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Abstract

The Nullstellensatz, also known as Hilbert’s theorem of the zeroes,
is a fundamental result in algebraic geometry. This paper proves the
theorem using elementary tools from algebra.

1 Introduction

The Nullstellensatz is the generalization of the fundamental theorem of al-
gebra to several dimensions. It is one of the most important results in the
field known as algebraic geometry.

In spite of the somewhat esoteric name of the theorem and the fact that
in the textbooks of geometry and algebra in current circulation the theorem
is proven using techniques that are not understandable by the non-specialist,
Hilbert’s theorem of zeroes was and remains essentially a result of basic
algebra and linear algebra. The theorem may therefore be proven using
some relatively well known results of elementary algebra and linear algebra.

The aim of this paper is to present Hilbert’s theorem of zeros within this
simpler framework. It is only necessary to know a few results of elementary
algebra (principle of induction, polynomials in one and more variables and the
Euclidean division algorithm) and to possess some knowledge of determinants
from linear algebra in order to understand and follow the arguments on the
following pages.

*English translation from [6] by Jon Rokne



The title of the paper is a bit of propaganda, rather than a mathematical
statement. In any case, it is my hope that that the following pages will be
accessible to all students that have completed a first year in a faculty of
science.

2 So, what are we talking about?

By a polynomial p(z) of degree d in the variable z is meant
p(2) = apz® + a1247t + -+ - +aq,

where aq, ..., aq are complex coefficients and ag # 0. By a root (synonym
zero) of the polynomial is meant a complex number u such that the polyno-
mial evaluated at v has the value zero, i.e. p(u) = 0. The following result,
given without proof, is of fundamental importance for what follows.

THEOREM 1 (Fundamental theorem of algebra). A polynomial of degree
d > 0 with complex coefficients has a root.

If a polynomial p(z) has degree d < 1 then it must be a constant, say
p(z) = c¢. In this case it can have a root (if ¢ = 0) or not have a root (if
¢ # 0). A result, equivalent to the fundamental theorem of algebra for d > 0,
which includes the case d = 0, is the following:

THEOREM 2 A polynomial p(z) with complex coefficients does not have
roots if and only if there exist a polynomial q(z) such that p(z)q(z) = 1.

In fact, if there exists an polynomial ¢(z) such that p(z)g(z) = 1 then
p(u)g(u) =1 for every complex number u and hence p(u) cannot be equal to
zero. Conversely, if p(z) does not have roots then p(z) must be a constant ¢
not equal to zero. Setting g(z) = ¢ ' it follows that p(z)q(z) = 1.

The next step is to consider a finite set of polynomials p1(2), ..., pm(2)
with complex coefficients. A common zero of these polynomials is a complex
number v such that p;(u) =--- = pp(u) = 0.

A first step on the way to the Nullstellensatz is the following generaliza-
tion of Theorem 2:



THEOREM 3 A finite set of polynomials pi(2),...,pm(2) with complex
coefficients does not have common roots if and only if there exists polynomials
¢1(2), - -+, gm(z) with complex coefficients such that

p1(2)qi(2) + - - + Ppm(2)gm(2) = 1.

This theorem is proven in the next section. The Nullstellensatz is now the
further generalization of the above theorem to polynomials in an arbitrary
number of variables. Let us see what this means.

Let C be the field of complex numbers and consider an integer n > 0. For

every n-tuple i1,...,%, where ¢; > 0,7 = 1,...n the function
t(z1,.. ., 2y) =202 C" = C, st tay,...,an) =d}t - ar
is called a monomial of degree d = i; + --- + 1, in the variables zq,..., 2,

where, with a small abuse of notation, it is intended that a® = 1 for all
complex numbers a. Let us observe that the function whose value is the
constant 1 is the unique monomial of degree 0 and that the n monomials

Z1,-..,2n are nothing but the canonical system of coordinates in the vector
space C".
A polynomial p(zi,...,2,) in the variables z1,..., 2, is a function p :

C™ — C obtained from linear combinations of a finite number of monomials
with complex coefficients. The functions 22, — 2 and 2z} are examples of
polynomials in the variables z1, zo. Note that polynomials can be added and
multipled and that the sums and products of polynomials are also polyno-
mials.

The main theorem of the paper due to Hilbert can now be stated.

THEOREM 4 (Nullstellensatz). Let p1(2z1,-.-52n)s-«sPm(21,--.,2,) be

polynomials with complex coefficients. The set of vectors (a1, ...,a,) € C
for which

pi(at,...,an) = =pm(ar,...,an) =0
is empty if and only if there exist polynomials g1 (21, -, 2n)s - -« Gm (21, - - -5 Zn)
such that

P21y 2n)q1 (21, oy 2n) + o+ Pm(Z1, - o 20)Gm (21, -, 20) = 1



Clearly, if n = m = 1 the theorem reduces to the fundamental theorem of
algebra.

The remainder of the paper is mainly concerned with proving Theorem
4.

3 A first generalization

Theorem 3 is a simple consequence of the Euclidean division algorithm for
polynomials. Let us therefore recall this algorithm.
Let p(z) be a monic polynomial of degree d > 0, that is to say, a polyno-
mial of the form
p(z) =24+ a2+ +ag

(by monic is meant that the coefficient of the highest power of z in p(z) is
1).

Let q(2) = boz® +b12° ™" +- - + b, by # 0 be any polynomial of degree s.
Then there exists two polynomials h(z) and 7(z) such that:

1 () — h(2)p(2) = 7(2),
2. if s > d then h(z) has degree s — d,
3. either r(z) = 0 or r(z) has degree < d.

Let us prove the existence and uniqueness of A and 7:

EXISTENCE: By induction on the degree s of ¢(z). If s < d we only
need to set h(z) = 0 and r(z) = ¢(z) and the existence is verified. If s > d
observe that the polynomial ¢'(z) = q(z) — bpz°~9p(z) has degree < s. From
the induction hypothesis there exist A'(z) and 7(z) such that ¢'(z) = q(z) —
h'(2)p(z) = r(z) and hence q(z) — (boz*~¢ + W' (2))p(z) = ().

As a consequence of this we have the following lemma:

LEMMA 1 Let
p(2) = apz® + a1z ' + -+ a4, with ag # 0,

be a non-zero polynomial of degree d. Then there exist at most d complex
numbers u1, ..., uq such that p(u;) =0,i=1,...,d.



Proof. The proof is by induction on d. When d = 0, p(z) = ap which by
hypothesis is non-zero. Hence there are no roots. If d > 0 then we assume
there are d + 1 distinct roots uq, . . ., ugy1 of p(z) and show that this leads to
a contradiction.

From the Euclidean division algorithm we can write p(z) = (z—ugq11)h(z)+
r(z) with r(z) having degree < 1, i.e. r(z) is a constant, say r(z) = ¢. From
¢ = p(ugs1) = 0 it follows that wus, ..., u, are roots of h(z). Since h(z) has
degree < d we have the required contradiction.

UNIQUENESS OF THE EUCLIDEAN DIVISION.

Suppose that we have g(z) = hi(2)p(z) + r1(2), ¢(2) = ho(2)p(2) + r2(2).
Subtracting these polynomials we get (hq(z) —ha(2))p(2)+(r1(2)—r2(2)) = 0.
The left side of the equality is a polynomial that zeroes out all complex
numbers and by the previous lemma it must be the zero polynomial. In
particular h; = hy (otherwise the polynomial would have degree > d) and
1T = To.

We now prove Theorem 3 (repeated below for clarity).

THEOREM 5 A finite set of polynomials pi(2),...,pm(2) with complex
coefficients does not have common roots if and only if there exist polynomials
¢1(2), - -, qm(2) with complex coefficients such that

p(2)q1(2) + -+ pm(2)gm(z) = 1.

Proof. Let J be the set of polynomials of the form p;(2)qi(z) + --- +
Pm(2)@m (2) with g1 (2), . . ., gm(2) being polynomials with complex coefficients.

Clearly, if u is a common root of the polynomials p;(z),...,pn(2) then
u is a root of every polynomial in J. Moreover, the sum and dif and only
iference of polynomials in J is in J and if p(z) € J then h(z)p(z) € J for
every polynomial h(z).

Let us choose a non-zero polynomial p(z) € J \ {0} of minimal degree
amongst the polynomials in .J. Since p(z) can be multiplied by a non-zero
number we can assume p(z) is monic. Let d be the degree of this polynomial.
If d = 0 then p(z) = 1 and p1(2), ..., pm(2) have no roots in common. Ifd > 1
then we prove that p(z) divides each polynomial p;(2),...,pm(2), hence it
follows that each root of p(z) is a common root of p;(2), ..., pm(2).

Let : = 1,...,m be a fixed index, then from the Euclidean division al-
gorithm there exist a polynomial h(z) such that 7(z) = p;(z) — h(z)p(z) of
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degree is < d. Since r(z) is a element of J it must follow that » = 0 and
hence p(z) divides p;(z).

4 How to eliminate a variable

Let Clzy,...,2,] denote the set of polynomials in the variables z,...,z,
and let the null polynomial correspond to the null linear combination of
monomials.

LEMMA 2 A polynomial p : C* — C is the null polynomial if and only if
p(a,...,a,) =0 for every ay, ..., a,.

Proof. The forwards implication is clear (null polynomial evaluates to zero).
For the reverse implication let p be a non-null linear combination written as

(2155 2n) = Dol21,- - -, zn71)2ﬁ+p1(z1, ce e anl)zg_l‘i" +pa(21, - Zn1)

for some polynomials py, ..., pgin 21, ..., 2, 1 not all zero. By induction on n
there exists ay, . .., a,_1 € Csuch that the numbers py(a1,...,a,-1),--.,pas(a1,---, an_1)
are not all zero and hence the polynomial

q(zn) = po(as, - .. ,an_l)z;f +pi(ag, ..., an_l)z:f‘l + -+ palar, ..., an_1)

is non-zero. Therefore we have an a,, € C such that p;(a1,...,a,) = q(a,) #
0.

A polynomial p is said to be a monic polynomial of of degree d in z, if it
can be written as

p(z1,---y2n) = zg +pi(z1,-- -, zn_l)zg_l + -+ pi(z1y- ey 2n1)

for some polynomials py, ..., ps in the variables z1, ..., z,_1.
With the monic polynomials in z, as divisors, the Euclidean division algo-
rithm can still be applied.. Specifically, if p(z1, ..., z,) is a monic polynomial
of degree d in z,, then there exists polynomials h(z1, ..., 2n), To(21, - -+, Zn_1)s - -y Ta—1(21, - - -, Zn_1)
for every q(z1,. .., z,) such that
d—1
(21, oy zn) — h(21, .oy 20)D(21, 0 ooy 20) = Ti(21y -y Zn—1)2s-

Il
<)
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As in the case of polynomials in one variable the division is proven by writing

q(z15 -y 2n Zq, Zlyenny Zn 1),2

and then applying induction on s. If s < d then it follows that r; = ¢;.
Otherwise consider ¢ = ¢ — 25~%g,p which has degree < s in the variable z,.

Let us now consider two polynomials p(z1,...,2,) and ¢(z1, ..., 2z,) that
are monic of degree d with respect to z,. From the Euclidean division algo-
rithm there exist unique polynomials h;(21, ..., z,) and r;;(21, - - ., Z,—1) With

1,7 =0,...,d — 1 such that for each : =0,...,d — 1 we have
2hq(21, s 20) — hi(z1, o 2)p(20, - - -y 20 Zm] Zlyenny 2 1)2.

The determinant R(p, ¢) of the quadratic matrix (r;;) is called the resultant
of p and q.

In other words, R(p,q) : C*! — C is the function which at the point
(a1,...,an_1) € C*! has as value the determinant of the matrix of coef-
ficients 7j(ai,...,a,-1). Denote the determinant of the quadratic matrix
Tap, @ 7 1,b # j of order d — 1, multiplied by (—1)**/ by R’:. Laplace’s rule
for evaluating determinants implies that

d—1 . .
ZRM’F" — R(p: q) if h =D
2= 0 it h# .

From the formula it follows easily that R(p,q) is a polynomial in the vari-
ables 21,...,2,_1. In fact, by induction on d we may assume that R* is a
polynomial for each ¢ = 0,...,d — 1. In what follows R(p,q) = Z?:o RY%ry,
is a polynomial.

LEMMA 3 With the preceding notation there exists two polynomials f, g €
Clz1, .- ., 24) such that
R(p,q) = fq— gp.



Proof. We have seen that >.* ! R%ry = R(p,q) and Y%} R%r;; = 0 if
7 > 0. Hence

d—1 [/d-1 d—1 d—1
R(p,q) = (Z ROir,-j) 2 = Z R" (Z wzﬁ)
R

j=1 \i=0 =0 =1
d—1 d—1 d—1

= “(2hq — hip) = (Z ROZZZ) q- (Z R“M) p=fq— gp.
1=0 =0 1=0

LEMMA 4 With the preceeding notation if there exists a vector (ay,...,a, 1) €
C* 1 such that q(ay, . .., an_1, 2,) is identically equal to 1 then R(p,q)(ai,...,an_1) =
1.

Proof. The proof is purely conceptual and does not require any computation.
The uniqueness of the Euclidean division implies that for a fixed i < d

the polynomial
Zr” Ay eeyp1)?

coincides with the remainder of the division of 2 ¢(ay, . .., an_1, 2,) by D(a1, ..., Gn_1, 2n)
and hence by hypothesis 2% q(ay,...,a,_1, 2,) = 2. from which

i
E Tij(@1, ..., Gp 1)z =24

and the matrix (r;;(a1, ..., a,-1)) is the identity matrix.

5 Ideals

At this point the idea of using the resultant to provide a proof of Theorem
4 by induction on n seems obvious. The case n = 1 is exactly covered by
Theorem 3. The approach works well if it is combined with the notion of
ideals in C[z1, ..., 2,] rather than with m-tuples of polynomials.

A subset I C Clzy, ..., z,] satisfying the conditions:

1. if f,ge [ then f+g € I,
2. if feland he€ Clz,..., 2, then fh el
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is called an ideal. For example, 0 and C[z1, ..., z,] are ideals. More generally,
if p1,...,pm| are polynomials in C[z1, ..., 2,] then the set .J of all expressions
of the form pig1 + ..., +Pm@m With ¢1, ..., ¢ € Clz1, ..., 2,] is an ideal.

It follows that Theorem 4 is an immediate consequence of the following
Theorem 6.

THEOREM 6 Let J € Clzy,...,2,] be an ideal. Then there ezists a vector
(a1,...,a,) € C* so that p(ai,...,a,) = 0 for every p € J if and only if
1€ J.

Proof. We prove the theorem by using induction on n. For n = 0 the theorem
is trivially true. Assume therefore that the theorem is true for polynomials
in n — 1 variables.

The statement is obvious if 1 € J, or if J = 0. We assume therefore that
J #0,1 ¢ J and we prove that there exist a vector (ay,...,a,) that zeroes
out all elements of J.

We first show this fact under the assumption that J contains a polynomial
po that is monic of degree d > 0 in z,. Then we show how this additional
assumption can be removed.

Let us consider the intersection I = J N Clz ...,2,-1]. It is an ideal
of Clz1,...,2, 1] where 1 ¢ I. By Lemma 3, I contains all the resultants
R(po, q) as ¢ varies in J.

By the inductive hypothesis there exists a vector (ay,...,a, 1) that an-

nihilates all the elements of J. If this were not the case the there would
exist pi,...,ps € J such that pj(ai,...,an_1,u;) # 0 for all j. The s+ 1
polynomials p;(aq, ..., an-1,%,),7 =0,...,s do not have common roots and
hence by Theorem 3, there exists hg, ..., hs € C[z,] such that

s
Z hj(zn)pj(a'la -eey On1, Zn) =1L
=0

Let the h; be interpreted as polynominalsin zy,...,2,. Theng=> h;p; € J.
By Lemma 4 ¢(ay,...,0,_1,2,) = 1 and hence R(po,q)(ai,...,a,_1) = 1
contradicting the fact that R(pg,q) € I.

Now we want to see how we can remove the condition that J contains a
polynomial monic in z,. We note that the condition is not satisfied for the
ideal of all polynomials in C|z;, 23] divisible by z;.

If J contains a polynomial monic in any variable z;,7 = 1,...,n then
the problem is solved simply by permuting the indices. This might still not
enough.



Let us consider for example the ideal J € C|z;, z5] of all polynomials that
are divisible by g = 2129 — 1. None of the polynomials in J are monic with
respect to one variable. We may avoid the problem in this case by a change
of coordinates z; = £+, 2o =  — y and the polynomial becomes z? — y? — 1
which is monic of degree 2 in .

This trick might be generalized and one might be able to prove that
“up to a linear coordinate transformation, every non-empty ideal contains a
polynomial monic in the variable z,” by using the following argument.

Let f: C* — C" be an invertible linear transformation, if p : C* — C is
a polynomial then the function

f*an _>C7 f*p(a17"'7a'n):p(f(ala"'aa'n))

is also a polynomial.
In fact, if f is represented by the matrix (f;;) we have f*z; = >, fi;2;

and hence
f*p(al, cey an) =D (Z f1ij sy anjzj> :
J J

Note that f* commutes with the operations of sum and product:

ffo+a)=fr+fq )= (p(fq

and hence if J € C[z1,...,2,] is an ideal then so is f*(J). The map f* :
Clz1,---,2n] = Clz1, ..., 2,] is invertible with inverse (f~')*. In other words
a vector u zeroes out all elements of f*(J) if and only if f(u) zeroes out all
elements of J. In conclusion we can state that if the theorem of zeroes is
valid for an ideal J then it is also valid for all ideals f*(.J) that results from
J after applying a linear invertible transformation.

It is enough to can prove that for every ideal J # 0 there exist an f as
shown above such that the ideal f*(J) contains a polynomial which is monic
of positive degree in z,. Let us take an arbitrary non-zero polynomial ¢ € J
and write ¢ = qo+¢q1+- - - + ¢4 where g; is a linear combination of monomials
of degree 7 and ¢4 # 0.

By Lemma 2 there exist a vector u € C" such that g4(u) # 0. By
multiplying ¢4 by a non-zero constant we may assume that gg(u) = 1. If d = 0
then 1 € J and there is nothing to prove. If d > 0 then clearly u # 0 and
there exist a linear invertible map f : C* — C" such that f(0,...,0,1) = u
where u coincides with the righthand column of the matrix that represents
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f. Let us prove that f*q is a polynomial that is monic of degree d in z,. In
fact every f*g; is a linear combination of monomials of degree 7 and we may
write

fraa(z1,. .. 2) = ag(z1, .. -, Zn—l)zg’HLl(Zl; cees Zn—l)Zﬁ_l-F' ctag(zy, ..., Znmt)

where each a; is a linear combination of monomials of degree d. This finally
proves that the constant ag is equal to 1 by evaluating f*g; at the point
(0,...,0,1) and obtaining

ao = f*qa(0,...0,1) = qa(f(0,...,0,1)) = g4(u) = 1.

This concludes the proof.

6 Das is nicht Mathematik - das ist Theolo-
gie!

This famous comment was made by Paul Gordan, a well-known algebraist
in Germany of the nineteenth century, when he saw the work of the young
Hilbert where two of the most important theorems of algebra were stated and
proven. These theorems were the basis theorem and the theorem of zeroes.

In the monograph of Hilbert these two results are preparatory to the proof
of the theorem of the finiteness of the invariants, a theorem that generalizes
and greatly simplifies a theorem which Gordon proved twenty years earlier.

The, somewhat peevish, comment of Gordan arose from the fact that the
proof of Hilbert’s theorem is non-constructive and the theorem is limited to
proving the existence of certain objects without giving an explicit algorithm
for their description. There is probably an element of professional envy in
the statement as well.

The basis theorem of Hilbert states that, for every ideal J in Clz1, .. ., z,]
there exists a finite set of polynomials py,...,p, € J such that J coincide
with all expressions p1q1 + - -+ + PmGm as 1, - - -, G range over Clzy, ..., z,].
Therefore, by virtue of the basis theorem, Theorems 4 and 6 are equivalent.

The statement of Hilbert on the theorem of the zeroes includes both
Hilbert’s basis theorem and what is known today as the strong form of the
theorem of zeroes, a further generalization of Theorem 4, which can be stated
as follows:
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THEOREM 7 (Hilbert; see [4]). Let J be an ideal in Clzy, ..., z,] and let
V(J) C C* denote the set of vectors that annihilates all elements of J. Then

there exists an integer d > 0, depending on J, such that if f € Clzq, ..., z,]
is annihilated by V (J) then f¢ € J.

Even though the proof of this theorem is a simple consequence of Theorem
6 we omit it here since it can be found in almost every algebraic geometry
text (see, for example, [2, 5, 8, 9]).

The attentive reader might have noticed that in the proof of these the-
orems no properties of the complex numbers have been used except that
they form a closed algebraic field. Hence, if C is replaced by any other al-
gebraically closed field in Theorems 6 and 7 then these theorems are still
valid.

As a conclusion we want to make some comments on the bibliography.
To list all the books that contain proofs of the Nullstellensatz would be
an enormous task, and hence we have limited the selection to a short but
significant list. The texts [1, 2, 5, 8, 9] are introductory texts in algebraic
geometry where one might find the most varied applications of Hilbert’s
theorems. It is also clear that [4] is not written by Hilbert who in 1993 is
not longer in a position to dedicate himself to earthly mathematics. It is a
revision of notes taken by a student in a lecture series that Hilbert held at the
University of Gottingen in the decennium 1890-1900. The book of Herstein
[3] contains all that is needed for understanding this paper (and much more).
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