f=\left(f \otimes \operatorname{Id}_{C}+\operatorname{Id}_{C} \otimes f\right) \Delta\right\} .
$$

Lemma 1.2.4. Let C be a graded coalgebra. Then $\operatorname{Coder}^{*}(C, C)=\bigoplus_{n} \operatorname{Coder}^{n}(C, C)$ is a graded Lie subalgebra of $\operatorname{Hom}_{\mathbb{K}}^{*}(C, C)$.

Proof. We only need to prove that $\operatorname{Coder}^{*}(C, C)$ is closed under the graded commutator. This is straightforward and left to the reader.

Example 1.2.5. For every $k \geq-1$ consider the differential operator

$$
f_{k}: \mathbb{K}[t] \rightarrow \mathbb{K}[t], \quad f_{k}=t\left(\frac{d}{d t}\right)^{k+1}
$$

Then every f_{k} is a coderivation with respect the coproduct

$$
\tilde{\Delta}: \mathbb{K}[t] \rightarrow \mathbb{K}[t] \otimes \mathbb{K}[t], \quad \tilde{\Delta}\left(t^{n}\right)=\sum_{i=0}^{n}\binom{n}{i} t^{i} \otimes t^{n-i}
$$

Using the definition of binomial coefficicnts

$$
\binom{n}{k}=\frac{1}{k!} \prod_{i=0}^{k-1}(n-i), \quad\binom{n}{0}=1
$$

we have for every $n \geq 0$ and every $k \geq 0$

$$
\begin{gathered}
\frac{\tilde{\Delta}\left(f_{k-1}\left(t^{n}\right)\right)}{k!}=\tilde{\Delta}\left(\binom{n}{k} t^{n-k+1}\right)=\sum_{i \geq 0}\binom{n}{k}\binom{n-k+1}{i} t^{i} \otimes t^{n-k-i+1}, \\
\frac{\left(f_{k-1} \otimes I d\right) \tilde{\Delta}\left(t^{n}\right)}{k!}=\sum_{j \geq k}\binom{n}{j}\binom{j}{k} t^{j-k+1} \otimes t^{n-j}=\sum_{i \geq 0}\binom{n}{i+k-1}\binom{i+k-1}{k} t^{i} \otimes t^{n-k-i+1}, \\
\frac{\left(I d \otimes f_{k-1}\right) \tilde{\Delta}\left(t^{n}\right)}{k!}=\sum_{i \geq 0}\binom{n}{i}\binom{n-i}{k} t^{i} \otimes t^{n-k-i+1},
\end{gathered}
$$

and the conclusion follows from the straightforward equality

$$
\binom{n}{k}\binom{n-k+1}{i}=\binom{n}{i+k-1}\binom{i+k-1}{k}+\binom{n}{i}\binom{n-i}{k} .
$$

Notice that

$$
\left[f_{n}, f_{m}\right]=f_{n} \circ f_{m}-f_{m} \circ f_{n}=(n-m) f_{n+m}
$$

Notice that the Lie subalgebra generated by f_{k} is the same of the Lie algebra generated by the derivations $g_{h}=z^{h+1} \frac{d}{d z}$ of $\mathbb{K}[z]$.

Lemma 1.2.6. Let $C \xrightarrow{\theta} D \xrightarrow{\rho} E$ be morphisms of graded coalgebras. The compositions with θ and ρ induce linear maps

$$
\begin{array}{ll}
\rho_{*}: \operatorname{Coder}^{n}(C, D ; \theta) \rightarrow \operatorname{Coder}^{n}(C, E ; \rho \theta), & f \mapsto \rho f ; \\
\theta^{*}: \operatorname{Coder}^{n}(D, E ; \rho) \rightarrow \operatorname{Coder}^{n}(C, E ; \rho \theta), & f \mapsto f \theta .
\end{array}
$$

Proof. Immediate consequence of the equalities

$$
\Delta_{E} \rho=(\rho \otimes \rho) \Delta_{D}, \quad \Delta_{D} \theta=(\theta \otimes \theta) \Delta_{C}
$$

Lemma 1.2.7. Let $C \xrightarrow{\theta} D$ be morphisms of graded coalgebras and let $d: C \rightarrow D$ be a coderivation (with respect to the comodule structure induced by θ). Then:
(1) For every n

$$
\Delta_{D}^{n} \circ d=\left(\sum_{i=0}^{n} \theta^{\otimes i} \otimes d \otimes \theta^{\otimes n-i}\right) \circ \Delta_{C}^{n}
$$

(2) If $p: D \rightarrow V$ is a cogenerator, then d is uniquely determined by its composition pd: $C \rightarrow$ V.
Proof. The first item is a straightforward induction on n, using the equalities $\Delta^{n}=\operatorname{Id} \otimes$ Δ^{n-1} and $\theta^{\otimes i} \Delta_{C}^{i-1}=\Delta_{D}^{i-1} \theta$.
For item 2, we need to prove that $p d=0$ implies $d=0$. Assume that there exists $c \in C$ such that $d c \neq 0$, then there exists n such that $p^{\otimes n+1} \Delta_{D}^{n} d c \neq 0$. On the other hand

$$
p^{\otimes n+1} \Delta_{D}^{n} d c=\left(\sum_{i=0}^{n}(p \theta)^{\otimes i} \otimes p d \otimes(p \theta)^{\otimes n-i}\right) \circ \Delta_{C}^{n} c=0 .
$$

For later use we point out that if $\alpha: C \rightarrow C$ be a nilpotent coderivation of degree 0 . Then the map

$$
e^{\alpha}=\sum_{n \geq 0} \frac{\alpha^{n}}{n!}: C \rightarrow C
$$

is a morphism of coalgebras, as follows immediately from the easy formula

$$
e^{\alpha} \otimes e^{\alpha}=\sum_{n \geq 0} \frac{1}{n!}(\alpha \otimes \operatorname{Id}+\operatorname{Id} \otimes \alpha)^{n} \in \operatorname{Hom}^{0}(C \otimes C, C \otimes C)
$$

Definition 1.2.8. A differential graded coalgebra is the data of a differential graded algebra C together a coderivation $d_{C} \in \operatorname{Coder}^{1}(C, C)$, called differential, such that $d_{C}^{2}=0$. A morphism of differential graded coalgebras is a morphism of graded coalgebras commuting with differentials.

1.3. The reduced tensor coalgebra

Given a graded vector space V, we denote $\bar{T}(V)=\bigoplus_{n>0} \otimes^{n} V$ and by $p: \bar{T}(V) \rightarrow V$ the projection with kernel $\bigoplus_{n \geq 2} \otimes^{n} V$.

The reduced tensor coalgebra generated by V is the graded vector space $\bar{T}(V)$ endowed with the coproduct $\mathfrak{a}: \bar{T}(V) \rightarrow \bar{T}(V) \otimes \bar{T}(V)$:

$$
\mathfrak{a}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{r=1}^{n-1}\left(v_{1} \otimes \cdots \otimes v_{r}\right) \otimes\left(v_{r+1} \otimes \cdots \otimes v_{n}\right) .
$$

We can also write

$$
\mathfrak{a}=\sum_{n=2}^{+\infty} \sum_{a=1}^{n-1} \mathfrak{a}_{a, n-a}
$$

where

$$
\mathfrak{a}_{a, b}: \bigotimes^{a+b} V \rightarrow \bigotimes^{a} V \otimes \bigotimes^{n-a} V, \quad \mathfrak{a}_{a, b}\left(v_{1} \otimes \cdots \otimes v_{a} \otimes w_{1} \otimes \cdots \otimes w_{b}\right)=\left(v_{1} \otimes \cdots \otimes v_{a}\right) \otimes\left(w_{1} \otimes \cdots \otimes w_{b}\right)
$$

The coalgebra $(\bar{T}(V), \mathfrak{a})$ is coassociative, locally nilpotent and the projection $p: \bar{T}(V) \rightarrow V$ is a cogenerator: in fact, for every $s>0$,

$$
\mathfrak{a}^{s-1}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s}=n}\left(v_{1} \otimes \cdots \otimes v_{i_{1}}\right) \otimes \cdots \otimes\left(v_{i_{s-1}+1} \otimes \cdots \otimes v_{n}\right)
$$

and then

$$
\operatorname{ker} \mathfrak{a}^{s-1}=\bigoplus_{i=1}^{s-1} V^{\otimes i}, \quad\left(\otimes^{s} p\right) \mathfrak{a}^{s-1}\left(v_{1} \otimes \cdots \otimes v_{s}\right)=v_{1} \otimes \cdots \otimes v_{s}
$$

Exercise 1.3.1. Let $\mu: \bigotimes^{s} \overline{T(V)} \rightarrow \overline{T(V)}$ be the multiplication map. Prove that for every $v_{1}, \ldots, v_{n} \in V$

$$
\mu \mathfrak{a}^{s-1}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\binom{n-1}{s-1} v_{1} \otimes \cdots \otimes v_{n}
$$

For every morphism of graded vector spaces $f: V \rightarrow W$ the induced morphism of graded algebras

$$
T(f): \overline{T(V)} \rightarrow \overline{T(W)}, \quad T(f)\left(v_{1} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1}\right) \otimes \cdots \otimes f\left(v_{n}\right)
$$

is also a morphism of graded coalgebras.
If (C, Δ) is a locally nilpotent graded coalgebra then, for every $c \in C$, there exists $n>0$ such that $\Delta^{n}(c)=0$ and then it is defined a morphism of graded vector spaces

$$
\sum_{n=0}^{\infty} \Delta^{n}: C \rightarrow \bar{T}(C)
$$

Proposition 1.3.2. Let (C, Δ) be a locally nilpotent graded coalgebra, then:
(1) The map $\sum_{n \geq 0} \Delta^{n}: C \rightarrow \bar{T}(C)$ is a morphism of graded coalgebras.
(2) For every graded vector space V and every morphism of graded vector spaces $f: C \rightarrow V$ there exists a unique morphism of graded coalgebras $F: C \rightarrow \bar{T}(V)$ such that $p F=f$. Moreover

$$
F=\sum_{n=1}^{\infty}\left(\otimes^{n} f\right) \Delta^{n-1}: C \rightarrow \bar{T}(C) \rightarrow \bar{T}(V)
$$

Proof. [1] We have

$$
\begin{aligned}
\left(\left(\sum_{n \geq 0} \Delta^{n}\right) \otimes\left(\sum_{n \geq 0} \Delta^{n}\right)\right) \Delta & =\sum_{n \geq 0} \sum_{a=0}^{n}\left(\Delta^{a} \otimes \Delta^{n-a}\right) \Delta \\
& =\sum_{n \geq 0} \sum_{a=0}^{n} \mathfrak{a}_{a+1, n+1-a} \Delta^{n+1}=\mathfrak{a}\left(\sum_{n \geq 0} \Delta^{n}\right)
\end{aligned}
$$

where in the last equality we have used the relation $\mathfrak{a} \Delta^{0}=0$.
[2] The unicity of F is clear since the projection p is a cogenerator. For the existence it is sufficicnt to consider F as the composition of the morphisms of graded coalgebras

$$
\sum_{n \geq 0} \Delta^{n}: C \rightarrow \bar{T}(C), \quad T(f): \bar{T}(C) \rightarrow \bar{T}(V)
$$

Corollary 1.3.3. Let U, V be graded vector spaces. Given a morphism $f: \bar{T}(U) \rightarrow V$ of graded vector spaces, the linear map $F: \bar{T}(U) \rightarrow \bar{T}(V)$:

$$
F\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{s=1}^{n} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s}=n} f\left(v_{1} \otimes \cdots \otimes v_{i_{1}}\right) \otimes \cdots \otimes f\left(v_{i_{s-1}+1} \otimes \cdots \otimes v_{i_{s}}\right)
$$

is the unique morphism of graded coalgebras lifting f.
Example 1.3.4. Let A be an associative graded algebra. Consider the projection $p: \overline{T(A)} \rightarrow A$, the multiplication map $\mu: \overline{T(A)} \rightarrow A$ and its conjugate

$$
\mu^{*}=-\mu T(-1), \quad \mu^{*}\left(a_{1} \otimes \cdots \otimes a_{n}\right)=(-1)^{n-1} \mu\left(a_{1} \otimes \cdots \otimes a_{n}\right)=(-1)^{n-1} a_{1} a_{2} \cdots a_{n}
$$

The two coalgebra morphisms $\overline{T(A)} \rightarrow \overline{T(A)}$ induced by μ and μ^{*} are isomorphisms, the one inverse of the other.
In fact, the coalgebra morphism $F: \overline{T(A)} \rightarrow \overline{T(A)}$

$$
F\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\sum_{s=1}^{n} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s}=n}\left(a_{1} a_{2} \cdots a_{i_{1}}\right) \otimes \cdots \otimes\left(a_{i_{s-1}+1} \cdots a_{i_{s}}\right)
$$

is induced by μ (i.e. $p F=\mu$), $\mu^{*} F(a)=a$ for every $a \in A$ and for every $n \geq 2$

$$
\begin{gathered}
\mu^{*} F\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\sum_{s=1}^{n}(-1)^{s-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s}=n} a_{1} a_{2} \cdots a_{n}= \\
=\sum_{s=1}^{n}(-1)^{s-1}\binom{n-1}{s-1} a_{1} a_{2} \cdots a_{n}=\left(\sum_{s=0}^{n-1}(-1)^{s}\binom{n-1}{s}\right) a_{1} a_{2} \cdots a_{n}=0 .
\end{gathered}
$$

This implies that $\mu^{*} F=p$ and therefore, if $F^{*}: \overline{T(A)} \rightarrow \overline{T(A)}$ is induced by μ^{*} then $p F^{*} F=$ $\mu^{*} F=p$ and then $F^{*} F$ is the identity.
Proposition 1.3.5. Let (C, Δ) be a locally nilpotent graded coalgebra, V a graded vector space and

$$
F=\sum_{n=1}^{\infty}\left(\otimes^{n} f\right) \Delta^{n-1}: C \rightarrow \bar{T}(V)
$$

the morphism of coalgebras lifting $f \in \operatorname{Hom}^{0}(C, V)$. For every $q \in \operatorname{Hom}^{k}(C, V)$, the linear map

$$
Q=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}\left(f^{\otimes i} \otimes q \otimes f^{\otimes n-i}\right) \Delta^{n}: C \rightarrow \bar{T}(V)\right.
$$

is the unique F-coderivation lifting q, i.e. $q=p Q$. In particular the map

$$
\operatorname{Coder}^{*}(C, \bar{T}(V) ; F) \rightarrow \operatorname{Hom}^{*}(C, V), \quad Q \mapsto p Q,
$$

is an isomorphism of vector graded vector spaces.
Proof. The map Q is the composition of the coalgebra morphism $\sum \Delta^{n}: C \rightarrow \overline{T(C)}$ and the map

$$
R: \bar{T}(C) \rightarrow \bar{T}(V), \quad R=\sum_{i, j \geq 0} f^{\otimes i} \otimes q \otimes f^{\otimes j}
$$

It is therefore sufficient to prove that R is a $T(f)$-coderivation, i.e. that satisfies the coLeibniz rule

$$
(R \otimes T(f)+T(f) \otimes R) \mathfrak{a}=\mathfrak{a} R
$$

Denoting $R_{n}=\sum_{i+j=n-1} f^{\otimes i} \otimes q \otimes f^{\otimes j}$ we have, for every a, n

$$
\mathfrak{a}_{a, n-a} R_{n}=\left(R_{a} \otimes f^{\otimes n-a}+f^{\otimes a} \otimes R_{n-a}\right) \mathfrak{a}_{a, n-a}
$$

Taking the sum over $a, n-a$ we get the proof.
Corollary 1.3.6. Let V be a graded vector space. Every $q \in \operatorname{Hom}^{k}(\bar{T}(V), V)$ lifts to a coderivation $Q \in \operatorname{Coder}^{k}(\bar{T}(V), \bar{T}(V))$ given by the explicit formula

$$
\begin{aligned}
& Q\left(a_{1} \otimes \cdots \otimes a_{n}\right)= \\
& =\sum_{i, l}(-1)^{k\left(\overline{a_{1}}+\cdots+\overline{a_{i}}\right)} a_{1} \otimes \cdots \otimes a_{i} \otimes q\left(a_{i+1} \otimes \cdots \otimes a_{i+l}\right) \otimes \cdots \otimes a_{n}
\end{aligned}
$$

Proof. Apply Proposition 1.3 .5 with the map $f=p: \bar{T}(V) \rightarrow V$ equal to the projection (and then $F=\mathrm{Id}$).

Remark 1.3.7. Let Q be the coderivation of $\bar{T}(V)$ lifting a morphism $q \in \operatorname{Hom}^{*}(\bar{T}(V), V)$. It is a immediate consequence of the above corollary that $Q\left(\bigotimes^{n} V\right) \subset \bigoplus_{k=1}^{n} \bigotimes^{k} V$.

Moreover if $q=\left(q_{1}, q_{2}, q_{3}, \ldots\right)$ with $q_{k}: \bigotimes^{k} V \rightarrow V$ and $q_{k}=0$ for every $k \leq r$, then $Q\left(\bigotimes^{n} V\right) \subset \bigoplus_{k=1}^{n-r} \bigotimes^{k} V$.

Definition 1.3.8. Given a graded vector space V the Gerstenhaber product

$$
\operatorname{Hom}_{\mathbb{K}}^{*}(\bar{T}(V), V) \times \operatorname{Hom}_{\mathbb{K}}^{*}(\bar{T}(V), V) \rightarrow \operatorname{Hom}_{\mathbb{K}}^{*}(\bar{T}(V), V), \quad(f, g) \mapsto f \circ g,
$$

is defined as $f \circ g=f G$, where $G \in \operatorname{Coder}^{*}(\bar{T}(V), \bar{T}(V))$ is the unique coderivation lifting g.
The Gerstenhaber bracket is defined as

$$
[f, g]=f \circ g-(-1)^{\bar{f} \bar{g}} g \circ f, \quad f, g \in \operatorname{Hom}_{\mathbb{K}}^{*}(\bar{T}(V), V) .
$$

Notice that if $F \in \operatorname{Coder}^{*}(\bar{T}(V), \bar{T}(V))$ is the coderivation lifting f, then $p F G=f \circ g$, $p g F=g \circ f$ and then $p[F, G]=[f, g]$. Therefore the isomorphism $\operatorname{Coder}^{*}(\bar{T}(V), \bar{T}(V)) \simeq$ $\operatorname{Hom}_{\mathbb{K}}^{*}(\bar{T}(V), V)$ commutes with brackets and then the Gerstenhaber bracket gives a structure of graded Lie algebra.

Given $f \in \operatorname{Hom}_{\mathbb{K}}^{a}\left(V^{\otimes n+1}, V\right)$ and $g \in \operatorname{Hom}_{\mathbb{K}}^{b}\left(V^{\otimes m+1}, V\right)$, considered as elements of $\operatorname{Hom}_{\mathbb{K}}^{*}(\bar{T}(V), V)$ via the natural inclusion $V^{\otimes n} \subset \bar{T}(V)$ and $V^{\otimes m} \subset \bar{T}(V)$ we have $f \circ g \in \operatorname{Hom}_{\mathbb{K}}^{a+b}\left(V^{\otimes n+m}, V\right)$,
$f \circ g\left(v_{0} \otimes \cdots \otimes v_{n+m}\right)=\sum_{i=0}^{n}(-1)^{b\left(\overline{v_{0}}+\cdots+\overline{v_{i-1}}\right)} f\left(v_{1} \otimes \cdots \otimes v_{i-1} \otimes g\left(v_{i} \otimes \cdots \otimes v_{i+m}\right) \otimes \cdots \otimes v_{n+m}\right)$.

1.4. Symmetrization and unshuffles

Given a graded vector space V, the twist map extends naturally, for every $n \geq 0$, to an action of the symmetric group Σ_{n} on the graded vector space $\bigotimes^{n} V$. More explicitely, for v_{1}, \ldots, v_{n} homogeneous vectors and $\sigma \in \Sigma_{n}$ we have:

$$
\sigma_{\mathrm{tw}}\left(v_{1} \otimes \cdots \otimes v_{n}\right)= \pm\left(v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(n)}\right)
$$

where the sign is the signature of the restriction of σ to the subset of indices i such that v_{i} has odd degree.

Definition 1.4.1. The Koszul $\operatorname{sign} \epsilon\left(V, \sigma ; v_{1}, \ldots, v_{n}\right)= \pm 1$ is defined by the relation

$$
\sigma_{\mathrm{tw}}^{-1}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\epsilon\left(V, \sigma ; v_{1}, \ldots, v_{n}\right)\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right)
$$

For notational simplicity we shall write $\epsilon\left(\sigma ; v_{1}, \ldots, v_{n}\right)$ or $\epsilon(\sigma)$ when there is no possible confusion about V and v_{1}, \ldots, v_{n}.

Remark 1.4.2. The twist action on $\bigotimes^{n}\left(\operatorname{Hom}^{*}(V, W)\right)$ is compatible with the conjugate of the twist action on $\operatorname{Hom}^{*}\left(V^{\otimes n}, W^{\otimes n}\right)$. This means that

$$
\sigma_{\mathrm{tw}}\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sigma_{\mathrm{tw}} \circ\left(f_{1} \otimes \cdots \otimes f_{n}\right) \circ \sigma_{\mathrm{tw}}^{-1}
$$

where \circ is the composition product.
Definition 1.4.3. The symmetric powers of a graded vector space V are defined as

$$
\bigodot^{n} V=\frac{\bigotimes^{n} V}{I}
$$

where I is the subspace generated by all the vectors $v-\sigma_{\mathrm{tw}}(v), \sigma \in \Sigma_{n}, v \in \bigotimes^{n} V$. We will denote by $\pi: ~ \bigotimes{ }^{n} V \rightarrow \bigodot^{n} V$ the natural projection and

$$
v_{1} \odot \cdots \odot v_{n}=\pi\left(v_{1} \otimes \cdots \otimes v_{n}\right)
$$

Definition 1.4.4. Denote by $N: \bigodot^{n} V \rightarrow \bigotimes^{n} V$ the map (see next Lemma 1.4.5):

$$
\begin{aligned}
N\left(v_{1} \odot \cdots \odot v_{n}\right) & =\sum_{\sigma \in \Sigma_{n}} \epsilon\left(\sigma ; v_{1}, \ldots, v_{n}\right)\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right) \\
& =\sum_{\sigma \in \Sigma_{n}} \sigma_{\mathrm{tw}}\left(v_{1} \otimes \cdots \otimes v_{n}\right), \quad v_{1}, \ldots, v_{n} \in V .
\end{aligned}
$$

Lemma 1.4.5. The map N is well defined, it is injective and its image is the subspace $\left(\otimes^{n} V\right)^{\Sigma_{n}}$ of twist-invariant tensors.

Proof. Consider the map $N^{\prime}: \bigotimes^{n} V \rightarrow \bigotimes^{n} V$:

$$
N^{\prime}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{\sigma \in \Sigma_{n}} \sigma_{\mathrm{tw}}\left(v_{1} \otimes \cdots \otimes v_{n}\right), \quad v_{1}, \ldots, v_{n} \in V
$$

It is clear that

$$
\frac{1}{n!} N^{\prime}: \bigotimes{ }^{n} V \rightarrow\left(\bigotimes^{n} V\right)^{\Sigma_{n}}
$$

is a projection and then

$$
\bigotimes^{n} V=\left(\bigotimes^{n} V\right)^{\Sigma_{n}} \oplus \operatorname{ker}\left(N^{\prime}\right)
$$

Denote as above by I the subspace generated by all the vectors $v-\sigma_{\mathrm{tw}}(v), \sigma \in \Sigma_{n}, v \in \bigotimes^{n} V$. Since $N^{\prime}(v)=N^{\prime}\left(\sigma_{\mathrm{tw}} v\right)$ we have $I \subset \operatorname{ker}\left(N^{\prime}\right)$. For every $v \in \bigotimes^{n} V$ we can write

$$
v=\frac{N^{\prime}}{n!} v+\left(v-\frac{N^{\prime}}{n!} v\right)=\frac{N^{\prime}}{n!} v+\frac{1}{n!} \sum_{\sigma \in \Sigma_{n}}\left(v-\sigma_{\mathrm{tw}} v\right)
$$

This shows that $\operatorname{Im}\left(N^{\prime}\right)+I=\bigotimes^{n} V$ and this implies that ker $N^{\prime}=I$ and $N^{\prime}=N \pi$.
Lemma 1.4.6. Let (C, Δ) be a graded cocommutative coalgebra. Then the image of Δ^{n-1} is contained in the set of Σ_{n}-invariant elements of $\bigotimes^{n} C$ and therefore

$$
\Delta^{n-1}=N \frac{\pi}{n!} \Delta^{n-1}
$$

Proof. The twist action of Σ_{n} on $\otimes^{n} C$ is generated by the operators $\mathrm{tw}_{a}=\operatorname{Id}_{\otimes^{a} C} \otimes \mathrm{tw} \otimes$ $\mathrm{Id}_{\otimes^{n-a-2} C}, 0 \leq a \leq n-2$; since tw $\circ \Delta=\Delta$, according to Lemma 1.1 .9 we have:

$$
\begin{aligned}
\mathrm{tw}_{a} \Delta^{n-1}= & \mathrm{tw}_{a}\left(\operatorname{Id}_{\otimes^{a} C} \otimes \Delta \otimes \operatorname{Id}_{\otimes^{n-a-2} C}\right) \Delta^{n-2} \\
& =\left(\operatorname{Id}_{\otimes^{a} C} \otimes \Delta \otimes \operatorname{Id}_{\otimes^{n-a-2} C}\right) \Delta^{n-2}=\Delta^{n-1} .
\end{aligned}
$$

Definition 1.4.7. The set of unshuffles of type (p, q) is the subset $S(p, q) \subset \Sigma_{p+q}$ of permutations σ such that $\sigma(i)<\sigma(i+1)$ for every $i \neq p$. Equivalently

$$
S(p, q)=\left\{\sigma \in \Sigma_{p+q} \mid \sigma(1)<\sigma(2)<\ldots<\sigma(p), \quad \sigma(p+1)<\sigma(p+2)<\ldots<\sigma(p+q)\right\}
$$

The unshuffles are a set of representatives for the left cosets of the canonical embedding of $\Sigma_{p} \times \Sigma_{q}$ inside Σ_{p+q}. More precisely for every $\eta \in \Sigma_{p+q}$ there exists a unique decomposition $\eta=\sigma \tau$ with $\sigma \in S(p, q)$ and $\tau \in \Sigma_{p} \times \Sigma_{q}$.

Lemma 1.4.8. For every $v_{1}, \ldots, v_{n} \in V$ and every $a=0, \ldots, n$ we have

$$
N\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{\sigma \in S(a, n-a)} \epsilon(\sigma) N\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}\right) \otimes N\left(v_{\sigma(a+1)} \odot \cdots \odot v_{\sigma(n)}\right)
$$

Proof.

$$
\begin{aligned}
N\left(v_{1} \odot \cdots \odot v_{n}\right)= & \sum_{\eta \in \Sigma_{n}} \eta_{\mathrm{tw}}^{-1}\left(v_{1} \otimes \cdots \otimes v_{n}\right) \\
& =\sum_{\sigma \in S(a, n-a)} \sum_{\tau \in \Sigma_{a} \times \Sigma_{n-a}} \tau_{\mathrm{tw}}^{-1} \sigma_{\mathrm{tw}}^{-1}\left(v_{1} \otimes \cdots \otimes v_{n}\right) \\
= & \sum_{\sigma \in S(a, n-a)} \epsilon(\sigma) \sum_{\tau \in \Sigma_{a} \times \Sigma_{n-a}} \tau_{\mathrm{tw}}^{-1}\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right) \\
& =\sum_{\sigma \in S(a, n-a)} \epsilon(\sigma) N\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}\right) \otimes N\left(v_{\sigma(a+1)} \odot \cdots \odot v_{\sigma(n)}\right) .
\end{aligned}
$$

Consider now two graded vector spaces V, M, a positive integer l and two maps

$$
f \in \operatorname{Hom}^{0}(V, M), \quad b \in \operatorname{Hom}^{k}\left(V^{\otimes l}, M\right)
$$

Denoting by $q=b N \in \operatorname{Hom}^{k}\left(V^{\odot l}, M\right)$, for every integer $n \geq l$ define the maps

$$
B \in \operatorname{Hom}^{k}\left(V^{\otimes n}, M^{\otimes n-l+1}\right), \quad Q \in \operatorname{Hom}^{k}\left(V^{\odot n}, M^{\odot n-l+1}\right)
$$

by the formulas:

$$
\begin{aligned}
& B\left(v_{1} \otimes \cdots \otimes v_{n}\right)= \\
& \quad=\sum_{i=0}^{n-l}(-1)^{k\left(\overline{v_{1}}+\cdots+\overline{v_{i}}\right)} f\left(v_{1}\right) \otimes \cdots \otimes f\left(v_{i}\right) \otimes b\left(v_{i+1} \otimes \cdots \otimes v_{i+l}\right) \otimes f\left(v_{i+l+1}\right) \otimes \cdots \otimes f\left(v_{n}\right) . \\
& \quad Q\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{\sigma \in S(l, n-l)} \epsilon(\sigma) q\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(l)}\right) \odot f\left(v_{\sigma(l+1)}\right) \odot \cdots \odot f\left(v_{\sigma(n)}\right) .
\end{aligned}
$$

Lemma 1.4.9. In the notation above we have

$$
B N=N Q \in \operatorname{Hom}^{k}\left(V^{\odot n}, M^{\otimes n-l+1}\right)
$$

Proof. Easy and left to the reaader.

1.5. The reduced symmetric coalgebra

For every graded vector space V we will denote $\bar{S}(V)=\bigoplus_{n>0} \bigodot^{n} V$, while $\pi: \bar{T}(V) \rightarrow$ $\bar{S}(V)$ is the projection to the quotient and $N: \bar{S}(V) \rightarrow \bar{T}(V)$ is the direct sum of the maps of Definition 1.4.4.
Lemma 1.5.1. The map $\mathfrak{l}: \overline{S(V)} \rightarrow \overline{S(V)} \otimes \overline{S(V)}$,

$$
\mathfrak{l}\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{a=1}^{n-1} \sum_{\sigma \in S(a, n-a)} \epsilon(\sigma)\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}\right) \otimes\left(v_{\sigma(a+1)} \odot \cdots \odot v_{\sigma(n)}\right)
$$

is a cocommutative coproduct and the map

$$
N:(\overline{S(V)}, \mathfrak{l}) \rightarrow(\overline{T(V)}, \mathfrak{a})
$$

is an injective morphism of coalgebras.
Proof. The cocommutativity of \mathfrak{l} is clear from definition. Since N is injective, we only need to prove that $\mathfrak{a} N=(N \otimes N) \mathfrak{l}$. According to Lemma 1.4.8, for every a

$$
\mathfrak{a}_{a, n-a} N\left(v_{1} \odot \cdots \odot v_{n}\right)=N \otimes N \sum_{\sigma \in S(a, n-a)} \epsilon(\sigma)\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}\right) \otimes\left(v_{\sigma(a+1)} \otimes \cdots \otimes v_{\sigma(n)}\right)
$$

and then

$$
\mathfrak{a} N\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{a=1}^{n-1} \mathfrak{a}_{a, n-a} N\left(v_{1} \odot \cdots \odot v_{n}\right)=N \otimes N \mathfrak{l}\left(v_{1} \odot \cdots \odot v_{n}\right)
$$

$\underline{\text { Definition 1.5.2. The reduced symmetric coalgebra generated by } V \text { is the graded vector space }}$ $\bar{S}(V)$ with the coproduct \mathfrak{l} defined in Lemma 1.5.1

$$
\mathfrak{l}\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{a=1}^{n-1} \sum_{\sigma \in S(a, n-a)} \epsilon(\sigma)\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}\right) \otimes\left(v_{\sigma(a+1)} \odot \cdots \odot v_{\sigma(n)}\right)
$$

It is often convenient to think the reduced symmetric coalgebra as a subset of the tensor coalgebra, via the identification provided by N. In particular $\bar{S}(V)$ is locally nilpotent and the projection $p: \bar{S}(V) \rightarrow V$ with kernel $\oplus_{n>1} V^{\odot n}$ is a cogenerator.

Moreover, since N is an injective morphism of coalgebras we have

$$
\operatorname{ker} r^{n}=N^{-1}\left(\operatorname{ker} \mathfrak{a}^{n}\right)=N^{-1}\left(\oplus_{i=1}^{n} V^{\otimes i}\right)=\oplus_{i=1}^{n} V^{\odot i}
$$

For every morphism of graded vector spaces $f: V \rightarrow W$ we have

$$
N \circ S(f)=T(f) \circ N: S(V) \rightarrow T(W)
$$

and then $S(f): \overline{S(V)} \rightarrow \overline{S(W)}$ is a morphism of graded coalgebras.
Proposition 1.5.3. Let (C, Δ) be a locally nilpotent graded cocommutative coalgebra, then:
(1) The map

$$
\sum_{n>0} \frac{\pi}{n!} \Delta^{n-1}: C \rightarrow \bar{S}(C)
$$

is a morphism of graded coalgebras.
(2) For every graded vector space V and every morphism of graded vector spaces $f: C \rightarrow V$ there exists a unique morphism of graded coalgebras $F: C \rightarrow \bar{S}(V)$ such that $p F=f$. Moreover

$$
F=\sum_{n=1}^{\infty} \frac{\pi}{n!}\left(\otimes^{n} f\right) \Delta^{n-1}: C \rightarrow \bar{S}(C) \rightarrow \bar{S}(V)
$$

Proof. According to Lemma 1.4.6 we have

$$
\sum_{n>0} \Delta^{n-1}=N\left(\sum_{n>0} \frac{\pi}{n!} \Delta^{n-1}\right)
$$

and the the first item is an immediate consequence of the fact that N is an injective morphism of graded coalgebras. Similarly for every morphism of graded vector spaces $f: C \rightarrow V$ we have

$$
\sum_{n>0}\left(\otimes^{n} f\right) \Delta^{n-1}=N\left(\sum_{n>0} \frac{\pi}{n!}\left(\otimes^{n} f\right) \Delta^{n-1}\right)
$$

Proposition 1.5.4. Let V be a graded vector space and C a locally nilpotent cocommutative coalgebra. Then for every coalgebra morphism $F: C \rightarrow \bar{S}(V)$ and every integer k, the composition with $N: \bar{S}(V) \rightarrow \bar{T}(V)$ gives an isomorphism

$$
\operatorname{Coder}^{k}(C, \bar{S}(V) ; F) \simeq \operatorname{Coder}^{k}(C, \bar{T}(V) ; N F)
$$

Proof. We need to prove that if $B: C \rightarrow \bar{T}(V)$ is a coderivation with respect to the morphism $N F$, then $B=N P$ for some $P: C \rightarrow \bar{S}(V)$. According to Proposition 1.3.5 we have

$$
B=\sum_{n=0}^{\infty} \sum_{i=0}^{n}\left(f^{\otimes i} \otimes b \otimes f^{\otimes n-i}\right) \Delta^{n}: C \rightarrow \bar{T}(V)
$$

where $f=p N F=p F$ and $b \in \operatorname{Hom}^{k}(C, V)$. According to Lemmas 1.4.6 and 1.4.9 the image of B is contained in the image of N.
Corollary 1.5.5. Let V be a graded vector space. Then for every integer k, the composition with $p: \bar{S}(V) \rightarrow V$ gives an isomorphism of vector spaces

$$
\operatorname{Coder}^{k}(\bar{S}(V), \bar{S}(V)) \rightarrow \prod_{i=1}^{+\infty} \operatorname{Hom}^{k}\left(V^{\odot i}, V\right)
$$

More explicitely, for every sequence $q_{i} \in \operatorname{Hom}^{n}\left(V^{\odot k}, V\right), i>0$, the map $Q \in \operatorname{Hom}_{\mathbb{K}}^{n}(\bar{S}(V), \bar{S}(V))$ defined as

$$
Q\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{i=1}^{n} \sum_{\sigma \in S(i, n-i)} \epsilon(\sigma) q_{i}\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(k)}\right) \odot v_{\sigma(k+1)} \odot \cdots \odot v_{\sigma(n)},
$$

is the unique coderivation of $\bar{S}(V)$ such that $p Q=\sum_{i} q_{i}$.
Proof. We only need to prove that the map Q is a coderivation. By linearity it is not restrictive to assume that $q_{i}=0$ for every $i \neq l$. Let $b \in \operatorname{Hom}^{n}\left(\bigotimes^{l} V, V\right)$ be any map such that $b N=q_{l}$ (e.g. $b=\pi q_{l} / n!$) and let $B \in \operatorname{Coder}^{n}(\bar{T}(V), \bar{T}(V))$ be the coderivation such that $p B=b$. According to Corollary 1.3.6

$$
B\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{i}(-1)^{k\left(\overline{v_{1}}+\cdots+\overline{v_{i}}\right)} v_{1} \otimes \cdots \otimes v_{i} \otimes b\left(v_{i+1} \otimes \cdots \otimes v_{i+l}\right) \otimes \cdots \otimes v_{n}
$$

and then Lemma 1.4.9 gives $R N=N Q$.
Remark 1.5.6. The above results show in particular that:
(1) if $F: \bar{S}(V) \rightarrow \bar{S}(W)$ is a morphism of graded coalgebras, then $F\left(V^{\odot n}\right) \subset \sum_{i \leq n} W^{\odot i}$;
(2) if $Q: \bar{S}(V) \rightarrow \bar{S}(V)$ is a coderivation, then $Q\left(V^{\odot n}\right) \subset \sum_{i \leq n} V^{\odot i}$.

Definition 1.5.7. Given a graded vector space V the symmetric Gerstenhaber product

$$
\operatorname{Hom}_{\mathbb{K}}^{*}(\bar{S}(V), V) \times \operatorname{Hom}_{\mathbb{K}}^{*}(\bar{S}(V), V) \rightarrow \operatorname{Hom}_{\mathbb{K}}^{*}(\bar{S}(V), V), \quad(f, g) \mapsto f \circ g,
$$

is defined as $f \circ g=f G$, where $G \in \operatorname{Coder}^{*}(\bar{S}(V), \bar{S}(V))$ is the unique coderivation lifting g.
The symmetric Gerstenhaber bracket is defined as

$$
[f, g]=f \circ g-(-1)^{\bar{f} \bar{g}} g \circ f, \quad f, g \in \operatorname{Hom}_{\mathbb{K}}^{*}(\bar{S}(V), V)
$$

Given $f \in \operatorname{Hom}_{\mathbb{K}}^{a}\left(V^{\odot n+1}, V\right)$ and $g \in \operatorname{Hom}_{\mathbb{K}}^{b}\left(V^{\odot m+1}, V\right)$ we have $f \circ g \in \operatorname{Hom}_{\mathbb{K}}^{a+b}\left(V^{\odot n+m+1}, V\right)$,

$$
f \circ g\left(v_{0} \odot \cdots \odot v_{n+m}\right)=\sum_{\sigma \in S(m+1, n)} \epsilon(\sigma) f\left(g\left(v_{\sigma(0)} \odot \cdots \odot v_{\sigma(m)}\right) \odot v_{\sigma(m+1)} \odot \cdots \odot v_{\sigma(m+n)}\right) .
$$

1.6. Exercises

Exercise 1.6.1. A counity of a graded coalgebra (C, Δ) is a morphism of graded vector spaces $\epsilon: C \rightarrow \mathbb{K}$ such that $\left(\epsilon \otimes \operatorname{Id}_{C}\right) \Delta=\left(\operatorname{Id}_{C} \otimes \epsilon\right) \Delta=\operatorname{Id}_{C}$. Prove that if a counity exists, then it is unique (Hint: $\left(\epsilon \otimes \epsilon^{\prime}\right) \Delta=$?).
Exercise 1.6.2. Let (C, Δ) be a graded coalgebra. A graded subspace $I \subset C$ is called a coideal if $\Delta(I) \subset C \otimes I+I \otimes C$. Prove that a subspace is a coideal if and only if is the kernel of a morphism of coalgebras.

Exercise 1.6.3. Let (C, Δ) be a graded coalgebra. Prove that for every $a, b \geq 0$

$$
\Delta^{a}\left(\operatorname{ker} \Delta^{a+b}\right) \subset \bigotimes^{a+1}\left(\operatorname{ker} \Delta^{b}\right)
$$

Exercise 1.6.4. Let C be a graded coalgebra and $d \in \operatorname{Coder}^{1}(C, C)$ a codifferential of degree 1. Prove that the triple $(L, \delta,[]$,$) , where:$

$$
L=\oplus_{n \in \mathbb{Z}} \operatorname{Coder}^{n}(C, C), \quad[f, g]=f g-(-1)^{\bar{g} \bar{f}} g f, \quad \delta(f)=[d, f]
$$

is a differential graded Lie algebra.
Exercise 1.6.5. Let $p: T(V) \rightarrow \overline{T(V)}$ be the projection with kernel $\mathbb{K}=\bigotimes^{0} V$ and $\phi: T(V) \rightarrow$ $T(V) \otimes T(V)$ the unique homomorphism of graded algebras such that $\phi(v)=v \otimes 1+1 \otimes v$ for every $v \in V$. Prove that $p \phi=\mathfrak{a} p$.
Exercise 1.6.6. Let A be an associative graded algebra over the field \mathbb{K}. For every local homomorphism of \mathbb{K}-algebras $\gamma: \mathbb{K}[[x]] \rightarrow \mathbb{K}[[x]], \gamma(x)=\sum \gamma_{n} x^{n}$, let $F_{\gamma}: \bar{T}(A) \rightarrow \bar{T}(A)$ be the unique morphism of graded coalgebras lifting the map

$$
f_{\gamma}: \bar{T}(A) \rightarrow A, \quad f\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\gamma_{n} a_{1} \cdots a_{n}
$$

Prove the validity of the composition formula $F_{\gamma \delta}=F_{\delta} F_{\gamma}$. (Hint: Example 1.1.7.)
Exercise 1.6.7. Prove that a graded coalgebra morphism $F: \bar{S}(U) \rightarrow \bar{S}(V)$ is surjective (resp.: injective, bijective) if and only if the composition $U \xrightarrow{\imath} \bar{S}(U) \xrightarrow{F} \bar{S}(V) \xrightarrow{p} V$ is surjective (resp.: injective, bijective). (Hint: F preserves the filtrations of kernels of iterated coproducts.)
Exercise 1.6.8. Assume V finite dimensional with basis $\partial_{1}, \ldots, \partial_{m}$ of degree 0. Prove that

$$
\mathfrak{l}\left(\partial_{1}^{n_{1}} \cdots \partial_{m}^{n_{m}}\right)=\sum_{a_{1}, \ldots, a_{m}}\binom{n_{1}}{a_{1}} \cdots\binom{n_{m}}{a_{m}} \partial_{1}^{a_{1}} \cdots \partial_{m}^{a_{m}} \otimes \partial_{1}^{n_{1}-a_{1}} \cdots \partial_{m}^{n_{m}-a_{m}}
$$

and deduce that the dual algebra $\overline{S(V)}^{\vee}$ is isomorphic to the maximal ideal of the power series ring $\mathbb{K}\left[\left[x_{1}, \ldots, x_{m}\right]\right]$, with pairing

$$
\left\langle\partial_{1}^{n_{1}} \cdots \partial_{m}^{n_{m}}, f(x)\right\rangle=\frac{\partial^{n_{1}+\cdots+n_{m}} f}{\partial x_{1}^{n_{1}} \cdots \partial x_{m}^{n_{m}}}(0)=\left(\prod_{i} n_{i}!\right) \cdot\left(\text { coefficient of } x_{1}^{n_{1}} \cdots x_{m}^{n_{m}} \text { in } f(x)\right)
$$

[^0]: In general the dual of an algebra is not a coalgebra (with some exceptions, see e.g. ExamI. ple 1.1.16). Heuristically, this asymmetry comes from the fact that, for an infinite dimensional vector space V, there exist a natural map $V^{\vee} \otimes V^{\vee} \rightarrow(V \otimes V)^{\vee}$, while does not exist any natural map $(V \otimes V)^{\vee} \rightarrow V^{\vee} \otimes V^{\vee}$.

