CHAPTER 1

Differential graded coalgebras

1.1. Graded coalgebras

Definition 1.1.1. A (coassociative) graded coalgebra is the data of a graded vector space $C = \bigoplus_{n \in \mathbb{Z}} C^n$ and of a morphism of graded vector spaces $\Delta \colon C \to C \otimes C$, called coproduct, whic satisfies the coassociativity equation:

$$(\Delta \otimes \mathrm{Id}_C)\Delta = (\mathrm{Id}_C \otimes \Delta)\Delta \colon C \to C \otimes C \otimes C$$

Definition 1.1.2. Let (C, Δ) and (B, Γ) be graded coalgebras. A morphism of graded coalgebras $f: C \to B$ is a morphism of graded vector spaces that commutes with coproducts, i.e.

$$\Gamma f = (f \otimes f) \Delta \colon C \to B \otimes B.$$

Example 1.1.3. Let $C = \mathbb{K}[t]$ be the polynomial ring in one variable t (of degree 0). The linear map

$$\Delta \colon \mathbb{K}\left[t\right] \to \mathbb{K}\left[t\right] \otimes \mathbb{K}\left[t\right], \qquad \Delta(t^n) = \sum_{i=0}^n t^i \otimes t^{n-i},$$

gives a coalgebra structure (exercise: check coassociativity).

For every sequence $f_n \in \mathbb{K}$, n > 0, it is associated a morphism of coalgebras $f : C \to C$ defined as

$$f(1) = 1, \qquad f(t^n) = \sum_{s=1}^n \sum_{\substack{(i_1, \dots, i_s) \in \mathbb{N}^s \\ i_1 + \dots + i_s = n}} f_{i_1} f_{i_2} \cdots f_{i_s} t^s.$$

The verification that $\Delta f = (f \otimes f)\Delta$ can be done in the following way: Let $\{x^n\} \subset C^{\vee} = \mathbb{K}[[x]]$ be the dual basis of $\{t^n\}$. Then for every $a, b, n \in N$ we have:

$$\langle x^a \otimes x^b, \Delta f(t^n) \rangle = \sum_{i_1 + \dots + i_a + j_1 + \dots + j_b = n} f_{i_1} \cdots f_{i_a} f_{j_1} \cdots f_{j_b},$$
$$\langle x^a \otimes x^b, f \otimes f \Delta(t^n) \rangle = \sum_s \sum_{i_1 + \dots + i_a = s} \sum_{j_1 + \dots + j_b = n - s} f_{i_1} \cdots f_{i_a} f_{j_1} \cdots f_{j_b}.$$

Note that the sequence $\{f_n\}, n \ge 1$, can be recovered from f by the formula $f_n = \langle x, f(t^n) \rangle$.

Definition 1.1.4. A graded coalgebra (C, Δ) is called **cocommutative** if $tw \circ \Delta = \Delta$, where $tw: C \otimes C \to C \otimes C$ is the twist map.

Example 1.1.5. The polynomial coalgebra of Example 1.1.3 is cocommutative.

Example 1.1.6. Let C be a graded coalgebra with coproduct $\Delta: C \to C \otimes C$. Then the **convolution product** defined as

$$\operatorname{Hom}_{\mathbb{K}}^{*}(C,\mathbb{K})\times\operatorname{Hom}_{\mathbb{K}}^{*}(C,\mathbb{K})\to\operatorname{Hom}_{\mathbb{K}}^{*}(C,\mathbb{K}),\qquad(f,g)\mapsto\mu(f\otimes g)\Delta$$

where $\mu \colon \mathbb{K} \times \mathbb{K} \to \mathbb{K}$ is the product, is an associative product. Thus the dual of a coalgebra is an algebra.

In general the dual of an algebra is not a coalgebra (with some exceptions, see e.g. Example 1.1.16). Heuristically, this asymmetry comes from the fact that, for an infinite dimensional vector space V, there exist a natural map $V^{\vee} \otimes V^{\vee} \to (V \otimes V)^{\vee}$, while does not exist any natural map $(V \otimes V)^{\vee} \to V^{\vee} \otimes V^{\vee}$.

Example 1.1.7. The dual of the coalgebra $C = \mathbb{K}[t]$ (Example ??) is exactly the algebra of formal power series $A = \mathbb{K}[[x]] = C^{\vee}$. Every coalgebra morphism $f: C \to C$ induces a local homomorphism of \mathbb{K} -algebras $f^t: A \to A$. The morphism f^t is uniquely determined by the power series $f^t(x) = \sum_{n>0} f_n x^n$ and then every morphism of coalgebras $f: C \to C$ is uniquely determined by the sequence $f_n = \langle f^t(x), t^n \rangle = \langle x, f(t^n) \rangle$.

The map $f \mapsto f^t$ is functorial and then preserves the composition laws.

Definition 1.1.8. Let (C, Δ) be a graded coalgebra; the iterated coproducts $\Delta^n : C \to C^{\otimes n+1}$ are defined recursively for $n \ge 0$ by the formulas

$$\Delta^0 = \mathrm{Id}_C, \qquad \Delta^n \colon C \xrightarrow{\Delta} C \otimes C \xrightarrow{\mathrm{Id}_C \otimes \Delta^{n-1}} C \otimes C^{\otimes n} = C^{\otimes n+1}.$$

Lemma 1.1.9. Let (C, Δ) be a graded coalgebra. Then:

(1) For every $0 \le a \le n-1$ we have

$$\Delta^n = (\Delta^a \otimes \Delta^{n-1-a}) \Delta \colon C \to \bigotimes^{n+1} C.$$

(2) For every $s \ge 1$ and every $a_0, \ldots, a_s \ge 0$ we have

$$(\Delta^{a_0} \otimes \Delta^{a_1} \otimes \cdots \otimes \Delta^{a_s}) \Delta^s = \Delta^{s + \sum a_i}$$

(3) If $f: (C, \Delta) \to (B, \Gamma)$ is a morphism of graded coalgebras then, for every $n \ge 1$ we have $\Gamma^n f = (\otimes^{n+1} f) \Delta^n : C \to \bigotimes^{n+1} B.$

PROOF. [1] If a = 0 or n = 1 there is nothing to prove, thus we can assume a > 0 and use induction on n. we have:

$$(\Delta^{a} \otimes \Delta^{n-1-a})\Delta = ((\mathrm{Id}_{C} \otimes \Delta^{a-1})\Delta \otimes \Delta^{n-1-a})\Delta =$$
$$= (\mathrm{Id}_{C} \otimes \Delta^{a-1} \otimes \Delta^{n-1-a})(\Delta \otimes \mathrm{Id}_{C})\Delta =$$
$$(\mathrm{Id}_{C} \otimes \Delta^{a-1} \otimes \Delta^{n-1-a})(\Delta \otimes \mathrm{Id}_{C})\Delta =$$

 $= (\mathrm{Id}_C \otimes \Delta^{a-1} \otimes \Delta^{n-1-a}) (\mathrm{Id}_C \otimes \Delta) \Delta = (\mathrm{Id}_C \otimes (\Delta^{a-1} \otimes \Delta^{n-1-a}) \Delta) \Delta = \Delta^n.$

[2] Induction on s, being the case s=1 proved in item 1. If $s\geq 2$ we can write

$$(\Delta^{a_0} \otimes \Delta^{a_1} \otimes \cdots \otimes \Delta^{a_s}) \Delta^s = (\Delta^{a_0} \otimes \Delta^{a_1} \otimes \cdots \otimes \Delta^{a_s}) (\mathrm{Id}_C \otimes \Delta^{s-1}) \Delta =$$

$$(\Delta^{a_0} \otimes (\Delta^{a_1} \otimes \cdots \otimes \Delta^{a_s}) \Delta^{s-1}) \Delta = (\Delta^{a_0} \otimes \Delta^{s-1+\sum_{i>0} a_i}) \Delta = \Delta^{s+\sum a_i}.$$

[3] By induction on n,

$$\Gamma^n f = (\mathrm{Id}_B \otimes \Gamma^{n-1})\Gamma f = (f \otimes \Gamma^{n-1} f)\Delta = (f \otimes (\otimes^n f)\Delta^{n-1})\Delta = (\otimes^{n+1} f)\Delta^n.$$

Lemma 1.1.10. Let (C, Δ) be a graded coalgebra. Then for every $n \ge 0$ we have

 $\ker \Delta^{n+1} = \{ x \in C \mid \Delta(x) \in (\ker \Delta^n) \otimes (\ker \Delta^n) \}.$

 $\ensuremath{\mathsf{PROOF}}$. The formula

$$\Delta^{n+1} = (\Delta^n \otimes \mathrm{Id})\Delta = (\mathrm{Id} \otimes \Delta^n)\Delta.$$

implies the inclusion \supset . Conversely, notice that $\Delta(x) = 0$ if and only if every homogeneous component of x belongs to ker Δ^{n+1} Let $x \in \ker \Delta^{n+1}$ homogeneous and write $\Delta(x) = \sum_{i=1}^{r} x_i \otimes y_i$ with r minimum. Then the vectors x_i are linearly independent and the same holds for the vectors y_i . The conclusion is now immediate fro the above formula.

Definition 1.1.11. Let (C, Δ) be a graded coalgebra. A morphism of graded vector spaces $p: C \to V$ is called a **cogenerator** of C if for every $c \in C$ there exists $n \geq 0$ such that $(\otimes^{n+1}p)\Delta^n(c) \neq 0$ in $\bigotimes^{n+1}V$. Equivalently, $p: C \to V$ is a cogenerator of C is the map

$$C \to \prod_{n \ge 0} \bigotimes^{n+1} V, \qquad c \mapsto (c, \Delta c, \Delta^2 c, \ldots),$$

is injective.

Example 1.1.12. In the notation of Example 1.1.3, the natural projection $\mathbb{K}[t] \to \mathbb{K} \oplus \mathbb{K}t$ is a cogenerator.

Proposition 1.1.13. Let $p: B \to V$ be a cogenerator of a graded coalgebra (B, Γ) . Then every morphism of graded coalgebras $\phi: (C, \Delta) \to (B, \Gamma)$ is uniquely determined by its composition $p\phi: C \to V$.

PROOF. Let $\phi, \psi \colon (C, \Delta) \to (B, \Gamma)$ be two morphisms of graded coalgebras such that $p\phi = p\psi$. In order to prove that $\phi = \psi$ it is sufficient to show that for every $c \in C$ and every $n \ge 0$ we have

$$(\otimes^{n+1}p)\Gamma^n(\phi(c)) = (\otimes^{n+1}p)\Gamma^n(\psi(c))$$

By Lemma 1.1.9 we have $\Gamma^n \phi = (\otimes^{n+1} \phi) \Delta^n$ and $\Gamma^n \psi = (\otimes^{n+1} \psi) \Delta^n$. Therefore

$$(\otimes^{n+1}p)\Gamma^n\phi = (\otimes^{n+1}p)(\otimes^{n+1}\phi)\Delta^n = (\otimes^{n+1}p\phi)\Delta^n = \\ = (\otimes^{n+1}p\psi)\Delta^n = (\otimes^{n+1}p)(\otimes^{n+1}\psi)\Delta^n = (\otimes^{n+1}p)\Gamma^n\psi.$$

Definition 1.1.14. A graded coalgebra (C, Δ) is called **nilpotent** if $\Delta^n = 0$ for n >> 0. It is called **locally nilpotent** if it is the direct limit of nilpotent graded coalgebras or equivalently if $C = \bigcup_n \ker \Delta^n$.

Example 1.1.15. The vector space

$$\overline{\mathbb{K}\left[t\right]} = \left\{p(t) \in \mathbb{K}\left[t\right] \mid p(0) = 0\right\} = \bigoplus_{n > 0} \mathbb{K} t^n$$

with the coproduct

$$\Delta \colon \overline{\mathbb{K}[t]} \to \overline{\mathbb{K}[t]} \otimes \overline{\mathbb{K}[t]} \otimes \overline{\mathbb{K}[t]}, \qquad \Delta(t^n) = \sum_{i=1}^{n-1} t^i \otimes t^{n-i}$$

is a locally nilpotent coalgebra. The projection $\mathbb{K}[t] \to \overline{\mathbb{K}[t]}$, $p(t) \to p(t) - p(0)$, is a morphism of coalgebras.

Example 1.1.16. Let $A = \oplus A_i$ be a finite dimensional graded associative \mathbb{K} -algebra and let $C = A^{\vee} = \operatorname{Hom}^*(A, \mathbb{K})$ be its graded dual. Since A and C are finite dimensional, the pairing $\langle c_1 \otimes c_2, a_1 \otimes a_2 \rangle = (-1)^{\overline{a_1} \cdot \overline{c_2}} \langle c_1, a_1 \rangle \langle c_2, a_2 \rangle$ gives a natural isomorphism $C \otimes C = (A \otimes A)^{\vee}$ and we may define Δ as the transpose of the multiplication map $\mu \colon A \otimes A \to A$. Then (C, Δ) is a graded coalgebra. Note that C is nilpotent if and only if A is nilpotent.

Lemma 1.1.17. Let (C, Δ) be a locally nilpotent graded coalgebra. Then every projection $p: C \rightarrow \ker \Delta$ is a cogenerator of C.

Proof.

Definition 1.1.18 ([104, p. 282]). A graded coalgebra (C, Δ) is called **connected** if there is an element $e \in C$ such that $\Delta(e) = e \otimes e$ (in particular deg(e) = 0) and $C = \bigcup_{r=0}^{+\infty} F_r C$, where $F_r C$ is defined recursively in the following way:

$$F_0C = \mathbb{K}e, \qquad F_{r+1}C = \{x \in C \mid \Delta(x) - e \otimes x - x \otimes e \in F_rC \otimes F_rC\}.$$

Example 1.1.19. In the notation of the above definition, according to Lemma 1.1.10 we have e = 0 if and only if $F_r C = \ker \Delta^r$. In particular every locally nilpotent coalgebra is connected.

1.2. Comodules and coderivations

Definition 1.2.1. Let (C, Δ) be a graded coalgebra. A *C*-comodule is the data of a graded vector space *M* and two morphisms of graded vector spaces

$$\phi \colon M \to M \otimes C, \qquad \psi \colon M \to C \otimes M$$

such that:

- (1) $(\mathrm{Id}_M \otimes \Delta)\phi = (\phi \otimes \mathrm{Id}_C)\phi \colon M \to M \otimes C \otimes C,$
- (2) $(\Delta \otimes \mathrm{Id}_M)\psi = (\mathrm{Id}_C \otimes \psi)\psi \colon M \to C \otimes C \otimes M,$
- (3) $(\psi \otimes \mathrm{Id}_C)\phi = (\mathrm{Id}_C \otimes \phi)\psi \colon M \to C \otimes M \otimes C.$

Example 1.2.2. If $F: (D, \Gamma) \to (C, \Delta)$ is a morphism of graded coalgebras, then the maps

$$\phi = (\mathrm{Id}_D \otimes F)\Gamma \colon D \to D \otimes C, \qquad \psi = (F \otimes \mathrm{Id}_D)\Gamma \colon D \to C \otimes D,$$

give a structure of C-comodule on D.

Definition 1.2.3. Let (C, Δ) be a graded coalgebra and

$$\phi \colon M \to M \otimes C, \qquad \psi \colon M \to C \otimes M$$

a *C*-comodule. A linear map $d \in \operatorname{Hom}_{\mathbb{K}}^{n}(M, C)$ is called a **coderivation** of degree *n* if it satisfies the **coLeibniz rule**

$$\Delta d = (d \otimes \mathrm{Id}_C)\phi + (\mathrm{Id}_C \otimes d)\psi.$$

In the above definition we have adopted the Koszul sign convention: i.e. if $x, y \in C$, $f, g \in \operatorname{Hom}^*(C, D), h, k \in \operatorname{Hom}^*(B, C)$ are homogeneous then $(f \otimes g)(x \otimes y) = (-1)^{\overline{g} \overline{x}} f(x) \otimes g(y)$ and $(f \otimes g)(h \otimes k) = (-1)^{\overline{g} \overline{h}} fh \otimes gk$.

In these notes we are mainly intersted to C-comodules structure induced by a morphism of graded coalgebras $F: (D, \Gamma) \to (C, \Delta)$. In this case, a morphism of graded vector spaces $d \in \operatorname{Hom}^{n}(C, D)$ is a coderivation of degree n if and only if

$$\Delta d = (d \otimes F + F \otimes d)\Gamma.$$

The coderivations of degree n with respect a coalgebra morphism $F: C \to D$ form a vector space denoted $\operatorname{Coder}^n(C, D; F)$. For simplicity of notation we denote $\operatorname{Coder}^n(C, C) = \operatorname{Coder}^n(C, C; Id)$. In other terms

$$\operatorname{Coder}^{n}(C,C) = \{ f \in \operatorname{Hom}_{\mathbb{K}}^{n}(C,C) \mid \Delta f = (f \otimes \operatorname{Id}_{C} + \operatorname{Id}_{C} \otimes f) \Delta \}.$$

Lemma 1.2.4. Let C be a graded coalgebra. Then $\operatorname{Coder}^*(C, C) = \bigoplus_n \operatorname{Coder}^n(C, C)$ is a graded Lie subalgebra of $\operatorname{Hom}^*_{\mathbb{K}}(C, C)$.

PROOF. We only need to prove that $\operatorname{Coder}^*(C, C)$ is closed under the graded commutator. This is straightforward and left to the reader.

Example 1.2.5. For every $k \ge -1$ consider the differential operator

$$f_k \colon \mathbb{K}[t] \to \mathbb{K}[t], \qquad f_k = t \left(\frac{d}{dt}\right)^{k+1}.$$

Then every f_k is a coderivation with respect the coproduct

$$\tilde{\Delta} \colon \mathbb{K}[t] \to \mathbb{K}[t] \otimes \mathbb{K}[t], \qquad \tilde{\Delta}(t^n) = \sum_{i=0}^n \binom{n}{i} t^i \otimes t^{n-i}.$$

Using the definition of binomial coefficients

$$\binom{n}{k} = \frac{1}{k!} \prod_{i=0}^{k-1} (n-i), \qquad \binom{n}{0} = 1,$$

we have for every $n \ge 0$ and every $k \ge 0$

$$\frac{\tilde{\Delta}(f_{k-1}(t^n))}{k!} = \tilde{\Delta}(\binom{n}{k}t^{n-k+1}) = \sum_{i\geq 0} \binom{n}{k}\binom{n-k+1}{i}t^i \otimes t^{n-k-i+1},$$

$$\frac{(f_{k-1}\otimes Id)\tilde{\Delta}(t^n)}{k!} = \sum_{j\geq k} \binom{n}{j} \binom{j}{k} t^{j-k+1} \otimes t^{n-j} = \sum_{i\geq 0} \binom{n}{i+k-1} \binom{i+k-1}{k} t^i \otimes t^{n-k-i+1},$$
$$\frac{(Id\otimes f_{k-1})\tilde{\Delta}(t^n)}{k!} = \sum_{i\geq 0} \binom{n}{i} \binom{n-i}{k} t^i \otimes t^{n-k-i+1},$$

and the conclusion follows from the straightforward equality

$$\binom{n}{k}\binom{n-k+1}{i} = \binom{n}{i+k-1}\binom{i+k-1}{k} + \binom{n}{i}\binom{n-i}{k}.$$

Notice that

$$[f_n, f_m] = f_n \circ f_m - f_m \circ f_n = (n-m)f_{n+m}.$$

Notice that the Lie subalgebra generated by f_k is the same of the Lie algebra generated by the derivations $g_h = z^{h+1} \frac{d}{dz}$ of $\mathbb{K}[z]$.

Lemma 1.2.6. Let $C \xrightarrow{\theta} D \xrightarrow{\rho} E$ be morphisms of graded coalgebras. The compositions with θ and ρ induce linear maps

$$\begin{split} \rho_* \colon \operatorname{Coder}^n(C,D;\theta) &\to \operatorname{Coder}^n(C,E;\rho\theta), \qquad f \mapsto \rho f; \\ \theta^* \colon \operatorname{Coder}^n(D,E;\rho) \to \operatorname{Coder}^n(C,E;\rho\theta), \qquad f \mapsto f\theta. \end{split}$$

PROOF. Immediate consequence of the equalities

$$\Delta_E \rho = (\rho \otimes \rho) \Delta_D, \qquad \Delta_D \theta = (\theta \otimes \theta) \Delta_C.$$

Lemma 1.2.7. Let $C \xrightarrow{\theta} D$ be morphisms of graded coalgebras and let $d: C \to D$ be a coderivation (with respect to the comodule structure induced by θ). Then:

(1) For every n

$$\Delta_D^n \circ d = (\sum_{i=0}^n \theta^{\otimes i} \otimes d \otimes \theta^{\otimes n-i}) \circ \Delta_C^n.$$

(2) If $p: D \to V$ is a cogenerator, then d is uniquely determined by its composition $pd: C \to V$.

PROOF. The first item is a straightforward induction on n, using the equalities $\Delta^n = \mathrm{Id} \otimes \Delta^{n-1}$ and $\theta^{\otimes i} \Delta_C^{i-1} = \Delta_D^{i-1} \theta$.

For item 2, we need to prove that pd = 0 implies d = 0. Assume that there exists $c \in C$ such that $dc \neq 0$, then there exists n such that $p^{\otimes n+1}\Delta_D^n dc \neq 0$. On the other hand

$$p^{\otimes n+1}\Delta_D^n dc = \left(\sum_{i=0}^n (p\theta)^{\otimes i} \otimes pd \otimes (p\theta)^{\otimes n-i}\right) \circ \Delta_C^n c = 0.$$

For later use we point out that if $\alpha\colon C\to C$ be a nilpotent coderivation of degree 0. Then the map

$$e^{\alpha} = \sum_{n \ge 0} \frac{\alpha^n}{n!} \colon C \to C$$

is a morphism of coalgebras, as follows immediately from the easy formula

$$e^{\alpha} \otimes e^{\alpha} = \sum_{n \ge 0} \frac{1}{n!} (\alpha \otimes \mathrm{Id} + \mathrm{Id} \otimes \alpha)^n \in \mathrm{Hom}^0(C \otimes C, C \otimes C).$$

Definition 1.2.8. A differential graded coalgebra is the data of a differential graded algebra C together a coderivation $d_C \in \operatorname{Coder}^1(C, C)$, called differential, such that $d_C^2 = 0$. A morphism of differential graded coalgebras is a morphism of graded coalgebras commuting with differentials.

1.3. The reduced tensor coalgebra

Given a graded vector space V, we denote $\overline{T}(V) = \bigoplus_{n>0} \bigotimes^n V$ and by $p: \overline{T}(V) \to V$ the projection with kernel $\bigoplus_{n>2} \bigotimes^n V$.

The **reduced tensor coalgebra** generated by V is the graded vector space $\overline{T}(V)$ endowed with the coproduct $\mathfrak{a}: \overline{T}(V) \to \overline{T}(V) \otimes \overline{T}(V)$:

$$\mathfrak{a}(v_1\otimes\cdots\otimes v_n)=\sum_{r=1}^{n-1}(v_1\otimes\cdots\otimes v_r)\otimes(v_{r+1}\otimes\cdots\otimes v_n).$$

We can also write

$$\mathfrak{a} = \sum_{n=2}^{+\infty} \sum_{a=1}^{n-1} \mathfrak{a}_{a,n-a},$$

where

$$\mathfrak{a}_{a,b} \colon \bigotimes^{a+b} V \to \bigotimes^{a} V \otimes \bigotimes^{n-a} V, \qquad \mathfrak{a}_{a,b}(v)$$

 $\mathfrak{a}_{a,b}(v_1 \otimes \cdots \otimes v_a \otimes w_1 \otimes \cdots \otimes w_b) = (v_1 \otimes \cdots \otimes v_a) \otimes (w_1 \otimes \cdots \otimes w_b),$

The coalgebra $(\overline{T}(V), \mathfrak{a})$ is coassociative, locally nilpotent and the projection $p: \overline{T}(V) \to V$ is a cogenerator: in fact, for every s > 0,

$$\mathfrak{a}^{s-1}(v_1 \otimes \cdots \otimes v_n) = \sum_{1 \le i_1 < i_2 < \cdots < i_s = n} (v_1 \otimes \cdots \otimes v_{i_1}) \otimes \cdots \otimes (v_{i_{s-1}+1} \otimes \cdots \otimes v_n)$$

and then

$$\ker \mathfrak{a}^{s-1} = \bigoplus_{i=1}^{s-1} V^{\otimes i}, \qquad (\otimes^s p) \mathfrak{a}^{s-1} (v_1 \otimes \cdots \otimes v_s) = v_1 \otimes \cdots \otimes v_s.$$

Exercise 1.3.1. Let $\mu \colon \bigotimes^s \overline{T(V)} \to \overline{T(V)}$ be the multiplication map. Prove that for every $v_1, \ldots, v_n \in V$

$$\mu \mathfrak{a}^{s-1}(v_1 \otimes \cdots \otimes v_n) = \binom{n-1}{s-1} v_1 \otimes \cdots \otimes v_n$$

For every morphism of graded vector spaces $f\colon V\to W$ the induced morphism of graded algebras

$$T(f): \overline{T(V)} \to \overline{T(W)}, \qquad T(f)(v_1 \otimes \cdots \otimes v_n) = f(v_1) \otimes \cdots \otimes f(v_n)$$

is also a morphism of graded coalgebras.

If (C, Δ) is a locally nilpotent graded coalgebra then, for every $c \in C$, there exists n > 0 such that $\Delta^n(c) = 0$ and then it is defined a morphism of graded vector spaces

$$\sum_{n=0}^{\infty} \Delta^n \colon C \to \overline{T}(C)$$

Proposition 1.3.2. Let (C, Δ) be a locally nilpotent graded coalgebra, then:

- (1) The map $\sum_{n>0} \Delta^n \colon C \to \overline{T}(C)$ is a morphism of graded coalgebras.
- (2) For every graded vector space V and every morphism of graded vector spaces $f: C \to V$ there exists a unique morphism of graded coalgebras $F: C \to \overline{T}(V)$ such that pF = f. Moreover

$$F = \sum_{n=1}^{\infty} (\otimes^n f) \Delta^{n-1} \colon C \to \overline{T}(C) \to \overline{T}(V).$$

PROOF. [1] We have

$$\left(\left(\sum_{n\geq 0}\Delta^n\right)\otimes\left(\sum_{n\geq 0}\Delta^n\right)\right)\Delta = \sum_{n\geq 0}\sum_{a=0}^n(\Delta^a\otimes\Delta^{n-a})\Delta$$
$$=\sum_{n\geq 0}\sum_{a=0}^n\mathfrak{a}_{a+1,n+1-a}\Delta^{n+1} = \mathfrak{a}\left(\sum_{n\geq 0}\Delta^n\right)$$

where in the last equality we have used the relation $\mathfrak{a}\Delta^0 = 0$. [2] The unicity of F is clear since the projection p is a cogenerator. For the existence it is sufficient to consider F as the composition of the morphisms of graded coalgebras

$$\sum_{n \ge 0} \Delta^n \colon C \to \overline{T}(C), \qquad T(f) \colon \overline{T}(C) \to \overline{T}(V).$$

Corollary 1.3.3. Let U, V be graded vector spaces. Given a morphism $f: \overline{T}(U) \to V$ of graded vector spaces, the linear map $F: \overline{T}(U) \to \overline{T}(V)$:

$$F(v_1 \otimes \cdots \otimes v_n) = \sum_{s=1}^n \sum_{1 \le i_1 < i_2 < \cdots < i_s = n} f(v_1 \otimes \cdots \otimes v_{i_1}) \otimes \cdots \otimes f(v_{i_{s-1}+1} \otimes \cdots \otimes v_{i_s}),$$

is the unique morphism of graded coalgebras lifting f.

Example 1.3.4. Let A be an associative graded algebra. Consider the projection $p: \overline{T(A)} \to A$, the multiplication map $\mu: \overline{T(A)} \to A$ and its conjugate

$$\mu^* = -\mu T(-1), \qquad \mu^*(a_1 \otimes \dots \otimes a_n) = (-1)^{n-1} \mu(a_1 \otimes \dots \otimes a_n) = (-1)^{n-1} a_1 a_2 \cdots a_n.$$

The two coalgebra morphisms $\overline{T(A)} \to \overline{T(A)}$ induced by μ and μ^* are isomorphisms, the one inverse of the other.

In fact, the coalgebra morphism $F \colon \overline{T(A)} \to \overline{T(A)}$

$$F(a_1 \otimes \cdots \otimes a_n) = \sum_{s=1}^n \sum_{1 \le i_1 < i_2 < \cdots < i_s = n} (a_1 a_2 \cdots a_{i_1}) \otimes \cdots \otimes (a_{i_{s-1}+1} \cdots a_{i_s})$$

is induced by μ (i.e. $pF = \mu$), $\mu^*F(a) = a$ for every $a \in A$ and for every $n \ge 2$

$$\mu^* F(a_1 \otimes \dots \otimes a_n) = \sum_{s=1}^n (-1)^{s-1} \sum_{1 \le i_1 < i_2 < \dots < i_s = n} a_1 a_2 \cdots a_n =$$
$$= \sum_{s=1}^n (-1)^{s-1} \binom{n-1}{s-1} a_1 a_2 \cdots a_n = \binom{n-1}{\sum_{s=0}^n (-1)^s \binom{n-1}{s}}{s} a_1 a_2 \cdots a_n = 0.$$

This implies that $\mu^* F = p$ and therefore, if $F^* : \overline{T(A)} \to \overline{T(A)}$ is induced by μ^* then $pF^*F =$ $\mu^* F = p$ and then $F^* F$ is the identity.

Proposition 1.3.5. Let (C, Δ) be a locally nilpotent graded coalgebra, V a graded vector space and

$$F = \sum_{n=1}^{\infty} (\otimes^n f) \Delta^{n-1} \colon C \to \overline{T}(V)$$

the morphism of coalgebras lifting $f \in \operatorname{Hom}^0(C, V)$. For every $q \in \operatorname{Hom}^k(C, V)$, the linear map

$$Q = \sum_{n=0}^{\infty} (\sum_{i=0}^{n} (f^{\otimes i} \otimes q \otimes f^{\otimes n-i}) \Delta^{n} \colon C \to \overline{T}(V)$$

is the unique F-coderivation lifting q, i.e. q = pQ. In particular the map

$$\operatorname{Coder}^*(C, \overline{T}(V); F) \to \operatorname{Hom}^*(C, V), \qquad Q \mapsto pQ,$$

is an isomorphism of vector graded vector spaces.

PROOF. The map Q is the composition of the coalgebra morphism $\sum \Delta^n \colon C \to \overline{T(C)}$ and the map

$$R \colon \overline{T}(C) \to \overline{T}(V), \qquad R = \sum_{i,j \ge 0} f^{\otimes i} \otimes q \otimes f^{\otimes j}.$$

It is therefore sufficient to prove that R is a T(f)-coderivation, i.e. that satisfies the coLeibniz rule

$$(R\otimes T(f)+T(f)\otimes R)\mathfrak{a}=\mathfrak{a}R.$$

Denoting $R_n = \sum_{i+i=n-1} f^{\otimes i} \otimes q \otimes f^{\otimes j}$ we have, for every a, n

$$\mathfrak{a}_{a,n-a}R_n = (R_a \otimes f^{\otimes n-a} + f^{\otimes a} \otimes R_{n-a})\mathfrak{a}_{a,n-a}.$$

Taking the sum over a, n - a we get the proof.

Corollary 1.3.6. Let V be a graded vector space. Every $q \in \text{Hom}^k(\overline{T}(V), V)$ lifts to a coderivation $Q \in \operatorname{Coder}^k(\overline{T}(V), \overline{T}(V))$ given by the explicit formula

$$Q(a_1 \otimes \cdots \otimes a_n) =$$

= $\sum_{i,l} (-1)^{k(\overline{a_1} + \cdots + \overline{a_i})} a_1 \otimes \cdots \otimes a_i \otimes q(a_{i+1} \otimes \cdots \otimes a_{i+l}) \otimes \cdots \otimes a_n$

PROOF. Apply Proposition 1.3.5 with the map $f = p: \overline{T}(V) \to V$ equal to the projection (and then F = Id).

Remark 1.3.7. Let Q be the coderivation of $\overline{T}(V)$ lifting a morphism $q \in \operatorname{Hom}^*(\overline{T}(V), V)$. It

is a immediate consequence of the above corollary that $Q(\bigotimes^n V) \subset \bigoplus_{k=1}^n \bigotimes^k V$. Moreover if $q = (q_1, q_2, q_3, \ldots)$ with $q_k \colon \bigotimes^k V \to V$ and $q_k = 0$ for every $k \leq r$, then $Q(\bigotimes^n V) \subset \bigoplus_{k=1}^{n-r} \bigotimes^k V$.

Definition 1.3.8. Given a graded vector space V the **Gerstenhaber product**

$$\operatorname{Hom}_{\mathbb{K}}^{*}(\overline{T}(V), V) \times \operatorname{Hom}_{\mathbb{K}}^{*}(\overline{T}(V), V) \to \operatorname{Hom}_{\mathbb{K}}^{*}(\overline{T}(V), V), \qquad (f, g) \mapsto f \circ g,$$

is defined as $f \circ g = fG$, where $G \in \text{Coder}^*(\overline{T}(V), \overline{T}(V))$ is the unique coderivation lifting g. The **Gerstenhaber bracket** is defined as

$$[f,g] = f \circ g - (-1)^{\overline{f} \ \overline{g}} g \circ f, \qquad f,g \in \operatorname{Hom}_{\mathbb{K}}^*(\overline{T}(V),V).$$

Notice that if $F \in \operatorname{Coder}^*(\overline{T}(V), \overline{T}(V))$ is the coderivation lifting f, then $pFG = f \circ g$, $pgF = g \circ f$ and then p[F,G] = [f,g]. Therefore the isomorphism $\operatorname{Coder}^*(\overline{T}(V), \overline{T}(V)) \simeq \operatorname{Hom}^*_{\mathbb{K}}(\overline{T}(V), V)$ commutes with brackets and then the Gerstenhaber bracket gives a structure of graded Lie algebra.

Given $f \in \operatorname{Hom}_{\mathbb{K}}^{a}(V^{\otimes n+1}, V)$ and $g \in \operatorname{Hom}_{\mathbb{K}}^{b}(V^{\otimes m+1}, V)$, considered as elements of $\operatorname{Hom}_{\mathbb{K}}^{*}(\overline{T}(V), V)$ via the natural inclusion $V^{\otimes n} \subset \overline{T}(V)$ and $V^{\otimes m} \subset \overline{T}(V)$ we have $f \circ g \in \operatorname{Hom}_{\mathbb{K}}^{a+b}(V^{\otimes n+m}, V)$,

$$f \circ g(v_0 \otimes \cdots \otimes v_{n+m}) = \sum_{i=0}^n (-1)^{b(\overline{v_0} + \cdots + \overline{v_{i-1}})} f(v_1 \otimes \cdots \otimes v_{i-1} \otimes g(v_i \otimes \cdots \otimes v_{i+m}) \otimes \cdots \otimes v_{n+m}).$$

1.4. Symmetrization and unshuffles

Given a graded vector space V, the twist map extends naturally, for every $n \ge 0$, to an action of the symmetric group Σ_n on the graded vector space $\bigotimes^n V$. More explicitly, for v_1, \ldots, v_n homogeneous vectors and $\sigma \in \Sigma_n$ we have:

$$\sigma_{\mathsf{tw}}(v_1 \otimes \cdots \otimes v_n) = \pm (v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(n)}),$$

where the sign is the signature of the restriction of σ to the subset of indices *i* such that v_i has odd degree.

Definition 1.4.1. The Koszul sign $\epsilon(V, \sigma; v_1, \ldots, v_n) = \pm 1$ is defined by the relation

$$\sigma_{\mathsf{tw}}^{-1}(v_1 \otimes \cdots \otimes v_n) = \epsilon(V, \sigma; v_1, \dots, v_n)(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)})$$

For notational simplicity we shall write $\epsilon(\sigma; v_1, \ldots, v_n)$ or $\epsilon(\sigma)$ when there is no possible confusion about V and v_1, \ldots, v_n .

Remark 1.4.2. The twist action on $\bigotimes^{n}(\operatorname{Hom}^{*}(V, W))$ is compatible with the conjugate of the twist action on $\operatorname{Hom}^{*}(V^{\otimes n}, W^{\otimes n})$. This means that

$$\sigma_{\mathsf{tw}}(f_1 \otimes \cdots \otimes f_n) = \sigma_{\mathsf{tw}} \circ (f_1 \otimes \cdots \otimes f_n) \circ \sigma_{\mathsf{tw}}^{-1},$$

where \circ is the composition product.

Definition 1.4.3. The symmetric powers of a graded vector space V are defined as

$$\bigodot^n V = \frac{\bigotimes^n V}{I},$$

where I is the subspace generated by all the vectors $v - \sigma_{tw}(v)$, $\sigma \in \Sigma_n$, $v \in \bigotimes^n V$. We will denote by $\pi \colon \bigotimes^n V \to \bigcirc^n V$ the natural projection and

$$v_1 \odot \cdots \odot v_n = \pi(v_1 \otimes \cdots \otimes v_n).$$

Definition 1.4.4. Denote by $N: \bigcirc^n V \to \bigotimes^n V$ the map (see next Lemma 1.4.5):

$$N(v_1 \odot \cdots \odot v_n) = \sum_{\sigma \in \Sigma_n} \epsilon(\sigma; v_1, \dots, v_n) (v_{\sigma(1)} \otimes \dots \otimes v_{\sigma(n)})$$
$$= \sum_{\sigma \in \Sigma_n} \sigma_{\mathsf{tw}} (v_1 \otimes \dots \otimes v_n), \quad v_1, \dots, v_n \in V.$$

Lemma 1.4.5. The map N is well defined, it is injective and its image is the subspace $(\bigotimes^n V)^{\Sigma_n}$ of twist-invariant tensors.

PROOF. Consider the map $N': \bigotimes^n V \to \bigotimes^n V$:

$$N'(v_1\otimes\cdots\otimes v_n)=\sum_{\sigma\in\Sigma_n}\sigma_{\mathtt{tw}}(v_1\otimes\cdots\otimes v_n), \quad v_1,\ldots,v_n\in V.$$

It is clear that

$$\frac{1}{n!}N' \colon \bigotimes^n V \to (\bigotimes^n V)^{\Sigma_n}$$

is a projection and then

$$\bigotimes^{n} V = (\bigotimes^{n} V)^{\Sigma_{n}} \oplus \ker(N').$$

Denote as above by I the subspace generated by all the vectors $v - \sigma_{tw}(v)$, $\sigma \in \Sigma_n$, $v \in \bigotimes^n V$. Since $N'(v) = N'(\sigma_{tw}v)$ we have $I \subset \ker(N')$. For every $v \in \bigotimes^n V$ we can write

$$v = \frac{N'}{n!}v + \left(v - \frac{N'}{n!}v\right) = \frac{N'}{n!}v + \frac{1}{n!}\sum_{\sigma\in\Sigma_n}(v - \sigma_{\mathsf{tw}}v).$$

This shows that $\text{Im}(N') + I = \bigotimes^n V$ and this implies that ker N' = I and $N' = N\pi$.

Lemma 1.4.6. Let (C, Δ) be a graded cocommutative coalgebra. Then the image of Δ^{n-1} is contained in the set of Σ_n -invariant elements of $\bigotimes^n C$ and therefore

$$\Delta^{n-1} = N \frac{\pi}{n!} \Delta^{n-1}.$$

PROOF. The twist action of Σ_n on $\bigotimes^n C$ is generated by the operators $tw_a = Id_{\bigotimes^a C} \otimes tw \otimes Id_{\bigotimes^{n-a-2} C}$, $0 \le a \le n-2$; since $tw \circ \Delta = \Delta$, according to Lemma 1.1.9 we have:

$$\begin{aligned} \mathsf{tw}_{a}\Delta^{n-1} &= \mathsf{tw}_{a}(\mathrm{Id}_{\bigotimes^{a}C}\otimes\Delta\otimes\mathrm{Id}_{\bigotimes^{n-a-2}C})\Delta^{n-2} \\ &= (\mathrm{Id}_{\bigotimes^{a}C}\otimes\Delta\otimes\mathrm{Id}_{\bigotimes^{n-a-2}C})\Delta^{n-2} = \Delta^{n-1}. \end{aligned}$$

Definition 1.4.7. The set of **unshuffles** of type (p,q) is the subset $S(p,q) \subset \Sigma_{p+q}$ of permutations σ such that $\sigma(i) < \sigma(i+1)$ for every $i \neq p$. Equivalently

$$S(p,q) = \{ \sigma \in \Sigma_{p+q} \mid \sigma(1) < \sigma(2) < \ldots < \sigma(p), \quad \sigma(p+1) < \sigma(p+2) < \ldots < \sigma(p+q) \}.$$

The unshuffles are a set of representatives for the left cosets of the canonical embedding of $\Sigma_p \times \Sigma_q$ inside Σ_{p+q} . More precisely for every $\eta \in \Sigma_{p+q}$ there exists a unique decomposition $\eta = \sigma \tau$ with $\sigma \in S(p,q)$ and $\tau \in \Sigma_p \times \Sigma_q$.

Lemma 1.4.8. For every $v_1, \ldots, v_n \in V$ and every $a = 0, \ldots, n$ we have

$$N(v_1 \odot \cdots \odot v_n) = \sum_{\sigma \in S(a,n-a)} \epsilon(\sigma) N(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}) \otimes N(v_{\sigma(a+1)} \odot \cdots \odot v_{\sigma(n)}).$$

Proof.

$$N(v_1 \odot \cdots \odot v_n) = \sum_{\eta \in \Sigma_n} \eta_{\mathsf{tw}}^{-1}(v_1 \otimes \cdots \otimes v_n)$$

= $\sum_{\sigma \in S(a,n-a)} \sum_{\tau \in \Sigma_a \times \Sigma_{n-a}} \tau_{\mathsf{tw}}^{-1} \sigma_{\mathsf{tw}}^{-1}(v_1 \otimes \cdots \otimes v_n)$
= $\sum_{\sigma \in S(a,n-a)} \epsilon(\sigma) \sum_{\tau \in \Sigma_a \times \Sigma_{n-a}} \tau_{\mathsf{tw}}^{-1}(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)})$
= $\sum_{\sigma \in S(a,n-a)} \epsilon(\sigma) N(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}) \otimes N(v_{\sigma(a+1)} \odot \cdots \odot v_{\sigma(n)}).$

Consider now two graded vector spaces V, M, a positive integer l and two maps $f \in \operatorname{Hom}^0(V, M), \qquad b \in \operatorname{Hom}^k(V^{\otimes l}, M).$

Denoting by $q = bN \in \operatorname{Hom}^{k}(V^{\odot l}, M)$, for every integer $n \ge l$ define the maps $B \in \operatorname{Hom}^{k}(V^{\otimes n}, M^{\otimes n-l+1}), \qquad Q \in \operatorname{Hom}^{k}(V^{\odot n}, M^{\odot n-l+1}),$

by the formulas:

$$B(v_1 \otimes \dots \otimes v_n) =$$

$$= \sum_{i=0}^{n-l} (-1)^{k(\overline{v_1} + \dots + \overline{v_i})} f(v_1) \otimes \dots \otimes f(v_i) \otimes b(v_{i+1} \otimes \dots \otimes v_{i+l}) \otimes f(v_{i+l+1}) \otimes \dots \otimes f(v_n).$$

$$Q(v_1 \odot \dots \odot v_n) = \sum_{\sigma \in S(l,n-l)} \epsilon(\sigma) q(v_{\sigma(1)} \odot \dots \odot v_{\sigma(l)}) \odot f(v_{\sigma(l+1)}) \odot \dots \odot f(v_{\sigma(n)}).$$

Lemma 1.4.9. In the notation above we have

$$BN = NQ \in \operatorname{Hom}^{k}(V^{\odot n}, M^{\otimes n-l+1}).$$

PROOF. Easy and left to the reader.

1.5. The reduced symmetric coalgebra

For every graded vector space V we will denote $\overline{S}(V) = \bigoplus_{n>0} \bigcirc^n V$, while $\pi : \overline{T}(V) \to \overline{S}(V)$ is the projection to the quotient and $N : \overline{S}(V) \to \overline{T}(V)$ is the direct sum of the maps of Definition 1.4.4.

Lemma 1.5.1. The map $\iota: \overline{S(V)} \to \overline{S(V)} \otimes \overline{S(V)}$,

$$\mathfrak{l}(v_1 \odot \cdots \odot v_n) = \sum_{a=1}^{n-1} \sum_{\sigma \in S(a,n-a)} \epsilon(\sigma) (v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}) \otimes (v_{\sigma(a+1)} \odot \cdots \odot v_{\sigma(n)})$$

is a cocommutative coproduct and the map

$$N \colon (\overline{S(V)}, \mathfrak{l}) \to (\overline{T(V)}, \mathfrak{a})$$

is an injective morphism of coalgebras.

PROOF. The cocommutativity of \mathfrak{l} is clear from definition. Since N is injective, we only need to prove that $\mathfrak{a}N = (N \otimes N)\mathfrak{l}$. According to Lemma 1.4.8, for every a

$$\mathfrak{a}_{a,n-a}N(v_1\odot\cdots\odot v_n)=N\otimes N\sum_{\sigma\in S(a,n-a)}\epsilon(\sigma)(v_{\sigma(1)}\odot\cdots\odot v_{\sigma(a)})\otimes (v_{\sigma(a+1)}\otimes\cdots\otimes v_{\sigma(n)})$$

and then

$$\mathfrak{a}N(v_1\odot\cdots\odot v_n)=\sum_{a=1}^{n-1}\mathfrak{a}_{a,n-a}N(v_1\odot\cdots\odot v_n)=N\otimes N\mathfrak{l}(v_1\odot\cdots\odot v_n).$$

Definition 1.5.2. The reduced symmetric coalgebra generated by V is the graded vector space $\overline{S}(V)$ with the coproduct \mathfrak{l} defined in Lemma 1.5.1

$$\mathfrak{l}(v_1 \odot \cdots \odot v_n) = \sum_{a=1}^{n-1} \sum_{\sigma \in S(a,n-a)} \epsilon(\sigma) (v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}) \otimes (v_{\sigma(a+1)} \odot \cdots \odot v_{\sigma(n)}).$$

It is often convenient to think the reduced symmetric coalgebra as a subset of the tensor coalgebra, via the identification provided by N. In particular $\overline{S}(V)$ is locally nilpotent and the projection $p: \overline{S}(V) \to V$ with kernel $\bigoplus_{n>1} V^{\odot n}$ is a cogenerator.

Moreover, since N is an injective morphism of coalgebras we have

$$\ker \mathfrak{l}^n = N^{-1}(\ker \mathfrak{a}^n) = N^{-1}(\oplus_{i=1}^n V^{\otimes i}) = \oplus_{i=1}^n V^{\odot i}.$$

For every morphism of graded vector spaces $f: V \to W$ we have

 $N \circ S(f) = T(f) \circ N \colon S(V) \to T(W)$

and then $S(f): \overline{S(V)} \to \overline{S(W)}$ is a morphism of graded coalgebras.

Proposition 1.5.3. Let (C, Δ) be a locally nilpotent graded cocommutative coalgebra, then:

(1) The map

$$\sum_{n>0} \frac{\pi}{n!} \Delta^{n-1} \colon C \to \overline{S}(C)$$

is a morphism of graded coalgebras.

(2) For every graded vector space V and every morphism of graded vector spaces $f: C \to V$ there exists a unique morphism of graded coalgebras $F: C \to \overline{S}(V)$ such that pF = f. Moreover

$$F = \sum_{n=1}^{\infty} \frac{\pi}{n!} (\otimes^n f) \Delta^{n-1} \colon C \to \overline{S}(C) \to \overline{S}(V).$$

PROOF. According to Lemma 1.4.6 we have

$$\sum_{n>0} \Delta^{n-1} = N\left(\sum_{n>0} \frac{\pi}{n!} \Delta^{n-1}\right)$$

and the first item is an immediate consequence of the fact that N is an injective morphism of graded coalgebras. Similarly for every morphism of graded vector spaces $f: C \to V$ we have

$$\sum_{n>0} (\otimes^n f) \Delta^{n-1} = N\left(\sum_{n>0} \frac{\pi}{n!} (\otimes^n f) \Delta^{n-1}\right).$$

Proposition 1.5.4. Let V be a graded vector space and C a locally nilpotent cocommutative coalgebra. Then for every coalgebra morphism $F: C \to \overline{S}(V)$ and every integer k, the composition with $N: \overline{S}(V) \to \overline{T}(V)$ gives an isomorphism

$$\operatorname{Coder}^k(C, \overline{S}(V); F) \simeq \operatorname{Coder}^k(C, \overline{T}(V); NF).$$

PROOF. We need to prove that if $B: C \to \overline{T}(V)$ is a coderivation with respect to the morphism NF, then B = NP for some $P: C \to \overline{S}(V)$. According to Proposition 1.3.5 we have

$$B = \sum_{n=0}^{\infty} \sum_{i=0}^{n} (f^{\otimes i} \otimes b \otimes f^{\otimes n-i}) \Delta^{n} \colon C \to \overline{T}(V)$$

where f = pNF = pF and $b \in \text{Hom}^k(C, V)$. According to Lemmas 1.4.6 and 1.4.9 the image of B is contained in the image of N. \square

Corollary 1.5.5. Let V be a graded vector space. Then for every integer k, the composition with $p: \overline{S}(V) \to V$ gives an isomorphism of vector spaces

$$\operatorname{Coder}^k(\overline{S}(V), \overline{S}(V)) \to \prod_{i=1}^{+\infty} \operatorname{Hom}^k(V^{\odot i}, V).$$

More explicitly, for every sequence $q_i \in \operatorname{Hom}^n(V^{\odot k}, V), i > 0$, the map $Q \in \operatorname{Hom}^n_{\mathbb{K}}(\overline{S}(V), \overline{S}(V))$ defined as

$$Q(v_1 \odot \cdots \odot v_n) = \sum_{i=1}^n \sum_{\sigma \in S(i,n-i)} \epsilon(\sigma) q_i(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(k)}) \odot v_{\sigma(k+1)} \odot \cdots \odot v_{\sigma(n)},$$

is the unique coderivation of $\overline{S}(V)$ such that $pQ = \sum_i q_i$.

PROOF. We only need to prove that the map Q is a coderivation. By linearity it is not restrictive to assume that $q_i = 0$ for every $i \neq l$. Let $b \in \operatorname{Hom}^n(\bigotimes^l V, V)$ be any map such that $bN = q_l$ (e.g. $b = \pi q_l/n!$) and let $B \in \operatorname{Coder}^n(\overline{T}(V), \overline{T}(V))$ be the coderivation such that pB = b. According to Corollary 1.3.6

$$B(v_1 \otimes \cdots \otimes v_n) = \sum_i (-1)^{k(\overline{v_1} + \cdots + \overline{v_i})} v_1 \otimes \cdots \otimes v_i \otimes b(v_{i+1} \otimes \cdots \otimes v_{i+l}) \otimes \cdots \otimes v_n,$$

hen Lemma 1.4.9 gives $RN = NQ.$

and then Lemma 1.4.9 gives RN = NQ.

Remark 1.5.6. The above results show in particular that:

(1) if $F: \overline{S}(V) \to \overline{S}(W)$ is a morphism of graded coalgebras, then $F(V^{\odot n}) \subset \sum_{i \leq n} W^{\odot i}$; (2) if $Q: \overline{S}(V) \to \overline{S}(V)$ is a coderivation, then $Q(V^{\odot n}) \subset \sum_{i \leq n} V^{\odot i}$.

Definition 1.5.7. Given a graded vector space V the symmetric Gerstenhaber product

$$\operatorname{Hom}_{\mathbb{K}}^{*}(\overline{S}(V), V) \times \operatorname{Hom}_{\mathbb{K}}^{*}(\overline{S}(V), V) \to \operatorname{Hom}_{\mathbb{K}}^{*}(\overline{S}(V), V), \qquad (f, g) \mapsto f \circ g$$

is defined as $f \circ g = fG$, where $G \in \text{Coder}^*(\overline{S}(V), \overline{S}(V))$ is the unique coderivation lifting g. The **symmetric Gerstenhaber bracket** is defined as

$$[f,g] = f \circ g - (-1)^{f \overline{g}} g \circ f, \qquad f,g \in \operatorname{Hom}_{\mathbb{K}}^{*}(\overline{S}(V),V).$$

$$\operatorname{Given} f \in \operatorname{Hom}_{\mathbb{K}}^{a}(V^{\odot n+1}, V) \text{ and } g \in \operatorname{Hom}_{\mathbb{K}}^{b}(V^{\odot m+1}, V) \text{ we have } f \circ g \in \operatorname{Hom}_{\mathbb{K}}^{a+b}(V^{\odot n+m+1}, V),$$
$$f \circ g(v_{0} \odot \cdots \odot v_{n+m}) = \sum_{\sigma \in S(m+1,n)} \epsilon(\sigma) f(g(v_{\sigma(0)} \odot \cdots \odot v_{\sigma(m)}) \odot v_{\sigma(m+1)} \odot \cdots \odot v_{\sigma(m+n)}).$$

1.6. Exercises

Exercise 1.6.1. A counity of a graded coalgebra (C, Δ) is a morphism of graded vector spaces $\epsilon: C \to \mathbb{K}$ such that $(\epsilon \otimes \operatorname{Id}_C)\Delta = (\operatorname{Id}_C \otimes \epsilon)\Delta = \operatorname{Id}_C$. Prove that if a counity exists, then it is unique (Hint: $(\epsilon \otimes \epsilon')\Delta = ?$).

Exercise 1.6.2. Let (C, Δ) be a graded coalgebra. A graded subspace $I \subset C$ is called a **coideal** if $\Delta(I) \subset C \otimes I + I \otimes C$. Prove that a subspace is a coideal if and only if is the kernel of a morphism of coalgebras.

Exercise 1.6.3. Let (C, Δ) be a graded coalgebra. Prove that for every $a, b \ge 0$

$$\Delta^a(\ker \Delta^{a+b}) \subset \bigotimes^{a+1}(\ker \Delta^b).$$

Exercise 1.6.4. Let C be a graded coalgebra and $d \in \operatorname{Coder}^1(C, C)$ a codifferential of degree 1. Prove that the triple $(L, \delta, [,])$, where:

$$L = \bigoplus_{n \in \mathbb{Z}} \operatorname{Coder}^{n}(C, C), \quad [f, g] = fg - (-1)^{\overline{g}f}gf, \quad \delta(f) = [d, f]$$

is a differential graded Lie algebra.

Exercise 1.6.5. Let $p: T(V) \to \overline{T(V)}$ be the projection with kernel $\mathbb{K} = \bigotimes^0 V$ and $\phi: T(V) \to T(V) \otimes T(V)$ the unique homomorphism of graded algebras such that $\phi(v) = v \otimes 1 + 1 \otimes v$ for every $v \in V$. Prove that $p\phi = \mathfrak{a}p$.

Exercise 1.6.6. Let A be an associative graded algebra over the field \mathbb{K} . For every local homomorphism of \mathbb{K} -algebras $\gamma \colon \mathbb{K}[[x]] \to \mathbb{K}[[x]], \gamma(x) = \sum \gamma_n x^n$, let $F_{\gamma} \colon \overline{T}(A) \to \overline{T}(A)$ be the unique morphism of graded coalgebras lifting the map

$$f_{\gamma} \colon \overline{T}(A) \to A, \qquad f(a_1 \otimes \cdots \otimes a_n) = \gamma_n a_1 \cdots a_n.$$

Prove the validity of the composition formula $F_{\gamma\delta} = F_{\delta}F_{\gamma}$. (Hint: Example 1.1.7.)

Exercise 1.6.7. Prove that a graded coalgebra morphism $F: \overline{S}(U) \to \overline{S}(V)$ is surjective (resp.: injective, bijective) if and only if the composition $U \xrightarrow{i} \overline{S}(U) \xrightarrow{F} \overline{S}(V) \xrightarrow{p} V$ is surjective (resp.: injective, bijective). (Hint: F preserves the filtrations of kernels of iterated coproducts.)

Exercise 1.6.8. Assume V finite dimensional with basis $\partial_1, \ldots, \partial_m$ of degree 0. Prove that

$$\mathfrak{l}(\partial_1^{n_1}\cdots\partial_m^{n_m})=\sum_{a_1,\ldots,a_m}\binom{n_1}{a_1}\cdots\binom{n_m}{a_m}\partial_1^{a_1}\cdots\partial_m^{a_m}\otimes\partial_1^{n_1-a_1}\cdots\partial_m^{n_m-a_m}$$

and deduce that the dual algebra $\overline{S(V)}^{\vee}$ is isomorphic to the maximal ideal of the power series ring $\mathbb{K}[[x_1,\ldots,x_m]]$, with pairing

$$\langle \partial_1^{n_1} \cdots \partial_m^{n_m}, f(x) \rangle = \frac{\partial^{n_1 + \dots + n_m} f}{\partial x_1^{n_1} \cdots \partial x_m^{n_m}} (0) = (\prod_i n_i!) \cdot (\text{coefficient of } x_1^{n_1} \cdots x_m^{n_m} \text{ in } f(x)).$$