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Introduction.

An important question concerning algebraic geometry and differential topology is the so called

def=diff? problem:

Are two complex structures on a closed compact differentiable 2n -manifold deformation of

each other?

In case n = 1 it is a classical result (cf. [E-C] III.33) that the answer is yes, while in case

n = 2 the above question (Friedman-Morgan conjecture) has a positive answer in some cases,

but it is in general still unsolved. The reader can see the survey article [Do] for a discussion

of recent results about this problem and [Li-W] for the higher dimensional case.

If we restrict to minimal algebraic surfaces of general type the above question can be inter-

preted in terms of properties of the moduli space of surfaces of general type. In fact for a given

oriented smooth four-manifold X the (possibly empty) set Mdiff (X) of minimal surfaces of

general type orientedly diffeomorphic to X can be endowed with the structure of a quasipro-

jective variety in such a way that two surfaces S1, S2 ∈ Mdiff (X) can be deformed the one

in the other if and only if they belong to the same connected component of Mdiff (X).

The main goal of this thesis is to study the general connectedness properties of moduli spaces

of surfaces of general type and to give some general recipes to construct examples of pairs

of “very similar” complex algebraic surfaces with the same underlying topological 4-manifold

such that their complex structures cannot be continuously deformed the one in the other. It

is important to say at this point that our methods belong to the realm of algebraic geometry,

no computation of differentiable invariants is made and it is not clear to us if, in some cases,

our examples may have the same differential structure.

Let S be a minimal surface of general type and let Mtop(S) be the moduli space of surfaces

of general type homeomorphic (by an orientation preserving homeomorphism) to S .

Let kS ∈ H2(S,Z) be the first Chern class of the canonical bundle of S and let r(S) its

divisibility, i.e.

r(S) = max{r ∈ N| kS = rc for some c ∈ H2(S,Z)}

If S′ ∈ Mtop(S) is in the same connected component of S then there exists an orientation

preserving diffeomorphism f :S′ → S such that f∗(kS) = kS′ and r(S) = r(S′).

Marco Manetti: Degenerations of Algebraic Surfaces and applications to Moduli prob-

lems.



4 Introduction.

Catanese ([Ca4]) was the first to prove that “in general” Mtop(S) is not connected, giv-

ing examples of homeomorphic simply connected surfaces with different divisibility r . His

examples include the so called simple bihyperelliptic surfaces.

Denote by O(a, b) the line bundle on P1×P1 whose sections are bihomogeneous polynomials

of bidegree a, b . A minimal surface of general type is said to be simple bihyperelliptic of type

(a, b)(n,m) if its canonical model is defined in O(a, b)⊕O(n,m) by the equations

z2 = f(x, y) w2 = g(x, y) (∗)

where f, g are bihomogeneous polynomials of respective bidegree (2a, 2b), (2n, 2m).

If a, b, c, d ≥ 3 then simple bihyperelliptic surfaces of type (a, b), (c, d) are simply connected

([Ca1]).

Catanese also considered the subset N̂(a,b)(n,m) of the moduli space of surfaces of general

type M whose members are simple bihyperelliptic surfaces of type (a, b)(n,m) and proved

([Ca3]) that if a ≥ max(2n + 1, b + 2), m ≥ max(2b + 1, n + 2) then N̂(a,b),(n,m) is an

irreducible component of the moduli space. In chapter II of this thesis we make the necessary

computations in order to prove that under the above conditions about a, b, n,m the set

N̂(a,b),(n,m) is open in the moduli space and then it is a connected components.

This result enables us to prove (chapter V) the following

Theorem 1. For every k > 0 there exist simple bihyperelliptic surfaces S1, ..., Sk orientedly

homeomorphic to each other, such that r(Si) = r(Sj) and such that they belong to k distinct

connected components of the moduli space.

After Donaldson’s work about polynomial invariants of smooth four manifolds it was clear

that for a large class of simply connected minimal surfaces of general type the divisibility r

is a differential invariant ([F-M-M]) and using this fact Friedman, Morgan and Moishezon

were able to construct the first examples of homeomorphic but nondiffeomorphic surfaces

of general type. Later Salvetti ([Sal]) proved that the number of surfaces of general type

with the same underlying oriented topological 4-manifold but with nonequivalent underlying

differential structures can be arbitrarily large.

Very recently, using a new differential invariant, Witten [Wi] proved in particular that r is a

differential invariant for every simply connected minimal surface of general type.

Moreover, if Witten’s speculations, based on supersymmetric quantum field theory, are cor-

rect, then homeomorphic surfaces with the same divisibility r have the same Donaldson’s

polynomials and therefore to decide whether they have the same differential structure will

probably be one of the most challenging problems in four-dimensional differential topology.

If X is the surface defined in (∗), every deformation of X defined by the equations

z2 = f ′(x, y) + wφ(x, y) w2 = g′(x, y) + zψ(x, y) (∗∗)
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where f ′, g′, φ, ψ are bihomogeneous polynomials or respective bidegree (2a, 2b), (2n,

2m), (2a − n, 2b −m), (2n − a, 2m − b), is called a natural deformation of X . Assume now

a > 2n,m > 2b , in this case every natural deformation is obtained by deforming the polyno-

mials f, g of the equations (∗) in their linear systems since the polynomials φ, ψ of the above

equations (∗∗) must be equal to 0. Therefore the canonical models of simple bihyperelliptic

surfaces are stable under small natural deformations and then the openess of N̂(a,b),(n,m) ,

a > 2n,m > 2b , is equivalent to the surjectivity of the Kodaira-Spencer map of the family

of natural deformations of X for every X as in (∗) with at most rational double points as

singularities.

More generally it is possible to extend the notion of natural deformations to every smooth

abelian covering of algebraic varieties ([Ca1],[Ca2],[Par],[F-P]) and this notion finds useful

application in the explicit determination of complete families of deformations.

The generalization of the notion of natural deformations to normal abelian coverings presents

in general some difficulty, for example in the case, considered in chapter II, of Z/2Z × Z/2Z
Galois covers X → Y with Y smooth and X normal, in order to prove some interesting

results we need the assumption that every irreducible component of the ramification locus

R ⊂ X is a locally principal divisor (cf.II.4.2).

In this thesis the theory of natural deformations is also used in the explicit description of the

connected components in the moduli space of some surfaces of general type different from

the ones considered in theorem 1. The first cases we consider are the double coverings of the

projective plane.

As before for every h ≥ 4 we define N(P2,O(h)) ⊂M as the set of surfaces of general type

whose canonical model is a double cover of P2 ramified over a plane curve of degree 2h . In

this case the natural deformations are obtained by deforming the branching divisor and are a

complete family (VI.2.9), therefore N(P2,O(h)) is an open irreducible subset of the moduli

space. The following questions becomes natural:

i) Is N(P2,O(h)) closed in M?

ii) Is the closure in M of N(P2,O(h)) a connected component?

A theorem of Horikawa ([B-P-V] VII.10.1) asserts that every minimal surface of general type

with K2 = 2 and pg = 3 belongs to N(P2,O(4)) and then for h = 4 the above questions

have positive answer. In chapter VII we shall prove the following

Theorem 2. The subset N = N(P2,O(h)) , h ≥ 4 is closed in the moduli space if and only

if h is even.

For every h ≥ 4 the closure of N in the moduli space is a connected component.

The main step in the proof of theorem 2 is the classification of degenerate double covers of

the projective plane. By definition a degenerate double cover of P2 is a normal projective

surface Y0 with at most rational double points and ample canonical bundle such that there
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exists a proper flat map f :Y → ∆ with f−1(0) = Y0 and f−1(t) = Yt a double cover of P2

for every t 6= 0.

In general the classification of degenerations is a very difficult problem, fortunately in our

case, using the fact that for every finite group G the subset MG ⊂ M of minimal surfaces

of general type admitting a faithful G -action is closed ([Ca2],[F-P]), we shall show that there

exists a nontrivial involution τ on the degenerate double cover Y0 and its quotient X0 = Y0/τ

is a normal degeneration of P2 with at most quotient singularities.

We are therefore reduced, as a preliminary step, to consider the following problem of inde-

pendent interest.

Classify the normal surfaces X0 admitting a deformation X → ∆ = {t ∈ C| |t| < 1} such

that Xt ' P2 for every t 6= 0.

If X0 is smooth then it is isomorphic to P2 and the family is locally trivial. Chapter IV is

devoted to study the case where X0 is a normal surface. We shall call this case a normal

degeneration of P2 .

For every projective arithmetically Cohen-Macaulay surface V it is possible to construct

normal degenerations of V by taking the intersection of the projective cone of Y with the

hyperplanes of a generic pencil (see chapter IV for details). Taking as V a Veronese embedding

of P2 we are able to construct examples of normal nonsmooth degenerations of P2 which are

cones over projectively normal curves. The natural question which arises (cf. [Ba1],[Ba2])

is whether these ”classical” degenerations are the only ones and, if they aren’t, what other

normal surfaces can appear.

We observe that ”classical” degenerations of P2 with at most quotient singularities are P2

and W0 =cone over the rational smooth curve of degree 4 in P4 .

A quite surprising result we find is the existence of infinitely many examples of normal de-

generations of P2 with at most cyclic quotient singularities. These examples are constructed

using the following theorem (IV.B)

Theorem 3.

1) Let X0 be a normal degeneration of P2 with at most quotient singularities, then the

following properties hold:

a) X0 is projective algebraic.

b) q(X0) = Pn(X0) = 0 ∀n ≥ 1

c) %(X0) = 1

d) Every singularity of X0 is cyclic of type
1
n2

(1, na− 1) for some pair of positive integers

a, n with (a, n) = 1 ((a, n) is the g.c.d. of a and n)

e) If p1, p2 ∈ X0 and the singularities (X0, pi) are cyclic of type
1
n2
i

(1, niai − 1) then the

ni ’s are not divisible by 3, moreover if p1 6= p2 then (n1, n2) = 1

f) X0 has at most 3 singular points.
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2) Conversely if a normal surface X0 satisfies a), b), c) and d) of 1) then X0 is a degeneration

of P2 , in particular e) and f) hold too.

The part f) is a consequence of some more general results about normal projective surfaces

with Picard number % = 1 and P−1 ≥ 5.

The study of these surfaces is made in chapter III where we prove the following

Theorem 4. Let δ:S → X be the minimal resolution of a normal projective surface X with

%(X) = 1 , P−1 ≥ 5 and at most rational singularities. Then S is a rational surface and

there exists a birational morphism µ:S → Fd , d ≥ 2 such that the exceptional locus of δ is

exactly the union of µ−1(σ∞) and the irreducible curves with selfintersection ≤ −2 contained

in the fibres of the composite morphism S
µ−→Fd

p−→P1 .

In the statement of theorem 4 Fd denotes the Segre-Hirzebruch surface and σ∞ the section

of p such that σ2
∞ = −d . Note in particular that the irregularity of X is 0.

A consequence of theorem 4 is that if the singularities of X are taut (e.g. quotient singulari-

ties) then X is uniquely determined by the combinatorial data of the sequence of blowings-up

composing µ and by a combinatorial argument we shall show that if the singularities are cyclic

then X has at most 3 singular points. With the additional information of theorem 3 we shall

moreover prove that for every normal degeneration of P2 with at most quotient singularities

X0 then either X0 is the cone W0 over the rational curve of degree 4 in P4 or if S is the

minimal resolution of X and µ:S → Fd is as in theorem 4 then d = 7, 10. The degenerations

with d = 7 are infinitely many and completely classified (IV.4.3) while in case d = 10 the

situation is more complicated.

As a consequence of our classification of normal degenerations of P2 we shall prove that every

degenerate double cover Y0 of the projective plane is either a double cover of P2 or it is a

nonflat double cover of the cone W0 with the vertex w0 ∈ W0 as an isolated branch point.

This second possibility can appear only if K2
Y0

is divisible by 8 and therefore for h even,

the subset N(P2,O(h)) is closed since the surfaces belonging to N(P2,O(h)) have invariants

K2 = 2(h− 3)2, 2(χ− 1) = (h− 1)(h− 2).

The last step of the proof of theorem 2 follows from the fact (VII.3.5) that every degenerate

double cover of P2 has unobstructed deformations. The proof of VII.3.5 when Y0 is a nonflat

double cover of W0 will require a quite long computation since in this case the “natural

deformations” are not a complete family.

Much easier is deformation theory for flat double covers of normal surfaces. Let X π−→Y be a

flat double cover of normal surfaces, then π∗OX is a locally free OY -module and there exists

an eigensheaves decomposition π∗OX = OY ⊕OY (−L) for a line bundle L→ Y , this implies

that X can be embedded in the total space of L as the square root of a section of 2L .

In chapter VI (VI.2.11 and its proof) we prove the following “expected” result

Theorem 5. In the above notation assume:
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i) H1(OY ) = 0 and L extends to every deformation of Y . (Note that since by the previous

assumption Y is assumed to be regular, on every deformation of Y there exists at most

one extension of L).

ii) Ext1
OY (Ω1

Y ,−L) = 0 .

iii) The sections of 2L extend to every deformation of Y (e.g. if H1(Y, 2L) = 0).

If Y has unobstructed deformations then the same holds for X and every deformations of X

is a flat double cover of a deformation of Y .

Theorem 5 is the starting point for the construction of a large number of examples of connected

components of moduli spaces of surfaces of general type.

For every minimal surface S of general type the set

Md(S) = {S′ ∈Mtop(S)|r(S) = r(S′)}

is a quasiprojective variety and has a finite number of components, denote by δ(S) (resp.:

i(S)) the number of connected (resp.: irreducible) components of Md(S). Clearly i(S) ≥
δ(S) and with a more accurate computation in theorem 1 it is possible to find simple bihyper-

elliptic surfaces S such that i(S) ≥ C1K
2
S , δ(S) ≥ C2 log log(K2

S) where C1, C2 are absolute

positive constants.

These lower bounds are quite unsatisfactory since simple bihyperelliptic surfaces are very

special surfaces and it is natural to expect much greater values of δ(S) and i(S). In ([Ca5])

Catanese gives some effective upper bounds for the number i(S) in terms of K2
S , the best

of which is i(S) ≤ Cy77y2
, y = K2

S , C absolute constant, for every regular surface S .

Catanese’s bounds are not very satisfactory and it seems that improvements are possible, in

any case i(S) and δ(S) are in general quite big. In fact in chapter VI we prove:

Theorem 6. For every real number 4 ≤ β ≤ 8 there exists a sequence Sn of simply connected

surfaces of general type such that:

a) yn = K2
Sn
, xn = χ(OSn)→∞ as n→∞ .

b) lim
n→∞

yn
xn

= β .

c) δ(Sn) ≥ y
1
5 log yn
n .

Theorem 6 is proved by using simple iterated double covers of P2 and P1 × P1 .

Definition 7. A finite map between normal algebraic surfaces p:X → Y is called a simple

iterated double cover associated to a sequence of line bundles L1, ..., Ln ∈ Pic(Y ) if the

following conditions hold:

1) There exist n+1 normal surfaces X = X0, ..., Xn = Y and n flat double covers πi:Xi−1 →
Xi such that p = πn ◦ .... ◦ π1 .

2) If pi:Xi → Y is the composition of πj ’s j > i then we have for every i = 1, ..., n the

eigensheaves decomposition πi∗OXi−1 = OXi ⊕ p∗i (−Li).
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For any sequence L1, ..., Ln ∈ Pic(Y ) define N(Y, L1, ..., Ln) as the image in the moduli space

of the set of surfaces of general type whose canonical model is a simple iterated double cover

of Y associated to L1, ..., Ln .

In case Y = P2,P1 × P1 we are able to find sufficient conditions on the sequence L1, ..., Ln

in such a way that the set N(Y, L1, .., Ln) has ”good” properties; the condition we find are

summarized in the following definition:

Definition 8. A sequence L1, ..., Ln , Li = OP1×P1(ai, bi) n ≥ 2 of line bundles on P1 × P1

is called a good sequence if satisfies the following conditions.

C1) ai, bi ≥ 3 for every i = 1, ..., n .

C2) maxj<i min(2ai − aj , 2bi − bj) < 0.

C3) an ≥ bn + 2, bn−1 ≥ an−1 + 2.

C4) ai, bi are even for i = 2, ..., n .

C5) For every i < n 2ai − ai+1 ≥ 2, 2bi − bi+1 ≥ 2.

A sequence of line bundles L1, .., Ln ∈ Pic(P2), Li = OP2(li), is called a good sequence if

satisfies the following 3 conditions:

C6) li ≥ 4 for every i = 1, ..., n .

C7) li > 2li+1 for every i = 1, ..., n− 1.

C8) ln is odd, li is even for i = 1, ..., n− 1.

The main result we prove is:

Theorem 9.For Y = P2,P1 × P1 let L1, ..., Ln be a good sequence in sense of definition 8,

then:

a) N(Y, L1, ..., Ln) is open in the moduli space and its closure is a nonempty connected

component.

b) N(Y, L1, ..., Ln) is reduced, irreducible and unirational.

c) The generic [S] ∈ N(Y, L1, ..., Ln) has Aut(S) = Z/2Z .

d) If M1, ...,Mm is another good sequence and N(Y, L1, ..., Ln) = N(Y,M1, ...,Mm) then

n = m and Li = Mi for every i = 1, ..., n .

Moreover in case Y = P1 × P1 the set N(P1 × P1, L1, ..., Ln) is closed in the moduli space.

The proof of the openess of N(Y, L1, ..., Ln) for L1, ..., Ln good sequence is an easy con-

sequence of theorem 5. In the understanding of the closure the key results we use is the

following (VI.3.1)

Theorem 10. Let f :X → ∆ = {t ∈ C| |t| < 1} be a proper flat family of normal projective

surfaces and let τ :X → X be an involution preserving f . Let π:X → Y = X/τ be the

projection to the quotient and assume that:

i) Xt, Yt are smooth surfaces for every t 6= 0 .

ii) X0 has at most rational double points (RDP) as singularities.
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iii) The divisibility of the canonical class of Yt is even for t 6= 0 .

Then Y0 has at most RDP’s and the map π:X → Y is flat.

The example of degenerate double covers of P2 shows that the above theorem is false without

the assumption r(Yt) even. The proof of theorem 10 is based on the idea (already used in

[Ca3]) that we can get information about the number and type of singular points of Y0 from

the intersection product on H2(Yt,Z), t 6= 0. On the same idea is based also the proof of

item e) of theorem 3.

In the proof of theorem 10 this idea is used as follows. Let y0 ∈ Y0 be a singular point and let

Ft ⊂ Yt be its Milnor fibre; since in a neighbourhood of y0 , Y is the quotient of a smoothing

of a rational double point a classification theorem (VI.3.2) shows that either a) (Y0, y0) is a

rational double point and π is flat at y0 or b) the canonical class of Ft is not 2-divisible in

H2(Ft,Z).

Since the canonical class of Ft is the image of the canonical class of Yt under the natural

restriction homomorphism H2(Yt,Z)→ H2(Ft,Z) if r(Yt) is even then the situation b) above

cannot appear.

Chapter I is almost completely expository and contains the definitions and the main properties

of rational and quotient singularities.

The main theme of chapter II is the application of deformation theory to the computation of

the Kuranishi family of simple bihyperelliptic surfaces and prove their stability under small

holomorphic deformations (II.5.2).

Chapter III contains the proofs of some results used in chapters IV and VII. However we

consider these results to be of independent interest (e.g. the above theorem 4) and, with the

exception of section III.5, the method used are completely elementary.

Chapter IV is completely devoted to the study of normal degenerations of the projective

plane and in section IV.2 are introduced the concepts of Milnor fibre of a smoothing and of

a Q -Gorenstein smoothing of a normal twodimensional singularity.

Chapter V is mainly an exposition of the definition and of the main properties of the moduli

space of surfaces of general type and in the last section we join the results of Chapter II,

[Ca1] and [Ca3] in order to prove the stability of simple bihyperelliptic surfaces (of suitable

type) under arbitrary holomorphic deformations and the above theorem 1.

Finally in chapters VI and VII we develop the theory of simple iterated double covers.

The main results of the first six chapters are contained in the papers [Ma1], [Ma3], [Ma4] and

[Ma6] while chapter VII contains the yet unpublished contributions of this thesis concerning

coverings of P2 .

With respect to the above papers some simplification and improvement in the presentation are

made, moreover with the aim of making this thesis more readable and selfcontained, several

known facts and related results are recalled.
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Notation.

Unless otherwise stated we shall use the following general notation.

µn is the cyclic multiplicative group of complex n -roots of 1.

Given a group G acting on the left on two sets X,Y , a map f :X → Y is said to be G -

equivariant or a G -morphism if f(gx) = gf(x) for every g ∈ G, x ∈ X . A subset A ⊂ X is

called G -stable if GA ⊂ A , it is called G -fixed if ga = a ∀g ∈ G, a ∈ A .

For every topological space X , bi(X) is its i -th Betti number and e(X) its topological

Euler-Poincaré characteristic.

For a complex algebraic variety X and a rational function f on X we shall write div(f) for

the principal divisor defined by f , Pic(X) for the Picard group of X and Pic0(X) ⊂ Pic(X)

for the connected component of 0.

The Picard number %(X) is by definition the rank of the Neron-Severi group

NS(X) = Pic(X)/(algebraic equivalence)

For every sheaf F of OX modules on X the number hi(F) denotes the dimension of the

complex vector space Hi(X,F) and F∨ = HomOX (F ,OX) is the dual sheaf of F .

We shall denote respectively by Ω1
X and θX = (Ω1

X)∨ the sheaf of Kaehler differentials and

tangent vector fields, note that if X is normal then θX is a reflexive sheaf.

For a normal surface X we shall use the following notations:

q(X) = h1(OX) is the irregularity of X .

pg(X) = h2(OX) is the geometric genus of X .

For every Weil divisor D on X , OX(D) is the sheaf of rational functions f such that

div(f) +D ≥ 0 (note that OX(D) is reflexive and OX(D)∨ = OX(−D)).

ωX = (∧2Ω1
X)∨∨ is the canonical sheaf of X .

KX is the canonical divisor i.e. the Weil divisor, unique up to rational equivalence, such that

ωX = OX(KX).

For every integer n , ω(n)
X = (ω⊗nX )∨∨ = OX(nKX) is the n -canonical sheaf and Pn(X) =

h0(ω(n)
X ) the n -th plurigenus.

χ(OX) = h0(OX)− h1(OX) + h2(OX) is the algebraic Poincaré characteristic.

A smooth irreducible complete curve E contained in a smooth surface S is called a (-1)-curve

if it is rational and E2 = −1, it is called a nodal curve if it is rational and E2 = −2.
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I. Quotient Singularities.

1. Generalities about minimal resolutions.

Let (X, p) be a normal two-dimensional singularities, a well known theorem (for a historical

sketch [Lip1]), generalized to higher dimension by Hironaka, says that there exists a resolution

δ: (S,E) → (X, p) where S is a smooth complex surface, δ is a proper holomorphic map,

E = δ−1(p) is a reduced curve and δ is biholomorphic on S − E . (for proofs see also [La2],

[B-P-V]).

Note that since (X, p) is normal δ∗OS = OX , E is connected and if E = ∪Ei is the

irreducible decomposition then by Grauert-Mumford theorem ([Mu]) the intersection matrix

Ei ·Ej is negative definite.

A resolution (S,E)→ (X, p) is minimal if E doesn’t contains (−1)-curves. From Castelnuovo

criterion of decomposition of bimeromorphic maps it follows easily that every normal two-

dimensional singularity has a unique minimal resolution.

A resolution (S,E) → (X, p) is good or global normal crossing if E satisfies the following

conditions:

1) All the irreducible components of E are smooth and intersect transversally.

2) Not more than 2 components pass through any given point.

3) 2 different components intersect at most once.

According to desingularization theorem of curves in surfaces good resolutions always exist

although the minimal resolution is generally not good.

If C1, C2 ⊂ E are (−1)-curves then (C1 + C2)2 < 0 and then C1 ·C2 ≤ 0. From this we see

easily that there exists a unique resolution (S,E), called the minimal canonical resolution,

which is minimal in the class of resolutions satisfying the above conditions 1) and 2).

We now introduce some invariants of a normal two-dimensional singularity (X, p) with min-

imal canonical resolution δ: (S,E)→ (X, p). Let E = ∪ni=1Ei be the irreducible decomposi-

tion.

The Dynkin diagram DX is the weighted dual graph of its minimal canonical resolution. DX

is a graph whose vertices corresponds to irreducible components Ei with associated their

Marco Manetti: Degenerations of Algebraic Surfaces and applications to Moduli prob-

lems.



14 Chapter I.

selfintersection E2
i and their geometric genus g(Ei); the number of edges connecting Ei to

Ej is the intersection number Ei ·Ej .

The Dynkin diagram depends only on the topological type of the pair (S,E) minimal canoni-

cal resolution and is an invariant of the germ (X, p), if the singularity is uniquely determined

by DX then it is called taut.

The genus of the singularity is defined as g(X, p) = h0(R1δ∗OS). If X is Stein then by

Leray spectral sequence it follows that g(X, p) = h1(OS), in particular since the irregularity

is invariant under blow-up the definition of the genus is independent from the resolution.

It is not difficult to prove (cf. [Ar2] Prop.2) that for every c = (c1, ..., cn) ∈ Zn there exists a

unique minimal effective divisor Zc =
∑
aiEi such that Zc·Ei ≤ ci for every i = 1, ..., n . The

divisor Z = Z0 , 0 ∈ Zn is called the fundamental cycle. Some important relations between

the fundamental cycle and the genus are discussed in the next section.

2. Rational Singularities

If S is a smooth complex, possibly non compact, surface denote by KS ∈ Pic(S) the

canonical line bundle and by kS ∈ H2(S,Z) its first Chern class.

If D is a divisor is S with compact support and L ∈ Pic(S) the intersection product D·L is

well defined and depends only on the cohomology classes [D] ∈ H2(S,Z) = H2
c (S,Z), c1(L) ∈

H2(S,Z).

The arithmetic genus of D is by definition

pa(D) = 1 +
1
2
D·(D +KS)

For D irreducible curve this definition is the same of the usual arithmetic genus h1(OD)

while for general effective divisor we have pa(D) = 1− χ(OD) (this is clear if S is compact

since χ(OD) = χ(OS) − χ(OS(−D)) but can be proved without difficulties also for general

S , cf. [B-P-V] II.11).

Proposition-Definition 2.1. Let (S,E) δ−→(X, p) be the minimal resolution of a normal

surface singularity. (X, p) is called a Rational singularity if one of the following equivalent

conditions holds:

i) The genus of (X, p) is 0 .

ii) For every effective divisor D supported in E , h1(OD) = 0 .

iii) For every effective divisor D supported in E , pa(D) ≤ 0 .

iv) The arithmetic genus of the fundamental cycle is 0 .

For a proof we refer to the original paper of Artin ([Ar2]) or to the books ([B-P-V] chapter

III),([Ba3]).

Corollary 2.2.The minimal resolution of a rational singularity is good, the irreducible com-

ponents of the exceptional curve are smooth rational and the Dynkin diagram is a weighted

tree.
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Proof. Every irreducible component has arithmetic genus 0 and then is smooth rational. The

other results follows from 2.1.iii) and formula pa(A + B) = pa(A) + pa(B) + A ·B − 1 for

every pair of compactly supported divisors A,B . ut

Note that we can recognize if a singularity is rational from its Dynkin diagram DX , in fact

if all components of E are smooth rational then the fundamental cycle and its genus depend

only on DX .

A rational singularity with fundamental cycle Z is called a rational n-point if −Z2 = n ; this

definition is motivated from the following

Theorem 2.3.(Artin [Ar2])Let (S,E) δ−→(X, p) be the minimal resolution of a rational sin-

gularity with fundamental cycle Z . Then:

(i) For every k > 0 δ∗(Mk) = OS(−kZ) where M is the maximal ideal of the local ring

OX,p .

(ii) The multiplicity of X at p is −Z2 .

(iii) The embedding dimension of X at p is −Z2 + 1 .

Therefore a simple rational point is smooth and a rational double point (RDP from now on)

is defined in C3 by a function of multiplicity 2.

If E is the exceptional curve of a RDP the every component of E has selfintersection −2.

In fact by minimality Ei ·KS ≥ 0 for every component Ei . By definition of RDP KS ·Z =

−2− Z2 + pa(Z) = 0 and then KS ·Ei = 0, E2
i = −2.

Conversely is a trivial consequence of 2.1 that every normal singularity (X, 0) whose irre-

ducible components of the exceptional curve of its minimal resolution are nodal curves then

(X, 0) is a rational singularity.

In the next table is showed the complete classification (made first by Du Val) of rational

double points.
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Name Canonical equation Dynkin diagram and fundamental cycle

An z2 = x2 + yn+1 1• 1• . . .
1•

n ≥ 1 n vertices

Dn z2 = xy2 + xn−1

1• 2• 2• . . .
2• 1•∣∣

1•
n ≥ 4 n vertices

E6 z2 = x3 + y4

1• 2• 3• 2• 1•∣∣
2•

E7 z2 = x3 + xy3

2• 3• 4• 3• 2• 1•∣∣
2•

E8 z2 = x3 + y5

2• 4• 6• 5• 4• 3• 2•∣∣
3•

Let (S,E)→ (X, p) be the minimal resolution of a rational singularity and assume X Stein

and contractible, then H1(OS) = H2(OS) = 0 and E is a deformation retract of S , in

particular the exponential sequence on S gives an isomorphism Pic(S) = H2(E,Z).

Therefore a line bundle L on S is trivial if and only if L ·Ei = 0 for every irreducible

component of E and for every divisor D ⊂ S with D ·Ei = 0 for every i there exists,

possibly shrinking S , a meromorphic function f such that div(f) = D .

If (X, p) is a RDP then KS = OS , KX = OX . Conversely every rational Gorenstein

singularity is a RDP, in fact there exists a cohomology (with integer coefficient) exact sequence

in the minimal resolution

0−→H2(S, ∂S) = H2(E)
q−→H2(S) = H2(E)

p−→H2(∂S)−→0

where q is the map induced from the intersection form on E . Note that since q is nonde-

generate the group H1(∂X) = H2(∂S) is finite.

Our assertion is a consequence of the following:

Lemma 2.4.If p(kS) = 0 then E2
i = −2 for every irreducible component of E

Proof. Assume p(kS) = 0, then kS is the Chern class of a divisor K supported on E . Let

A,B be the minimal effective divisors such that K = A−B , since 0 ≤ K ·A ≤ A2 , A must

be 0 and −K effective.



Quotient Singularities. 17

The arithmetic genus is pa(−K) = 1 and since by assumption the singularity is rational K

must be 0, proving the lemma. ut

For later use we recall now some other important properties of rational singularities.

Let δ:S → X be a bimeromorphic map between compact surfaces with S smooth and X

normal, let E = be the exceptional curve.

Assume X with only rational singularities and let L be a line bundle on S , then there exist

a positive integer n and a divisor D supported on E such that nL + D is the trivial line

bundle on a neighbourhood of E and then there exists a line bundle L′ on X such that

nL + D == δ∗L′ . Moreover the Q -divisor
1
n
D is uniquely determined by the intersection

products L·Ei and the map δ∗:NS(X,Q) → NS(S,Q) is injective. As a consequence we

have:

Proposition 2.5.There exists a natural isomorphism of Q -vector spaces

NS(S,Q) = NS(X,Q)⊕ (⊕
Ei
QEi)

where the direct sum is taken over all irreducible components Ei of E , in particular %(S) =

%(X) + b2(E).

If S is algebraic and L is ample then it is reasonable to expect that also L′ is ample, in fact

this is true ([Ar1]) and we have:

Theorem 2.6.(Artin contractibility criterion) Let S → X be a bimeromorphic map with S

projective algebraic and X normal with at most rational singularities, then X is algebraic.

For a proof we refer to ([Ar1]). Note that the statement of theorem 2.6 is generally false

without the assumption on the type of singular points (cf [Ha1] Example V.5.7.3).

3. Finite group actions on singularities

Let G be a finite group of automorphisms of a complex analytic space X . In [Car] Cartan

proved that the orbit space has a natural structure of analytic space, the main ingredient of

his proof was the following beautiful result nowadays known as ”Cartan’s Lemma”.

Lemma 3.1.(Cartan) Let (X,x) be a germ of complex space with Zariski tangent space T

and let G a finite group of automorphisms of (X,x) .

Then there exists a G-embedding (X,x) → (T, 0) , in particular the induced representation

G→ GL(T ) is faithful.

As application of this lemma we prove a result that we shall use in the next chapters.

Proposition 3.2.Every finite group G of automorphisms of a RDP of type E7 or E8 is

cyclic.
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Proof. The action of G lift to a faithful action on the minimal resolution (S,E) of the RDP,

since the Dynkin diagram has no automorphism G leave fixed every irreducible component

of E .

Let E0 ⊂ E be the central component, i.e. the component intersecting the others in three

points, then G acts trivially on E0 and for every p ∈ E0 , G acts on the tangent space TpS .

By Cartan lemma the action of G is faithful in TpS , trivial on the hyperplane TpE0 ⊂ TpS

and then G is cyclic. ut

Actually holds a stronger statement, two finite subgroups of automorphisms of a RDP of type

E7 or E8 with the same cardinality are conjugated ([Ca3]).

A Quotient two-dimensional singularity is a singularity isomorphic to (C2, 0)/G for a finite

group G ⊂ Aut(C2, 0). According to Cartan lemma we can assume without loss of generality

G ⊂ GL(2,C) and after a linear change of coordinates G ⊂ U(2). Every quotient singularity

is rational ([Bri] Satz 1.7) and if G ⊂ SU(2) then X = C2/G is a rational double point. In

fact ω = dz1∧dz2 is a G -invariant nowhere vanishing holomorphic two-form in C2−{0} and

since G acts freely on C2 − {0} ω ∈ H0(X − {0},KX). Thus KX is the trivial line bundle

on X − {0} and X is Gorenstein.

Conversely every RDP is the quotient of C2 by a finite subgroup of SU(2) ([Lo2]). We refer

also to ([E-C] Volume 1, Libro 2, II.10) for an explicit classification of finite subgroups of

SU(2) based on the homomorphism SU(2)→ Aut(P1) and Hurwitz formula and to ([Bri]) for

a complete classification to quotient two-dimensional singularities and their Dynkin diagrams.

Example 3.3. Cyclic singularities.

By a cyclic singularity of type
1
n

(a, b) we mean the quotient of C2 by the action of a diag-

onal automorphism with eigenvalues exp(2πi
a

n
), exp(2πi

b

n
). Since the quotient of C2 by a

complex reflection (i.e. a linear map of finite order leaving a hyperplane pointfixed) is again

smooth it is easy to see that every cyclic singularity is isomorphic to a cyclic singularity of

type
1
n

(1, a) with G.C.D.(a, n) = 1.

The standard torus action on C2

(λ, µ)(x, y) = (λx, µy) λ, µ ∈ C∗ x, y ∈ C

commute with every diagonal linear endomorphism of C2 and then induces a faithful action

on the quotient X = C2/H where

H = {
(
ε 0
0 εa

)
| εn = 1} G.C.D.(n, a) = 1

of the group G = (C∗)2/H ' (C∗)2 .

In particular there exists a direct system of commuting faithful actions of the groups µh×µk
on the minimal resolution (S,E)→ (X, 0) for all pairs of positive integers h, k .
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It is clear that every irreducible component of E is invariant and reasoning as in the proof of

proposition 3.2 we see that every component of E must intersect the others at most twice.

Then the Dynkin diagram DX is a string and there exists, apart the components of E ,

exactly two closed irreducible invariant curves C0, C1 intersecting transversally E . The dual

weighted graph of E ∪ C0 ∪ C1 is

◦
C0

−b1•
E1

. . . −br•
Er

◦
C1

Let π:C2 → X be the projection, the only invariant irreducible curves on X are the image

of the coordinate axis and then, up to permutation of indices

C0 = strict transform of π({y = 0}) C1 = strict transform of π({x = 0})

According to the above description of the H -action on C2 we have n = min{i > 0|xi ∈ OX} ,

a = min{i > 0|yxn−i ∈ OX} and by general properties of rational singularities

n = min{i > 0|∃Z, suppZ ⊂ E, (iC1 + Z)·Ej = 0 ∀j}

a = min{i > 0|∃Z, suppZ ⊂ E, ((n− i)C1 + Z + C0)·Ej = 0 ∀j}

Resolving these systems of linear equations we get the familiar expression

n

a
= [b1, ..., br] = b1 −

1

b2 −
1

. . .
...

br−1 − 1
br

4. Taut singularities

We recall that a singularity (X,x) with Dynkin diagram DX is taut if for every singular-

ity (Y, y) such that DY = DX there exists an isomorphism (Y, y) ' (X,x), in particular

every automorphism of the Dynkin diagram of a taut singularity is induced by an analytic

automorphism of the singular point.

Since smooth curves of fixed genus g > 0 have nontrivial moduli every irreducible exceptional

curve of the minimal canonical resolution of a taut singularity is rational. The converse is

false, in fact there exist rational singularities that are not taut ([Bri]).

In some particular case it is very easy to decide if a singularity is taut.

Example . Cones over rational projectively normal curves.

Let X ⊂ An+1 be the affine cone over the rational curve of degree n in Pn . The affine

coordinate ring of X is

AX = ⊕k≥0H
0(OP1(kn)) = C[xn0 , x

n−1
0 x1, ..., x

n
1 ]
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Note that AX is the µn -invariant subring of C[x0, x1] where ε ∈ µn acts by scalar multipli-

cation and then (X, 0) is the cyclic singularity of type
1
n

(1, 1).

An explicit description of its minimal resolution is (OP1(−n), E) δ−→(X, 0) where for every

integer r

OP1(r) = (C2 − {0})× C/ ∼ (l0, l1, v) ∼ (λl0, λl1, λrv) λ ∈ C∗

is the total space of the line bundle of degree r over P1 and the morphism δ is described in

terms of the weighted homogeneous coordinates by

δ(l0, l1, v) = (ln0 v, l
n−1
0 l1v, ..., l

n
1 v)

Let (S,E) → (Y, y) be a resolution of a normal surface singularity such that E = P1 ,

E2 = −n . This singularity is rational and, possibly shrinking S , there exists a line bundle

L
π−→S such that L·E = −1 and E is the divisor of a section e of the line bundle L⊗n .

Let Ŝ ⊂ L be the smooth surface defined by the equation zn = e , z ∈ H0(L, π∗L) is the

tautological section, and let B = div(z) ⊂ Ŝ . B is a smooth rational curve with B2 = −1

and then in a neighbourhood of B Ŝ = OP1(−1) is the blow up of C2 .

S is the quotient of Ŝ by a cyclic group of order n acting trivially on B , applying Cartan

lemma on C2 we find that, up to conjugation with a holomorphic automorphism, this action

must be

ε(l0, l1, w) = (l0, l1, εw) εn = 1, (l0, l1, w) ∈ OP1(−1)

and then S is isomorphic to OP1(−n).

Using similar ideas and some powerful results of Mumford [Mu] about the local fundamental

group of a normal surface singularities, Brieskorn [Bri] proved that every quotient singularity

is taut while Tyurina [Ty1] proved, by studying the obstruction to lifting automorphisms of

infinitesimal neighbourhoods of the exceptional curve, that every rational double or triple

point is taut.

Finally Laufer [La1], extending Tyurina’s method, gave a complete classification of the Dynkin

diagrams of taut singularities.

5. Projection formulas

Let (S,E) π−→(X, 0) be a resolution of a normal surface singularity and denote by E1, ..., Er

the irreducible components of E and by i:U = X − {0} → X the inclusion.

For every locally free sheaf F on S there exists an exact sequence

0−→π∗F α−→i∗FU−→H1
E(S,F)−→H0(R1π∗F)

where H1
E(S,F) is the direct limit of Ext1

S(OY ,F) = H0(Y,OY (Y )⊗F) over all the effective

divisors Y supported on E (cf. [Ha2] 2.8).



Quotient Singularities. 21

The cokernel of α is naturally isomorphic to H1
{0}(π∗F) and the sheaf π∗F is reflexive if

and only if α is an isomorphism. It is a well known fact (cf. [B-W]) that if π is the minimal

resolution then π∗θS = θX although in many cases (e.g. rational double points) the group

H1
E(S, θS) is different from 0.

Proposition 5.1. In the previous notation if L is a line bundle on S such that for every

effective divisor Y with support in E there exists a component Ei ⊂ Y with (Y +L)·Ei < 0

then H1
E(S,L) = 0 and π∗L is reflexive.

Proof. Assume that H0(Z,OZ(Z+L)) 6= 0 for some effective divisor supported on E end let

Y minimal with this property. Then we may write Y = Z + Ei with (Y + L)·Ei < 0 and

taking global sections associated to the exact sequence

0−→OZ(Z + L)−→OY (Y + L)−→OEi(Y + L)−→0

we get a contradiction. ut

For every real number a we denote by [a] its integral part, i.e. the greatest integer ≤ a .

Corollary 5.2.([Sa2] 1.2) In the previous notation let L be a line bundle on S and let

a1, ..., ar be rational numbers such that for every i = 1, .., r Ei ·(L +
∑
ajEj) = 0 . Then

π∗(L+
∑

[aj ]Ej) is reflexive.

Proof. Let Y be an effective divisor supported on E and assume that Ei·(Y +L+
∑

[aj ]Ej) ≥ 0

for every irreducible component Ei ⊂ Y , we shall show that this gives a contradiction.

Without loss of generality we can assume that the irreducible components of Y are exactly

E1, ..., Es , s ≤ r . Considering the effective Q -divisor D = Y −
∑
i≤s(ai − [ai])Ei , we have

0 ≤ D·(Y + L+
∑

[ai]Ei) = D·(L+
∑

ajEj) +D·(D −
∑
i>s

(ai − [ai])Ei) < 0 ut

Corollary 5.3. Let (S,E) π−→(X, 0) be the minimal resolution of a normal surface singular-

ity, then for every integer n ≤ 0 , π∗OS(nKS) = OX(nKX) .

Proof. Since π is minimal KS ·Ei ≥ 0 for every irreducible component and then for n ≤ 0,

Y ·(Y + nKS) ≤ Y 2 < 0 for every effective divisor Y supported in E . ut

Corollary 5.4. Let (S,E) π−→(X, 0) be the minimal resolution of a rational surface singu-

larity, then π∗OS(KS) = OX(KX).

Proof. Let Y be an effective divisor supported on E , since the singularity is rational the

arithmetic genus of Y is ≤ 0 and then Y ·(Y +KS) < 0. ut

A similar result holds for the sheaf of differentials, more precisely we have

Theorem 5.5.(Pinkham-Wahl) Let (S,E) π−→(X, 0) be the minimal resolution of a rational

surface singularity, then π∗Ω1
S = i∗Ω1

U is reflexive and the dimension of H1
E(S,Ω1

S) equals

the number of irreducible components of E .
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For the proof we refer to ([Pi1] Appendice). ut

Let X be a compact normal surface, we denote by Div(X) the group of Weil divisors on X

and by Div(X,Q) the Q -vector space Div(X)⊗Q .

Let S δ−→X be a resolution and E = ∪Ei the irreducible decomposition of the exceptional

locus of δ . We define a linear map δ∗: Div(X,Q)→ Div(S,Q) by setting, for D irreducible

δ∗(D) = δ−1(D) +
∑

αiEi [δ∗(D)] = δ−1(D) +
∑

[αi]Ei

where δ−1(D) is the strict transform of D by δ and αi are rational numbers uniquely

determined by the conditions δ∗(D) ·Ei = 0 ∀i ; then we extend δ∗ by linearity. For any

two Q -divisors D,F the intersection number D ·F is defined to be the rational number

δ∗(D)·δ∗(F ) (cf. [Mu] pag. 17).

According to projection formula 5.2 δ∗OS([δ∗(D)]) = OX(D) and then by Leray spectral

sequence χ(OX(D)) = χ(OS([δ∗(D)])) + h0(R1δ∗OS([δ∗(D)])) .

Writing δ∗(D) = [δ∗(D)] +D′ , KY = δ∗KX + F we have by Riemann-Roch

χ(OS([δ∗(D)])) = χ(OX)− h0(R1δ∗OS) +
1
2
D·(D −KX) +

1
2
D′ ·(D′ + F )

If p1, ..., ps are the singular points of X we may write the above formula as

χ(OX(D)) = χ(OX) +
1
2
D·(D −KX) +

s∑
i=1

c(X,D, pi)

where c(X,D, pi) is a local contribution depending only by the pair germ (X,D) at the

point pi . Note that if D is principal at pi then c(X,D, pi) = 0 and for every divisor D the

absolute value of c(X,D, pi) is bounded by a constant depending only from the singularity

(X, pi) (cf. [K-S] 2.19).
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II. Normal bidouble covers and their deformations.

In this chapter we discuss some topics about deformations of complex spaces and analytic

singularities, we assume the reader is familiar with the main results of deformation theory as

reported, for example, in the introduction of Palamodov article [Pa].

In the first part we recall some general theorems, particular attention is given to Brieskorn-

Tyurina theory of simultaneous resolution of rational double points.

In the second part we study deformations of normal surfaces Y with a G -action, where

G is the group generated by two commuting involutions such that the quotient Y/G is

smooth. In particular we study a particular class of deformations of the projection map

π:Y → Y/G called natural deformations and we determine when they induce a complete

family of deformations of Y .

Finally we apply these results to proving the stability under small deformations of simple

bihyperelliptic surfaces of type (a, b)(n,m) with a > 2n, m > 2b .

1. Some remarks on deformation theory.

We recall that every compact complex space X (resp. isolated singularity (X, 0)) has a

semiuniversal deformation (sometimes called effective versal or minimal versal), denote by

Def(X) (resp. Def(X, 0)) its base space.

A deformation of X parametrized by Spec(A) where A is a local Artinian C -algebra is called

an infinitesimal deformation, a deformation parametrized by D = Spec(C[ε] = C[t]/(t2)),

ε ≡ t mod(t2), is called a first order deformation. The set of first order deformations is

usually denoted by T 1(X) has a natural structure of complex vector space ([Sch]). If X

has a semiuniversal deformation X̃ → Def(X) then every first order deformation is induced

by a unique map D → Def(X) and then there exists an isomorphism of vector spaces

T 1(X) = T0Def(X).

The study of infinitesimal deformations is considerably easier than the study of convergent

ones, in fact, to give a deformation of X over the spectrum of A local Artinian is the same

to give a sheaf on X of flat analytic A -algebras F such that F ⊗A C = OX and we can use

the usual tools of cohomology theory.

Marco Manetti: Degenerations of Algebraic Surfaces and applications to Moduli prob-

lems.
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Fortunately in some cases we can obtain results on the convergent deformations by infinites-

imal computations. We now discuss three typical examples of this situation.

A. The Kodaira-Spencer map.

Let X̃
f−→S be a deformation of X , every morphism D → S induces a first order deformation

of X and then it is defined a linear map KS(f):T0S → T 1(X) which is functorial in S ,

i.e. if X̃ ′
f ′−→S′ is a deformation and f is induced from f ′ by a morphism φ:S → S′ then

KS(f) = KS(f ′)◦dφ . If f ′ is the semiuniversal deformation then KS(f ′) is an isomorphism

and by implicit function theorem we get

Lemma 1.1.If S is smooth, KS(f) is surjective and X has a semiuniversal deformation

then Def(X) is isomorphic to an open subset of T 1(X) .

If S is not smooth the understanding of the Kodaira-Spencer map is not sufficient to describe

Def(X), in this case it is necessary to study the general infinitesimal deformations.

Let C be the category of local Artinian C -algebras, from now on by a functor of Artin rings

we shall mean a covariant functor F from C to the category of sets with a distinguished point

∗ such that F (C) = ∗ .

Examples of functors of Artin rings are the deformation functor DefX for any complex space

X

DefX(A) = { isomorphism classes of deformations of X over Spec(A)}

and the representation functor hT for any local C -algebra T . A ∈ C

hT (A) = HomC−alg(T,A)

A morphism φ:F → G between functors of Artin rings is called smooth if for every surjection

A′ → A in C the natural map

F (A′)→ F (A)×G(A) G(A′)

is surjective. A functor F is smooth if for every surjection A′ → A in C the map F (A′) →
F (A) is surjective.

Example .([Sch]) 1) If R→ S is a homomorphism of local analytic algebras then the induced

morphism hS → hR is smooth if and only if S is a convergent power series ring over R .

2) If X̃ → Def(X) is a versal deformation of X and S = ODef(X),0 then the induced map

hS → DefX is smooth.

In the category C there exist fiber products and for every functor of Artin rings F and every

morphisms A→ C,B → C in C it is defined a natural map

η:F (A×C B)→ F (A)×F (C) F (B)



Normal bidouble covers and their deformations. 25

Definition . The functor F has a good deformation theory if satisfies the following two

conditions:

H1: η is surjective whenever B → C is surjective.

H2: η is bijective when C = C and B = C[ε] .

Both the representation and deformation functors have a good deformation theory ([Sch]).

Note that if F satisfies H2 then the set tF = F (C[ε]) has a natural structure of vector space

and every morphism of functors u:F → G satisfying H2 induces a linear map du: tF → tG .

tF is called the tangent space to F and du the differential of u .

For every small extension in C , ε ∈ A

0−→Cε−→A p−→B−→0

there exists an isomorphism

A×C C[ε]
p′−→A×B A p′(a, a0 + bε) = (a, a+ bε)

where a0 ∈ C is the valuation of a ∈ A at the closed point and for every functor of Artin

rings F with good deformation theory, p′ induces a surjective map

F (A)× tF
F (p′)−→F (A)×F (B) F (A) (1.2)

Proposition 1.3. Let F u−→G, G v−→H be morphisms of functors of Artin rings:

1) If u, v are smooth then the composition vu is smooth.

2) If vu is smooth and u is surjective then v is smooth.

3) If vu is smooth, F,G have good deformation theory and du: tF → tG is surjective then u

and v are smooth.

Proof. The proof is completely formal and is an easy consequence of the definition of smooth-

ness and (1.2). Is left to the reader. Note that if H is the trivial functor then 3) is the formal

analog of (1.1). ut

B. Criteria for the existence of universal deformations.

We recall here only a simple sufficient condition for the existence of a universal deformation

of a compact complex space X , for some stronger results we refer to ([Wav]).

Let X̃
f−→Def(X) be the semiuniversal deformation of X and let S = ODef(X),0 , it is clear

that f is universal if and only if the induced map of functors hS−→DefX is an isomorphism,

in ([Sch]) it is proved the following

Theorem 1.4. The map hS → DefX is bijective if and only if for every small extension

A
p−→B and every deformation XA of X over Spec(A) the restriction map

Aut(XA)→ Aut(XA ×Spec(A) SpecB)
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is surjective.

Since the kernel of the above map between automorphism groups is always isomorphic to

H0(θX) ⊗ ker(p) it follows by induction that if H0(θX) = 0 then every infinitesimal defor-

mation of X has no automorphism and from theorem 1.4 follows immediately

Corollary 1.5. If H0(θX) = 0 (e.g. Aut(X) is finite ) then X has a universal deformation.

Clearly this condition is not necessary for the existence of a universal family (Example.

Elliptic curves).

C. Globalization of deformations.

Let X be a compact complex space with a finite number of singular points p1, ..., pn . Every

deformation of X induces by restriction deformations of the singularities (X, p1), .., (X, pn)

and then it is defined a germ of holomorphic function

Def(X) Ψ−→×ni=1 Def(X, pi)

In this situation denote by S = ODef(X) , R = O×Def(X,pi) and by Ψ∗:R → S the algebra

homomorphism induced by Ψ.

Definition . The morphism Ψ is called smooth if S is a convergent power series ring over

R , i.e. if Ψ∗ is the composition of two homomorphisms R i−→R{z1, ..., zr}
j−→S where i is

the natural inclusion and j is an isomorphism, or equivalently if the induced morphism of

functors hS
ψ−→hR is smooth.

Note that a smooth morphism is in particular surjective, thus if in our situation Ψ is smooth

then every deformation of the singular points of X can be globalized. We consider smoothness

instead of surjectivity because smoothness can be checked formally.

There exists a commutative diagram of functors of Artin rings

hS −→ DefXyψ yφ
hR −→ ×Def(X,pi)

with the horizontal morphisms smooth. According to proposition 1.2 ψ is smooth if and only

if φ is smooth.

We shall see next that the obstructions of φ to be smooth are in H2(θX).

A similar situation is the following, X ∈ Pn is a projective variety and let [X] ∈ Hilbn be

the point representing X in the Hilbert scheme. Then it is defined a germ of holomorphic

map Ψ: (Hilbn, [X]) → (Def(X), 0) and reasoning as in the previous case we see that Ψ is

smooth if and only if the morphism of functors DefX/Pn → DefX is smooth where DefX/Pn

is the functor of infinitesimal embedded deformations of X in Pn .

2. Geometric interpretation of first order deformations.
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For every singularity (X, 0) ⊂ (Cn, 0) defined by the ideal IX ⊂ On IX = (f1, ..., fr) there

exists an isomorphism of vector spaces between H0(NX) = Hom(IX/I2
X ,OX) and T 1(X/Cn)

the space of first order embedded deformations.

We briefly recall here how this isomorphism is defined (for details [Ar3], [Laz]).

T 1(X/Cn) is the set of ideals J ⊂ On[ε] ε2 = 0 satisfying the condition

(2.1) J is flat over C[ε] and J ⊗C[ε] C = IX .

Using a flatness criterion we see that (2.1) is equivalent to the existence of g1, .., gr ∈ On such

that

(i) fi + εgi i = 1, ..., r generate J .

(ii) For every relation
∑
rifi = 0 we have

∑
rigi ∈ IX .

Moreover if the gi ’s satisfy (i) and (ii) and hi ∈ On then J is generated by fi + εhi if and

only if gi − hi ∈ IX for every i = 1, .., r .

Thus to every ideal J = (fi+εgi) we associate the map φ: IX/I2
X → OX φ(fi) ≡ gimod(IX).

The natural morphism of functors DefX/Cn → Def(X,0) is smooth ([Ar3] pag. 4), in partic-

ular the linear map T 1(X/Cn) ν−→T 1(X, 0) is surjective and, with the above identification,

there exists an exact sequence

DerC(OX ,OX)−→DerC(On,OX) d
∨
−→HomOX (IX/I2

X ,OX) ν−→T 1(X)−→0

If X is reduced the cokernel of d∨ is naturally isomorphic to Ext1
OX (Ω1

X ,OX), if we think

Ext1 as the space of extensions of modules the morphism

HomOX (IX/I2
X ,OX) ν′−→Ext1

OX (Ω1
X ,OX) is defined as follows:

Given φ: IX/I2
X → OX there exists a commutative diagram with exact rows

IX/I
2
X

d−→ Ω1
Cn ⊗OX −→ Ω1

X −→0yφ y ‖
OX α−→ E −→ Ω1

X −→0

where E is the push-out of φ and d . The kernel of α is supported in the singular locus of X

and then since OX is torsion free α is injective and the second row is the extension ν′(φ).

Note that if φ(fi) ≡ gi mod(IX) and Z ⊂ Cn×D is defined by fi(z1, .., zn)+εgi(z1, .., zn) = 0

i = 1, .., r then

Ω1
Z ⊗OZ OX =

OX [dz1, ..., dzn, dε]
(dfi + gidε)

is exactly the push out of φ and d , and the isomorphism T 1(X, 0) = Ext1OX (Ω1
X ,OX) is

given by associating to every first order deformation Z → D of X the isomorphism class of

the extension ( exact sequence of differentials associated to the inclusion X ⊂ Z )

0−→OX−→Ω1
Z ⊗OX−→Ω1

X−→0 (2.2)

The same isomorphism T 1(X) = Ext1OX (Ω1
X ,OX) holds for every reduced complex space X

(cf. [Fl]). This follows essentially from the fact that (2.2) is well defined and that for any
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open covering X = ∪Ui to give a first order deformation of X (resp.: an extension of Ω1
X ) is

the same to give first order deformations of Ui (resp.: extensions of Ω1
Ui

) and isomorphisms

in the intersections Uij satisfying the cocycle condition.

In other words there exists an exact commutative diagram with vertical isomorphisms

0 −→ H1(θX) ltriv−→ T 1(X) r−→ H0(T 1
X)

‖
y y

0 −→ H1(θX) −→ Ext1
OX (Ω1

X ,OX) −→ H0(Ext1OX (Ω1
X ,OX))

The second row is the Ext spectral sequence, the image of ltriv is the set of locally trivial

deformations of X , T 1
X is the sheaf of local deformations (cf. also [Pa]) and r is the natural

restriction map.

Example 2.3. If (X, 0) = {f(z1, ..., zn) = 0} f ∈ On is an isolated hypersurface singularity

then T 1(X, 0) = OX/Jac(f) where Jac(f) is the ideal generated by all partial derivatives of

f .

Thus if g1, ..., gτ ∈ On induce a basis of OX/Jac(f) then the singularity X̃ ⊂ Cn × Cτ

defined by f +
∑
αigi = 0 is the semiuniversal deformation of X .

3. Simultaneous resolution of rational double points

Probably the best way to begin this section is to recalling the famous Atiyah construction.

The affine variety V ⊂ C4 of equation xy + z2 = t2 can be considered as a flat family Vt of

surfaces such that Vt is smooth for t 6= 0 and V0 has an ordinary double point.

Let l0, l1 be homogeneous coordinates on P1 and consider Y ⊂ C4×P1 defined by equations

l0(z + t) = l1x l0y = li(z − t)

The projection on the first factor gives a surjective map Y → V and it is easily verified that

for every t , Yt → Vt is the minimal resolution of singularities. In particular in Y0 there is a

(−2)-curve which doesn’t appear in the other fibres.

We shall say that a family Xt , t ∈ T , i.e. a flat map f :X → T , of normal surfaces admits

a simultaneous resolution if there exists a complex space Y and a proper map Y → X such

that the composition Y → T is flat and Yt → Xt is the minimal resolution of singularities

for every t ∈ T .

Note that if T ′ → T is a holomorphic map and X → T admits a simultaneous resolution

then the induced family X ×T T ′ → T ′ admits too. Therefore from Atiyah construction it

follows that if (X, 0) → (Ct, 0) is a deformation of the RDP of type A1 then the induced

deformation (X ′, 0)→ (Cs, 0), t = s2 , admits a simultaneous resolution.

This result has been generalized by Brieskorn and Tyurina [Ty2] to all rational double points

and by O. Riemenschneider to cyclic singularities, the main result they proved is:
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Theorem 3.1.(Brieskorn-Tyurina-Riemenschneider) Let X → T be a flat family of normal

surfaces each one with a finite number of singular points which are rational double points or

cyclic triple points and such that the restriction ∪tSing(Xt)→ T is proper.

Then for every p ∈ T there exists a neighbourhood p ∈ U ⊂ T and a finite surjective map

U ′ → U such that the induced family X ′ → U ′ admits a simultaneous resolution.

Proof. See [Ty2], [Rie] pag. 234. ut

We note that the change of base is unavoidable, for example it is possible to prove that if

(X, 0) → (S, 0) is a deformation of a rational double point (X0, 0) admitting simultaneous

resolution then the Kodaira-Spencer map T0S → T 1(X0, 0) is zero ([B-W] 1.15).

Brieskorn-Tyurina results on simultaneous resolutions find useful application in deformation

theory of surfaces of general type.

Given a smooth minimal surface of general type S its canonical ring is by definition

R = ⊕n≥0R(n) = ⊕n≥0H
0(K⊗nS )

After Bombieri work ([Bom]) it is known that R is a finitely generated C -algebra and the sur-

face X = Proj(R) is called the canonical model of S . Moreover if S
fn−→Xn ⊂ P(H0(K⊗nS ))

is the n -canonical map then for every n ≥ 5, Xn ' X is a normal projective surface with at

most rational double points and fn is the minimal resolution of singularities.

We can generalize this result to every deformation SA → Spec(A) over the spectrum of a

local Artinian C -algebra A . It is defined the relative canonical ring

RA = ⊕n≥0RA(n) = ⊕n≥0H
0(K⊗nA )

where KA = KSA/Spec(A) =
∧2 Ω1

SA/Spec(A) is the relative canonical line bundle. Then we

have

Lemma 3.2. RA is a finitely generated A-algebra.

Proof. We first note that for every n the A -module RA(n) is finite since the map SA →
Spec(A) is proper and it is sufficient to prove that the subalgebra R′A = ⊕n6=1RA(n) is

finitely generated.

Since H1(K⊗nS ) = 0 for n > 1 ([B-P-V] VII.5.5) it is easy to see that there exist homogeneous

elements f1, ..., fN ∈ R′A such that their restriction to S generate R′ = ⊕n6=1R(n). Denoting

by SA ⊂ RA the subalgebra generated by f1, ..., fN we want to prove that SA = R′A .

By induction on the length of A we can assume that SB = R′B for every small extension

0−→Cε−→A−→B−→0

By flatness there exists for every n an exact sequence of sheaves

0−→εK⊗nA −→K
⊗n
A −→K

⊗n
B −→0
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and an isomorphism εK⊗nA ' K⊗nS commuting with the multiplication K⊗nA
ε−→εK⊗nA and

the restriction map K⊗nA → K⊗nS .

Taking global sections for n > 1 we get

0−→εRA(n)−→RA(n)
p−→RB(n)

Since p(SA(n)) = RB(n) we have εRA(n) = εRB(n) = εSA(n) ⊂ SA(n) and then SA(n) =

RA(n). ut

The relative canonical model XA → Spec(A) is then defined as ProjA(RA). From the

proof of lemma 3.2 it follows moreover that if f0, ..., fN ∈ RA(n) restrict to a basis of R(n)

then they generate the free (by Nakayama) A -module RA(n) and for n sufficiently large the

relative canonical model is the image of the map SA
(f0,..,fN )−→ PNA .

Lemma 3.3.The relative canonical model XA is flat over T = Spec(A) .

Proof. We consider XA as the image of the map f = (f0, ..., fN ) for a given basis of the

A -module RA(n) n >> 0 and denote by Ui = {x ∈ S|fi(x) 6= 0} .

Since H0(Ui,OSA) is A -flat (immediate consequence of the Cech cochain resolution over a

finite affine cover of Ui , (cf. also [Wa4] 0.4)) then also the sheaf f∗OSA is A -flat and it

is enough to prove that the natural map OXA
α−→f∗OSA is surjective. In fact if HA is the

kernel of α then the A -flatness of f∗OSA implies that HA ⊗A C = 0 and then HA = 0 by

Nakayama.

We know that f∗OS = OX and then the functions
fj
fi

generate the C -algebra H0(Ui,OS).

X has at most rational singularities and by Leray spectral sequence H1(Ui,OS) = 0, working

exactly as in the proof of lemma 3.2 it follows that
fj
fi

generate H0(Ui,OSA). ut

The relative canonical model defines a morphism of functors of Artin rings β:DefS → DefX

which is exactly the blow-down morphism of ([B-W] 2.3) defined by the property f∗OSA =

OXA .

The morphism β extends to convergent deformations, in fact given a deformation S̃
f−→T of

S over a germ of complex space (T, 0) and an integer n ≥ 5 the sheaf f∗K⊗nS̃/T is locally

free ([B-S] 3.3.9) and a system of free generators of it gives (possibly shrinking T) a map

S̃ → T × PN .

The flatness of the image X̃ ⊂ T × P follows from infinitesimal flatness (lemma 3.3) and Th.

22.3 of [Mat1].

Thus the map β is induced by a unique holomorphic map β:Def(S) → Def(X). From

Brieskorn-Tyurina results on simultaneous resolution it follows that β is a finite surjective

map.

The blow down map can be defined also in the following situation ([B-W]). Let V be a normal

projective surface and let {Vi} i = 1, .., n be affine open subset of V such that every Vi

contain exactly a singular point pi which is a rational double point.
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If f :X → V is the minimal resolution of p1, ..., pn and Xi = f−1(Vi) there exists blow down

maps β:DefX → DefV , βi:DefXi → DefVi with dβi = 0 and a commutative diagram

DefX −→ ×DefXiyβ y×βi
DefV

r−→ ×DefVi

where r is the natural restriction map. The main result ([B-W] 2.6) is

Theorem 3.4. In the notation above DefX is the fiber product of DefV and ×DefXi . In

particular T 1(X) =⊕
i
T 1(Xi)⊕ ker dr and DefX is smooth if and only if r is smooth.

A first consequence of theorem 3.4 is that for every minimal surface of general type S with

singular canonical model X the blow-down morphism β:Def(S) → Def(X) is not an iso-

morphism.

4. Normal bidouble covers of surfaces and their natural deformations

For every point q in an algebraic variety X denote by Mq,X the maximal ideal of the local

ring of functions and by Tq,X = (Mq,X/M
2
q,X)∨ the Zariski tangent space at q .

Let X be a smooth algebraic surface and let π:Y → X be a Galois covering with group

G = (Z/2Z)2 = {1, σ1, σ2, σ3} . We assume that Y is a normal surface.

Let Ri be the divisorial part of Fix(σi) = {p ∈ Y |σi(p) = p} and Di = π(Ri). By purity of

branch locus the Weil divisor R = R1 ∪R2 ∪R3 is the set of points where π is branched.

Since Y is normal the direct image sheaf π∗OY is locally free and we have a character

decomposition

π∗OY = OX ⊕ (⊕iOX(−Li))

where L1, L2, L3 are line bundle on X and OX ⊕ OX(−Li) is the σi -invariant subsheaf of

π∗OY .

We have (cf. [Ca1] §2)

Dk + Lk ≡ Li + Lj 2Li ≡ Dj +Dk {i, j, k} = {1, 2, 3}

where ≡ means rational equivalence. If V is the vector bundle L1 ⊕ L2 ⊕ L3 with fibres

coordinates w1, w2, w3 , then we can realize Y in V as the zero locus of the ideal sheaf

IY ⊂ OV generated by the six equations{
w2
i − xjxk = 0

wkxk − wiwj = 0
{i, j, k} = {1, 2, 3} (4.1)

where xi ∈ H0(OX(Di)) is a section defining Di .

All these facts are proved in [Ca1], Catanese suppose that Y is a smooth surface but his

proof is also valid in our more general situation. It’s moreover easy to see that Y is smooth

if and only if the curves Di are smooth and the divisor D = D1 ∪D2 ∪D3 has only ordinary

double points as singularities (cf. also [Par]).
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G acts on the fibres of V in the following way:

σi : wi → wi wj → −wj wk → −wk

and Ri is the subset of Y defined by xi = wj = wk = 0.

Proposition 4.2.In the notation above are equivalent:

a) D1 ∩D2 ∩D3 = ∅
b) Ri is a Cartier divisor for every i

c) dimTq,Y ≤ 4 for every q ∈ Y
d) Y is locally complete intersection in V .

Proof. a)⇒ d) If q ∈ Y , p = π(q) and xk(p) 6= 0 then Y is locally defined by
wk =

wiwj
xk

w2
i = xjxk

xi =
w2
j

xk

(4.3)

a⇒ b), The ideal of Ri is generated by (wj , wk, xi) and if, for example q ∈ Ri xk(π(q)) 6= 0

then from (4.3) it follows that the ideal or Ri is generated in Y by wj .

b) ⇒ c) If q 6∈ R then dimTq,Y = 2. Suppose q ∈ Ri and dimTq,Y = 5, then wj , wk are

linearly independent in T∨q,Y and the ideal (wj , wk, xi) cannot be principal at q .

c)⇒ a) If q ∈ Y and x1(q) = x2(q) = x3(q) = 0 then all the equation that define Y are in

M2
q,V , hence Tq,Y = Tq,V .

d) ⇒ a) Take a point q ∈ Y such that xi(q) = 0 i = 1, 2, 3 and let’s suppose IY,q =

(f1, f2, f3), this will lead to a contradiction. Since the ideal of Y at q is contained in M2 ,

(here M = Mq,V ), the vector subspace of M2/M3 generated by IY,q has dimension at most

equal to three, but it easy to see that the six equations (4.1) are linearly independent in

M2/M3 . ut

Since in the applications we are principally interested to the case where Y has at most rational

double points, from now on we always assume that D1 ∩D2 ∩D3 = ∅ .

Let NY = (IY /I2
Y )∨ be the normal sheaf and let pi:OY → ORi be the projection map.

Theorem 4.4. If D1∩D2∩D3 = ∅ then there exists a commutative diagram of OY -modules

with exact rows and columns.
0 0y y

π∗V == π∗Vy y
0 −→ θY −→ θV ⊗OY

η−→ NY
µ−→ T 1

Y −→ 0

‖
yϕ yψ ‖

0 −→ θY
α−→ π∗θX

β−→ ⊕iORi(π∗Di)
γ−→ T 1

Y −→ 0y y
0 0

(4.5)
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The proof of theorem 4.4 will be a consequence of the following two lemmas. We first note

that θY = Der(OY ,OY ), π∗θX = Der(π−1OX ,OY ) and α is defined in the obvious way.

Moreover α is an injective map because π is a finite morphism.

If u1, u2 are local coordinates on X we set

ϕ(
∂

∂wi
) = 0, ϕ(

∂

∂ui
) =

∂

∂ui

It’s clear that π∗V = kerϕ . The upper row is a standard exact sequence [Ar3].

Lemma 4.6. There exists a commutative diagram

θV ⊗OY
η−→ HomOY IY /I2

YOY = NYyϕ yψi
π∗θX = Der(π−1OX ,OY )

βi−→ HomOY π∗OX(−Di)ORi = ORi(π∗Di)

(4.7)

Proof. For every a ∈ Der(π−1OX ,OY ) and f ∈ OX(−Di) we define βi(a)(f) = pi(a(f)) and

then we extend by OY -linearity. β is a well defined map and βi ◦ α = 0 since π∗Di = 2Ri .

Let r ∈ OY be a local equation of Ri , if f ∈ OX(−Di) then f ∈ IY + (r2) and we can write

f = a+ br2 with a ∈ IY . For v ∈ NY we then define ψi(v)(f) = pi(v(a)).

If s is another local equation of Ri and f = c+ ds2 then pi(v(a− c)) = 0. In fact we have

s = hr + e with e ∈ IY and a − c = ds2 − br2 = r(dh2r + 2dhe − br) + de2 , since IY is a

prime ideal necessarily dh2r + 2dhe− br ∈ IY and then pi(v(a− c)) = 0.

In order to showing that (4.7) commutes it suffices to note that, if for example xk 6= 0, then

wj is a local equation of Ri and ψi(v)(xi) = pi(v(xi −
w2
j

xk
)). Thus

ψi(
∂

∂wh
)(xi) = 0 h = 1, 2, 3

ψi(
∂

∂uh
)(xi) = pi(

∂xi
∂uh

) = βi(
∂

∂uh
)(xi) h = 1, 2

ut

Define β = ⊕iβi , ψ = ⊕iψi .

Lemma 4.8. ψ is a surjective map and kerψ = η(kerϕ) , in particular kerψ ⊂ kerµ and

we can define γ as in (4.5).

Proof. By lemma 4.6 η(kerϕ) ⊂ kerψ .

If ψ(v) = 0 and xk 6= 0 then locally IY /I
2
S is a free OY -module generated by (xi −

w2
j

xk
),

(xj −
w2
i

xk
), (wk −

wiwj
xk

). Moreover v(xi −
w2
j

xk
) = wjhi, v(xi −

w2
j

xk
) = wihj .

if we set

v′ = v +
hixk

2
∂

∂wj
+
hjxk

2
∂

∂wi

then v′(xi −
w2
j

xk
) = 0, v′(xi −

w2
j

xk
) = 0, v′(wk −

wiwj
xk

) = hk then v′ − hk
∂

∂wk
= 0. ut
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Y is locally complete intersection in V , therefore there is an exact sequence

0−→IY /I2
Y−→Ω1

V ⊗OY−→Ω1
Y−→0 (4.9)

If we apply the functor Hom we get the upper row of (4.5), if we apply Hom we get the

exact sequence

H0(θV ⊗OY )
H0(η)−→ H0(NY ) k−→T 1

Y

If we apply the left exact functor H0 to (1.3) we see that kerH0(ψ) ⊂ ImH0(η) = ker k and

there exist a map ε:H0(⊕iORi(π∗Di))→ T 1(Y ) such that ε ◦H0(ψ) = k .

Corollary 4.10. If H1(π∗θX) = 0 then ε is surjective.

Proof. If F = ker γ then there exists a commutative diagram with exact rows and columns

0 0y y
H0(π∗θX) −→ H0(F) −→ H1(θY ) −→H1(π∗θX)
‖

y y
H0(π∗θX)

H0(β)−→ H0(⊕iORi(π∗Di))
ε−→ T 1(Y )y y

H0(T 1
Y ) == H0(T 1

Y )y y
H1(π∗θX) −→ H1(F) −→ H2(θY )

(4.11)

where the right column is the first part of the cotangent spectral sequence. The conclusion

follows by chasing through the diagram. ut

We note that π∗ORi = ODi ⊕ODi(−Li) and

H0(⊕iORi(π∗Di)) = ⊕i(H0(ODi(Di))⊕H0(ODi(Di − Li)))

moreover H1(π∗θX) = H1(θX)⊕ (⊕iH1(θX(−Li))).

More generally we can include the map ε into an exact sequence of cohomology groups, this

can be done as follows. One first prove that Ω1
Y/X = ⊕iORi(−Ri), then one consider the

exact sequence

0−→π∗Ω1
X−→Ω1

Y−→⊕i ORi(−Ri)−→0 (4.12)

(recall that π∗Ω1
X is locally free and (π∗Ω1

X)∨ = π∗θX ). Applying the functor HomOY (−,OY )

we get a long exact sequence

0−→H0(θY )−→H0(π∗θX)−→⊕i Ext1
OY (ORi(−Ri),OY )−→T 1

Y−→H1(π∗θX)−→ . . . (4.13)

Since Ri is a Cartier divisor its local equation is a regular element of OY , using local com-

mutative algebra ([Mat1] §18 lemma 2) we have for every i ≥ 0

Exti+1
OY (ORi(−Ri),OY ) = ExtiORi (ORi(−Ri),ORi(Ri)) =

{
0 if i > 0
ORi(π∗Di) if i = 0
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and (4.13) becomes

H0(π∗θX)−→⊕i H0(ORi(π∗Di))
ε−→T 1(Y ) σ−→H1(π∗θX)−→⊕i H1(ORi(π∗Di)) (4.14)

Let Def(V/Y ) be the space of embedded deformations of Y in V . It’s well known that the

natural map k̂:Def(V/Y ) → Def(Y ) is holomorphic and its differential is k:H0(NY ) →
T 1(Y ).

In a neighbourhood of 0 is defined an analytic map

ξ:H = ⊕i(H0(OX(Di))⊕H0(OX(Di − Li)))→ DefV (Y )

where ξ(yi, γi) is the surface in V defined by:{
w2
i = (xj + yj + γjwj)(xk + yk + γkwk)

wjwk = wi(xi + yi + γiwi)
(4.15)

Definition . We shall call the deformation of Y defined in (4.15) a natural deformation.

Lemma 4.16. Let dξ:⊕i(H0(OX(Di)) ⊕H0(OX(Di − Li))) → H0(NY ) be the differential

of ξ . Then H0(ψ) ◦ dξ = % where

%:⊕i(H0(OX(Di))⊕H0(OX(Di − Li)))→ ⊕i(H0(ODi(Di))⊕H0(ODi(Di − Li)))

is the restriction map.

The proof is a straightforward verification and it is left to the reader.

If H1(OY ) = 0 then H1(OX) = H1(OX(−Li)) = 0 and % is surjective, the kernel of ε has

dimension h0(π∗θX) − h0(π∗θY ) and since the parameter space H of natural deformations

is smooth we have finally

Proposition 4.17.If H1(OY ) = H1(π∗θX) = 0 then k ◦ dξ = ε ◦ H0(ψ) ◦ dξ = ε ◦ % is

surjective, the map k̂ ◦ ξ is smooth and Def(Y ) is smooth of dimension∑
i

(h0(OX(Di)) + h0(OX(Di − Li))− 1)− h0(π∗θX) + h0(θY )

We remark that if the minimal resolution of Y is of general type then the group of automor-

phisms of Y is finite [Mat2] and H0(θY ) = 0.

Remark. . If H1(π∗θX) 6= 0 (this is true in particular if H1(θX) 6= 0) then in general ε is

not surjective; in this case it may be useful to know Im ε = kerσ . An exact sequence where

σ appears is the following due to Ziv Ran [Ran]

. . .−→T 1
π−→T 1(X)⊕ T 1(Y ) σ′−→Ext1

π(Ω1
X ,OY )−→T 2

π−→ . . .

where T 1
π is the space of first order deformation of the map π and Extnπ(Ω1

X ,OY ) is defined

as the limit of the spectral sequence Ep,n−p2 = ExtpOY (Ln−pπ∗Ω1
X ,OY ). It is clear that in

our case Extnπ(Ω1
X ,OY ) = Hn(π∗θX) and σ(x) = σ′(0, x).



36 Chapter II.

5. Stability of simple bihyperelliptic surfaces

In this section we apply the computation of §4 to a particular class of surfaces.

Denote X = P1 × P1 and let OX(a, b) be the line bundle on X whose sections are bihomo-

geneous polynomials of bidegree a, b . A minimal surface of general type is said to be simple

bihyperelliptic of type (a, b)(n,m) if its canonical model is defined in OX(a, b) ⊕ OX(n,m)

by the equation

z2 = f(x, y) w2 = g(x, y) (5.1)

where f, g are bihomogeneous polynomials of respective bidegree (2a, 2b), (2n, 2m).

Let S be a simple bihyperelliptic surface of type (a, b)(n,m) with a, b, n,m ≥ 3 and let

δ:S → Y be the pluricanonical map onto its canonical model Y . Let (5.1) be the equation

of Y .

In Y we have the following exact sequence (cf. (4.11)):

0−→H1(θY )−→T 1(Y )−→H0(T 1
Y ) ob−→H2(θY )

where ob is the obstruction to globalize a first order deformation of the singular points of Y .

As a consequence of Proposition 4.17 we have the following.

Theorem 5.2.In the notation above Def(Y ) is smooth. Def(S) is smooth if and only if

ob = 0 .

Proof. Let π:Y → X = P1 × P1 be the projection, then

π∗OY = OX ⊕OX(−a,−b)⊕OX(−n,−m)⊕OX(−a− n,−b−m)

θX = OX(2, 0)⊕OX(0, 2) π∗π
∗θX = θX ⊗ π∗OY

Since a, b, n,m ≥ 3 we have h1(OY ) = h1(π∗θX) = 0 and by Proposition 4.17 Def(Y ) is

smooth.

Denote by LY (resp.: DY ) the functor of local (resp.: global) deformations of Y , since Y has

a finite number of singular points which are R.D.P.’s LY is smooth with finite dimensional

tangent space H0(T 1
Y ). Since Def(Y ) is smooth, the natural map Φ:DY → LY is smooth

if and only if its differential T 1
Y → H0(T 1

Y ) is surjective. According to 3.4 the smoothness of

Def(S) is equivalent to the smoothness of Φ. ut

Note that since we have a surjective map H → T 1(Y ), the kernel of ob is exactly the subspace

of H0(T 1
Y ) generated by the natural deformations of Y .

Theorem 5.3. Simple bihyperelliptic surfaces of type (a, b)(n,m) are stable under small

deformations for a > 2n,m > 2b .

Proof. Let F :S → ∆ be a flat family over the complex disk with S0 = F−1(0) simple

bihyperelliptic of type (a, b)(n,m).
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Let F ′:Y → ∆ be the corresponding family of canonical models, then Y0 is a normal bidouble

cover of X = P1 × P1 with, in the notation of §4, L1 = OX(n,m), L2 = OX(a, b), L3 =

OX(a+ n, b+m), x1 = f , x2 = g , x3 = 1.

Then, for a, b, n,m ≥ 3, the surface Y0 satisfies the hypothesis of Proposition 4.17 and we

can assume, possibly shrinking ∆, that F ′ is a natural deformation of Y0 .

The natural deformations of Y0 are defined in OX(a, b)⊕OX(n,m) by{
z2 = f ′(x, y) + wϕ(x, y)
w2 = g′(x, y) + zψ(x, y)

where f ′ ∈ H0(OX(2a, 2b)), g′ ∈ H0(OX(2n, 2m)), ϕ ∈ H0(OX(2a − n, 2b − m)), ψ ∈
H0(OX(2n− a, 2m− b)). If a > 2n, m > 2b then ϕ = ψ = 0 and the lemma is proved. ut

Example 5.4. Suppose a > 2n , m > 2b and let (5.1) be the equations of Y . Denote

D1 = div(f), D2 = div(g) and suppose moreover that Sing(Di) ∩Dj = ∅, {i, j} = {1, 2}
and let p ∈ D1 be a singular point.

Then π−1(p) contains exactly two singular points q1, q2 of Y and there exists an involution

σ ∈ G such that σ(q1) = q2 . σ extends to every natural deformation, in particular every

global deformation of Y gives by restriction isomorphic local deformations of (Y, q1) and

(Y, q2) and Φ cannot be smooth.

More generally one can prove that if ob = 0 then the group G must act trivially on the vector

space H0(T 1
Y ) and this is possible only if D1 and D2 are both smooth divisors.
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III. Normal surfaces with anticanonical divisors.

A normal projective surface X has an anticanonical divisor if −KX is linearly equivalent to

a nontrivial effective Weil divisor.

Every smooth rational surface S 6= P2 is obtained from a Segre-Hirzebruch surface after a

finite sequence of blowings up µ:S → Fd and since P−1 decrease (if 6= 0) after a blow up at

a generic point, smooth rational surfaces with anticanonical divisors and large Picard number

can be considered quite “special”.

After a computation of some cohomology groups in the Segre-Hirzebruch surfaces we shall see

in section 2 that the condition P−1 ≥ 5 gives strong constraint on the map µ . This is used

in the proof of the main result of this section (Theorem 4.4) which is a classification theorem

for normal projective surfaces with % = 1, P−1 ≥ 5 and at most rational singularities.

1. Tangent and cotangent vector fields on a Segre-Hirzebruch surface

We consider the following description of the Segre-Hirzebruch surface Fq , q ≥ 0 (cf. [Be],[Ha1]

V.2, [B-P-V] V.4).

Fq = (C2 − {0})× (C2 − {0})/ ∼

where (l0, l1, t0, t1) ∼ (λl0, λl1, λqµt0, µt1) for any λ, µ ∈ C∗ .

From now on by the standard torus action on Fq we shall mean the faithful (C∗)2 action

given by

(C∗)2 3 (ξ, η): (l0, l1, t0, t1)→ (l0, ξl1, ηt0, t1)

Fq is covered by four affine planes C2 ' Ui,j = {litj 6= 0} which are invariant for the

standard torus action. In this affine covering we define local coordinates according to the

following table

Table 1.1.

Marco Manetti: Degenerations of Algebraic Surfaces and applications to Moduli prob-

lems.
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U0,1 z =
l1
l0

s =
t0
t1l

q
0

U0,0 z =
l1
l0

s′ =
t1l

q
0

t0

U1,0 z′ =
l0
l1

y′ =
t1l

q
1

t0

U1,1 z′ =
l0
l1

y =
t0
t1l

q
1

We shall call z, s principal affine coordinates and U0,1 principal affine subset. The other

pairs of affine coordinates are related to s, z by

z′ = z−1 s′ = s−1 y = sz−q y′ = s−1zq = y−1

The map Fq → P1 , (l0, l1, t0, t1) → (l0, l1) represents the Segre-Hirzebruch surface as a

rational geometrically ruled surface where σ∞ = {t1 = 0} is the unique section with negative

selfintersection σ2
∞ = −q , σ0 = {t0 = 0} is a section with σ2

0 = q and f = {l1 = 0} is a

fibre. It is well known (cf. [Be]) that σ0, f are a basis of Pic(Fq), the canonical divisor is

linearly equivalent to −σ0−σ∞−2f and the rational function y gives a rational equivalence

σ∞ ∼ σ0 − qf .

Our description of Fq is particularly useful for explicit computations of cohomology groups,

for later use we prove here the following

Lemma 1.2. For every p, q > 0 , r ≥ 0 h0(Fq,Ω1(pσ0 + rσ∞)) = qp2 − 1 .

Proof. H0(Ω1(pσ0 + rσ∞)) is the vector space of rational cotangent vector fields having at

most poles of order p and r along σ0 and σ∞ respectively. The standard torus action induces

an eigenspaces decomposition

H0(Ω1(pσ0 + rσ∞)) = ⊕
a,b∈Z

Ma,b

where ω ∈Ma,b if and only if in the open set U0,1 we have

ω = αa,bz
a−1sbdz + βa,bz

asb−1ds

for some complex numbers αa,b, βa,b .

The same ω is written in U0,0 as

ω = αa,bz
a−1s′

−b
dz − βa,bzas′−b−1

ds′

and in U1,1

ω = −(αa,b + qβa,b)z′
−(a+1+qb)

ybdz′ + βa,bz
′−(a+qb)

yb−1dy

Note that σ0 ∩ U0,1 = {s = 0} , σ∞ ∩ U0,1 = ∅ , σ0 ∩ U0,0 = ∅ , σ∞ ∩ U0,0 = {s′ = 0} ,

σ0 ∩ U1,1 = {y = 0} and σ∞ ∩ U1,1 = ∅ .
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From the above local description of ω it follows immediately that ω 6= 0 ⇒ b < 0 and then

there exists an isomorphism H0(Ω1(pσ0 + rσ∞)) = H0(Ω1(pσ0)).

By reflexivity every section of Ω1(pσ0) on U0,1 ∪ U0,0 ∪ U1,1 extends to a unique section on

Fq and then the following set of rational cotangent vector fields
za−1sbdz a ≥ 1, 0 ≥ b ≥ −p, a+ 1 + qb ≤ 0

zasb−1ds a ≥ 0, −1 ≥ b ≥ 1− p, a+ bq < 0

−qza−1sbdz + zasb−1ds − 1 ≥ b ≥ 1− p, a+ bq = 0

are qp2 − 1 bihomogeneous sections of Ω1(pσ0) and an easy calculation that we omit shows

that they are a basis. ut

With a similar, but easier, proof it is possible to prove the following well known fact ([Ko2],

[Ca6])

Lemma 1.3. A bihomogeneous basis of H0(Fq, θ) is given in the open set U0,1 by
∂

∂z
, z

∂

∂z
, z2 ∂

∂z
, s
∂

∂s

za
∂

∂s
0 ≤ a ≤ q

Corollary 1.4. For every p, q, r > 0 , h1(Fq, θ) = q−1 , h1(Fq,Ω1(pσ0)) = 1 and h2(Fq, θ) =

h2(Fq,Ω1(pσ0)) = h1(Fq,Ω1(pσ0 + rf)) = 0 .

Proof. By Hodge decomposition and Serre duality h0(Ω1) = h2(θ(K)) = 0, h2(Ω1) = 0 and

since both −K and pσ0 are effective divisors also h2(θ) and h2(Ω1(pσ0)) vanish.

By Riemann-Roch and previous lemmas we then get h1(θ) = q − 1 and h1(Ω1(pσ0)) = 1.

For every p, r > 0 it follows from standard exact sequences

h1(Ω1(pσ0 + rf)) ≤ h1(Ω1(σ0 + f)) = h0(Ω1(σ0 + f))− q

and using the same method used in the proof of lemma 1.2 we easily see that za−1s−1dz ,

0 ≤ a ≤ q − 1 is a basis of H0(Ω1(σ0 + f)) and the above r.h.s. is 0. ut

We end this section by recalling the vanishing theorem of line bundles on Segre-Hirzebruch

surfaces.

Proposition 1.5. In the surface Fq q > 0 we have:

(i) H0(aσ0 + bf) 6= 0 if and only if a ≥ 0, aq + b ≥ 0 .

(ii) The linear system |aσ0 +bf | contains a reduced divisor if and only if either a > 0, b ≥ −q
or a = 0, b > 0 .

(iii) H1(aσ0 + bf) = 0 if and only if either a = −1 or a ≥ 0, b ≥ −1 or a ≤ −2, b ≤ q − 1 .

(iv) For every pair of positive integers p, r the natural map

H0(pσ0)⊗H0(rσ0)→ H0((p+ r)σ0)
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is surjective, in particular the image of Fq by the complete linear system |σ0| is projec-

tively normal.

(v) P−1(Fq) = max(9, q + 6) .

Proof. (i) and (ii) are clear since |σ0| , |f | are base point free and σ∞ ∈ |σ0 − qf | .
By Serre duality it is sufficient to study the vanishing of h1 only for a ≥ −1.

Using standard exact sequences and induction on |b| we have for every integer b

h1(−σ0 + bf) = h1(−σ0) = 0

and if b ≥ −1, by induction on a ≥ 0 we have

h1(aσ0 + bf) ≤ h1(−σ0 + bf) = 0

If a ≥ 0 and b ≤ −2 then we can write aσ0 + bf = σ∞ + D where by (i) and Serre duality

h2(D) = 0, thus

h1(aσ0 + bf) ≥ h1(Oσ∞(aσ0 + bf) = h1(OP1(b)) > 0

In the principal affine coordinates z, s a bihomogeneous basis of H0(pσ0) is given by the

monomials s−azb with 0 ≤ a ≤ p , 0 ≤ b ≤ aq , (iv) follows immediately.

For every q ≥ 0 we have −K = σ0 +σ∞+2f and K2 = 8. If q ≤ 3 by (iii) and Serre duality

H1(−K) = H2(−K) = 0 and P−1 = 9 by Riemann-Roch. If q ≥ 3 then −K ·σ∞ < 0 and

P−1 = h0(σ0 + 2f) = q + 6. ut

2. Curves with negative self intersection in a rational surface

Let S be a smooth rational surface, then S does not contain any irreducible curve with

negative self intersection if and only if S = P2,P1 × P1 . From now on, by abuse of notation

we shall denote by a rational surface a rational surface different from P2,P1 × P1 .

Let S be such a rational surface, then there exists an integer d ≥ 1 and a birational morphism

µ:S → Fd such that µ is an isomorphism in a neighbourhood of the section σ∞ with self

intersection −d (cf. for example [Be]) and by abuse of notation we denote by σ∞ also its

inverse image µ−1(σ∞). We note that µ is the composition of %(S)− 2 blowings-up.

Let p:S → P1 be the fibration obtained by composing µ with the natural projection π:Fd →
P1 .

In order to simplify the presentation of next proofs we introduce some technical notation.

(∗) In the situation above let r = %(S) − 2, let h be the number of degenerate fibres of p

and let e be the number of (−1)-curves contained in the fibres of p . We note that e ≥ h
and r =

∑
(b2(f)− 1) where the summation is made over all degenerate fibres f of p .

Definition . In the notation above, a smooth irreducible curve C ⊂ S is said to be µ -

transversal or simply transversal if C ·f > 0 where f is a fibre of p .
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Theorem 2.1. Let S be a rational surface, µ:S → Fd a birational morphism which is an

isomorphism in a neighbourhood of σ∞ and C ⊂ S a transversal curve 6= σ∞ .

A) If h0(−KS) + min{d, 3} ≥ 8 then C2 ≥ −1 .

B) If h0(θS) ≥ 4 then C2 ≥ 0 .

Since µ is a composition of blowings up the first thing to do is to understand the behavior

of tangent and anticanonical sheaves under blow up.

Lemma 2.2. Let X be a smooth surface, x ∈ X and X̃
f−→X the blowing up of X at x .

Then R1f∗θX̃ = R1f∗OX̃(−KX̃) = 0 and there exist two exact sequences of sheaves on X

0−→f∗OX̃(−KX̃)−→OX(−KX)−→∧2 TxX−→0

0−→f∗θX̃−→θX−→TxX−→0

Proof. It is possible to give an elementary proof using local coordinates at x (cf. [Ca6] Lemma

9.22) but we prefer to give here a shorter proof that makes use of Leray spectral sequence.

Let M ⊂ OX be the ideal sheaf of the point x and let E = f−1(x) be the exceptional

curve, since E2 < 0 we have H0(NE/X̃) = 0 and then every tangent vector field s on a

neighbourhood of E is tangent to E at every point p ∈ E , in particular it is well defined its

direct image f∗s ∈ H0(MθX) and there exists an exact sequence

0−→f∗θX̃−→θX−→V−→0

where V is a complex vector space of dimension ≥ 2.

Thus by Leray spectral sequence χ(θX) = χ(θX̃) + dimV + dimR1f∗θX̃ and applying this

formula to X = P2, X̃ = F1 we get dimV + dimR1f∗θX̃ = 10− 8 = 2.

The proof of the analog results for −K is similar and it is omitted. ut

Note in particular that the vector space H0(−KX̃) (resp. H0(θX̃)) is naturally isomorphic

to the space of sections of the anticanonical sheaf (resp. tangent sheaf) of X which vanish

at x and h2(θ) is a birational invariant of smooth surfaces.

Corollary 2.3. Let S be a rational surface: if, in the notation above, h0(−KS)+min{d, 3} ≥
9 and C ∈ S is a transversal curve 6= σ∞ , then C2 ≥ 0 .

Proof. The proof follows by considering the blowing up of S at a point of C . ut

Theorem 2.1 cannot be improved. Let in fact Sd (d ≥ 1) be a surface obtained by blowing

up the surface Fd at d + 1 generic points p0, ..., pd . These points lie on a section σ0 ⊂ Fd
such that σ2

0 = d , let C ⊂ Sd be the strict transform of σ0 : clearly C2 = −1, and, recalling

that

h0(−KFd) =
{

9 1 ≤ d ≤ 3
d+ 6 d ≥ 3
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it follows that h0(−KS) + min{d, 3} = 8.

Similar examples show that also the inequality h0(θX) ≥ 4 is the best possible (cf. Remark

4.5). Note moreover that the two conditions on P−1 and h0(θ) are independent.

Lemma 2.4. In the previous notation let S be a rational surface and let f be a generic fibre

of p .

Then h0(−KS − f − σ∞) ≥ h0(−KS) + min{d, 3} − 5 .

Proof. We have two exact sequences of sheaves

1) 0−→OS(−KS − σ∞)−→OS(−KS)−→Oσ∞(−KS)−→0

2) 0−→OS(−KS − f − σ∞)−→OS(−KS − σ∞)−→Of (−KS − σ∞)−→0

By the genus formula −KS ·σ∞ = 2 + σ2
∞ = 2− d , thus h0(Oσ∞(−KS)) = 3−min{d, 3} .

The proof follows by considering cohomology exact sequences associated to 1) and 2). ut

Proof of theorem 2.1.A) If S = Fd we already know that σ∞ is the only curve with negative

self intersection, so we can assume that p has at least a degenerate fibre f0 .

If A is the irreducible component of f0 which intersects σ∞ then we have an exact sequence

0−→OS(−KS − f − σ∞ −A)−→OS(−KS − σ∞ − f)−→OA(−KS − σ∞ − f)−→0

By the genus formula (−KS − f −σ∞)·A = 2 +A2− 1 ≤ 0 and by lemma 2.4 h0(−KS − f −
σ∞ −A) ≥ 2.

Let C ⊂ S be a transversal curve different from σ∞ with C2 ≤ −2; for every D ∈ | −KS −
f − σ∞ −A| we have

D·C ≤ 2 + C2 − f ·C − σ∞ ·C −A·C < 0

thus D = C + E for some effective divisor E .

Moreover E·f = E·σ∞ = 0, in fact, by genus formula D·f = 1, D·σ∞ = 0 and by hypothesis

C ·f > 0, C 6= σ∞ . Therefore E is contained in the exceptional locus of µ but this is not

possible because dim |D| = dim |E| ≥ 1. ut

Remark. 2.5. Looking at the proof of theorem 2.1 we note that if there exists a degenerate fibre

f0 such that the irreducible component A which intersects σ∞ has self intersection A2 ≤ −2

then theorem 2.1.A) holds under the less restrictive assumption h0(−KS) + min{d, 3} ≥ 7.

We also note that the condition A2 ≤ −2 holds in particular if f0 contains exactly one

(−1)-curve. In fact if

µ:S → S1
µ1−→S2

µ2−→ . . .
µj−→Fd

is the decomposition of µ where µ1, .., µj are exactly the blowings up lying over µ(f0)\σ∞
then the unique (−1)-curve must be the exceptional curve of µ1 .
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Proof of Theorem 2.1.B). As before we can assume that S is not a Segre-Hirzebruch surface.

We first note that since σ2
∞ < 0, every section of θS is tangent to σ∞ and then there exists

an exact sequence

0−→H0(θS(−σ∞))−→H0(θS) v−→H0(θσ∞)

The map v cannot be surjective, otherwise, in the set up of lemma 1.3, H0(θS) must con-

tain three sections za
∂

∂z
+ pa(s, z)

∂

∂s
a = 0, 1, 2, pa polynomials but, according to 2.2,

this is clearly impossible since µ:S → Fd is not an isomorphism. In particular h0(θS) ≤
h0(θS(−σ∞)) + 2. Note that H0(θS(−σ∞)) is contained in H0(θFd(−σ∞)) which is gener-

ated by s
∂

∂s
, zi

∂

∂s
for i = 0, .., d

Assume now that C ⊂ S is an irreducible transversal curve with negative selfintersection, as

before every tangent vector field on S is tangent to C and since
∂

∂s
can be tangent to C only

in a finite set of points it follows that (s −
∑
aiz

i)
∂

∂s
∈ H0(θS(−σ∞)) only if (s −

∑
aiz

i)

vanishes on µ(C) and then h0(θS(−σ∞)) ≤ 1, h0(θS) ≤ 3. ut

Lemma 2.6. In the same notation of lemma 2.4, if h0(−KS) + min{d, 3} ≥ 6 then there

exists at most one transversal curve C 6= σ∞ with C2 ≤ −2 . If such a curve exists then

C ·f = 1 .

Proof. By lemma 2.4 h0(−KS − f − σ∞) ≥ 1, consider D ∈ | −KS − f − σ∞| . By the genus

formula

D·C ≤ 2 + C2 − C ·f − C ·σ∞ < 0

thus D = C + B where B is an effective divisor. We note that B ·f = 0 and thus C is the

only component of D such that C ·f = D·f = 1. ut

3. The weight of a rational surface

Let p:X → B a holomorphic map from a surface X to a smooth curve B . We shall say

that p is a rational fibration with section (r.f.w.s. for short) if:

1) The generic fibre of p is a smooth rational curve.

2) It’s given a section s:B → X .

Without loss of generality we can obviously assume that B ⊂ X and s is the embedding of

B in X .

Definition . A r.f.w.s. p:X → B is minimal if every fibre contains no (−1)-curves disjoint

from B .

Proposition 3.1. In a minimal r.f.w.s p:X → B every fibre is smooth rational.

Proof. The proof is essentially the same as Lemma III.8 of [Be]. ut

Definition . The weight w(S) of a rational surface S 6= P2 is the greatest integer n such

that there exists a birational morphism µ:S → Fn .
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We note that w(S) ≤ h1(θFw(S)) + 1 ≤ h1(θS) + 1.

Let C be the set of irreducible curves C ⊂ S such that there exists a smooth rational curve

f ⊂ S with f2 = 0, C ·f = 1.

Theorem 3.2. In the notation above w(S) = max{−C2| C ∈ C} .

Proof. ≤ is trivial.

Conversely let C ∈ C such that C2 < 0, we have to show that −C2 ≤ w(S). Let f be

a smooth rational curve such that f2 = 0, f ·C = 1, then it’s very easy to prove that the

linear system |f | is a base point free pencil. The associated morphism p:S → P1 is a rational

fibration with section C .

The conclusion follows from proposition 3.1 by considering the surface S′ obtained by con-

tracting all (−1)-curves contained in the degenerate fibres of p which are disjoint from C .

ut

4. Normal projective surfaces with % = 1 , P−1 ≥ 5

We first observe that in this case, since X is normal projective, Pn(X) = 0 for every n > 0.

Lemma 4.1.(Sakai) Let X be a normal projective surface with %(X) = 1 , Pn(X) = 0 for

every n > 0 . Then q(X) = 0 .

Proof. A proof of this lemma follows from the results of [Sa1] §4, for the reader’s convenience

we write here a direct proof. Let δ:Y → X be the minimal resolution of X ; since for every

integer n the sheaf OX(nKX) is reflexive we have Pn(Y ) ≤ Pn(X). In particular all the

positive plurigenera of Y vanish and, by Enriques criterion, Y is a ruled surface.

By Serre duality H2(OX) = 0 and by the Leray spectral sequence we get q(Y ) = q(X)+h(X)

where, by definition, h(X) = h0(R1δ∗OY ). Let’s assume h(X) < q(Y ) and let p:Y → B be

the canonical ruled fibration onto a smooth curve B of genus g = q(Y ).

If D is an irreducible component of the exceptional divisor of δ then, by a general result (cf.

[B-P-V] p. 74), g(D) ≤ h(X) and thus p is constant on D . We can thus factorize p to a

ruled fibration p′:X → B , but this is impossible by the assumption %(X) = 1. ut

Theorem 4.2.(Badescu) Let X be a normal projective surface such that q(X) = Pn(X) = 0

for every n > 0 and let δ:Y → X be its minimal resolution. Then either

1) The singularities of X are rational and Y is a rational surface, or

2) Y is a ruled surface of irregularity q > 0 , X has precisely one non-rational singularity x

of geometric genus q , the fibre of δ over x is composed by a section of the canonical ruled

fibration p:Y → B and (possibly) by components of the degenerate fibres of p , the fibre of δ

over a rational singularity of X is contained in a degenerate fibre of p .

Proof. [Ba1] Th. 2.3. ut

Our goal is to give a structure theorem for surfaces X belonging to class 1) of Theorem 4.2

under the more restrictive assumption that %(X) = 1, P−1(X) ≥ 5.
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Definition . A normal projective surface X 6= P2 belongs to class (A) if:

A1) %(X) = 1, Pn(X) = 0 ∀n ≥ 1 and X has at most rational singularities.

A2) If δ:S → X is the minimal resolution then S is a rational surface of weight d ≥ 2.

A3) There exists a birational morphism µ:S → Fd such that the irreducible curves contracted

by δ are exactly µ−1σ∞ and the components with self intersection ≤ −2 of degenerate

fibres of p = π ◦ µ:S → P1 .

Let’s denote, for every normal projective surface X with minimal resolution δ:Y → X , by

s(X) the number of singular points of X and by b(X) = max
x∈X
{b2(δ−1(x))}

Proposition 4.3. If X belongs to class (A) then:

1) s(X) ≤ b(X)

2) X has at most one non cyclic singularity.

3) If every singularity of X is cyclic then s(X) ≤ 3 .

Proof. Let D ⊂ S be the exceptional divisor of δ , since the singularities of X are rational

%(S) = 1 + b2(D) (cf. I.2.5), this forces every degenerate fibre of p to contain exactly one

(−1)-curve, in fact by easy considerations about % we have, in the notation (∗) of section 2,

r + h = b2(D\σ∞ ) + e and then e = h . In particular the components of degenerate fibres

which intersect σ∞ belong to D .

It’s easy to see that if f0 is a degenerate fibre, E ⊂ f0 the (−1)-curve and A ⊂ f0 the com-

ponent intersecting σ∞ then f0\E has at most two connected component and the possible

component that doesn’t contain A is a string.

Thus it holds s(X) ≤ h + 1 ≤ b(X) and, if (X,x) is a noncyclic singularity, then δ−1(x)

must be the connected component D′ of D which contains σ∞ . This prove 1) and 2).

3) follows from the fact that D′ is a string if and only if h ≤ 2. ut

We are now able to prove the following

Theorem 4.4. Let X be a normal projective surface with %(X) = 1 , P−1(X) ≥ 5 with at

most rational singularities. Then X belongs to class (A).

Proof. Let δ:S → X be the minimal resolution and let D ⊂ S be the exceptional curve of

δ . S is a rational surface of weight d ≥ 1 and, according to I.5.3 P−1(S) = P−1(X) ≥ 5.

We first note that, by lemma 2.6, for every µ:S → Fd there exists at most one transversal

curve C ⊂ D different from σ∞ and then e ≤ h+ 1.

We first show by contradiction that d ≥ 2. In fact if we assume d = 1 and µ:S → F1 is

a birational morphism then %(S) = 1 + b2(D) and there exists a transversal curve C ⊂ D ,

C 6= σ∞ with C2 ≤ −2. By lemma 2.6 C ·f = 1 and by theorem 3.2, d ≥ −C2 ≥ 2.

If P−1(S) + min{d, 3} ≥ 8 then for every birational morphism µ:S → Fd the curves on S

with self intersection ≤ −2 are σ∞ and some components of degenerate fibres. In this case

the conclusion follows from easy considerations about the Picard number of S . This proves

the theorem if d ≥ 3 or P−1 ≥ 6.
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It remains to consider the case d = 2, P−1(S) = 5. If, for some µ:S → F2 , S contains a

degenerate fibre f0 such that A2 ≤ −2, where A ⊂ f0 is the irreducible component which

intersects σ∞ (e.g. if e < 2h), then the proof follows by remark 2.4.

The remaining case is the following: d = 2, P−1(S) = 5, for every birational morphism

µ:S → F2 the composite fibration p = π ◦ µ has only one degenerate fibre f0 , e = 2 and

A2 = −1 where A ⊂ f0 is the component which intersects σ∞ . We prove that this case

doesn’t occur.

Let µ:S → F2 be a fixed morphism and write µ as a composition of blowings-up

S = Sr
µr−→Sr−1−→....S2

µ2−→S1
µ1−→S0 = F2

We note that P−1(S) = P−1(F2)−4 thus r ≥ 4. Let pi ∈ Si−1 be the base point of the blow

up µi . pi is exactly the image of the critical set of the composite map S → Si−1 . If i ≤ j

let Ei ⊂ Sj be the strict transform of the exceptional curve of µi . We have E2
r = −1 and

E2
i ≤ −2 on S if i < r , in particular pi ∈ Ei−1\A ∀i > 1.

Let’s consider the surface Y obtained by contracting the curve σ∞ in F2 , It is a well known

fact that Y ⊂ P3 is the cone over a smooth conic in P2 .

We can consider the point p2 ∈ E1\A as a tangent vector v ∈ Tp1Y , let ψ:Y − −− → P1

be the projection of centre the projective line L generated by v . Observe that L does not

contain the vertex of Y and then the generic fibre of ψ is a smooth hyperplane section of Y .

By elimination of indeterminacy we get a fibration S2 → E2 which has σ∞∪A∪E1 as unique

degenerate fibre and then a fibration τ :S → E2 . The inclusion of E2 in S gives a section

for τ , in particular E2
2 ≥ −w(S) which implies E2

2 = −2.

By hypothesis τ has at most one degenerate fibre, then p3 ∈ E1 ∩E2 , in particular E2
2 = −2

in S3 and p4 ∈ E3\E2 otherwise E2
2 < −2 in S , therefore E3 is the component of the

degenerate fibre that intersects E2 and E2
3 ≤ −2 contrary to the assumption. ut

Remark. 4.5. It’s no difficult to construct a normal projective surface X with % = 1, P−1 = 4,

h0(θX) = 3 and with three rational double points of type A2 , hence by proposition 4.3 X

doesn’t belong to class A . (One of the simplest examples is obtained by fixing a section

σ0 ⊂ F2 and two distinct fibres f0, f1 ⊂ F2 and performing 2 blowings up over the point

σ0∩f0 and 3 blowings up over σ0∩f1 in such a way that the inverse image of σ0∪σ∞∪f0∪f1

contain exactly 3 (-1)-curves and 6 nodal curves).

5. Deformations of normal surfaces with anticanonical divisor.

For any algebraic algebraic variety X ⊂ Pn there exists a map of deformation functors

HilbnX
φ−→DefX where HilbnX is the functor of embedded deformations of X in Pn .

Lemma 5.1. In the above notation, if h1(OX(1)) = h2(OX) = 0 then φ is smooth.
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Proof. Let 0−→Cε−→B−→A−→0 be a small extension of local Artinian C -algebras and let

f :XB → SpecB be a deformation of X . According to the flatness of f we have an exact

sequence on X

0−→εOX−→OXB−→OXA−→0

where XA = f−1SpecA ⊂ XB . Assume that XA ⊂ PnA is an embedded deformation and let

LA = OXA(1) be the hyperplane line bundle.

The obstruction to extend LA to a line bundle LB → XB lies in H2(OX). In fact let X = ∪Ui
be an affine covering of X where LA trivialize and let gij its cocycle. Let g̃ij ∈ Γ(Uij ,O∗XB )

be a 1-cochain extending gij such that g̃ij g̃ji = 1 for every i, j .

Then for every i, j, k g̃ij g̃jkg̃ki = 1 + εδijk and is easy to see that δijk is a 2-cocycle and its

cohomology class δ ∈ H2(OX) is independent from the choice of g̃ij ’s.

δ is exactly the obstruction to get LB , in fact if δijk = hij + hjk + hki then g̃ij(1− εhij) is

a cocycle defining the line bundle LB . Note that in general LB depends from the choice of

hij but if H1(OX) = 0 then it is possible to prove that, up to isomorphism, LB is unique.

LB is f -flat and there exists an exact sequence

0−→εOX(1)−→LB−→OXA(1) = LA−→0

and since H1(OX(1)) = 0 the n + 1 homogeneous coordinates of PnA lift to n + 1 sections

of LB and a standard computation shows that the linear system generated is f -very ample

and define a closed embedding XB ⊂ PnB . ut

In case X smooth lemma 5.1 is a particular case of Horikawa costability theorem ([Ho]III).

This theorem asserts that if Y is a smooth variety, X is a smooth subvariety with ideal

sheaf IX ⊂ OY and H2(Y, IXθY ) = 0 then every deformation of X can be embedded in a

deformation of Y . In the situation of 5.1 the vanishing of H2(Pn, IXθPn) follows from Euler

exact sequence and every deformations of the projective space is trivial.

Assume now that X has a finite number of singular points x1, ..., xr , we have then

Lemma 5.2. If H2(θX) = 0 then the restriction morphism of functors

Φ:DefX → ×ri=1DefX,xi

is smooth. In particular every deformation of the singular points can be globalized.

Proof. This results is very similar to the above costability theorem, a proof in the same

spirit of Horikawa proof is given in ([Wa1] Prop 6.4). Here we give a proof that use general

obstruction theory.

Let T ∗(X), T ∗X be respectively the global and local cohomology of the cotangent complex of

X ([Pa]), the groups T i(X) are related with the sheaves T iX by the spectral sequence

Ep,q2 = Hp(T qX)⇒ T p+q(X)
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For i ≥ 1 the sheaf T iX is supported on {x1, ..., xr} , this implies that the natural map

ri:T i(X)→ H0(T iX) is surjective for i = 1 and injective for i = 2.

In fact Hj(T iX) = 0 for i, j ≥ 1 and, since T 0
X = θX , by assumption it follows H2(T 0

X) = 0.

The smoothness of Φ now follows by a standard criterion. ut

If X belongs to class A then all the morphisms considered before are smooth, more generally

we have

Proposition 5.3. Let X ⊂ Pn be a normal projective surface with q(X) = pg(X) = 0 ,

P−1(X) > 0 with at most rational singularities. Then H2(θX) = H1(OX(1)) = 0 .

Proof. The minimal resolution δ:S → X is a rational surface, in particular pg(S) = q(S) =

H0(Ω1
S) = 0. Let C ⊂ X be a smooth hyperplane section, then C ·KX < 0 and from exact

cohomology sequence associated to

0−→OX−→OX(1)−→OC(1)−→0

we get immediately H1(OX(1)) = 0.

Assume that H2(θX)∨ = Hom(θX ,KX) 6= 0 then, since both θ and K are reflexive sheaves,

Hom(θX ,KX) = Hom(θU ,KU ) where U ⊂ X is the open set of regular points. Moreover

KU is an invertible sheaf and the composition bilinear map

Hom(θU ,KU )×Hom(KU ,OU )→ Hom(θU ,OU )

is nonzero, thus Hom(θU ,OU ) 6= 0. This is a contradiction since, according to Theorem I.5.5,

Hom(θU ,OU ) = H0(Ω1
U ) = H0(Ω1

S) = 0. ut

Example 5.4. Deformations of the surface F4 with the negative self-intersection curve σ∞

blow down.

Let f :F4 → W0 the blowing down of the curve σ∞ , then f∗OF4(σ0) is a very ample line

bundle and the associate complete linear system gives an isomorphism between W0 and the

projective cone over the smooth rational curve of degree 4 in P4 .

Denoting by x0, ..., x5 the homogeneous coordinates of P5 the equation of W0 is rank(A) ≤ 1

where A is the matrix

A =
(
x1 x2 x3 x4

x2 x3 x4 x5

)
Since h1(θW0) = h2(θW0) = q(W0) = 0, P−1(W0) = P−1(F4) = 10 we can apply the above

results and we get an isomorphism

Def(W0) = Def(W0, w0)

where w0 = (1, 0, 0, 0, 0, 0) is the vertex of the cone, moreover every deformation of W0 can

be obtained as an embedded deformation in P5 .
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The semiuniversal deformation W̃0 → Def(W0) of W0 is well understood (cf. for example

[Rie] Satz 13 or [Ar3] pag. 77-78) and can be described in the following way:

The complex germ Def(W0) is reduced and can be represented in (C4, 0) as the union of

the line T1 = {t2 = t3 = t4 = 0} and the hyperplane T2 = {t1 = 0} .

Let W ⊂ P6 be the projective cone over the Veronese surface V ⊂ P5 and let {Ht} be a

generic pencil of hyperplanes in P6 with the vertex w0 of W belonging to H0 , then the

family of projective surfaces Wt = W ∩Ht is flat and then it is a deformation of the surface

W ∩H0 =cone over the generic hyperplane section of V =W0 . This is precisely the component

T1 of Def(W0), note that for t 6= 0 W ∩Ht is the Veronese surface.

If t ∈ T2 then the corresponding deformation is given by rank(At) ≤ 1 where At is the

matrix

A =
(

x1 x2 x3 x4

x2 − t2x0 x3 − t3x0 x4 − t4x0 x5

)
The restriction W̃0 → T2 = C3 admits a simultaneous resolution S̃

F−→W̃0 → T2 . S̃ is

the union of two copies U0, U1 = C × P1 × T2 with coordinates u0, (v0, w0), t2, t3, t4 (resp.

u1, (v1, w1), t2, t3, t4 ) with the patching isomorphism {u0 6= 0} ' {u1 6= 0} given by

u0u1 = 1 w1 = w0 v1 = u4
0v0 + (t2u3

0 + t3u
2
0 + t4u0)w0

The resolution map F : S̃ → W̃0 ⊂ P5 × T2 is given by (F0, ..., F5, t2, t3, t4) where

F0 = w0 = w1 F1 = v0 = u4
1v1 − (t4u3

1 + t3u
2
1 + t2u1)w1

F2 = u0v0 + t2w0 = u3
1v1 − (t4u2

1 + t3u1)w1, F3 = u2
0v0 + (t2u0 + t3)w0 = u2

1v1 − (t4u1)w1

F4 = u3
0v0 + (t2u2

0 + t3u0 + t4)w0 = u1v1 F5 = u4
0v0 + (t2u3

0 + t3u
2
0 + t4u0)w0 = v1

We note incidentally that S̃ → T2 is the semiuniversal deformation of the surface F4 (cf

[Ca6] §6) and a direct computation (cf. [Ca2] §1, [Ko2] pag.72) shows that the surface S̃t is

isomorphic to F2 for t 6= 0,∆ = t23 − t2t4 = 0 and to F0 = P1 × P1 for ∆ 6= 0.
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IV. Degenerations of the complex projective plane.

For the reasons explained in the general introduction we are interested to investigate the

structure of normal projective degenerations of rational surfaces, especially the case when the

fibres have at most quotient singularities.

This chapter is devoted to a deep study of normal degenerations of P2 , to be more precise

we study the proper flat analytic maps f :X → ∆ where X is a reduced locally irreducible

complex space of dimension three, ∆ ⊂ C is an open disk centered at 0, Xt = f−1(t) is

isomorphic to P2 for t 6= 0 and X0 is a normal surface.

For simplicity we study only the local structure of degenerations of P2 , this means that

we consider the map f equivalent to every degeneration obtained from f by shrinking ∆.

Note that since ∆ is smooth of dimension 1 the flatness of f is a consequence of the local

irreducibility of X .

From now on, by abuse of language we shall say that a normal surface X0 is a degeneration

of P2 if, in the above notation, it is the central fibre of f .

It is a classical result ([H-K]) the fact that, in the above situation, if X0 is smooth then

it is the projective plane and in fact holds the stronger result that every compact complex

surface with finite fundamental group and second Betti number b2 = 1 is the projective plane

([B-P-V] V.1.1).

If we admits X0 normal then the above result fails to be true, for example the cone over the

rational curve of degree 4 in P4 deforms to both P2 and P1 × P1 (III.5.4).

This example of degeneration is only a particular case of a wider class of degenerations

obtained by a classical construction called “sweeping out the cone with hyperplane sections”.

More generally let S ⊂ Pn be a smooth surface and let Pn−1 ⊂ Pn be a hyperplane. Let’s

suppose that the curve Y = S ∩ Pn−1 is projectively normal (this is true if Y is generic and

S is arithmetically Cohen-Macaulay) and let C(S, v) ⊂ Pn+1 be the projective cone over S

with vertex v ∈ Pn+1\Pn .

Let {Ht}t∈P1 be the pencil of hyperplanes of Pn+1 which contain Pn−1 , and set Xt =

Ht ∩ C(S, v). This defines a flat projective family of surfaces.

If v ∈ H0 then Xt ' S for every t 6= 0 and X0 is the cone over Y .

Marco Manetti: Degenerations of Algebraic Surfaces and applications to Moduli prob-

lems.
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For every n > 0 let Sn ⊂ PN , N =
n(n+ 3)

2
, be the image of P2 by the Veronese embedding

of degree n2 . Since the generic hyperplane section of Sn is projectively normal we can operate

the previous construction and we get a set B = {X0,n} of normal degenerations of P2 .

The normal surface X0,n is the cone over a smooth curve of genus p =
(n− 1)(n− 2)

2
and

degree n2 in Pp+3n−2 . In particular the surfaces X0,1 and X0,2 are the only ones in B with

at most quotient singularities.

The first question we ask is whether the only normal degenerations of P2 are those of the

set B , here we show that the answer is no, in fact even assuming X0 with at most cyclic

quotient singularity we will describe infinitely many examples of degenerations.

However the possibility for a normal surface to deform to the projective plane induces several

restrictions on its geometry, our first result is the following (Th. 1.3):

Theorem A. If X0 is a normal degeneration of P2 then X0 is a projective surface with

%(X0) = 1 and P−1(X0) ≥ 10 .

Therefore if X0 has at most rational singularities we may apply the results proved in chapter

III, especially prop. III.4.3, moreover in this case it is possible to prove also the stronger

Theorem B. 1) Let X0 be a normal degeneration of P2 with at most quotient singularities,

then the following properties hold:

a) X0 is projective algebraic.

b) q(X0) = Pn(X0) = 0 ∀n ≥ 1

c) %(X0) = 1

d) Every singularity of X0 is cyclic of type
1
n2

(1, na− 1) for some pair of positive integers

a, n with (a, n) = 1 ((a, n) is the g.c.d. of a and n)

e) If p1, p2 ∈ X0 and the singularities (X0, pi) are cyclic of type
1
n2
i

(1, niai − 1) then the

ni ’s are not divisible by 3, moreover if p1 6= p2 then (n1, n2) = 1

f) X0 has at most 3 singular points.

2) Conversely if a normal surface X0 satisfies a), b), c) and d) of 1) then X0 is a degeneration

of P2 , in particular e) and f) hold too.

Theorem C. Let X0 be a normal degeneration of P2 :

(i) If X0 has at most rational singularities then it has at most 4 singular points.

(ii) If X0 has at most quotient singularities then its weight can assume only the values 4, 7

or 10 .

The only degeneration of weight 4 is the ”classical” cone over the rational curve of degree 4

in P4 . Here we prove that there are infinitely many degenerations of weight 7 and we give a

complete explicit classification of these (Cor. 4.3).

We prove that there are also infinitely many degenerations of weight 10, but in this case an

explicit classification, although possible, is more complicated.
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1. Preliminaries

Throughout this chapter by a surface we shall always mean a two dimensional irreducible

reduced compact complex space with at most a finite number of isolated singularities and,

unless otherwise stated, normal as local ringed space. By algebraic surface we shall always

mean a projective algebraic surface.

We shall say that a map f :Y1 → Y2 of complex spaces is projective if there exists a closed

embedding i:Y1 → Y2 × Pn such that f is the composition of i with the projection on the

first factor.

Let’s consider now a normal surface X0 , by a smoothing of X0 we shall mean a proper flat

map f :X → ∆ smooth over ∆∗ = ∆−{0} where: X is a three dimensional reduced complex

space, ∆ is a small open disk in C centered at 0 and X0 is isomorphic to f−1(0).

Under this setting if t ∈ ∆ we set Xt = f−1(t). Since we are interested in the local properties

of smoothings, from now on, all the assertions concerning f and X will be considered up to

possible shrinking of ∆.

Lemma 1.1. Let f :X → ∆ be a smoothing of a normal surface X0 . For every t ∈ ∆ , let

Pic(X) rt−→Pic(Xt) be the natural restriction map.

If q(X0) = pg(X0) = 0 then r0 is bijective and rt is injective for every t ∈ ∆ .

Proof. By a general fact of topology of complex spaces (cf. for example [B-P-V] Th. I.8.8)

X0 is a homotopic retract of X , in particular, the restriction map H2(X,Z)→ H2(X0,Z) is

an isomorphism.

By using semicontinuity we get, for every t ∈ ∆ q(Xt) = pg(Xt) = 0 (It is not necessary here

to shrink ∆ because q and pg are topological invariants of the underlying oriented manifold).

The base change theorem gives R1f∗OX = R2f∗OX = 0 and by the Leray spectral sequence

we get, since ∆ is Stein, H1(OX) = H2(OX) = 0.

Now the respective exponential sequences on X and X0 give a commutative diagram

Pic(X) −→ H2(X,Z)yr0 ∥∥∥
Pic(X0) −→ H2(X0,Z)

Since the horizontal maps are isomorphisms r0 is also an isomorphism.

If L ∈ Pic(X) and we denote by A ⊂ ∆ the set of t for which Lt = L ⊗ OXt is the trivial

sheaf, then the first part of this proof shows that A is open, furthermore since f is proper

we have

A = {t|h0(Lt) ≥ 1, h0(L−1
t ) ≥ 1}

that is a closed set by semicontinuity. ut

Remark. . In general it is not true that rt is bijective for t 6= 0.

In the same situation of Lemma 1.1, if moreover X0 is algebraic, then we shall show in

the course of the proof of the next proposition that if L0 is a very ample sheaf on X0 with
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H1(L0) = 0 (such sheaf always exists), then the unique extension L on X is relatively f -very

ample and the morphism f is projective.

Proposition 1.2. Let X0 ⊂ Pn be a normal surface with anticanonical divisor and let

f :X → ∆ be a smoothing of X0 .

If q(X0) = pg(X0) = 0 then there exists a closed embedding X
i−→Pn × ∆ such that f is

induced by the projection on the second factor.

Proof. This lemma is a consequence of lemma III.5.1, but it is instructive to give a direct

proof that doesn’t rely on the existence of the Kuranishi family and Hilbert scheme.

Let C ⊂ X0 be a smooth hyperplane section not intersecting the singular locus of X0 and

set L0 = OX0(C).

We have H1(L0) = 0, in fact there is an exact sequence

0−→H1(OX0)−→H1(L0)−→H1(OC(C))

and by Serre duality and adjunction formula H1(OC(C)) = H0(OC(KX0)) = 0 because

KX0 ·C < 0.

Let L be an invertible sheaf on X which extends L0 , we have then an exact sequence

0−→L(−X0)−→L−→L0−→0

since X0 is linearly equivalent to 0 as a Cartier divisor we have L(−X0) ∼ L as OX -

module. In particular L(−X0) ⊗ OX0 ' L0 and by semicontinuity, base change and Leray

spectral sequence we get, eventually shrinking ∆, H1(L(−X0)) = 0 and the restriction map

H0(L) α−→H0(L0) is surjective.

Let V0 ⊂ H0(L0) be the (n + 1)-dimensional vector space generated by the homogeneous

coordinates of Pn and let V ⊂ H0(L) be a subspace isomorphic to V0 via α .

By further shrinking ∆, the linear system |V | is base point free and we can define i:X →
Pn ×∆ i(x) = (v0(x), ..., vn(x), f(x)) where v0, ..., vn is a basis of V . It’s easy to see that i

gives the desired embedding. ut

After this preparatory material we now are going to study more closely normal degenerations

of P2 .

Definition . We shall say that a normal surface X0 is a (normal) degeneration of P2 if there

exists a smoothing f :X → ∆ of X0 such that Xt ' P2 for every t ∈ ∆∗ .

X0 will be called a projective degeneration if in addition the map f can be chosen to be

projective.

The main result of this section is the following:

Theorem 1.3. Let X0 be a normal degeneration of P2 .

Then X0 is a projective degeneration with q(X0) = Pn(X0) = 0 ∀n ≥ 1 , P−1(X0) ≥ 10 and

%(X0) = 1 .
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Proof. Let f :X → ∆ be a smoothing of X0 with Xt ' P2 for every t ∈ ∆∗ . Since X0 is

normal, the space X is normal and Cohen Macaulay, denote by ωX its canonical sheaf and

by ω
(n)
X the double dual of ω⊗nX .

By the adjunction formula we have ω(n)
X0

= (ω(n)
X ⊗OX0)∨∨ , ω(n)

Xt
= ω

(n)
X ⊗OXt ∀t 6= 0.

Since ω(n)
X is reflexive it is flat over ∆ and semicontinuity gives

h0(X0, ω
(n)
X ⊗OX0) ≥ h0(Xt, ω

(n)
Xt

) = h0(P2, nKP2)

Moreover, ω(n)
X is locally free on the regular locus of X and X0 is Cartier, this implies (cf.

for example [E-V] Lemma 2.1) that ω(n)
X ⊗OX0 ⊂ ω

(n)
X0

, in particular

Pn(X0) = h0(X0, ω
(n)
X0

) ≥ h0(X0, ω
(n)
X ⊗OX0) ≥ Pn(P2) ∀n ∈ Z

If n > 0 we have P−n(X0) ≥ P−n(P2) =
(

3n+ 2
2

)
. This proves that X0 is Moishezon, i.e.

a(X0) = 2, and −KX0 is an effective Weil divisor.

Since P−n(X0) > 1 ∀n > 0 and ω
(n)
X0

is the reflexive extension of a nontrivial invertible sheaf,

by compactness it follows that Pn(X0) = 0, by Serre duality ([B-S] Chapitre 7) pg(X0) =

P1(X0) = 0 and by the invariance of χ(OXt) q(X0) = 0.

Since by Brenton’s criterion of projectivity ([Bre]) every normal Moishezon surface with pg =

0 is algebraic, using Prop. 1.2 we prove that X0 is a projective degeneration.

The statement %(X0) = 1 follows from Lemma 1.1 (%(X0) ≤ %(Xt) = 1) and by the alge-

braicity of X0 . ut

Remark. . A different proof of Theorem 1.3 which doesn’t make use of Serre duality can be

given by observing that b1(X0) = 0 ([G-S] Cor 3.1) and that for every normal Moishezon

surface Y the group Pic0(Y ) is a torus (Appendix IV), hence q(X0) = 0 and by the invariance

of χ , pg(X0) = 0.

We refer to the paper of Badescu ([Ba1]) for some general results about normal projective

surfaces Y with q(Y ) = Pn(Y ) = 0 ∀n ≥ 1. In [Ba1] the author also gives a complete

classification of normal projective Gorenstein degenerations of P2 .

Corollary 1.4. Under the same hypothesis of Theorem 1.3 there exists an integer n > 0

such that ω(n)
X is an invertible sheaf, in particular K2

X0
= K2

Xt
= 9 .

Proof. Let L be a non trivial invertible sheaf on X . Then there exists an integer n indepen-

dent of t such that for every t ∈ ∆∗ , Lt is the sheaf associated to the divisor nHt where Ht

denotes the line divisor on Xt ' P2 .

Therefore F = (ω(n)
X ⊗ L−3) is a reflexive sheaf with trivial restriction on Xt for every

t 6= 0. We claim that F is the trivial sheaf, in fact by the Leray spectral sequence and

Cartan’s theorem A there exists a nonzero section s of F , the divisor (s) must be a discrete

collection of fibres of f , hence a Cartier divisor and the claim follows from Lemma 1.1.
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According to intersection theory of invertible sheaves we have n2K2
X0

= X0 ·(ω(n)
X )2 = Xt ·

(ω(n)
X )2 = n2K2

Xt
= 9n2 . ut

In general K2 is not invariant under normal degenerations (example III.5.4) but is only upper

semicontinuous. In fact we have already seen that for every integer n χ(ω(n)
X0

) ≥ χ(ω(n)
Xt

) and

according to Riemann-Roch formula for Weil divisors (I.5, [K-S]) we have K2
X0
≥ K2

Xt
.
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2. The Milnor fibre of a Q -Gorenstein smoothing of a two dimensional quotient

singularity and applications to degenerations of P2

We start by recalling the notion of a smoothing of an irreducible isolated singularity (V0, 0)

and of its associated Milnor fibre.

A smoothing of (V0, 0) is a flat map f :V → ∆ where V is a reduced complex space and

∆ ⊂ C is a small open disk centered at 0, such that (f−1(0), 0) ' (V0, 0) and for every

t ∈ ∆∗ the fibre Vt = f−1(t) is nonsingular.

Suppose (V0, 0) is embedded in (CN , 0): then there exists an embedding of (V, 0) in (CN ×
∆, 0) such that the map f is induced by the projection on the second factor CN ×∆→ ∆.

We fix now some further notation: if r > 0 we denote by Br = {z ∈ CN | ‖z‖ < r} and

let Sr = ∂Br . We shall say that Sr is a Milnor sphere for V0 if for every 0 < r′ ≤ r the

sphere Sr′ intersects V0 transversally: a basic result ([Mi] Cor 2.9) asserts that every isolated

embedded singularity admits a Milnor sphere.

Let Sr be a Milnor sphere for V0 , then (shrinking ∆ if necessary) we can assume that Sr×∆

intersects Vt transversally ∀t ∈ ∆. In this situation we set

X = V ∩ (Br ×∆) Xt = Vt ∩X Kt = ∂Xt = Vt ∩ (Sr ×∆)

By Ehresmann’s fibration theorem we have ∂X = ∪t∈∆Kt ' K0×∆ and the map f :X\X0 →
∆∗ is a locally trivial C∞ fibre bundle with fibre F diffeomorphic to Xt for t 6= 0.We call

F (resp. F ) the Milnor fibre (resp. compact Milnor fibre) of the smoothing f .

The basic theory about Milnor fibre ([Lo2]) shows that the diffeomorphism class of F is

independent of the embedding of V : in particular topological invariants of F are invariants

of the smoothing.

Let n be the dimension of (V0, 0), since F is Stein, it has the homotopy type of a n -

dimensional CW complex. Considering homology and cohomology we have Hi(F,Z) = 0 for

i > n and Hn(F,Z) is a finitely generated free abelian group.

Definition . The integer µ = rankHn(F,Z) is called the Milnor number of the smoothing.

The Lefschetz and Poincaré duality theorems give the following isomorphisms (in every ring

of coefficients)

Hq
c (F ) = H2n−q(F ) = Hq(F , ∂F )

Using real coefficients the cup product induces a perfect pairing

Hn(F )×Hn(F , ∂F ) ∪−→H2n(F , ∂F ) = R

which composed with the natural map Hn(F , ∂F ) → Hn(F ) gives a symmetric bilinear

form

Hn(F , ∂F )×Hn(F , ∂F )
q−→R
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and we can write µ = µ0 + µ+ + µ− where µ0 (resp.: µ+, µ− ) is the number of zero (resp.:

positive,negative) eigenvalues of q .

Let’s consider now the case n = 2; by using Morse theory we see that F is obtained from

∂F up to homotopy by attaching a finite number of cells of dimension ≥ 2. This implies that

the inclusion ∂F ⊂ F induces a surjection of the respective fundamental groups, moreover it

is rather easy to prove, using the exact homotopy sequence of the fibration f :X\X0 → ∆∗ ,

that the inclusion F ⊂ X − {0} induces an isomorphism on π1 ’s (cf. [L-W] Lemma 5.1).

Definition 2.1. Let V0 be a Stein representative of the surface singularity (V0, 0) and

let π:Z → V0 be a resolution. The geometric genus of (V0, 0) is the integer g(V0, 0) =

h1(OZ) − δ(V0) where δ(V0) = h0(π∗OZ/OV0). For normal singularities δ = 0 and this

definition of genus is the same given in section I.1.

An important result of Steenbrink ([St2] Th. 2.24) is the following: given a smoothing of a

two dimensional isolated surface singularity (V0, 0) we have µ0 +µ+ = 2g(V0, 0), in particular

if the singularity is rational, that is, normal with geometric genus 0, then µ = µ− .

We conclude this brief review by describing the homotopy type and the intersection form q

of the Milnor fibre of a smoothing of a rational double point (V0, 0). This is easy, in fact by

Brieskorn-Tyurina’s result on simultaneous resolution the Milnor fibre is diffeomorphic to a

neighbourhood of the exceptional curve in the minimal resolution of (V0, 0), thus if V0 is a

rational double point of type Ar , Dr or Er then the Milnor fibre has the homotopy type of

a bouquet of r spheres.

We now introduce the notion of a Q -Gorenstein singularity.

Definition 2.2. Let (Y, 0) be a normal Cohen Macaulay singularity with canonical divisor

KY . We shall say that (Y, 0) is Q -Gorenstein of index n if there exists some nonzero integer

n′ such that the divisor n′KY is principal and n is the smallest positive integer with this

property.

Example . Let (X, 0) be a Q -Gorenstein singularity of dimension n and index r and let

(X, 0) π−→(Y, 0) be the quotient of X by a finite group G acting freely in the complement of

an analytic closed subset of codimension ≥ 2.

In this situation for every integer s (π∗OY (sKY ))∨∨ = OX(sKX) and then sKY is principal

only if s is a multiple of r . Similarly if r|s , OY (sKY ) = (π∗OX(sKX))G and then KY is

Q -Cartier if and only if there exists for some s = rd an invertible G -invariant section of

OX(sKX).

Fixing an isomorphism OX(rKX) ' OX we have an OX morphism OX(rKX) → C which

maps every section ω in its evaluation in 0. There exists then a character detr:G→ C∗ such

that (gω)(0) = detr(g)(ω(0)) for every section ω of OX(rKX).

We claim that (Y, 0) is Q -Gorenstein and index(Y ) = index(X)order(detr), in fact since

the property of being normal and Cohen-Macaulay is stable under finite group quotient it is

sufficient to show that KY is Q -Cartier.
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Taking a section w of OX(rKX) such that w(0) 6= 0 we consider the new section ω =∑
g∈G det

r(g)−1(gw), clearly ω(0) 6= 0 and for every g ∈ G gω = detr(g)ω and if d is the

order of detr then ωd is G -invariant and then drKY is principal. Conversely if ω′ = fωh ,

f ∈ O∗X is G -invariant then, since gf(0) = f(0), h must be a multiple of d .

Let now (X, 0) π′−→(C, 0) be a Q -Gorenstein smoothing of index n of a quotient surface

singularity (X0, 0) (i.e. a smoothing with (X, 0) Q -Gorenstein of index n).

Using Mori’s theorem on terminal three dimensional singularities Kollar and Shepherd Barron

have proved ([K-S] Prop. 3.10) the following:

Theorem 2.3. In the notation above, if n = 1 then (X0, 0) is a rational double point, if

n > 1 then (X, 0) is analytically isomorphic to the quotient (Y, 0)/G where:

a) (Y, 0) ⊂ (C4, 0) is an isolated hypersurface singularity defined by

F = uv + ydn − tϕ(u, v, y, t) = 0

for some d > 0 and ϕ ∈ C{u, v, y, t} .

b) G ' µn = {multiplicative group of nth roots of 1} acts linearly on C4 in the following

way

µn 3 ξ: (u, v, y, t)−→(ξu, ξ−1v, ξay, t)

for some integer a with (a, n) = 1 , moreover ϕ is invariant for this action.

c) The projection π: (Y, 0)→ (C, 0) on the t-axis defines a smoothing of the rational double

point of type Adn−1 (Y0, 0) . G acts, locally around 0 , freely on Y − {0} and π′ is obtained

from π by passing to the quotient.

In the notation of Theorem 2.3 (X0, 0) is a cyclic singularity of type
1
dn2

(1, dna − 1) (cf.

[Wa1] Ex.5.9.1).

Remark. . A tedious but easy calculation shows that we can assume ϕ to be a polynomial in

yn of degree < d with coefficients in C{t} .

There are other proofs of Th. 2.3 (cf. [Ma2], [L-W]) but the presentation of the result given

in [K-S] is the most convenient for our use.

We are now able to study more closely the Milnor fibre of such smoothings.

Proposition 2.4. Let F be the Milnor fibre of a Q -Gorenstein smoothing (X, 0) → (C, 0)

of a cyclic singularity (X0, 0) of type
1
dn2

(1, dna− 1) with (n, a) = 1 , then:

i) b2(F ) = d− 1 , π1(F ) = Zn
ii) π1(∂F ) = Zdn2

iii) The torsion subgroup of the Picard group Pic(F ) of F is cyclic of order n and it is

generated by the canonical bundle KF .

Proof. i) From Theorem 2.3 it follows that F has an unramified connected covering F ′ of

degree n which has the homotopy type of a bouquet of dn−1 spheres S2 , hence π1(F ) = Zn ,
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b1(F ) = 0 and e(F ) = 1 + b2(F ) where e denotes the topological Euler characteristic. Since

ne(F ) = e(F ′) = 1 + b2(F ′) = dn it follows the equality b2(F ) = d− 1.

ii) It follows from the fact that ∂F is diffeomorphic to the link of the cyclic singularity

(X0, 0).

iii) Since F is Stein, from the exponential sequence we get

TorsPic(F ) = TorsH2(F ) = TorsH1(F ) = Zn

According to Theorem 2.3 the index of (X, 0) is n , which means that KX−{0} belongs to

Pic(X − {0}) and has order exactly n .

We claim that the natural restriction map α:TorsPic(X −{0})−→TorsPic(F ) is an isomor-

phism: the proof will follow from the claim and the adjunction formula.

(X, 0) is Cohen Macaulay, local cohomology theory implies H1(X − {0},OX−{0}) = 0 and

by the exponential exact sequence

TorsPic(X − {0}) = TorsH2(X − {0},Z) = π1(X − {0}) = π1(F ) = Zn

Thus the claim can be proved either by using arguments of algebraic topology or in the

following manner.

In the notation of Theorem 2.3 and of the proof of i) we have a commutative diagram

F ′ ⊂ Y − {0}yp̂ yp
F ⊂ X − {0}

where p and p̂ are unramified cyclic coverings. We have two canonical eigensheaves decom-

positions

p̂∗OF ′ = ⊕
i∈Zn

L̂i p∗OY−{0} = ⊕
i∈Zn

Li

where Li, L̂i are the eigensheaves associated to the character i:µn → C∗ . Obviously α(Li) =

L̂i and since F ′ is connected we have L̂i 6= L̂j if i 6= j , thus TorsPic(F ) = {L̂i}i∈Zn . ut

Remark. . We observe that in the situation of Prop. 2.4 we can show that the intersection

form on H2(F ) = H2
c (F ) is negative definite without making use of Steenbrink’s formula.

In fact if p∗:H2
c (F )→ H2

c (F ′) is induced from the proper mapping p:F ′ → F , then for any

pair a, b of elements of H2
c (F ) we have (p∗a)·(p∗b) = na·b .

We now are going to apply these results to investigate normal degenerations of the projective

plane.

As before, let X0 be a normal surface and let f :X → ∆ be a smoothing of X0 with generic

fibre isomorphic to P2 . We note that the three dimensional space X is Cohen-Macaulay

since every point of X belongs to a normal irreducible Cartier divisor (the fiber).

In section 1 we have seen that X0 is algebraic and that X is a Q -Gorenstein complex space.

Let {p1, ..., ps} be the singular points of X0 and let Fi be the Milnor fibre of the smoothing

f of the singularity (X0, pi).
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Let F ⊂ Xt be the disjoint union of the Fi ’s; then the natural homomorphism

i∗:H2(F,Z) =
⊥
⊕ H2(Fi,Z)−→H2(P2,Z)

is an isometry, in particular if b2(F ) = µ−+µ0 +µ+ ; then we must have µ− = 0 and µ+ ≤ 1.

Proposition 2.5. In the notation above, if (X0, pi) is a rational singularity, then b2(Fi) = 0

and pi is a singular point of X .

Proof. By Steenbrink’s formula the intersection product in H2(Fi) is negative definite, thus

b2(Fi) = 0. Since a smoothing of an isolated hypersurface singularity (V, 0) has Milnor

number equal to 0 if and only if 0 is a regular point of V ([Mi] Th. 7.1), pi cannot be a

regular point of X . ut

If the singularities of X0 are quotient then we get more information on their structure and

number.

Theorem 2.6. In the above notation let 0 ≤ r ≤ s be an integer such that the singularities

(X0, pi) are quotient singularities for i = 1, ..., r . If 1 ≤ i 6= j ≤ r then:

1) The singularity (X0, yi) is cyclic of type
1
n2
i

(1, niai−1) for some pairs of relatively prime

positive integers ni > ai ≥ 1 .

2) ni is not divisible by 3 .

3) ni and nj are relatively prime.

Proof. 1) Trivial consequence of Th. 2.3 and Props. 2.4, 2.5.

2) Since Fi is an open subset of P2 we have KFi = KP2 | Fi = −3H | Fi where H ⊂ P2 is

the line. By Prop 2.4 KFi generates Pic(Fi) = Zni and thus necessarily (ni, 3) = 1.

3) For every i = 1, ..., r let’s denote by Ni the closed set P2\Fi and for every 1 ≤ i1 < ... <

ik ≤ r Ni1,..,ik = Ni1 ∩ ∩Nik . We first prove the following lemma

Lemma 2.7. Let’s consider integral homology; for every 1 ≤ i1 < ... < ik ≤ r we have:

1) H1(Ni1,...,ik) = 0

2) H2(Ni1,...,ik) = Z
3) The inclusion Ni1,...,ik ⊂ P2 induces an injection of the respective H2 ’s and the cokernel

has order exactly equal to the product of n′ijs (j = 1, .., k) .

Proof. The proof of 2) and the equivalence of 1) and 3) follow easily, by excision and Prop. 2.5,

from the homology long exact sequence of the pair (P2, Ni1,...,ik). We prove 1) by induction

on k .

If k > 0 we have Ni1,...,ik−1 = Ni1,...,ik ∪ Fik and Ni1,...,ik ∩ Fik = ∂Fik . Mayer Vietoris

gives

H2(Ni1,...,ik−1)−→H1(∂Fik)−→H1(Fik)⊕H1(Ni1,...,ik)−→0

and the thesis follows from Prop 2.4. ut
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Let’s go back to proof of Theorem 2.6, the Mayer Vietoris homology exact sequence of the

couple (Ni, Nj) gives

H2(Ni)⊕H2(Nj)
α−→H2(P2)−→H1(Ni,j) = 0

the map α:Z ⊕ Z → Z is given by α(a, b) = nia − njb and it is surjective if and only if

(ni, nj) = 1. ut

3. The minimal good resolution of a two dimensional cyclic quotient singularity

and degenerations of P2 with quotient singularities.

Assume that the normal surface X0 is a degenerations of P2 with at most quotient singu-

larities, according to theorem 1.3 X0 belongs to the class (A) introduced in chapter III and

then it is possible to describe its minimal resolution in a purely combinatorial way, for this

we need first to well understand the Dynkin diagram of the cyclic singularities described in

theorem 2.6.

We recall that a singularity is cyclic if and only if its Dynkin diagram is a string, i.e. of type

•
−b1

•
−b2

. . . •
−br

bi ≥ 2

If we set for every b1, ..., br integers ≥ 2

[b1, ..., br] = b1 −
1

b2 −
1

. . .
...

br−1 − 1
br

=
n

q

where n > q > 0 are integers such that (n, q) = 1, then the corresponding cyclic singularity

is of type
1
n

(1, q).

Note that if 0 < q′ < n and qq′ ≡ 1 (mod n) then [br, ..., b1] =
n

q′
according to the obvious

isomorphism holding between the respective cyclic singularities of type
1
n

(1, q),
1
n

(1, q′).

Let’s define A to be the set of the symbols [b1, ..., br] where the bi ’s are integers ≥ 2. There

is an obvious bijection of A with the set of oriented Dynkin strings and, via the above partial

fractions, with the set of rational numbers > 1.

For every d > 0 let Td ⊂ A be the following set of rational numbers

Td =
{

dn2

dna− 1
|n, a integers , n > a > 0, (n, a) = 1

}

The following theorem is very useful in order to detect a cyclic singularity of type
1
dn2

(1, dna−
1) with (n, a) = 1 from its minimal resolution

Theorem 3.1. With the above conventions:
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i) •
−4
∈ T1 and •

−3
•
−2

•
−2

. . . •
−2

•
−3

(d ≥ 2 vertices) ∈ Td
ii) If •

−b1
•
−b2

. . . •
−br−1

•
−br
∈ Td then also

•
−br

•
−br−1

. . . •
−b2

•
−b1

•
−b1−1

•
−b2

. . . •
−br−1

•
−br

•
−2

belong to Td .

iii) Every element of Td is obtained starting from the one described in i) and iterating the

steps described in ii).

iv) If •
−b1

•
−b2

. . . •
−br−1

•
−br
∈ Td then

∑
bi = 3r + 2− d .

Proof. (cf. [Wa2] 2.8.2)

i) If n = 2 then a = 1 and the Dynkin strings corresponding to the numbers
4d

2d− 1
are

exactly those described.

ii) We have already seen that

dm2

dma− 1
= [b1, . . . , br] ⇐⇒ [br, . . . , b1] =

dm2

dm(m− a)− 1

therefore Td is closed under orientation reversing. A little computation gives

dm2

dma− 1
= [b1, . . . , br] ⇐⇒ [b1 + 1, . . . , br, 2] =

d(m+ a)2

d(m+ a)a− 1

which prove ii).

iii) Induction on n . Let us fix
dn2

dna− 1
∈ Td , if n = 2 then by i) there is nothing to prove.

Suppose n > 2, by possibly considering
dn2

dn(n− a)− 1
we can assume a <

n

2
and setting

m = n− a , according to ii) we can write

dn2

dna− 1
=

d(m+ a)2

d(m+ a)a− 1
= [b1 + 1, . . . , br, 2]

where

[b1, . . . , br] =
dm2

dma− 1
This proves the induction step.

iv) Trivial. ut

Let δ: (S,E) → (X, 0) be a resolution of a rational singularity with exceptional locus E .

Writing KZ = δ∗KX + F where F is a Q -divisor supported on E , we can consider the

rational number β = b2(E) + F 2 .

Since after a blowing up of S at a point in E the second Betti number b2(E) increases by 1

and F 2 decreases by 1 it follows that β is an invariant of the singularity.

For a cyclic singularity of type
1
n

(1, q)
n

q
= [b1, ..., br] a linear algebra computation shows

that (cf [L-W] Prop 5.9)

β = r + 2 +
r∑
i=1

(2− bi)−
q + q′ + 2

n
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In particular if
n

q
∈ Td , then

β = r + 1 +
r∑
i=1

(2− bi)

and by using Theorem 3.1.iv) we get readily that this invariant is d − 1. Let as before X0

be a surface with at most quotient singularities which is a degeneration of P2 , denote by

δ:S → X0 its minimal resolution of singularities and let µ:S → Fw , 2 ≤ w =weight of X0

be a birational morphism and let p:S → P1 be the composition of µ with the canonical

fibration Fw → P1 .

Theorem 3.2. In the notation above if s is the number of singular points of X0 and h is

the number of degenerate fibres of p then h ≤ 2 , s ≤ h+ 1 and w = 4 + 3h .

Proof. The two inequalities follows from Prop. III.4.3 since the singularities of X0 are cyclic

quotient, we now prove the relation w = 4 + 3h .

Let f0 ⊂ S be a degenerate fibre of p and let E be the (unique) (−1)-curve contained in f0 .

Since f0\E must be a disjoint union of strings, the dual intersection graph of f0 must be

one of the following two (the white circle denotes the irreducible component which intersects

σ∞ ):

(1) ◦
−a1

. . . •
−as

•
−1

•
−b1

. . . •
−br

s, r > 0

(2)

−1• −c1• . . . −ck• c1 = ... = ck = 2
|

◦
−a1

. . . •
−as

•
−2−k

•
−b1

. . . •
−br

r, s > 0

In both cases the relation
∑
ai +

∑
bj = 3(s+ r)− 2 holds.

In case 1), since by Th. 3.1.iv)
∑
bi = 3r + 1,

∑
ai must be equal to 3s− 3.

In case 2), by 3.1.iv) it follows that k = 0, in fact if k > 0 then k would satisfy the relation

2k =
∑
ci = 3k + 1. Therefore k = 0 and

∑
ai + 2 +

∑
bj = 3(s+ r + 1)− 3.

In every case d satisfies the relation d− 3− 3h = 1. ut

For every a = [a1, ..., ar] ∈ A we define its length to be the integer l(a) =
∑r

1 ai − r − 1: we

observe that l(a) ≥ 0 and equality holds if and only if a = [2].

We have 4 injective maps of A into itself defined below; if a = [a1, ..., ar] we set

d1a = [a1, ..., ar + 1]

d2a = [a1, ..., ar, 2]

s1a = [2, a1, ..., ar]

s2a = [a1 + 1, ..., ar]

If h ∈ {1, 2} ; then from Theorem 3.1 it follows that dhsha ∈ Td if and only if a ∈ Td .

Given any a ∈ A of length l there exists exactly one sequence i1, ..., il with values in the set

{1, 2} such that a = di1 . . . dil [2] ; we then set a′ = si1 . . . sil [2] .
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The mapping a → a′ has the following geometric meaning. Let S be a smooth compact

surface and let D be a global normal crossing divisor on S whose component are smooth

rational curves with the following weighted dual graph

•
−a1

. . . •
−as

•
−1

•
−b1

. . . •
−br

(∗)

where ai, bj are integers ≥ 2.

Let E be the (−1)-curve contained in D . We have two different types of blowing up of S

with base point p ∈ E .

Type (a). This is the case if the base point p of the blowing up is a smooth point of D . The

strict transform of D has the same properties of D with weighted dual graph

•
−a1

. . . •
−as

•
−2

•
−b1

. . . •
−br

Type (b). This is the case if the base point p belong also to another component of D . The

global transform of D has thus one of the following dual graphs.

•
−a1

. . . •
−as

•
−2

•
−1

•
−b1−1

. . . •
−br

•
−a1

. . . •
−as−1

•
−1

•
−2

•
−b1

. . . •
−br

It’s very easy to see that if a = [a1, ..., as] and b = [b1, ..., br] , then a′ = b if and only if

the string (∗) is the global transform, by a finite sequence of blowings up of type (b), of the

string •
−2

•
−1

•
−2

.

Lemma 3.3. For every a ∈ A and h ∈ {1, 2} we have:

1) (dha)′ = sha
′

2) (sha)′ = dha
′

3) a′′ = a

Proof. 1) follows immediately from the definition of a′ . We prove 2) and 3) by induction on

l(a); if l(a) = 0 the proof follows by a direct inspection.

Let’s suppose l(a) > 0; then we have a = dkc for some k = 1, 2 and c ∈ A with l(c) = l(a)−1.

Since sh commutes with dk , we have, by the induction hypothesis

(sha)′ = (dkshc)′ = sk(shc)′ = dhskc
′ = dha

′

a′′ = (dkc)′′ = (skc′)′ = dkc
′′ = dkc = a ut

Remark. . If T ′d = {a′|a ∈ Td} , then a similar theorem to Theorem 3.1 holds for the sets T ′d .

It is enough to exchange i) with

i′ ) •
−2

•
−d−1

•
−2
∈ T ′d

while ii) and iii) remain unchanged. Since [2, d + 1, 2] =
4d

2d+ 1
, from a calculation similar

to that of the proof of Theorem 3.1.ii), it follows that T ′d = { dn2

dna+ 1
|0 < a < n, (a, n) = 1} .
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If a = [a1, ..., as] and b = [b1, ..., br] we define

[a, b] = [a1, ..., as, b1, ..., br] a ∗ b = [a1, ..., as + 1, b1, ..., br]

Corollary 3.4. If a, b ∈ A , then:

1) (a ∗ b)′ = b′ ∗ a′

2) a ∗ b ∗ a′ ∈ T1 ⇔ b ∈ T1

3) a ∗ [b, 2, b′] ∈ T1 ⇒ a ∗ [a ∗ b, 2, b′ ∗ a′] = a ∗ [a ∗ b, 2, (a ∗ b)′] ∈ T1

4) b′ ∈ T1 and a ∗ b ∈ T1 ⇒ a ∗ b′ ∗ a′ ∈ T1 and a ∗ a ∗ b ∗ a′ = a ∗ (a ∗ b′ ∗ a′)′ ∈ T1

Proof. We first prove 1) and 2) by induction on l(a).

If a = [2] then (a ∗ b)′ = (s2s1b)′ = d2d1b
′ = b′ ∗ a′ , a ∗ b ∗ a′ = d2s2d1s1b ∈ T1 ⇔ b ∈ T1 .

If a = shc then, by the induction hypothesis, (a ∗ b)′ = (shc ∗ b)′ = dhb
′ ∗ c′ = b′ ∗ a′ ,

a ∗ b ∗ a′ = shdhc ∗ b ∗ c′ ∈ T1 ⇔ b ∈ T1 .

3) and 4) are trivial consequences of 1) and 2). ut

4. Examples of normal degenerations of P2

In the introduction we have seen how to construct a countable family {X0,n} of degenerations

of P2 obtained by sweeping out the cone of the general Veronese surfaces with hyperplane

sections.

In this section we give further examples of degenerations of P2 with at most quotient singu-

larities, this gives a negative answer to our first question.

Unfortunately in our examples it is very difficult to give explicitly the family f :X → ∆: we

shall use the following theorem.

Theorem 4.1. Let X0 be a normal projective surface. Suppose the following conditions are

satisfied:

1) q(X0) = pg(X0) = 0

2) P−1(X0) > 0 .

3) %(X0) = 1

4) X0 has at most cyclic singularities of type
1
n2

(1, na− 1) , (n, a) = 1 .

Then X0 is a normal projective degeneration of P2 .

Proof. Every singularity of X0 admits a Q -Gorenstein smoothing, therefore, according to the

globalization result of section III.5 there exists a projective Q -Gorenstein smoothing X → ∆

of X0 . Semicontinuity gives q(Xt) = Pn(Xt) = 0 ∀n > 0, and Xt is a rational surface.

Let D be the exceptional divisor of δ , we have %(S) = %(X0) + b2(D) = 1 + b2(D). From

Noether’s formula follows that K2
Y = 10 − %(S) = 9 − b2(D) and remembering that the

invariant β of our singularities is 0 we get K2
X0

= 9.

Since X is Q -Gorenstein K2
Xt

= 9 for every t and the only rational surface satisfying this

is the projective plane. ut
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The surface X0 obtained from F4 by contracting the section σ∞ satisfies the hypothesis of

Theorem 4.1 and thus it is a normal degeneration of P2 . We note that this surface is exactly

the surface X0,2 of the collection B (i.e. the cone over the rational curve of degree 4 in P4 ).

By Theorem 3.2 it follows that this surface is the only degeneration of P2 with at most

quotient singularities and weight 4.

We now try to find normal degeneration of P2 with quotient singularities and weight 7. For

this we first operate two quadratic transforms of F7 such that the string σ∞ + f becomes

•
−7

•
−2

•
−1

•
−2

(∗)

We now proceed by iterating blowings up of type (b) and possibly one, the last, of type (a)

with respect to (∗) and its transforms.

Let µ:S → F7 be the composition of these blowings up and let D ⊂ µ−1(σ∞ + f) be the

union of the irreducible components with self-intersection < −1.

It’s easy to see that P−1(S) > 0, if fact −KF7 = 2σ∞ + 9f and by using adjunction formula

we are able to write −KS as an effective divisor.

If D is a disjoint union of strings ∈ T1 , then the surface X0 given by S contracting D satisfies

the hypothesis of Theorem 4.1. In fact, by the Leray spectral sequence q(X0) = pg(X0) = 0

and since P−1(S) ≤ P−1(X0) it follows that −KX0 is effective.

We note that from Theorem 3.2 and its proof it follows that every degeneration of P2 with

at most quotient singularities and weight 7 arises in this way.

Given any b = [b1, ..., br] ∈ A there exists a (unique) finite sequence of blowings up of type

(b) such that the global transform of (∗) becomes

•
−7

•
−b1

. . . •
−br

•
−1

•
−a1

. . . •
−as

(∗∗)

If [7, b1, ..., br] and [a1, ..., as] = b′ belong to T1 then we can contract the corresponding

curves and we obtain a surface X0 with two cyclic singularities.

After a blowing up of type (a) with respect to (∗∗) the strict transform becomes

•
−7

•
−b1

. . . •
−br

•
−2

•
−a1

. . . •
−as

Thus if [7, b, 2, b′] ∈ T1 then, by contraction, we obtain a surface X0 with one cyclic singu-

larity.

By using the combinatorics developed in the previous section we can write:

Proposition 4.2. Given a b ∈ A , if [6] ∗ b, b′ ∈ T1 (resp.: [6] ∗ [b, 2, b′] ∈ T1 ) then there

exists a smooth rational surface S of weight 7, which is the minimal resolution of a normal

projective degeneration of P2 with two cyclic singularities of respective types [6]∗ b , b′ (resp.:

one cyclic singularity of type [6] ∗ [b, 2, b′]).
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Given a b ∈ A satisfying Prop. 4.2 we can find readily infinitely many others: in fact if

[6] ∗ b, b′ ∈ T1 (resp.: [6] ∗ [b, 2, b′] ∈ T1 ), then b̂ = [6] ∗ b ∗ [6]′ (resp.: b̂ = [6] ∗ b) has, by Cor.

3.4, the same properties.

Four examples are the following ones

1)

−1•
|

•
−7

•
−2

•
−2

•
−2

X0 has a cyclic singularity of type
1
25

(1, 4).

2)

−1•
|

•
−7

•
−5

•
−2

•
−2

•
−2

•
−2

•
−2

X0 has a cyclic singularity of type
1

132
(1, 25).

3) •
−7

•
−2

•
−2

•
−2

•
−1

•
−4

X0 has a cyclic singularity of type
1
25

(1, 4) and one of type
1
4

(1, 1).

4) •
−7

•
−5

•
−2

•
−2

•
−2

•
−2

•
−2

•
−1

•
−7

•
−2

•
−2

•
−2

X0 has a cyclic singularity of type
1

132
(1, 25) and one of type

1
25

(1, 4).

As a consequence of these examples and Prop. 4.2 we have

Corollary 4.3. Let (ni, ai), (mi, bi) be the two sequences in Z2 defined as follows: (n0, a0) = (5, 1)
ai+1 = ni
ni+1 = 7ni − ai

 (m0, b0) = (2, 1)
bi+1 = mi

mi+1 = 7mi − bi

Then for every i ∈ N there exist four normal degenerations of P2 with the following singu-

larities respectively:

1) A cyclic singularity of type
1
n2
i

(1, niai − 1) .

2) A cyclic singularity of type
1
m2
i

(1,mibi − 1) .

3) Two cyclic singularities of respective types
1
n2
i

(1, niai − 1) ,
1
m2
i

(1,mibi − 1) .

4) Two cyclic singularities of respective types
1
n2
i

(1, niai − 1) ,
1

m2
i+1

(1,mi+1bi+1 − 1) .

Moreover every degeneration of P2 with at most quotient singularities and of weight 7 is one

of these.

Proof. The first part follows from the above considerations and by observing that if b =
n2

nq − 1
∈ T1 , then we have [6] ∗ b ∗ [6]′ =

(7n− q)2

(7n− q)n− 1
. For the second part one can use
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an induction argument. We prove this result only for surfaces X0 with one singular point x ,

the case where X0 has two singular points, being similar, is left to the reader.

By Theorem 3.2 there exists a b ∈ A such that the Dynkin diagram of (X0, x) is [6]∗ [b, 2, b′] .

Let’s suppose b 6= [2], [5] , if we prove that b = [6] ∗ c for some c ∈ A , then the conclusion will

follow by induction.

We first note that if n,m ≥ 2 and [n] ∗ a ∗ [m]′ ∈ T1 for some a ∈ A then n = m (apply

3.1.iii) ). We have three subcases:

i) b = [n] , n > 2: then [6] ∗ [b, 2, b′] = [6] ∗ [n − 1] ∗ [n + 1]′ and by the previous remark

n+ 1 = 6.

ii) b = [2, c] , c ∈ A : by Theorem 3.1.iii) this case cannot appear.

iii) b = [n] ∗ c , n ≥ 2, c ∈ A : then [6] ∗ [b, 2, b′] = [6] ∗ [b, 2, c′] ∗ [n]′ and n = 6 as required. ut

Exercise. Prove directly that G.C.D.(ni,mi) = G.C.D.(ni,mi+1) = 1 for every i > 0.

(Hint: first prove that ni,mi are not divisible by 3 and then compute the vector product

(ni, ai) ∧ (mi, bi)).

By a similar construction we are able to describe some examples of minimal resolution of

a normal degeneration of P2 by starting from the string σ∞ + f1 + f2 ⊂ F10 and iterating

blowings up. From Cor. 3.4 it follows that given such an example we can readily find infinitely

many others.

Example. The following string can be obtained from •
0

•
−10

•
0

by iterating a sequence of

14 blowings up.

•
−4

•
−1

•
−2

•
−2

•
−2

•
−10

•
−2

•
−2

•
−2

•
−2

•
−2

•
−5

•
−1

•
−2

•
−2

•
−2

•
−7

Contracting all the components with self-intersection < −1 we obtain a normal degeneration

of P2 with three cyclic singularities of respective types
1
4

(1, 1),
1
25

(1, 4),
1

292
(1, 29·21− 1).

5. Proof of theorems B and C.

Suppose first X0 is a degeneration of P2 with at most quotient singularities. The properties

a),...,f) are exactly those stated in the Theorems 1.3, 2.4 and 3.2.

Suppose now a), b), c) and d) hold, in order to apply Theorem 4.1 we have only to show that

P−1(X0) > 0.

Let Y
δ−→X0 be the minimal resolution; the discussion made in the proof of Theorem 4.1

shows that Y is a rational surface and K2
X0

= 9.

By the Serre duality theorem and the Riemann-Roch formula for Weil divisors on normal

surfaces we get

P−1(X0) = P−1(X0) + P2(X0) ≥ χ(−KX0) = χ(OX0) +K2
X0

+
s∑
i=1

c(X0, pi)
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where p1, ..., ps are the singular points of X0 and, ∀i , c(X0, pi) ∈ Q is a local analytic

invariant of the normal surface singularity (X0, pi). The proof will follow immediately from

the following assertion.

Assertion. If a two dimensional normal surface singularity (X0, 0) admits a Q -Gorenstein

smoothing (X, 0)→ (C, 0) then c(X0, 0) ≥ 0.

This assertion is perhaps trivial for the experts, but we prove it here for completeness. Ac-

cording to Looijenga globalization theorem ([Lo1] Appendix) there exists a compact complex

surface V0 with distinguished point 0 ∈ V0 , a reduced three dimensional complex space V

and a proper flat map F :V → ∆ such that F−1(0) ' V0 , (V0, 0) ' (X0, 0), (V, 0) ' (X, 0)

and F is smooth in V − {0} . In particular V is Q -Gorenstein.

We have

χ(−KV0) ≥ χ(−KV ⊗OV0) = χ(−KVt) = χ(OVt) +K2
Vt = χ(OV0) +K2

V0

On the other hand the Riemann-Roch formula in V0 gives

χ(−KV0) = χ(OV0) +K2
V0

+ c(V0, 0)

Since c(V0, 0) = c(X0, 0) ≥ 0 the assertion is proved. ut

Let f :X → ∆ be a projective degeneration of P2 and assume that X0 has at most rational

singularities. Let x1, ..., xs ∈ X0 be its singular points. We note that f is a smoothing of

each (X0, xi). Denote by D ⊂
∏s
i=1Def(X0, xi) the product of smoothing components which

contain f and write H = φ−1D where φ is the natural map Def(X0)→
∏s
i=1Def(X0, xi).

By lemma III.5.2 φ is smooth and then H is an irreducible germ, since D is, moreover

the projective plane is rigid and then every smooth surface corresponding to a point of H

is isomorphic to P2 . In particular for every k ≤ s if Xk
0 is the surface obtained from X0

by smoothing only the singularities (X0, xi) for i = 1, ..., k then Xk
0 is a normal projective

degeneration of P2 .

The proof of theorem C is now easy, in fact since X0 belongs to class (A) it has at most one

noncyclic singularity say at x1 and the surface X1
0 is then a degeneration of P2 with at most

quotient singularities.

Actually we don’t know any example of degeneration of P2 with some rational nonquotient

singularity. The rational singularities which can appear in a normal degeneration of P2 are

those admitting a Q -Gorenstein smoothing with Milnor number 0 and there exist a lot of

singularities with this property apart those described in 2.3.

Jonathan Wahl gives infinitely many examples ([Wa1] 5.9.2, [Wa5]) of rational quasi-homogeneous

taut surface singularities admitting a Q -Gorenstein smoothing with Milnor number equal to

0, the simplest of which has Dynkin diagram

5.1)

−3•
|

•
−3

•
−4

•
−3
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Let now X0 be a normal projective surface with at most rational singularities, % = 1, P−1 ≥ 5

containing the above singularity 5.1. Then according to III.4.4 X0 belong to class A, its

minimal resolution is a rational surface of weight 4 and X0 contains three rational double

points of type A2 , in particular X0 cannot be a degeneration of P2 .

More generally, using the computation of the invariant β for the singularities of the class T1

and theorem III.4.4, it is easy to see that the same conclusion holds for the other singularities

in ([Wa1] 5.9.2).
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Appendix IV. The Picard Variety of a Moishezon Surface

In this appendix we prove the following result used in the alternative proof of theorem IV.1.3.

Theorem A1. Let X be a normal irreducible complex surface of algebraic dimension 2, then

Pic0(X) is an abelian variety.

Let S
π−→X be the minimal resolution of singularities with exceptional reduced divisor D ,

then a(S) = 2 and since S is smooth it is projective ([B-P-V] Cor. IV.5.5), in particular

Pic0(S) is an abelian variety. Our strategy of proof is to show that Pic0(X) is isomorphic to

a compact complex Lie subgroup of the Picard variety of S .

We begin with some preliminary results; let C ⊂ S be a (possibly non reduced) curve, the

exponential sequences on S and C give a commutative diagram

H1(S,Z) i−→ H1(OS) e−→ Pic0(S) −→ 0yα yβC yγ
H1(C,Z) i−→ H1(OC) −→ Pic0(C) −→ 0

Lemma A2. In the above notation e(kerβC) is a compact complex Lie subgroup of Pic0(S) .

Proof. Denote by Γ = i(H1(C,Z)) ⊂ H1(OC), ∆ = i(H1(S,Z)) ⊂ H1(OS), E = ImβC ,

Γ′ = Γ ∩ E , W0 = ker βC , K = ker γ , W = e−1(K).

According to ([B-P-V] Prop. II.2.1), Γ is a closed discrete subgroup of H1(OC) and Pic0(C)

is Hausdorff, in particular K is a compact subgroup of Pic0(S).

We claim that e(W0) is precisely the maximal connected subgroup K0 of K , in fact there

exists a (non canonical) isomorphism of topological groups W = W0 ⊕ Γ′ and W0 is the

path-connected component of W containing 0. K0 is path-connected and e is a covering

map, in particular by homotopy lifting property it follows easily that e(W0) = K0 . ut

The Leray’s spectral sequence applied to π gives an exact sequence

0−→H1(OX)−→H1(OS)
p−→H0(R1π∗OS)

where p is the projective limits of the natural restriction maps βnD:H1(OS)→ H1(OnD).

Note that since H1(OS) is finite dimensional ker p = ker βnD for n sufficiently large.

Proof of theorem A1. Since X is normal π∗OS = OX and π∗O∗S = O∗X therefore we have a

commutative exact diagram

0 −→ H1(OX) −→ H1(OS)
p−→ R1π∗OSy ye

0 −→ Pic0(X) π∗−→ Pic0(S)y y
0 0

and by lemma A2 π∗(Pic0(X)) = e(ker p) is a compact subgroup of Pic0(S). ut
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V. General properties of moduli space of surfaces of general

type.

Here we introduce the moduli space of surfaces of general type whose existence as quasipro-

jective variety was proved in 1976 by Gieseker and we list some properties of it. Then we

introduce the problem of the connectedness of the moduli space of surfaces with fixed topolog-

ical type and we shall show that the families of natural deformations of simple bihyperelliptic

surfaces give examples of connected components.

1. What is the moduli space?

We shall say that two smooth surfaces S1, S2 are deformation each other in the large if there

exists a proper flat family of smooth surfaces f :X → C where C is an irreducible smooth

curve and there exists two fibres of f respectively isomorphic to S1, S2 . Deformation in the

large is a relation in the set of isomorphism classes of smooth surfaces and the equivalence

relation generated is called deformation equivalence and will be denoted by
def∼ .

Let X → Y be a flat family of surfaces over an irreducible quasiprojective variety Y , then

any two fibres of it are deformation equivalent, in fact by taking restriction to hyperplane

sections we can assume that Y is a connected curve and then by transitivity we may reduce

to the case where Y is an irreducible curve. Taking if necessary the normalization of Y we

get a family over a smooth curve.

There are several properties of smooth surfaces which are invariant under deformation equiv-

alence, here we list the most important ones.

a) By Ehresmann fibration theorem two deformation equivalent surfaces have the same differ-

ential structure, in particular all the topological and differential invariants of the underlying

oriented 4-manifold are invariants under
def∼ . We recall that for a complex algebraic surface

S the invariants K2
S , χ(OS) are topological invariants, more precisely

2χ(OS) = 1− b1(S) + b+, K2
S = 12χ(OS)− e(S) = b+ − b− + 8χ(OS)

where e(S) is the topological Euler-Poincaré characteristic and b+, b− are respectively the

number of positive and negative eigenvalues of the intersection form on H2(S,Q).

Marco Manetti: Degenerations of Algebraic Surfaces and applications to Moduli prob-

lems.
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b) If S1
def∼ S2 then S1 and S2 have the same Kodaira dimension. In fact holds the fol-

lowing stronger results proved by Iitaka as a (non trivial) consequence of Enriques-Kodaira

classification of surfaces:

Theorem 1.1.([Ii]) The positive plurigenera of a smooth compact complex surfaces are in-

variant under arbitrary holomorphic deformations.

The deformations of Segre-Hirzebruch surfaces Fq (cf. [Ko2], [Ca6]) give examples where the

negative plurigenera are not preserved.

The point b) is also a consequence of point a) and the fact that the Kodaira dimension

is a differential invariant of smooth algebraic surfaces (this is the well known Van de Ven

conjecture, proved recently by V.Pidstrigach and A.Tyurin using Donaldson theory and then

simplified by C.Okonek and A.Teleman by using Seiberg-Witten invariants).

c) If S1
def∼ S2 and S1 is minimal of general type then also S2 is minimal of general type.

This follows from Iitaka theorem because a surface of general type is minimal if and only if

P2 = χ+K2 . The same result can be proved directly by using Kodaira theorem on stability

of submanifolds [Ko1] (which is another essential tool used in the proof of Iitaka theorem).

Let f :X → C be a smooth family of surfaces over a smooth irreducible curve C and let

A ⊂ C the set of points whose fibres are minimal of general type. Since a surface S is

minimal of general type if and only if K2
S > 0, χ(OS) > 0, H1(2K) = H2(2K) = 0 by

semicontinuity the set A is open. Let p a point in the closure of A , by semicontinuity of

plurigenera Sp = f−1(p) is of general type and the proof is complete if we prove that it is

minimal.

Assume Sp not minimal and let E ⊂ Sp be a (-1)-curve, according to Kodaira stability

theorem there exists a small open disk D ⊂ C centered at p and a smooth subvariety

W ⊂ X such that W ∩ f−1(q) is a (-1)-curve in f−1(q) for every q ∈ D , taking q ∈ D ∩ A
we get a contradiction.

Note that without the assumption that the fibres of f are of general type it is false that

A is closed, consider for example the deformation of the Segre-Hirzebruch surface F3 which

deforms to the blow up of P2 at a point.

d) If S is a minimal surface of general type then K2
S > 0, in particular the canonical class

kS = c1(KS) = −c1(S) does not belong to the torsion subgroup of H2(S,Z) and then it is

well defined its divisibility

r(S) = max{r ∈ N|r−1c1(S) ∈ H2(S,Z)}

This is obviously a deformation invariant.

The definition of
def∼ generalize in a natural way to the class of normal projective surfaces

with at most rational double points. According to Brieskorn-Tyurina simultaneous resolution

if two surfaces X1, X2 with at most RDP’s are deformation equivalent the same holds for

their minimal resolutions.
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From now on, in order to avoid heavy notation, we shall call C-model every algebraic surface

which is the canonical model of a minimal surface of general type. Let P be a set of properties

of projective surfaces with at most RDP’s which are invariant under
def∼ , an algebraic variety

M(P ) is called a coarse moduli space for C-models satisfying P if has the following properties:

M1) There exists a bijection between the set of closed points of M(P ) and the set of iso-

morphism classes of C-models satisfying P .

M2) It is defined for every flat family f :X → T of C-models satisfying P a map µ(f):T →
M(P ) such that for every closed point t ∈ T , µ(f)(t) is the closed point of M(P ) corre-

sponding to the isomorphism class of f−1(t). Moreover the maps µ must be compatible with

base change, i.e. if a flat family f ′:X ′ → T ′ is induced from f by a morphism φ:T ′ → T

then µ(f ′) = µ(f) ◦ φ .

M3) If N (P) is another algebraic variety which satisfy M1 and M2 with maps ν:T → N (P)

then there exists a unique morphism of algebraic varieties Φ:M(P ) → N (P) such that for

every family f :X → T ν(f) = Φ ◦ µ(f).

It is clear that is a coarse moduli space exists then it is unique up to isomorphism, note that

properties M3 is necessary in order to have unicity, in fact if M satisfy M1, M2 then the

same is true for every product of M with a fat point.

The main result about the existence of coarse moduli space for surfaces is
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Theorem 1.2.(Gieseker [Gi1])

a) For any pair x, y of positive integers there exists a (possibly empty) quasiprojective variety

Mx,y which is a coarse moduli space for canonical models X of surfaces of general type with

χ(OX) = x,K2
X = y .

b) Two minimal surfaces of general type are deformation equivalent if and only if the iso-

morphism classes of their canonical models belongs to the same connected component of the

moduli space.

Two surfaces of general type are birational if and only if they have the same canonical model,

so roughly speaking, the moduli space M = ∪x,yMx,y classify surfaces of general type up

to birational equivalence and the space M is usually called the moduli space of surfaces of

general type.

The reason of considering canonical model instead of minimal models for the construction of

M is essentially technical and it will be clear in the next section. The statement 1.2.b) follows

from the construction of the moduli space and not from its general functorial properties. In

the next section we explain (without details) the construction of M and from this we deduce

b) and the local analytic structure of Mx,y .

Therefore the problem to determine if two surfaces are deformation equivalent is reduced to

the (usually easier) problem to determine the connected components of moduli space.

2. Outline of the construction of the moduli space of surfaces of general type and

its local analytic structure.

In this section we consider only C-models with fixed numerical invariant χ,K2 , this implies

that all C-models have the same plurigenera Pn = χ+
1
2
n(n− 1)K2 for every n ≥ 2.

A n-framed C-model is the data of a C-model S together with a complete nondegenerate

embedding ν:S → PPn−1 such that ω⊗nS = ν∗O(1). The general theory of pluricanonical

maps tell us that for n ≥ 5 every C-model has a n− framing .

Note that the group SL(Pn,C), n ≥ 5, acts via the projection SL → PGL in the set of

n -framed C-model and the orbits of this action are the isomorphism classes of C-models.

There exists a natural concept of family of framed C-models, this is a consequence of the

existence of the relative dualizing sheaf for a morphism.

More generally let f :X → Y be a flat family of normal surfaces and let U ⊂ X be the

(scheme theoretic) open subvariety of points where the map f is smooth. Then it is defined

the relative dualizing sheaf ωX/Y on X satisfying the following conditions ([Lip2] §3, [Wa2]

1.3):

(i) ωX/Y is a coherent f -flat OX -module.

(ii) If i:U → X is the open immersion then ωX/Y = i∗(
∧2 Ω1

U/Y ) where Ω1
U/Y is the locally

free sheaf of relative differentials.
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(iii) The relative dualizing sheaf has the base change property, i.e. for every morphism Y ′ →
Y if π:X ′ = X ×Y Y ′ → X is the projection then ωX′/Y ′ = π∗ωX/Y .

(iv) If the fibres of f are Gorenstein (e.g. if f is a family of C-models) then ωX/Y is locally

free.

Definition . A family of n-framed C-models is the data of a family f :X → Y of C-models

with a closed embedding ν:X → Y × PPn−1 such that f is the composition of ν with the

projection in the first factor and ν∗O(1) = ω⊗nX/Y .

Note that this is a good definition of families, in fact if Y ′ → Y is a morphism then, since

the relative dualizing sheaf commutes with base change, the pull-back of the embedding ν

gives an induced structure of n-framed family on the fiber product X ×Y Y ′ . In particular it

makes sense the definition of universal family.

Proposition 2.1.(Tankeev [Ta]) For n sufficiently large there exists an universal family

Zn ⊂ Hn × PPn−1 of n-framed C-models with Hn quasiprojective variety.

Idea of proof. It is sufficient to take Hn the locally closed subscheme of the Hilbert scheme of

irreducible nondegenerate surfaces S with at most RDP as singularities, OS(nKS) = OS(1)

and Hilbert polynomial h(d) = χ(OS(dnKS)) = χ(OS) +
1
2
dn(dn− 1)K2

S . ut

From the construction of the Hilbert scheme follows that there exists an embedding Hn ⊂ PN

as a quasiprojective variety and the natural action of G = SL(Pn,C) on Hn is induced by a

linear action of PN (cf. [Gi1]).

The bulk of Gieseker paper [Gi1] is devoted to prove the following proposition (written in the

language of geometric invariant theory ([Gi2],[Ne]))

Proposition 2.2. In the notation above for n sufficiently large Hn is contained in the set

of G-stable points of PN and then there exists the geometric quotient Hn/G =M which is a

quasiprojective variety.

For reader convenience we recall here the properties which characterize geometric quotients.

Let H be an algebraic variety with a regular action of a linear algebraic group G . A geometric

quotient is the data of an algebraic variety M and a surjective G -invariant affine morphism

φ:H →M such that:

1) Every fibre of φ contains exactly one G -orbit.

2) M is a categorical quotient, this means that for every G -invariant morphism ψ:H → N

there exists an unique morphism η:M→ N such that ψ = η ◦ φ .

3) For every open set U ⊂M there exists an isomorphism

φ∗: Γ(U,OM)→ Γ(φ−1(U),OH)G

.

4) If W ⊂ H is a closed G -invariant subset then φ(W ) is closed.
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Let M = Hn/G the quotient as in proposition 2.2 and let f :X → Y be a family of C-

models, since on every fibre Xy of f the group H1(nKXy ) vanishes, by semicontinuity and

base change there exists an open covering Y = ∪Ui and a structure of n -framed family on

every restriction X → Ui . Hn is universal and then there exists maps µi:Ui → Hn inducing

these families. Clearly their compositions with the projection map Hn → M can be glued

and we obtain finally a map µ:Y → M . From this and from the general properties of

geometric quotients it follows that M = Hn/G is a coarse moduli space for canonical models

of surfaces of general type with fixed invariants.

Since for every regular action the dimension of the orbits is a lower semicontinuos function

the fibres of the projection morphism φ:Hn →M are irreducible of constant dimension. In

particular a closed subset V ⊂M is irreducible if and only if φ−1(V ) is irreducible. If S1, S2

are canonical models of surfaces of general type belonging to the same irreducible component

of M then there exists an irreducible component V of Hn such that S1, S2 are isomorphic

to two fibres of the restriction to V of the universal family Zn → Hn and then they are

deformation equivalent.

Let [X] ∈ Hn corresponding to a framed C-model X ⊂ PPn−1 , the universal n -framed

family Zn → Hn induces a holomorphic map between germ of complex spaces h: (Hn, [X])→
(Def(X), 0).

Lemma 2.3. The above map h is smooth and h−1(0) is the germ of the G-orbit of [X] .

Proof. (sketch) Let XA → Spec(A) be an infinitesimal deformation of X and let p:A → B

be a small extension of local Artinian C -algebras.

Since H1(ω⊗nX ) = 0 every section of ω⊗nXB/Spec(B) extends to a section of ω⊗nXA/Spec(A) , ex-

tending the basis that gives the n -framing we can extend the framing to XA .

Thus h is smooth and since there exists a factorization (Hn, [X]) h−→Def(X)→M , h−1(0)

is contained in the G -orbit. Conversely it follows from the definition of the G -action on Hn

that the restriction of the universal family Zn → Hn to every G -orbit is a locally trivial

family of C-models and then h−1(0) contains the germ of the G -orbit. ut

The stabilizer Stab([X]) ⊂ PGL(Pn) of [X] ∈ Hn is naturally isomorphic to the group of

automorphisms of X and if T ⊂ Hn is the image of a section of h then the induced action

of Stab([X]) on T is compatible with the natural action of Aut(X) on the base space of the

Kuranishi family Def(X), thus we have the following

Corollary 2.4. Let X be the canonical model of a surface of general type, then the germ of

M at [X] is analytically isomorphic to the quotient Def(X)/Aut(X) .

If S is a minimal surface of general type with canonical model X then the blow-down

morphism defined in Chapter II, Def(S) → Def(X) is compatible with the actions of

Aut(X) = Aut(S) and then it is defined a natural map Def(S)/Aut(S) → M . This map

is finite but from Burns and Wahl result (II.3.4) in some cases (e.g. KS not ample and

Aut(S) = 0) it is not an isomorphism.
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Note that if X is a framed C-model with q(X) = 0 then locally at [X] , Hn is an open

subscheme of the Hilbert scheme of PPn−1 . In fact in this case if XA ⊂ PPn−1 × Spec(A) is

an infinitesimal embedded deformation of X then there exists at most one extension on XA

of the line bundle OX(1) = ω⊗nX (cf. III.5.1) and then OXA(1) = ω⊗nXA/Spec(A) .

In next chapters we need to compute the closure of some subsets of the moduli space M .

The valuative criterion ([Ha1] pag 101, [Ne] pag 7) gives:

Let N ⊂M be a locally closed subvariety and let X0 be a C-model. Then [X0] belong to the

closure of N if and only if there exists a flat family of C-models f :X → ∆ = {t ∈ C| |t| < ε}
such that [Xt] ∈ N for every t 6= 0 .

This criterion is used in the proof ([Ca2] theorem 1.8) that for every finite group G the subset

MG ⊂M of minimal surfaces admitting a faithful regular G -action is a closed subvariety of

M . A similar result we shall need is the following:

Lemma 2.5. Let f :X → ∆ be a flat family of C-models, G a finite group and for every

t 6= 0 let %t:G→ Aut(Xt) be a given faithful action.

If for every t 6= 0 there exists an open neighbourhood U 3 t and a regular G-action on

XU → U preserving fibres and inducing on every t ∈ U the representation %t , then after a

possible change of base ∆ tr−→∆ there exists a regular G-action on X preserving fibres and

inducing the given G-action on every Xt , t 6= 0 .

Moreover the quotient family X/G→ ∆ is also flat.

Proof. (sketch) The minimal resolution of Xt is a surface of general type, in particular the

group Aut(Xt) is finite for every t ∈ ∆ ([Mat2],[An]). By a monodromy argument it follows

that after a possible change of base there exists a regular G -action on f :X∗ → ∆∗ = ∆−{0}
inducing the desired G -action in the fibres and the same argument used in the proof of ([Ca2]

1.8, [F-P] 4.4) shows that this action extends to X . The flatness is a consequence of the local

irreducibility of X and the flatness criteria for moduli over one-dimensional local regular

rings ([Mat1] Exercise 11.8). ut

3. Digression: Obstructed deformations and everywhere nonreduced moduli spaces.

A question that had been unsolved for a long time was if every minimal model of surfaces of

general type has a smooth complete family of deformations, in fact all the simplest surfaces

(e.g. complete intersection, smooth ramified coverings), have this property and for a long

time nobody was able to find any example of obstructed deformations.

The first examples of surfaces of general type with obstructed deformations were found inde-

pendently by Burns-Wahl ([B-W]), Kas ([Kas]) and Horikawa ([Ho]). We have already seen

the methods of Burns and Wahl and we have used it in Th. II.5.2 and example II.5.4.

Catanese [Ca7] also used the results of [B-W] for giving several examples and some general

recipe to construct minimal surfaces of general type S with singular canonical model X and

everywhere nonreduced Kuranishi family. Catanese method requires that the canonical model
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X has unobstructed global deformations and then, although Def(S) is nowhere smooth, the

moduli space M is locally reduced and irreducible at S .

The examples of Horikawa are obtained in a completely different way as a consequence of

some stability and costability theorems for deformations of holomorphic maps. One of the

most interesting is the following (cf. [Ho]III,[Ca6]):

Example 3.1.(Horikawa-Mumford) Let F ⊂ P3 be a smooth cubic surface, let C ⊂ F be a

smooth curve linearly equivalent to 4H + 2E where H is the hyperplane section and E is a

straight line contained in F and let X → P3 be the blowing up of P3 with centre C . Let S be

a very ample smooth divisor on X such that H1(θX(−S)) = H2(θX(−S)) = H1(OX(S)) = 0.

Note that if S is sufficiently ample and general then KS is very ample by adjunction formula,

S is simply connected by Lefschetz theorem and Aut(S) = 0. In particular Def(S) is

analytically isomorphic to the moduli space M at the point [S] .

Horikawa ([Ho] III §10) claimed and proved that Def(S) is obstructed but is easy to see that

Def(X) is everywhere nonreduced. This follows from the following two lemmas:

Lemma 3.2. In the notation of example 3.1, Def(X) is everywhere nonreduced.

Proof. See [Ca6] §9. ut

Lemma 3.3. Let X be a smooth complex projective variety of dimension ≥ 3 with H1(OX) =

H2(OX) = 0 and let S be a very ample smooth divisor such that H1(θX(−S)) = H2(θX(−S)) =

H1(OX(S)) = 0 .

Then there exists a noncanonical isomorphism of germs of complex spaces

(Def(S), 0) ' (Def(X)× Coker(ψ), 0)

where ψ is the natural map ψ:H0(X, θX)→ H0(S,NS|X) .

Proof. (cf. [Ch]) Assume X embedded in PN by the complete linear system |S| and let

V ⊂ H0(OX(S)) be a small neighbourhood of a section defining S , for every v ∈ V let

Hv ⊂ PN the corresponding hyperplane.

Let HilbNX be the germ of the Hilbert scheme of PN at the point X , then we have a smooth

family of deformations of the pair (S,X) with base HilbNX × V given by S̃ ⊂ X̃ × V where

X̃ → HilbNX is the universal family and for t ∈ HilbNX , v ∈ V St,v = Xt ∩Hv .

Denote now by DefS,X the functor of deformation of the pair S ⊂ X , DefS,X has a good

deformation theory and its tangent space is isomorphic to H1(θX(−log S)). We have natural

maps of functors of Artin rings

HilbNX × V
f−→DefS,X

g−→DefX

DefS,X
h−→DefS

We claim that both f, g, h are smooth morphisms. The smoothness of h follows from the

vanishing of H2(θX(−S)) and Horikawa costability theorem ([Ho] III.8.3,[Ran]). According
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to Lemma III.5.1 the composition gf is smooth and then the smoothness of f, g is equivalent

to the surjectivity of df . We have an exact sequence

H0(θX)
ψ−→H0(OS(S))−→H1(θX(−logS))

dg−→H1(θX)−→0

and the surjectivity of df follows from the surjectivity of the maps T[X]Hilb
N
X → H1(θX)

and H0(OX(S))→ H0(OS(S)).

From the exact sequence

H1(θX(−S))−→H1(θX(−logS)) dh−→H1(θS)−→H2(θX(−S))

it follows that dh is an isomorphism and then the proof follows from general properties of

smooth functors. ut

The general philosophy of the previous two lemmas is the following: Given a smooth curve C

in a projective space Pn define XC as the blown up of Pn with centre C , the proof of lemma

3.2 suggests that the map C → XC induces a smooth morphism from the Hilbert scheme

of Pn at C to the Kuranishi family of XC , while lemma 3.3 can be generalized to complete

intersections in XC of n − 2 sufficiently ample divisors. We then obtain regular surfaces of

general type with ample canonical bundle and with Kuranishi family stably isomorphic to the

Hilbert scheme of a curve in a projective space. The “converse map”, from deformations of

regular surfaces to embedded deformations of curves has been recently explored by B.Fantechi

and R.Pardini ([F-P2]).

Corollary 3.4. There exist everywhere singular irreducible components of the moduli space of

surfaces of general type whose general member is a simply connected surface with very ample

canonical bundle.

In [Ch] Chang gives examples of threefolds X in P5 with H1(OX) = H2(OX) = 0 and

obstructed deformations.

4. Deformation equivalent types of homeomorphic surfaces.

One of the first consequences of Gieseker theorem is that for every pair of positive integer x, y

there exists a finite number δ(x, y) (=number of connected components of the quasiprojective

variety Mx,y ) of deformation equivalence classes of minimal surfaces of general type with

invariants K2 = y , χ = x . (More precisely, it is not necessary to assume Gieseker theorem

in order to prove the finiteness of deformation equivalent types, but only the projectivity of

the Hilbert schemes and Bombieri’s results about pluricanonical maps.)

Contrary to the case of curves, where the genus classify completely the deformation equiva-

lence classes, in the case of surfaces the number δ(x, y) is in general bigger than 1, in fact

it is rather easy to show the existence of surfaces with the same invariants K2, χ but with

different homotopy groups. Therefore a more appropriate question is:
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Given two homeomorphic minimal surfaces of general type, are they deformation equivalent?

The first difficulty here is to determine when two surfaces are homeomorphic, in the case of

simply connected surfaces this can be easily done by using Freedman results on the topology

of four-manifolds.

For every simply connected compact oriented topological four-manifolds X the group H2(X,Z)

is free of finite rank and the intersection product q:H2(X,Z)×H2(X,Z)→ Z is a symmetric

unimodular bilinear form.

Theorem 4.1.(Freedman [Fre] 1.5+addendum) Let X1, X2 be two simply connected compact

oriented smooth four-manifolds and let f∗:H2(X2,Z) → H2(X1,Z) be an isometry with

respect the intersection forms, then there exists a homeomorphism f :X1 → X2 preserving

orientation and inducing f∗ .

For every symmetric bilinear form q:Zn × Zn → Z its rank and its signature are defined

respectively as the rank and the signature of the extended form qR:Rn × Rn → R . We shall

say that the parity of q is even if q(x, x) ∈ 2Z for every x ∈ Zn , odd otherwise. A classical

results (Eichler’s theorem) states

Proposition 4.2.([Se] p.92,[Wall]) Two unimodular indefinite symmetric bilinear forms de-

fined over the integers are isometric if and only if they have the same rank, signature and

parity.

For definite forms this is not true but in the geometric case this doesn’t give any problem, in

fact we have:

Theorem 4.3.(Donaldson, [D-K] 1.3.1) If the intersection form of a simply connected ori-

ented compact smooth four-manifold X is definite positive then the intersection form q is

represented by the identity matrix in some basis of H2(X,Z) .

Theorem 4.4.(Kodaira-Yau, see [B-P-V]) The projective plane is the only simply connected

compact complex surface with definite intersection product.

Moreover if S is a simply connected algebraic surface then the (mod 2) reduction of kS ∈
H2(S,Z) is exactly the Wu class ([M-S]) and then q(kS , x) ≡ q(x, x) (mod 2) and then if

kS 6= 0 the parity of q is equal to the parity of r(S).

By Noether formula and index theorem K2
S and χ(OS) determine the rank and the signature

of qS , putting together all these fact we finally have

Corollary 4.5. Two simply connected minimal surfaces of general type are orientedly home-

omorphic if and only if they have the same K2, χ and the same parity of r=divisibility of the

canonical class.

Fixing a minimal surface of general type S we define Mtop(S) (resp.: Mdiff (S)) as the set

of minimal surfaces of general type homeomorphic (resp.: diffeomorphic) to S , we put on

Mtop(S), Mdiff (S) the topology induced in the natural way by the moduli space M .

Question: Is the space Mtop(S) (resp.: Mdiff (S)) connected?
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Theorem 4.6.(Catanese [Ca4]) The number of connected components of M(S) can be arbi-

trarily large.

The idea of proof is elementary, since the divisibility r(S) of the canonical class is invariant

under deformations it is sufficient to find, for every k > 0, k distinct homeomorphic minimal

surfaces of general type S1, ..., Sk with different r(Si).

Catanese takes as Si simple bihyperelliptic surfaces (Chapt. II), since such surfaces can be

considered as a composition of two double covers its invariants can be easily computed using

the following two facts about double coverings.

Let S π−→X be a double cover of smooth surfaces, denote by R ⊂ S the ramification divisor

and by D ⊂ X the branching divisor. Note that R and D are both smooth.

Proposition 4.7. If X is simply connected, D2 > 0 and there exists a divisor D1 ∈ |D|
which intersect transversally D then π1(X−D) is an abelian group generated by a small loop

around D and S is simply connected.

This is a well known fact, for a proof see [Ca1].

Proposition 4.8.([Ca4]) The natural map π∗:NS(X)→ NS(S) is injective. If H1(S,Z) = 0

then the image of π∗ is a primitive subgroup, in particular if R = π∗L then r(S) is the

divisibility of KX + L in NS(X) .

Therefore for a simple bihyperelliptic surface S of type (a, b)(n,m) a, b, n,m ≥ 3 we have

K2
S = 8(a+ n− 2)(b+m− 2) χ(OS) =

1
8
K2
S + ab+ nm

r(S) = G.C.D.(a+ n− 2, b+m− 2) (4.9)

and theorem 4.6 is proved whenever we find k solutions ai, bi, ni,mi of an equation K2 =constant,

χ=constant, r ≡constant (mod2) giving k distinct integer values of r (see [Ca4] for details).

A very little in known about the space Mdiff (S) because of the lack of simple criteria to

determine whether two algebraic surfaces are diffeomorphic or not.

Conjecture. (Friedman-Morgan [F-M]) For every S minimal, Mdiff (S) is connected.

Very recently E. Witten ([Wi]), using new differential invariants of smooth four-manifolds,

proved that if f :S1−→S2 is a diffeomorphism of simply connected minimal surfaces of general

type then f∗(kS2) = ±kS1 , in particular the divisibility r is a differential invariant. This

result previously conjectured ([Ca4], [F-M]) was known to be true since 1988 for a large class

of surfaces (e.g. complete intersections) and using this Friedman, Morgan and Moishezon

([F-M-M]) proved that in general Mdiff (S) 6=Mtop(S). Later Salvetti ([Sal1],[Sal2]) using

the same ideas but different examples proved that the number of homeomorphic algebraic

surfaces of general type with different differentiable structures can be arbitrarily large.

In general, given a unimodular quadratic form of rank b and signature σ over an integral

lattice Λ, a primitive vector v ∈ Λ is called of characteristic type if v ·x ≡ x2 (mod 2) for



84 Chapter V.

every x ∈ Λ, otherwise it is called of ordinary type. Note that if the quadratic form is even

than every primitive vector is of ordinary type.

A theorem of Wall ([Wall]) states that if b−|σ| ≥ 4 then the group of isometric automorphism

of Λ acts transitively on the set of primitive vectors of fixed norm and type. If Λ = H2(S,Z),

S simply connected compact complex surface, the condition b − |σ| ≥ 4 is equivalent to

χ(OS) > 1 and the primitive root of kS is characteristic if and only if r(S) is an odd integer.

In conclusion there exists a homeomorphism f :S → S′ between simply connected algebraic

surfaces with χ > 1 matching up the canonical classes if and only if S, S′ have the same

invariants K2, χ, r .

Define Md(S) = {[S′] ∈ Mtop(S)|r(S) = r(S′), S minimal } , it is natural to ask if Md(S)

is connected and if its elements carry the same underlying differential structure. At this time

(november 1995) the second question is still unsolved, in spite of the recent deep developments

in the theory of four manifolds. In the next sections of this thesis we shall see that the first

question has in general a negative answer.

5. Simple bihyperelliptic surfaces and examples of connected components of mod-

uli space.

In chapter II, §5, we considered a particular class of surfaces called simple bihyperellitic

surfaces. We recall here its definition:

Denote X = P1 × P1 and let OX(a, b) be the line bundle on X whose sections are bihomo-

geneous polynomials of bidegree a, b . A minimal surface of general type is said to be simple

bihyperelliptic of type (a, b)(n,m) if its canonical model is defined in OX(a, b) ⊕ OX(n,m)

by the equation

z2 = f(x, y) w2 = g(x, y) (5.1)

where f, g are bihomogeneous polynomials of respective bidegree (2a, 2b), (2n, 2m).

If a, b, n,m ≥ 3 simple bihyperelliptic surfaces are simply connected and its invariants are

K2 = 8(a+ n− 2)(b+m− 2) χ(OS) =
1
8
K2 + ab+ nm

r(S) = G.C.D.(a+ n− 2, b+m− 2) (5.2)

If a > 2n , m > 2b denote by N̂ = N̂(a,b)(n,m) the subset of moduli space M of simple

bihyperelliptic surfaces of type (a, b)(n,m). According the stability theorem proved in chapter

II and local structure of moduli space we have

Proposition 5.3. For a > 2n, m > 2b the subset N̂ is open in the moduli space M and

dim N̂ = 4χ− 1
2K

2 + 2(a+ b+ n+m)− 6 .

If N ⊂ N̂ is the subset of surfaces with smooth canonical model then clearly N is open in N̂

and from 5.1 it follows immediately that it is a dense subset of N̂ in the analytic topology of
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M . Therefore if for suitable values of a, b, n,m the closure N of N in M is contained in

N̂ , then N̂ is open and closed in M and then it is a connected component of moduli space.

The subset N has been studied by Catanese ([Ca3]), he proved

Theorem 5.4. If a > 2n,m > 2b then the space N is contained in the set of surfaces

which are minimal resolution of surfaces X with at most RDP that are bidouble cover of a

Segre-Hirzebruch surface F2k with

k ≤ max(
b

a− 1
,

n

m− 1
)

Theorem 5.5. If a ≥ max(2n + 1, b + 2), m ≥ max(2b + 1, n + 2) then N̂(a,b)(n,m) is a

connected component of moduli space.

We don’t sketch here the proof of theorem 5.4 because the main ideas are used in the next

chapters to study the closure of some other subsets of M .

Note that the components N̂ are irreducible and then is not too difficult to find criteria

for distinguish two of then, for example by looking at their dimension. However for the

components N̂ we have the following beautiful result:

Proposition 5.6.([Ca1]) If a > 2n,m > 2b, n ≥ 3, b ≥ 3 and N̂(a,b)(n,m) = N̂(c,d)(p,q) then

the 4-uple (c, d, p, q) is one of the following:

(a, b, n,m) (b, a,m, n) (n,m, a, b) (m,n, b, a)

Roughly speaking proposition 5.6 says that if a smooth surface S is defined in two ways as

in 5.1 then these ways are obtained one from the other by changing the role of x and y or

the role of z and w .

Catanese’s proof is given by observing that the numbers a, b, n,m are uniquely determined

up the above four permutations by the six numbers σi(a, b, n,m), i = 1, ..., 6 where σ1, ..., σ4

are the symmetric functions, σ5 = an+ bn and σ6 = am+ bn .

Then it is possible to recover the values of σi from the geometry of the canonical map

φ:S → Ppg−1 of the generic surface [S] ∈ N(a,b)(n,m) , for example 4σ6 is exactly the number

of points of inflection of φ .

Note that the deformation invariance of the inflectionary points of the canonical map is a

very special feature of simple bihyperelliptic surfaces and is false for general surfaces with

very ample canonical bundle.

We are now able to construct examples of distinct connected components of the space Md(S).

Example 5.7. Let S1, S2 be two simple bihyperelliptic surfaces of respective types (13, 4), (6, 13)

and (14, 5)(5, 12). Then these surfaces are homeomorphic, r(S1) = r(S2) = 1 and they belong

to different connected components of M .

The strategy used in example 5.7 is clear, we look for a pair of simple bihyperelliptic surfaces

of respective types (a, b)(n,m) and (a+ 1, b+ 1)(n− 1,m− 1). Such surfaces have the same
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invariants K2, χ and r if and only if n+m = a+ b+ 2. It is then easy to construct infinite

example of surfaces S where Md(S) has at least 2 connected components.

In order two prove that the number of connected components is unbounded we need the

following lemma proved in the appendix of [Ca1]

Lemma 5.8.(Bombieri) Let 1 > c > 3−
1
3 be a fixed real number, M a positive integer and

let uivi = M be k distinct factorizations of M such that c
√
M < ui < vi < c−1

√
M .

Then there exist positive integers R,S,N and k distinct pairs of integer (zi, wi) such that:

wizi − 2(ui + vi) = N, zi + 4 < 2Rvi < 3zi − 2, wi + 4 < 2Sui < 3wi − 2

Theorem 5.9. For every k > 0 there exist simple bihyperelliptic surfaces S1, ..., Sk orientedly

homeomorphic, with r(Si) = r(Sj) and any two of them are not deformation equivalent of

each other.

Proof. We have to find large positive integers K2, χ(OS), r(S) such that (5.1) with the in-

equalities a ≥ max(2n + 1, b + 2), m ≥ max(2b + 1, n + 2) has at least k distinct solu-

tions. Fix 1 > c > max{2− 1
2 , 3−

1
3 } and let ui, vi = M be k distinct factorizations with

G.C.D.(ui, vi) = 1 such that c
√
M < ui < vi < c−1

√
M . (We can take for example an

integer h such that
(

2h
h

)
> 2k and M = p1p2....p2h where p1 < p2 < .... < p2h are prime

numbers such that ph1 > cph2h ).

Let R,S,N,wi, zi be as in lemma 5.8 and let Si be a simple bihyperelliptic surface of type

(ai, bi)(ni,mi) where ai = 2RSui+Rwi+1, bi = 2RSvi−Szi+1, ni = 2RSui−Rwi+1,mi =

2RSvi + Szi + 1.

A computation shows that for every i = 1, ..., k K2
Si

= 128R2S2M , χ(OSi) = 24R2S2M −
2RSN + 2, r(Si) = 4RS and ai ≥ max{2ni + 1, b+ 2},mi ≥ max{2bi + 1, ni + 2} .

This surfaces belong to the same Md but they are in distinct connected components by

theorem 5.5. ut
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VI. Iterated double covers and connected components of

moduli spaces.

In the previous chapters we defined for every minimal surface of general type S the subset

of moduli space Md(S) = {[S′] ∈Mtop(S)| r(S′) = r(S)} .

Using simple bihyperelliptic surfaces and a numerical lemma we proved that the number δ(S)

of connected components of Md(S) can be arbitrarily large, here we prove that ”in general”

δ takes quite big values, more precisely we have

Theorem A.For every real number 4 ≤ β ≤ 8 there exists a sequence Sn of simply connected

surfaces of general type such that:

a) yn = K2
Sn
, xn = χ(OSn)→∞ as n→∞ .

b) lim
n→∞

yn
xn

= β .

c) δ(Sn) ≥ y
1
5 log yn
n .

We note that the lower bound we achieve is considerably greater of the previous bounds and

in particular we prove the impossibility of a polynomial upper bound of δ . Theorem A relies

on the explicit description of the connected components in the moduli space of a wide class

of surfaces of general type whose Chern numbers spread in all the region
1
2
c2 ≤ c21 ≤ 2c2 .

Definition B. A finite map between normal algebraic surfaces p:X → Y is called a simple

iterated double cover associated to a sequence of line bundles L1, ..., Ln ∈ Pic(Y ) if the

following conditions hold:

1) There exist n+1 normal surfaces X = X0, ..., Xn = Y and n flat double covers πi:Xi−1 →
Xi such that p = πn ◦ .... ◦ π1 .

2) If pi:Xi → Y is the composition of πj ’s j > i then we have for every i = 1, ..., n the

eigensheaves decomposition πi∗OXi−1 = OXi ⊕ p∗i (−Li).

For any sequence L1, ..., Ln ∈ Pic(P1 × P1) define N(P1 × P1, L1, ..., Ln) as the image in the

moduli space of the set of surfaces of general type whose canonical model is a simple iterated

double cover of P1 × P1 associated to L1, ..., Ln .

The main theme of this chapter is to determine sufficient conditions on the sequence L1, ..., Ln

in such a way that the set N(P1×P1, L1, .., Ln) has ”good” properties; the condition we find

are summarized in the following definition:

Marco Manetti: Degenerations of Algebraic Surfaces and applications to Moduli prob-

lems.
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Definition C. A sequence L1, ..., Ln , Li = OP1×P1(ai, bi) n ≥ 2 of line bundles on P1 × P1

is called a good sequence if satisfies the following conditions.

C1) ai, bi ≥ 3 for every i = 1, ..., n .

C2) maxj<i min(2ai − aj , 2bi − bj) < 0.

C3) an ≥ bn + 2, bn−1 ≥ an−1 + 2.

C4) ai, bi are even for i = 2, ..., n .

C5) For every i < n 2ai − ai+1 ≥ 2, 2bi − bi+1 ≥ 2.

The main result we prove is:(Th.’s 4.1, 4.2 and 4.7)

Theorem D.Let L1, ..., Ln be a good sequence in sense of definition C, then:

a) N(P1 × P1, L1, ..., Ln) is a nonempty connected component of the moduli space.

b) N(P1×P1, L1, ..., Ln) is reduced, irreducible and unirational. (for a) and b) the condition

C5 is not necessary).

c) The generic [S] ∈ N(P1 × P1, L1, ..., Ln) is a surface with ample canonical bundle and

Aut(S) = Z/2Z .

d) If M1, ...,Mm is another good sequence and N(P1×P1, L1, ..., Ln) = N(P1×P1,M1, ...,Mm)

then n = m and Li = Mi for every i = 1, ..., n .

Simple iterated double covers of P1× P1 associated to good sequences are simply connected

(because of C1, according to [Ca1] Th. 1.8) and by two of them are homeomorphic if and

only if they have the same invariants K2 , χ and r mod2.

It is clear that the proof of theorem A reduces to counting the number of good sequences

giving the same invariants K2 , χ and r .

Theorem D gives us some new interesting examples of homeomorphic but not deformation

equivalent surfaces of general type.

Example E.Two deformation not equivalent surfaces S1, S2 homeomorphic with the same

divisibility which are double covers of the same surface S0

Define S0
p−→P1 × P1 a simple iterated double cover associated to L1 = OP1×P1(8, 12), L2 =

OP1×P1(8, 4); by adjunction formula KS0 = p∗OP1×P1(14, 14).

Let a 6= b be integer ≥ 17 and let D1 ∈ |p∗OP1×P1(2a, 2b)| , D2 ∈ |p∗OP1×P1(2b, 2a)| be two

smooth divisors, the double cover S1, S2 of S0 with branching divisors D1, D2 respectively

have the required properties. Note that D2
1 = D2

2 , KS0 ·D1 = KS0 ·D2 and D1, D2 have the

same genus.

It is worth to mention here another interesting fact (Cor. 4.8), if

X = X0
π1−→X1−→...

πn−→Xn = P1 × P1

is a simple iterated double cover associated to a good sequence then the surfaces X1 and the

map π1 (and then by induction Xi and πi for all i = 1, .., n) are uniquely determined by



Iterated double covers and connected components of moduli spaces. 89

X . In fact, assume for simplicity that [X] ∈ N(L1, .., Ln) is generic, then by Theorem D.c)

X has only a nontrivial automorphism τ and then X1 is the quotient X/τ .

Using the same idea we prove D.d) as a consequence of D.a), D.b) and D.c).

Every simple iterated double cover X associated to L1, .., Ln ∈ Pic(Y ) can be embedded in

the total space of the vector bundle V = L1 ⊕ . . . ⊕ Ln
p−→Y , e.g. in the case n = 2 the

equations of X are

z2
1 = f1 + z2g1, z2

2 = f2

with zi ∈H0(V, p∗Li) the tautological section, fi ∈H0(Y, 2Li) and g1 ∈H0(Y, 2L1 − L2).

Thus simple iterated double covers are naturally parametrized by a Zariski open subset of a

finite dimensional vector space and then the proof of the openess of N(P1 × P1, L1, ..., Ln)

reduces to showing the surjectivity of a Kodaira-Spencer map.

In order to prove the closure of N(P1 × P1, L1, ..., Ln) in the moduli space we must show

that for every 1-parameter family of simple iterated double covers degenerate to a surface of

general type X0 then [X0] ∈ N(P1 × P1, L1, ..., Ln).

Here the main trouble is to prove that the flatness of all covering maps is preserved under

specialization. The section 3 is devoted to prove this fact under some special and at a first

sight very strange assumption (e.g. C4). The key result is the classification of involutions

acting on smoothings of rational double points (Prop. 3.2), from this it follows that if a family

of smooth double covers Xt → Yt , t ∈ ∆∗ degenerate to a nonflat double cover X0 → Y0 and

X0 has at most rational double points then Y0 has at least one cyclic singularity at y0 and the

Milnor fibre Ft of the smoothing (Y, y0) → (∆, 0) has the canonical class in H2(Ft,Z) not

divisible by 2. In particular if r(Yt) is even then the inclusion Ft ⊂ Yt gives a contradiction.

The proof of D.c) (§4) use a degeneration argument.
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1. Preliminaries and conventions

Let f :X → Y be a morphism between complex algebraic varieties. If F is an OX -module

and G is an OY -module the natural sheaf morphisms G → f∗f
∗G , f∗f∗F → F induce

isomorphisms

f∗HomOXf∗GF ' HomOY Gf∗F and HomOX (f∗G,F) = HomOY (G, f∗F) (cf.[Ha1] pag.

110).

Lemma 1.1.In the notation above assume F ,G coherent:

a) If f is flat (i.e. f∗ is an exact functor ) then there exists a convergent spectral sequence

of vector spaces

Ep,q2 = ExtpOY (G, Rqf∗F) ⇒ Extp+qOX (f∗G,F)

b) If f is finite then there exists a convergent spectral sequence of OY -modules

Ep,q2 = f∗ExtpOX (Lqf∗G,F) ⇒ Extp+qOY (G, f∗F)

c) If f is finite flat then for every i ≥ 0 we have

ExtiOX (f∗G,F) = ExtiOY (G, f∗F) f∗ExtiOX (f∗G,F) = ExtiOY (G, f∗F)

Proof. a) Let I be an injective OX -module, from the exactness of the functor f∗ and formula

HomOX (f∗G, I) = HomOY (G, f∗I) it follows that the direct image f∗I is an injective OY -

module.

The functor F → HomOX (f∗G,F) is the composition F → f∗F → HomOY (G, f∗F) and the

sequence in a) is the Grothendieck spectral sequence associated to this composition.

b) The proof is similar to a), we only recall that since f is finite f∗ is an exact functor from

coherent sheaves on X to coherent sheaves on Y and the Ext ’s can be computed applying

the contravariant Hom to locally free resolutions. (cf. [Ha1] III.6.5).

c) is an obvious consequence of a) and b). ut

Remark. . The condition f flat in the point 1.1.a) cannot be deleted, in fact if φ:A→ B is

a morphism of commutative rings, M an A -module and N a B -module then there exists a

spectral sequence (composition of −⊗B and HomB(−, N))

Ep,q2 = ExtpB(TorAq (M,B), N) ⇒ Extp+qA (M,N).

In particular φ is flat if and only if every injective B -module is an injective A -module.

Throughout all this paper by a tower of height n we shall mean the data of n+ 1 irreducible

algebraic varieties of the same dimension X0, ..., Xn and n finite flat morphisms πi:Xi−1 →
Xi . A tower is smooth (resp.: normal) if every Xi is smooth (resp.: normal).
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A deformation of the tower (Xi, πi) parametrized by a germ of complex space (S, 0) is a

commutative diagram

X0
π1−→ X1 −→ ... −→ Xn −→ 0y y y y

X̃0
π̃1−→ X̃1 −→ ... −→ X̃n −→ S

such that for every i = 0, ..., n the induced diagram

Xi −→ 0y y
X̃i −→ S

is a deformation of Xi parametrized by S . Note that for tower of height 1 this is the usual

definition of deformations of maps ([Ran]).

Denote by Def(Xi, πi) the functor of isomorphism classes of deformations of the tower

(Xi, πi) and, for j = 0, ...n , by rj :Def(Xi, πi) → Def(Xj) the induced morphism of func-

tors.

Let now π:X → Y be a finite flat map between irreducible reduced algebraic varieties, by

Lemma 1.1 we have an isomorphism

Φ: Ext1
OX (π∗Ω1

Y ,OX) ∼−→Ext1
OY (Ω1

Y , π∗OX)

and the natural maps π∗Ω1
Y → Ω1

X , OY → π∗OX induce maps of Ext groups

Ext1
OX (Ω1

X ,OX) α−→ Ext1
OX (π∗Ω1

Y ,OX)yΦ

Ext1
OY (Ω1

Y ,OY )
β−→ Ext1

OY (Ω1
Y , π

∗OX)

where if e ∈ Ext1
OY (Ω1

Y ,OY ) is the isomorphism class of the extension

0−→OY−→E−→Ω1
Y−→0

then Φ−1β(e) is the isomorphism class of the extension

0−→OX = π∗OY−→π∗E−→π∗Ω1
Y−→0

The maps α and Φ−1β have an interesting interpretation in terms of obstruction to deforming

the map π .

We recall that if Z is a reduced variety and T 1
Z is the vector space of deformations of Z over

the double point D = Spec(C[t]/(t2)) there exists an isomorphism T 1
Z = Ext1

OZ (Ω1
Z ,OZ)

which to the deformation Z ⊂ Z̃ → D associates the extension

0−→OZ−→Ω1
Z̃
⊗OZ−→Ω1

Z−→0
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If T 1
π is the space of first order deformations of the map π then there exists a commutative

diagram
T 1
π

rX−→ T 1
X = Ext1

OX (Ω1
X ,OX)yrY yα

T 1
Y = Ext1

OY (Ω1
Y ,OY )

Φ−1β−→ Ext1
OX (π∗Ω1

Y ,OX)

where rX and rY are the natural forgetting maps. In fact if X̃ π̃−→Ỹ is a deformation of π

over the double point then by standard flatness criterion ([Mat1] Th. 22.3) it’s easy to see

that π̃ is flat and the relation αrX(π̃) = Φ−1βrY (π̃) follows from the following commutative

diagram
0 −→ OX = π̃∗OY −→ π̃∗Ω1

Ỹ
⊗OX −→ π∗Ω1

Y −→ 0

‖
y y

0 −→ OX −→ ΩX̃ ⊗OX −→ Ω1
X −→ 0

Sometimes, especially in §2, if (S, 0) is a germ of complex vector space we consider (S, 0)

as a covariant functor from the category of local artinian C -algebras to the category of sets

defined in the following way:

(S, 0)(A) = {morphismsϕ: (SpecA, 0)→ (S, 0)}

where 0 ∈ SpecA is the closed point.

2. Deformations of iterated double covers.

From now on by a surface we mean a complex projective surface. Let X be a normal surface

and let π:X → Y be the quotient of X by an involution τ .

Lemma 2.1.In the above notation the following conditions are equivalent:

i) π is flat.

ii) There exists a line bundle π:L→ Y and a section f ∈ H0(Y, 2L) such that the pair X, τ

is isomorphic to the subvariety of L defined by the equation z2 = f , z ∈ H0(L, π∗L) is

the tautological section, and the involution obtained by multiplication for -1 in the fibres

of L .

iii) The fixed subvariety R = Fix (τ) is a Cartier divisor.

Moreover if X is smooth then π is flat if and only if Y is smooth.

Proof. The proof is standard, we give a sketch.

i) ⇒ ii) If π is flat then the group G = {1, τ} acts on the rank 2 locally free sheaf π∗OX
and yields a character decomposition π∗OX = OY ⊕ OY (−L) for some L ∈ Pic(Y ). X

depends only by the OY algebra structure of π∗OX which is uniquely determined by a map

f :OY (−2L)→ OY , f ∈ H0(Y, 2L).

ii)⇒ iii) is clear since R is the divisor of a section of π∗L .

iii) ⇒ i) Let p be a fixed point of τ , then G acts on the local C -algebra B = OX,p . Let

A = BG be the subring of invariant functions and let I be the ideal of R , by definition I is

the ideal of B generated by τf − f , all f ∈ B .
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If I is a principal ideal, it is easy to see using Nakayama lemma that there exists a generator

h of I such that τh = −h and then B is a free A -module generated by 1, h .

If X is smooth, by i) ⇔ iii) it follows that π is flat if and only if τ has not isolated fixed

point, i.e. if and only if Y is smooth. (note that if Y is smooth then π is always flat). ut

In this section we investigate the deformations of X under the hypothesis of π to be flat.

Consider thus X ⊂ L
π−→Y defined by the equation z2 = f(y). Denote D = div(f) ⊂ Y ,

R = div(z) ⊂ X .

Note that π∗D = 2R and X is normal if and only if Y is normal and D is reduced. If KX ,

KY are the Weil canonical divisors of X and Y respectively we have the adjunction formula

KX = π∗KY +R , this follows from the usual Hurwitz formula for smooth varieties and from

the reflexivity of canonical sheaves on normal varieties. In particular if Y is Gorenstein then

also X is Gorenstein (cf. [Mat1] 23.4).

Let X̃ be the variety defined in L×H0(Y,D) by

X̃ = {(z, y, h)| z2 = f(y) + h(y)}

clearly X̃ is a double flat cover of Y ×H0(Y,D) hence the second projection X̃ → H0(Y,D)

is flat and defines a map of functors Natπ: (H0(Y,D), 0)→ Def(X).

Definition 2.2. The image of the map Natπ is called the set of natural deformations of X

associated to π .

Proposition 2.3.In the above notation let X̃ → Ỹ → H be a deformation of the map π

parametrized by a smooth germ (H, 0) and let rX : (H, 0) → Def(X) , rY : (H, 0) → Def(Y )

be the induced maps. Assume:

i) rY is smooth.

ii) The image of rX contains the natural deformations.

iii) Ext1
OY (Ω1

Y ,−L) = 0 , H1(OY ) = 0 .

Then dimT 1
X = dimT 1

Y + h0(OY (D)) + h0(θX)− h0(θY )− h0(θY (−L))− 1 and the map rX

is smooth.

We prove this proposition after some lemmas.

Lemma 2.4.There exists an exact sequence of OX -modules

0−→π∗Ω1
Y−→Ω1

X−→OR(−R)−→0 (1)

Proof. Let i:X → L be the inclusion as in lemma 2.1, since L π−→Y is locally a product there

exists an obvious inclusion of sheaves π−1Ω1
Y ⊂ i−1Ω1

L , tensoring with the flat module OX

we get an injection π∗Ω1
Y−→Ω1

L ⊗OX .

The sheaf Ω1
L/Y is clearly locally free and it is the OL dual of the sheaf of vertical vector

fields and therefore it is naturally isomorphic to π∗(−L).



94 Chapter VI.

We have the following first and second exact sequences of differentials

0−→π∗Ω1
Y−→Ω1

L ⊗OX−→Ω1
L/Y ⊗OX = OX(−R)−→0

0−→OX(−π∗D) = OX(−X)−→Ω1
L ⊗OX−→Ω1

X−→0 (2)

and (1) is obtained by applying the snake lemma to

0 −→ OX(−π∗D) −→ Ω1
L ⊗OX −→ Ω1

X −→ 0y y
OX(−L) == OX(−L)

ut

The proof of 2.4 shows also that there exists a commutative diagram with exact rows

0 −→ OX(−X) −→ Ω1
L ⊗OX −→ Ω1

X −→ 0

‖
y y

0 −→ OX(−X) −→ OX(−R) −→ OR(−R) −→ 0

If we apply HomOX (−,OX) to the above diagram we get the commutative square

HomOX (OX(−X),OX) δ−→ Ext1
OX (Ω1

X ,OX)

‖
xε

HomOX (OX(−X),OX)
γ−→ Ext1

OX (OR(−R),OX)

Lemma 2.5.In the notation above, if H1(OY ) = 0 then the image of ε is the vector space

of first order natural deformations.

Proof. We know that δ is the natural map from first order embedded deformations of X in

L to T 1
X (cf. [Ar3]) and then the set of first order natural deformations is the image of the

composite map

H0(OY (D)) π∗−→H0(OX(π∗D)) = HomOX (OX(−X),OX) δ−→T 1
X

Thus in order to prove the lemma it’s enough to show that γ ◦ π∗ is surjective.

Since R is a locally principal divisor in the normal surface X we have (cf. II.4.13, II.4.14)

Ext1
OX (OR(−R),OX) = H0(OR(2R)) and, since π∗OR = OD , we also have H0(OR(2R)) =

H0(OD(D)) and the restriction map H0(OY (D))→ H0(OD(D)) is surjective if H1(OY ) = 0.

ut

Proof of proposition 2.3 We have a commutative diagram

T0H
drX−→ Ext1

OX (Ω1
X ,OX)ydrY yα

Ext1
OY (Ω1

Y ,OY )
Φ−1β−→ Ext1

OX (π∗Ω1
Y ,OX)

By lemma 1.1 and hypothesis iii) the map Φ−1β is bijective. The kernel of α is the set of

natural deformations and by ii) is contained in the image of drX . It is now trivial to observe
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that drY surjective implies drX surjective and since H is smooth this is sufficient to prove

that rX is smooth and dimT 1
X = dimT 1

Y + dim Imε . ut

If X has the universal deformation then Prop. 2.3 remains true without assuming H smooth.

In fact, the condition 2.3.iii) implies that the trivial involution τ acts trivialy on the universal

deformation of X (cf. [F-P]) and then it is defined in a natural way a morphism of functors

DefX → DefY . The conclusion now follows by II.1.3 and the surjectivity of drX .

Definition 2.6.

a) A normal tower (Xi, πi) of height n is said to be simple if for every i , πi:Xi−1 → Xi is

a flat double cover and there exist line bundles L1, ..., Ln ∈ Pic(Xn) such that πi∗OXi−1 =

OXi ⊕ p∗i (−Li) where pi is the composition of πj ’s j > i .

b) If (Xi, πi, Li) is a simple tower we call the surface X = X0 a simple iterated double cover

of Y associated to L1, ..., Ln ∈ Pic(Y ) and the involution τ :X → X such that X/τ = X1

the trivial involution.

Clearly the trivial involution depends on the simple tower and in general X does not determine

τ .

It is important to observe that if (Xi, πi, Li) is a smooth simple tower and Pic(Xn) is without

torsion then the maps p∗i : Pic(Xn) → Pic(Xi) are injective and the line bundles L1, ..., Ln

are uniquely determined by the maps π1, ..., πn .

Theorem 2.7. Let (Xi, πi, Li) be a simple tower of height n and let (H, 0) be a smooth

germ parametrizing a deformation of the tower. Denote X = X0, Y = Xn and let ri: (H, 0)→
Def(Xi) be the induced maps. Assume:

i) H1(OY ) = 0 .

ii) rn: (H, 0)→ Def(Y ) is smooth.

iii) The natural deformations of πi+1:Xi → Xi+1 are contained in the image of ri .

iv) For every sequence 1 ≤ j1 < j2 < ... < jh ≤ n , h > 0

Ext1
OY (Ω1

Y ,
h∑
s=1

−Ljs) = 0 H1(Y,
h∑
s=1

−Ljs) = 0

v) For every i ∈ {2, ..., n} and for every subset {j1, ..., jh} ⊂ {1, ..., i − 1, i + 1, ..., n} with

h > 0 and j1 < i

H0(Y, 2Li −
h∑
s=1

Ljs) = 0

Then r0:H → Def(X) is smooth.

Note. If H0(Li) 6= 0 for every i then the condition v) is equivalent to

vi) for every j < i H0(Y, 2Li − Lj) = 0.

Proof. Induction on n , for n = 1 is just proposition 2.3.

Assuming the theorem true for towers of height n − 1 it suffices to prove that conditions

i),...,v) hold for the surface Z = Xn−1 and the line bundles Mi = π∗nLi i = 1, ..., n− 1.
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The only nontrivial condition to check is the part of iv) concerning Ext’s. Let R ⊂ Z, D ⊂ Y
be respectively the ramification and branching divisors of πn .

Applying HomOZ (−,
∑h
s=1−Mjs) to the exact sequence

0−→π∗nΩ1
Y−→Ω1

Z−→OR(−R)−→0

we get

H0(OD(2Ln −
h∑
s=1

−Ljs)) = Ext1
OZ (OR(−R),

h∑
s=1

−Mjs)→ Ext1
OZ (Ω1

Z ,

h∑
s=1

−Mjs)→

−→Ext1
OZ (π∗nΩ1

Y ,
h∑
s=1

−Mjs) = Ext1
OY (Ω1

Y ,
h∑
s=1

−Ljs)⊕ Ext1
OY (Ω1

Y ,
h∑
s=1

−Ljs − Ln)

and the vector space on the left belong to the exact sequence

H0(OY (2Ln −
h∑
s=1

−Ljs))−→H0(OD(2Ln −
h∑
s=1

−Ljs))−→H1(OD(
h∑
s=1

−Ljs))

ut

Corollary 2.8.Let Y be a rigid (i.e. T 1
Y = 0) normal surface and let X be a simple iterated

double cover of Y associated to L1, ..., Ln ∈ Pic(Y ) . If conditions i), iv) and v) of theorem

2.7 are satisfied then Def(X) is smooth.

Proof. X is the top of a simple tower (Xi, πi, Li) of height n thus according to theorem 2.7

it’s enough to show the existence of a smooth family of deformations of the tower satisfying

conditions 2.7.ii) and 2.7.iii).

By lemma 2.1 applied n times we can embed X in the vector bundle V = L1⊕ ...⊕Ln
p−→Y

by the equations

z2
i = fi i = 1, ..., n

where zi:V → p∗Li tautological section and fi ∈ H0(Xi, p
∗
i 2Li) where Xi is the surface in

Li+1 ⊕ ...⊕ Ln of equations z2
j = fj , j > i and πi is the restriction to Xi−1 of the natural

projection Li ⊕ ...⊕ Ln → Li+1 ⊕ ...⊕ Ln . Note that there exists a natural identification of

vector spaces

H0(Xi, p
∗
i 2Li) =

n−i
⊕
h=0

⊕
{j1,...,jh}⊂{i+1,...,n}

zj1 ...zjhH
0(Y, 2Li − Lj1 − ...− Ljh)

Take H =
n
⊕
i=1

H0(Xi, p
∗
i 2Li) and the map H → Def(Xi, πi) is given by

(h1, ...., hn)→ X ′ = {z2
i = fi + hi} (∗)

Clearly H → Def(Y ) = 0 is smooth and the image of ri contains the natural deformations

of each πi . ut
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The deformations of X defined by the equation (∗) are called natural deformations of X

associated to the simple tower (Xi, πi, Li). Note that the trivial involution τ : z1 → −z1 ex-

tends to every natural deformation of the tower, therefore if the family of natural deformation

is complete (e.g. Cor. 2.8) then τ acts trivially on T 1
X .

Example 2.9. If Y = P2 and deg Li = ai then the hypotheses of Cor. 2.8 are satisfied if

for every i ai ≥ 4 and ai > 2ai+1 .

As in the introduction define N(P1× P1, L1, ..., Ln) the subset of moduli space of surfaces of

general type whose canonical model is a simple iterated double cover of P1 × P1 associated

to L1, .., Ln and by N0(P1 × P1, L1, .., Ln) the subset of N(P1 × P1, L1, ..., Ln) of surfaces

whose canonical model is nonsingular, it is clear that N0 is an open subset of N .

Corollary 2.10.If Y = P1 × P1 , Li = OP1×P1(ai, bi) with ai, bi ≥ 3 and for every j < i

Min(2ai − aj , 2bi − bj) < 0 then N(P1 × P1, L1, ..., Ln) and N0(P1 × P1, L1, ..., Ln) are open

subsets of the moduli space M .

Proof. Take [S] ∈ N(P1×P1, L1, ..., Ln) and let (Xi, πi, Li) be a tower with bottom P1×P1

and top the canonical model X of S .

It is easy to show that L1, ..., Ln satisfy the conditions of corollary 2.8 and then we have a

surjective map of germs of complex spaces (H, 0) → (Def(X), 0) → (M, [S]) where H is

the parameter space of natural deformations associated to the tower. The thesis now follows

immediately since by explicit construction of natural deformations the image of (H, 0) is

contained in (N(P1 × P1, L1, .., Ln), [S]) . ut

The next result will be used in chapter VII.

Corollary 2.11. Let X−→Y be a simple iterated double cover associated to a sequence

L1, ..., Ln ∈ Pic(Y ) . Assume that Y and L1, .., Ln satisfy conditions 2.7.i), 2.7.iv), 2.7.v)

and assume moreover that:

(a) Def(Y ) is smooth.

(b) L1, .., Ln extends to a complete deformation of Y .

(c) For every 0 < i < j1 < ... < jh ≤ n , h ≥ 0

H1(Y, 2Li −
h∑
s=1

Ljs) = 0

then Def(X) is smooth.

Proof. Let (Xi, πi, Li) be a simple tower with X0 = X , Xn = Y , Xn−1 = Z . We already

proved that the surface Z and the line bundles M1, ...,Mn−1 , Mi = π∗nLi satisfy 2.7.i), iv)

and v). By induction on n it is sufficient to prove that they satisfy (a), (b) and (c).

Let Ỹ−→Def(Y ) be the Kuranishi family of Y and let L̃i ∈ Pic(Ỹ ) be the extension of Li .

Since H1(Y, 2Ln) = 0 by semicontinuity and base change theorems there exists a subspace

V ⊂ H0(Ỹ , 2L̃n) such that the natural restriction V−→H0(Y, 2Ln) is an isomorphism.
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Consider then the flat double cover Z̃ π̃−→Ỹ × V defined by equation

z2
n = v(y) y ∈ Ỹ , v ∈ V

By construction the flat maps

Z̃
π̃−→Ỹ × V−→Def(Y )× V

are a deformation of the double cover Z πn−→Y and satisfy the hypotheses of 2.3. Therefore

Def(Z) is smooth and it is clear that M̃i = π̃∗L̃i extends Mi to a complete family. The

verification of (c) is easy. ut

Note that if L1, ..., Ln satisfies the hypotheses of Corollary 2.10 then in general they don’t

satisfy the condition 2.11.c and then 2.11 cannot used in the proof of 2.10.

3. Degenerations of iterated double covers.

Let f :X → ∆ = {t ∈ C| |t| < 1} be a proper flat family of normal projective surfaces and

let τ :X → X be an involution preserving f . Let π:X → Y = X/τ be the projection to

quotient and assume that πt:Xt → Yt is flat for every t 6= 0.

In general π0:X0 → Y0 is not flat, this section is almost entirely devoted to prove the following

theorem which gives a sufficient condition for the map π0 to be flat.

Theorem 3.1.In the above situation suppose that:

i) Xt, Yt are smooth surfaces for t 6= 0 .

ii) X0 has at most rational double points (RDP) as singularities.

iii) The divisibility of the canonical class of Yt is even for t 6= 0 .

Then Y0 has at most RDP’s and the map π:X → Y is flat.

Since flatness is a local property we need to investigate quotient of smoothing of RDP.

Proposition 3.2.Let f : (X, 0) → (C, 0) be a smoothing of a rational double point X0 and

let f ′: (Y, 0)→ ∆ be the quotient of (X, 0) by an involution τ preserving f .

Suppose that (Y, 0) is a smoothing of the normal singularity Y0 and let Ft ⊂ Yt be the

associated Milnor fibre. Then either one of the following possibilities holds:

i) Y0 is a RDP and the quotient projection π: (X, 0)→ (Y, 0) is flat.

ii) Y0 is cyclic of type
1

2d+ 1
(1, 2d− 1) and the intersection form on H2(Ft,

∫
) is odd and

negative definite.

iii) f ′ is a Q -Gorenstein smoothing of the cyclic singularity of type
1
4d

(1, 2d−1) , the torsion

subgroup of H2(Ft,
∫

) has order 2 and is generated by the canonical class.

Proof of Theorem 3.1. It’s enough to prove that the map Y → ∆ cannot be locally of type

ii) or iii) described in prop 3.2. Let p ∈ Y be a singular point: (Y, p) cannot be of type ii)

above since the inclusion Ft ⊂ Yt induces an isometry H2(Ft,
∫

) → H2(Yt,
∫

) with respect

the intersection forms and the intersection form of Yt is even by Wu’s formula.
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If (Y, p) is of type iii) above and if r:H2(Yt,
∫

) → H2(Ft,
∫

) is the natural restriction then

r(c1(KY )) generates the torsion subgroup of H2(F ) which is
∫
/2
∫

but this gives a contra-

diction since c1(KX) is 2-divisible. ut

We point out that, according to IV.2.6, the cyclic singularity of type
1
4

(1, 1) is the unique

singularity described in the statement of 3.2 which can appear in a normal degeneration of

the complex projective plane.

The proof of 3.1 shows that the condition r(Yt) even is essential in order to have Y0 with at

most rational double points. In fact in chapter VII we shall construct examples of degeneratins

where the divisibility r(Yt) is odd and Y0 has singularities of type 3.2.iii).

Our strategy of proof of proposition 3.2 divides in two steps. The first step is the classification

of all conjugacy classes of involutions acting on a RDP; this computation is already done by

Catanese and the result is illustrated in the next two tables.

Table 1. Equations of RDP’s in C3 .
E8 z2 + x3 + y5 = 0

E7 z2 + x(y3 + x2) = 0

E6 z2 + x3 + y4 = 0

Dn, n ≥ 4 z2 + x(y2 + xn−2) = 0

An z2 + x2 + yn+1 = 0 or uv + yn+1 = 0

smooth x = 0

Table 2. ([Ca3] Th. 2.1) Conjugacy classes of involutions acting on the RDP’s defined as in

table 1.
a) y → −y E6, Dn, A2n+1

b) y → −y, z → −z smooth, E6, Dn, A2n+1

c) (u, v, y)→ (−u, v,−y) A2n

d) x→ −x, z → −z An

e) (u, v, y)→ (−u,−v,−y) A2n+1

f) z → −z all RDP’s

Corollary 3.3.Let X → Y be a flat double cover of normal surfaces.

If X is smooth then Y is smooth.

If X has at most RDP’s then Y has at most RDP’s.

Proof. According to table 2 the only involutions whose fixed locus is a Cartier divisor are

exactly of types a) and f). ut

The second step in the proof of proposition 3.2 is to give a (very rough) classification of the

smoothing of the involutions of table 2 according to the following definition.

Definition 3.4.Let (X0, 0) be a singularity and g0 ∈ Aut(X0, 0). A smoothing of g0 is

the data of a smoothing (X, 0) t−→(C, 0) of (X0, 0) and an automorphism g of (X, 0) pre-

serving the map t such that g0 is the restriction of g to X0 and the quotient (Y, 0) =

(X/g, 0) t−→(C, 0) is a smoothing of (X0/g0).
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The following Cartan-type Lemma will be very useful for our purposes.

Lemma 3.5.Let (X, 0) t−→(C, 0) be a morphism of germs of analytic singularities and let

G ⊂ Aut(X, 0) be a finite subgroup preserving t .

Assume the group G acts linearly on a finite dimensional C -vector space V and let io: (X0, 0)→
(V, 0) be a G-embedding, then there exists a G-embedding i: (X, 0) → (V × C, 0) extending

io and such that t = p ◦ i where p is the projection on the second factor.

Moreover if t is flat and f1(z), ..., fk(z) are the equations of i0X0 in V such that g(fi) =

χi(g)fi for characters χ1, ..., χk then we can choose equations Fi(z, t) of i(X) in V ×C such

that Fi(z, 0) = fi(z) and gFi = χi(g)F for every i, g .

Proof. Let m,m0 be respectively the maximal ideals of OX ,OX0 . According to classical

Cartan Lemma ([Car]) if V ′ ⊂ V is the Zariski tangent space of (i0(X0), 0) then there exists

a G -equivariant analytic automorphism α of (V, 0) such that α(i0(X0)) is contained in V ′

and then we can assume without loss of generality that V is G -isomorphic to (m0/m
2
0)∨ ,

the Zariski tangent space of X0 at 0.

If z1, ..., zn is a basis of V ∨ and let i∗0:C{z1, ..., zn} → OX0 be the induced surjective G -

equivariant morphism of algebras, the germs of function i0(zi), i = 1, ..., n are a basis of

m0/m
2
0 .

The ideal I = m2 + (t) ⊂ m is clearly G -stable and since G is finite there exists a G -

stable vector space H ⊂ m such that m = I ⊕H . The restriction of the natural projection

OX → OX0 to H induces a G -isomorphism H ' m0/m
2
0 and then there exists a G -lifting

of i∗0 , say η∗:C{z1, ..., zn} → OX .

It is now easy to prove that the map i: (X, 0)→ (V × C, 0) associate to the local homomor-

phism of analytic algebras i∗:C{z1, ..., zn, t} → OX i∗(t) = t , i∗(zi) = η∗(zi) is the desired

embedding.

Let now fi be as in the statement, then using the linear reductivity of G we can find functions

Fi ∈ C{z1, ..., zn, t} in the ideal IX of i(X) such that Fi(z, 0) = fi(z) and gFi = χi(g)Fi .

The flatness of t implies that the Fi ’s generate IX (cf. II.2.1). ut

Lemma 3.6.The involutions of types b) and d) are not smoothable.

Proof. There are several cases to investigate, here we made only a particular case for illus-

trating the idea, for the other cases the proof is similar.

Let X0 = Dn and τ involution of type b) and assume that the action of τ extends to a

smoothing (X, 0) t−→(C, 0). By lemma 3.5 we can assume that (X, 0) is defined in C4 by the

equation

z2 + x(y2 + xn−2) + tϕ(x, y, z, t) = 0

τ(x, y, z, t) = (x,−y,−z, t) and ϕ is τ -invariant.
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The fixed locus of τ is the germ of curve of equation xn−1 + tϕ(x, 0, 0, t) contained in the

plane y = z = 0 and then for |t| << 1 τ has a finite number of fixed points on Xt and then

the quotient Xt/τ is singular. ut

Lemma 3.7.Let (X, 0) t−→(C, 0) be a smoothing of a RDP and let τ be an involution of

(X, 0) preserving t . If τ | X0
is of type a) or f) then X0/τ is a RDP and the projection to

(Y, 0) = (X/τ, 0) is flat.

Proof. In case a) by lemma 3.5 we can assume (X, 0) ⊂ (C4, 0) defined by the equation

f(x, y2, z) + tϕ(x, y2, z, t) = 0

and τ(x, y, z, t) = (x,−y, z, t). Thus the equation of (Y, 0) is

f(x, s, z) + tϕ(x, s, z, t) = 0

and (X, 0) is defined in (Y × Cy, 0) by the equation y2 = s . The case of involution of case

f) is similar. ut

Proof of Proposition 3.2. By lemma 3.6 the restriction of τ to X0 can be only of type

a),c),e),f). In cases a) and f) by lemma 3.7 the situation 3.2.i) holds.

The quotient Y of the rational double point A2n by the involution of type c) is the cyclic

singularity of type
1

2n+ 1
(1, 2n− 1) ([Ca3] Th. 2.4) and its dynkin diagram is

•
−3

•
−2

. . . •
−2

n vertices

Thus the selfintersection of the fundamental cycle is −3 and then it is also a rational triple

point. According to II.3.1 every smoothing of Y admits after base change simultaneous

resolution and then its Milnor fibre is diffeomorphic to its minimal resolution.

In case e) (Y, 0) is a smoothing of a cyclic singularity of type
1
4d

(1, 2d− 1) ([Ca3] Th. 2.5).

Since Y −{0} is smooth τ must act freely on X −{0} and then Y is Q -Gorenstein of order

2. The statement about the Milnor fibre is proved in IV.2.4. ut

Lemma 3.8.Let X → ∆ be a proper flat family of normal irreducible surfaces and let L be

a line bundle on X .

If Lt = L ⊗OXt is trivial for every t 6= 0 then L0 is trivial. If moreover h1(OX0) = 0 and

Xt is smooth for t 6= 0 then L is trivial.

Proof. The first part follows from semicontinuity since h0(L0) > 0 and h0(L−1
0 ) > 0.

If h1(OX0) = 0 then by semicontinuity and base change H1(OX) = 0. According to ([B-P-V]

I.8.8) X0 is a deformation retract of some open neighbourhood, therefore if Xt is smooth for

t 6= 0 then the restriction map H2(X,
∫

) → H2(X0,
∫

) is bijective. From the exponential

sequences it follows that the restriction map Pic(X)→ Pic(X0) is injective (cf. IV.1.1). ut
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Corollary 3.9.In the situation of the beginning of §3 assume that Xt is smooth for t 6= 0 ,

X0 has at most RDP’s and Yt = P1 × P1 for t 6= 0 .

If for t 6= 0 πt∗OXt = OYt ⊕ OYt(a, b) with a 6= b (this condition is independent of the

particular isomorphism from Yt to P1 × P1 ) then Y0 is a Segre-Hirzebruch surface F2k .

Proof. By theorem 3.1 Y0 has at most RDP’s and the map π:X → Y is a flat double cover

and we have π∗OX = OY ⊕ L , L line bundle.

If Y0 is smooth then it is well known that it is a surface F2k for some k ≥ 0. If Y0 is singular

its minimal resolution of singularities is F2 (this follows from Brieskorn-Tyurina theory on

simultaneous resolution) and Y0 is the irreducible singular quadric in P3 whose Picard group

is generated by the hyperplane section OY0(1).

But if L0 = n·OY0(1) then Lt = OYt(n, n) contrary to the assumption. ut

Theorem 3.10.Let f :X → ∆ be a proper flat map from a normal 3-dimensional complex

space X to the unit disk such that:

1) X0 has at most rational double points as singularities.

2) f :X∗ → ∆∗ = ∆− {0} is a family of iterated smooth double covers of P1 × P1 associated

to line bundles L1, ..., Ln ∈ Pic(P1 × P1) .

3) Li = OP1×P1(ai, bi) with ai, bi ≥ 3 , an ≥ bn + 2 and ai, bi even for i = 2, ..., n .

Then if f ′:Z → ∆ is the relative canonical model of X there exists a factorization of f ′

Z
π−→Y → ∆ such that π is finite flat, πt:Zt → Yt is an iterated flat double cover for every

t , Yt = P1 × P1 for t 6= 0 and Y0 = F2k .

Proof. Induction on n . Case n = 1. The action of the involution τ on X∗ extends to

a biregular action on Z (cf. [Ca2] Th. 1.8) and taking quotient we have a factorization

Z
π−→Y = Z/τ−→∆ where Yt = P1 × P1 for t 6= 0. The thesis follows from corollary 3.9.

Case n > 1. As in case n = 1 there exists an involution acting on Z preserving fibres and a

factorization

Z
π1−→V = Z/τ−→∆

where for t 6= 0 Vt is a smooth iterated double cover of P1 × P1 associated to line bundles

L2, ..., Ln . By adjunction formula the divisibility of the canonical class of Vt is even and by

Th. 3.1 π1 is flat and V0 has at most rational double points.

By induction we have then a factorization

Z
π−→V δ−→W π2−→Y−→∆

where W is the relative canonical model of V . Then we complete the proof by proving that

δ is an isomorphism.

By normality of V0 and W0 the fibres of δ are connected. Assume that there exists an

irreducible curve C ⊂ V0 contracted by δ and let D ⊂ Z0 be the strict transform of C .
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Since π1 is flat we have π1∗OZ = OV ⊕ M for a line bundle M such that for t 6= 0

Mt = δ∗π∗2L1 . By lemma 3.8 if L is the line bundle on Y such that Lt = L1 then M = δ∗π∗2L
and C ·M = 0.

Using adjunction formula KZ0 = π∗1(KV0 + M0) and D ·KZ0 = 0 which is impossible since

KZ0 is ample. ut

Proposition 3.11.In the same hypotheses of Th. 3.10 if in addition n ≥ 2 and 2bn−1 > bn+2

then Y0 = F2k with

k ≤ max(
an−1

bn−1 − 1
,

2an−1 − an
2bn−1 − bn − 2

)

In particular if bn−1 ≥ an−1 + 2 then Y0 = P1 × P1 .

Proof. Without loss of generality we can assume n = 2 and k > 0.

Let σ0, F be the standard basis of Pic(F2k) (σ2
0 = 2k, F 2 = 0, F ·σ0 = 1) and let σ∞ ⊂ F2k

be the ”section to infinity” (i.e. the unique effective divisor linearly equivalent to σ0− 2kF ).

We recall that for an effective divisor D ∼ aσ0 + bF if b < −2k then 2σ∞ ⊂ D and in

particular D is not reduced.

In our situation we have 2 line bundles L1, L2 on F2k such that Z0 is isomorphic to a surface

in L1 ⊕ L2 defined by the equations{
z2 = f f ∈ H0(2L2)
w2 = g + zh g ∈ H0(2L1) h ∈ H0(2L1 − L2)

Since Li deform to the line bundle OP1×P1(ai, bi) we have

(1)
{
L1 = b1σ0 + (a1 − b1k)F
L2 = b2σ0 + (a2 − b2k)F or (2)

{
L1 = a1σ0 + (b1 − a1k)F
L2 = a2σ0 + (b2 − a2k)F

Since a2 ≥ b2 + 2 and the divisor of f is reduced holds necessarily possibility (1). Moreover

since 2σ∞ is not contained in both the divisors of g and h we have

2(a1 − b1k) ≥ −2k or (2a1 − a2)− (2b1 − b2)k ≥ −2k

ut

4. Automorphisms of iterated double covers.

Theorem 4.1.Let L1, ..., Ln be fixed line bundles on P1×P1 . Li = OP×P1(ai, bi) . If n ≥ 2 ,

ai, bi ≥ 3 , ai, bi even for i ≥ 2 , an ≥ bn + 2 , bn−1 ≥ an−1 + 2 and

max
j<i

min(2ai − aj , 2bi − bj) < 0

then N(P1×P1, L1, ..., Ln) is a connected component of the moduli space M , irreducible and

unirational.
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Proof. By Cor. 2.10 it’s enough to prove that N(P1 × P1, L1, ..., Ln) contains the closure of

N0(P1 × P1, L1, ..., Ln) in M , but this is a consequence of Th. 3.10 and Prop. 3.11. ut

Here we study the group of automorphisms of the generic element of the irreducible component

N(P1 × P1, L1, ..., Ln). Clearly if [S] ∈ N(P1 × P1, L1, ..., Ln) then there exists at least one

involution acting on the canonical model of X and then Aut(S) always contain a subgroup

of order 2. Our main result is the following.

Theorem 4.2.If L1, ..., Ln is a good sequence (in sense of definition C) of line bundles on

P1 × P1 then there exists a nonempty Zariski open subset U ⊂ N(P1 × P1, L1, ..., Ln) such

that for every [S] ∈ U Aut(S) has order exactly 2.

We prove this theorem later on, after some preparatory material. The first lemma is the

particular case n = 1 of theorem 4.2.

Lemma 4.3. If a, b ≥ 3 then for generic f ∈ H0(P1 × P1, (2a, 2b)) the only nontrivial

automorphism of the surface S of equation z2 = f is the involution τ : z → −z .

Proof. For generic f the divisor D = div(f) is a smooth curve and does not exist any

nontrivial automorphism h of P1 × P1 such that h(D) = D .

The divisor R = div(z) ⊂ S is the set of critical points of the canonical map and then for

every g ∈ Aut(S) g(R) = R . This implies that for every p ∈ R g−1τg(p) = p and since the

stabiliser of R is cyclic (Easy consequence of Cartan lemma, cf. [Ca1] Prop. 1.1) g−1τg = τ .

Thus g induces the identity on S/τ and then g = Id or g = τ . ut

Lemma 4.4. Let S be a surface of general type and assume that its canonical model X has

at least one rational double point of type E7 or E8 at a point p .

Then there exists at most one involution τ of X such that τ(p) = p .

Proof. Let G ⊂ Aut(X) = Aut(S) be the subgroup generated by the involutions leaving p

fixed, since Aut(S) is finite ([Mat2]) G is finite and by (I.3.2) G is cyclic. ut

Lemma 4.5. Let X → Y be a double cover with X canonical model of a surface of general

type and Y smooth.

If X has at least one rational double point of type E7 or E8 then every automorphism of X

commutes with the trivial involution τ .

Proof. Let {p1, ..., ps} be the (nonempty) set of singular points of X which are RDP of type

E7 or E8 . Since Y is smooth p1, ..., ps belong to the fixed locus of τ and therefore for every

g ∈ Aut(X) and every i = 1, ..., s g−1τg(pi) = pi . The conclusion now follows from lemma

4.4 gτ = τg . ut

Lemma 4.6. If L1, ..., Ln is a good sequence of line bundles on P1×P1 then there exists an

iterated flat double cover

p:X → X1 → ....→ Xn = P1 × P1
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associated to L1, ..., Ln such that X1 is smooth and X has exactly 2n−2 rational double

points of type E8 .

Moreover the branching divisor D1 ⊂ X1 of p1:X → X1 is not invariant for the trivial

involution of p2:X1 → X2 .

Proof. We look for a surface X of equations
z2

1 = f1 + z2h1

z2
2 = f2

.

.
z2
n = fn

with fi ∈ H0(P1 × P1, 2Li) and h1 ∈ H0(P1 × P1, 2L1 − L2).

We first fix f2, ..., fn such that the divisors Di = div(fi) and the surface X1 = {z2
i = fi i > 1}

are smooth.

Take u ∈ D2 − ∪i>2Di and l ∈ H0(P1 × P1, (1, 1)) such that E = div(l) is the tangent line

of D2 at u and fix h1 = l2k with k(u) 6= 0.

We now claim that for generic f1 ∈ H0(M3
uOP1×P1(2L1)) (here Mu ⊂ OP1×P1 is the ideal

sheaf of {u}) the surface X has the required properties.

By Bertini theorem for generic f1 the surface X is smooth outside p−1(u) and
∂3f1

∂x3
6= 0

where x, y are local coordinates of P1 × P1 at u such that y = f2 .

If v ∈ p−1(u) then x, y are local coordinates of X2 at v and the local equation of X is{
z2

1 = f1(x, y) + z2(ay2 + h(x, y))
z2

2 = y

with a 6= 0 and h ∈M3 . We can rewrite the equation as

z2
1 = x3e(x, z2) + x2z2

2φ1(z2) + xz4
2φ2(z2) + z5

2φ3(z2)

with e(0, 0) 6= 0 and φ3(0) 6= 0. By the computation of ([B-P-V] pag. 63-64) it follows that

this is the equation of a rational double point of type E8 . ut

Proof of Theorem 4.2 We prove the theorem by induction on n . The case n = 1 is proved

in Lemma 4.3 thus we can assume that there exists a nonempty Zariski open subset V ⊂
N(L2, ..., Ln) such that for [S] ∈ V Aut(S) =

∫
/2
∫

.

For every finite group G define

NG = {[S] ∈ N(L1, .., Ln)|G is isomorphic to a subgroup of Aut(S)}

By ([Ca2] Th. 1.8) NG is closed in N = N(L1, ..., Ln) and since K2
S is constant on N ,

NG = ∅ if ord(G) >> 0 ([An],[Cor]). Clearly U is the complement of the union of NG ’s for

ord(G) > 2, so we only need to show that U 6= ∅ .
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For a fixed integer m ≥ 5 and for every group G we may write ([Ca2] proof of Th. 1.8) NG

as a finite union of closed subset NG,% where % belong to a (finite) set of representatives of

isomorphism classes of faithful representation G ⊂ GL(Pm(S),C) and NG,% is the intersec-

tion of N with the image of the natural map H% →M where H% is the Hilbert scheme of

the % -invariant m -canonical images of surfaces of general type in PPm−1 .

Assume that for some G, % , NG,% = N and let X → Z = X/τ → ∆ be a family of flat

iterated double cover of P1 × P1 with X0 as in lemma 4.6 and Zt ∈ V ⊂ N(L2, ..., Ln) for

t 6= 0.

After a possible base change ∆ ts−→∆ the group G acts on X preserving fibres (cf. V.2.5, [F-

P]). Our goal is to prove that the only possible nontrivial element of G is the trivial involution

τ , we first note that we can assume without loss of generality that τ ∈ G .

Let g 6= 1 be a fixed element of G and consider q = g−1τgτ ∈ G , according to 4.5 q is the

trivial automorphism in X0 and since G acts faithfully on every fibre we have gτ = τg in

G . Thus g induces an automorphism g′ on Z preserving fibres and then by the inductive

hypothesis either g′ = 1, g = τ or g′ = τ ′ , where τ ′ is the trivial involution of Z . Since

γ′ preserves ov every fibre the fixed locus of τ the second possibility cannot occur and then

g = τ . ut

Corollary 4.7. Let L1, ..., Ln,M1, ...,Mm be two good sequences of line bundles on P1 × P1

with L1, .., Ln good and M1, ..,Mm satisfying conditions C1,C2.

If N(L1, ..., Ln) ∩ N(M1, ...,Mm) 6= ∅ then n = m and Li = f∗Mi for every i and some

f ∈ Aut(P1 × P1) .

Proof. By Cor. 2.10 and Th. 4.1 N(M1, ..,Mm) is an open subset of N(L1, ..., Ln). By

Theorem 4.2 applied to the good sequence L1, ..., Ln there exists an iterated smooth double

cover

p:X → X1 → ....→ Xn = P1 × P1

with [X] ∈ N(M1, ...,Mm) such that for every i < n Aut(Xi) = {1, τi} and Xi+1 = Xi/τi .

Since Xi is of general type for every i < n we must have n = m .

Moreover we have already seen that the sequence Li is uniquely determined by the maps

πi:Xi−1 → Xi and then up to automorphisms Li = Mi for every i . ut

Corollary 4.8. Let X be a simple iterated double cover of P1 × P1 associated to a good

sequence with at most rational double points. Then X determines the trivial involution τ .

Proof. Let v:Aut(X) → Aut(T 1
X) be the homomorphism induced by the natural action of

Aut(X) in the space of first order deformations and denote G = ker v . Since τ ∈ G it’s

enough to prove that G = Z/2Z .

Aut(X) is finite and then there exists the universal deformation of X ([Sch] 3.12) f : X̃ →
(S, 0). Moreover there exist a natural action of Aut(X) on the germ (S, 0) and we have

(M, [X]) = (S, 0)/Aut(X).



Iterated double covers and connected components of moduli spaces. 107

By Cartan lemma G acts trivially on (S, 0) and then the action of G on X extends to an

action on every fibre of f , the thesis follows from theorem 4.2. ut

5. Invariants and a lower bound for the number of connected components.

We begin with a general formula for the computation of Chern numbers of simple iterated

double covers, for this it is convenient to introduce for every algebraic surface S its index

IS = K2
S − 8χ(OS).

Lemma 5.1. Let p:X → Y be a smooth simple iterated double cover associated to a sequence

L1, ..., Ln ∈ Pic(Y ) . Then:

(a) K2
X = 2n(KY +

∑n
i=1 Li)

2

(b) IX = 2n(IY −
∑n
i=1 L

2
i )

Proof. (a) is a simple application of Hurwitz formula, we left the details to the reader, we

prove (b) by induction on n being the formula trivially true for n = 0.

Assume n > 0 and consider a factorization

p:X π−→Z q−→Y

with q simple iterated double cover associated to L2, ..., Ln and π∗OX = OZ ⊕OZ(−q∗L1).

Thus

K2
X = 2(KZ + q∗L1)2 χ(OX) = χ(OZ) + χ(−q∗L1) = 2χ(OZ) +

1
2
q∗L1(KZ + q∗L1)

and then IX = 2IZ − 2(q∗L1)2 = 2IZ − 2nL2
1 . ut

For a smooth simple iterated double cover p:X → P1 × P1 associated to the sequence

L1, ...., Ln Li = O(ai, bi) with ai, bi ≥ 3 we have:

π1(X) = 0 ([Ca1] Th.1.8).

K2
X = 2n+1(

∑
ai − 2)(

∑
bi − 2).

χ(OX) = 1 + h0(KX) = 1 +
∑n
h=1

∑
j1<..<jh

(aj1 + ...+ ajh − 1)(bj1 + ...+ bjh − 1).

r(X) = max{r ∈ N|r−1c1(X) ∈ H2(X,Z) = G.C.D.(
∑
ai − 2,

∑
bi − 2) ([Ca4]).

Remark. 5.2. If ai = a =constant then K2, χ and r depend only on n, a and T =
∑
bi . In

fact, according to 5.1, we have:

K2 = 2n+1(na− 2)(T − 2)

r = G.C.D.(na− 2, T − 2)

χ =
K2

8
+ 2n−2aT

Proof of Theorem A. We keep the notation used in the statement of theorem A. We first set

Tn = 8·3n and we choose a sequence of integers dn such that
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i) 6 ≤ dn ≤ n2 .

ii) lim
n→∞

γn
γn + 1

=
8
β
− 1 where γn =

dn
6n− 2

.

Let qn be the cardinality of the set

Qn = { good sequences L1, ..., Ln|Li = OP1×P1(6, bi),
n∑
i=1

bi = Tn}

The second step is to choose for every n an iterated smooth double cover Xn
π−→P1 × P1

associated to an element of Qn .

By adjunction formula, corollary 4.7 and Remark 5.2 we have:

KXn = π∗OP1×P1(6n− 2, Tn − 2).

δ(Xn) ≥ qn .

lim
n→∞

αn = 1 where αn =
8χ(OXn)
K2
Xn

.

The last step is to define Sn as a smooth double cover of Xn associated to the line bundle

Mn = π∗OP1×P1(dn, n(Tn − 2)). It is clear that for every (L1, ..., Ln) ∈ Qn the sequence

Mn, L1, ..., Ln is good and the invariant of Sn are independent of the particular choice of

L1, ..., Ln .

In fact an easy calculation shows

yn = K2
Sn = 2(1 + γn)(1 + n)K2

Xn

8xn
yn

=
8χ(OSn)

yn
= 1 +

nγn + αn − 1
(1 + γn)(1 + n)

Therefore we have δ(Sn) ≥ qn and lim
yn
xn

= β .

Claim. qn ≥ 3
1
2 (n−1)2

.

Proof of Claim. We have an injective map φ:Pn → Qn where

Pn = {(c2, ..., cn) ∈ Nn−1| cn = 2, c2 ≤ 3n, ci > 2ci+1}

and φ(c2, ..., cn) = (L1, ..., Ln) where Li = OP1×P1(6, 2ci) for every i ≥ 2 and

L1 = OP1×P1(6, Tn − 2
∑
i≥2 ci).

If pn is the cardinality of Pn we have p2 = 1 and for n ≥ 3

qn ≥ pn ≥ 3n−1pn−1 ≥ 3(n−1)+(n−2)+...+2 = 3
1
2n(n−1)−1 ≥ 3

1
2 (n−1)2

ut

Note that yn ≤ Cn36n−1 where C > 0 is a constant independent on n and since log36 < 5/3

we have for n >> 0, yn ≤ 3
5
3 (n−1) and then

δ(Sn) ≥ qn ≥ y
9
50 log3 yn
n ≥ y

1
5 log yn
n

ut
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VII. Simple iterated double covers of the projective plane.

In the previous chapter we gave the definition of simple iterated double cover and we proved

some general facts about them. Here we want specialize to iterated double covers of P2 and

give other examples of connected components of moduli space of surfaces of general type.

Given L1, ..., Ln ∈ Pic(P2) define N = N(P2, L1, ..., Ln) ⊂M as the subset of surfaces whose

canonical model is a simple iterated double cover of P2 associated to the sequence of line

bundles L1, ..., Ln . We already know that, denoting by li the degree of Li , if for every i ,

li ≥ 4 and li > 2li+1 then N(P2, L1, ..., Ln) is open in the moduli space M (VI.2.9).

Since r(P2) is odd we cannot apply Theorem VI.3.1 in the proof of the closure of N , in fact

we shall see that in general (but not always) the set N is not closed in M . However, in

view of prop VI.3.2 it is reasonable, at least for some special values of li , to give a complete

classification of surfaces belonging in the closure of N .

In the case n = 1 the situation is well summarized in the statement of the following theorem

which strongly relies on the classification of degenerations of P2 made in chapter IV.

Theorem A. The subset N = N(P2,O(h)) , h ≥ 4 is a connected component of moduli space

if and only if h is even.

If h is odd then the closure of N in the moduli space is a connected component.

For a general simple iterated double cover X0 → X1 → . . . → Xn = P2 , n ≥ 2, associated

to L1, ..., Ln , keeping in mind the proofs of previous chapter, it is reasonable to expect that

the easiest situation to study is when the divisibility of the canonical classes of X0, ..., Xn−1

is even, we give thus the following:

Definition B. A sequence of line bundles L1, ..., Ln , Li = OP2(li), is called a good sequence

if satisfies the following 3 conditions:

B1) li ≥ 4 for every i = 1, ..., n .

B2) li > 2li+1 for every i = 1, ..., n− 1.

B3) ln is odd, li is even for i = 1, ..., n− 1.

A good simple iterated double cover of P2 is, by definition, a simple iterated double cover

associated to a good sequence.

The main result we prove is the following

Marco Manetti: Degenerations of Algebraic Surfaces and applications to Moduli prob-

lems.
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Theorem C. Let L1, ..., Ln ∈ Pic(P2) be a good sequence of line bundles and let X be the

canonical model of a surface belonging to the closure of N(P2, L1, ..., Ln) , then:

(i) X is either a simple iterated double cover of P2 or X is singular, X is a simple iterated

double cover of Y where Y is a nonflat double cover of the cone over the nondegenerate

rational curve of degree 4 in P4 .

(ii) The Kuranishi family of X is smooth and the closure of N(P2, L1, ..., Ln) is a connected

component of moduli space.

Using the same proofs (with some inessential changes) used in section VI.4 we can prove easily

that for the generic minimal surface S belonging to N(P2, L1, ..., Ln) the canonical bundle is

ample and the only nontrivial automorphism of S is the trivial involution, thus the sequence

L1, ..., Ln is uniquely determined by S and then we have the following

Corollary D. Two good simple iterated double cover of P2 are deformation equivalent if and

only if they are associated to the same good sequence.

In section 5 we shall see how, using only good simple iterated double covers of P2 , it is

possible to prove a lower bound of type δ ≥ (K2)c logK2
for a positive constant c .

1. Degenerations of double covers of the projective plane

Throughout all this chapter we denote by W0 ⊂ P5 the projective cone over the nondegen-

erate rational curve of degree 4 in P4 and by w0 ∈W0 its singular point.

Lemma-Definition 1.1. Let σ ⊂ W0 ⊂ P5 be a generic hyperplane section. Then σ is a

generator of Pic(W0) = Z .

If W → ∆ is a deformation of W0 such that Wt = P2 for every t 6= 0 every line bundle on

W0 extends to a line bundle on W and if L is a line bundle on W such that L0 = aσ then

Lt = OP2(2a) for t 6= 0 .

Proof. Let X = F4
γ−→W0 be the minimal resolution, since σ doesn’t contain the vertex w0

of the cone, γ−1(σ) is the section σ0 . The singularity at w0 is rational and then Pic(W0)

is identified with the set of line bundle L0 on X such that L0 ·σ∞ = 0. Since q(W0) =

pg(W0) = 0 the restriction Pic(W )→ Pic(W0) is an isomorphism by IV.1.1. After a possible

restriction of the family W → ∆ to an open disk 0 ∈ ∆′ ⊂ ∆ of smaller radius we can assume

W embedded in P5 ×∆ (cf. IV.1.2) and the restriction of OP5(a) to Wt , t 6= 0, is a very

ample line bundle with selfintersection 4a2 . The conclusion is now trivial. ut

Lemma 1.2. Let f :Y → ∆ be a proper flat family of normal surfaces such that for every

t 6= 0 Yt is a smooth surface and Y0 has at most R.D.P.’s as singularities.

Let τ :Y → Y be an involution preserving f such that Yt/τ = P2 for every t 6= 0 . Then

either:

(i) Y0/τ = P2 , or
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(ii) Y0/τ = W0 . The double cover Y0
π−→W0 is branched exactly over the vertex w0 ∈ W0

and over a divisor D′ ∼ (2a − 1)σ with w0 6∈ D′ . For t 6= 0 , Yt → Yt/τ = P2 is branched

over D′t ∼ O(4a− 2) and r(Yt) is even.

Proof. Y0/τ is a normal degeneration of P2 with at most singular points of the three types

described in proposition VI.3.2 and therefore according to the results of chapter IV either

Y0/τ = P2 or Y0/τ = W0 .

Assume Y0/τ = W0 , then, since (W0, w0) is not a rational double point, y0 = π−1(w0) is a

fixed point of the involution τ .

According to Proposition VI.3.2 and its proof, the singularity (Y0, y0) is a simple node defined

by the equation x2
0 +x2

1 +x2
2 = 0 and τ(xi) = −xi , in particular y0 is an isolated fixed point

of the involution.

Let S δ−→Y0 be the resolution of the node (Y0, y0) and let E = δ−1(y0) ⊂ S be the corre-

sponding nodal curve. The action of τ can be lifted to an action on S (cf. the example in

I.4) and it is easy to see that S/τ = X = F4 .

Moreover the flat double cover π:S → F4 is branched over D = σ∞ ∪D′ , σ∞ ∩D′ = ∅ and

since this divisor must be 2-divisible in NS(F4), D′ ∼ (2a−1)σ0 and
1
2

(σ∞∪D′) = aσ0−2f

where f denote the fibre of F4 .

The study of surfaces Y0 as before plays an important role in our proof of theorem C, we give

the following

Definition 1.3. Let a ≥ 3 be an integer and let S
π−→F4 be the double cover associated

to L = aσ0 − 2f branched over the disjoint union of σ∞ and a divisor D′ ∼ (2a − 1)σ0

with at most simple singularities ([B-P-V] II.8). E = π−1(σ∞) is a nodal curve, taking its

contraction δ:S → Y0 we get a surface with at most rational double points as singularities

which is a double cover of the cone W0 . We shall call Y0 a degenerate double cover of P2 .

The number a determines K2
Y0

= 8(a − 2)2 and will be called the discrete building data of

Y0 .

Theorem 1.4. The set N = N(P2,O(h)) , h ≥ 4 is a connected component of moduli space

if h is even. If h is odd then the set N − N is contained in the set of degenerate double

covers of P2 with discrete building data a =
h+ 1

2
.

Proof. According to VI.2.9 N is open in the moduli space and if N0 denotes the subspace of

surfaces with smooth canonical model then N0 and N have the same closure in the moduli

space.

If [S0] ∈ N0 then by valuative criterion there exists a deformation of S0 f :S → ∆ with

[St] ∈ N0 for every t 6= 0 and an involution τ acting on the relative canonical model Y → ∆

such that Yt/τ = P2 for every t 6= 0. The thesis follows from lemma 1.2. ut

2. Vanishing theorems for degenerate double covers of P2 and deformations locally

trivial at the vertex.
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Throughout this section a is a fixed integer ≥ 3. Let X be the Segre-Hirzebruch surface

F4 and let S π−→X be the double cover ramified over D = σ∞ ∪D′ with D′ reduced divisor

linearly equivalent to (2a − 1)σ0 . We assume that S has at most rational double points as

singularities and let R ⊂ S be the ramification divisor.

We have π∗OS = OX⊕OX(−L) where L = aσ0−2f and E = π−1(σ∞) is a nodal curve, i.e.

a smooth rational curve with selfintersection E2 = −2. Denote by δ:S → Y0 the contraction

of E , Y0 is a surface with at most rational double points and ample canonical bundle. We

shall call δ(E) = y0 the vertex of the degenerate double cover Y0 .

By abuse of notation we denote with the same letter σ the line bundles σ0 ∈ Pic(X),

π∗σ0 ∈ Pic(S) and δ∗π
∗σ0 ∈ Pic(Y0). By Hurwitz formula KS = π∗(KX + L) = (a− 2)σ .

Lemma 2.1. H1(Y0, pσ) = 0 for every integer p .

Proof. According to Leray spectral sequence we have

H1(Y0, pσ) = H1(S, pσ) = H1(X, pσ)⊕H1(X, (p− a)σ + 2f)

and the thesis follows from proposition III.1.5.iii). ut

Lemma 2.2. For every smooth curve C contained in a smooth surface S , H1
C(Ω1

S) 6= 0 .

Proof. For any locally free sheaf F on S there exists an inclusion H0(F ⊗OC(C)) ⊂ H1
C(F)

(this is proved in [B-W] 1.5 for the tangent sheaf but the same proof works for any locally free

sheaf, cf. also I.5) and according to the exact sequence of differentials H0(OC) ⊂ H0(Ω1
S ⊗

OC(C)). ut

Lemma 2.3. If p ≥ 2a then h1(S,Ω1
S(KS + pσ)) ≤ 1 .

Proof. We consider the exact sequence on S (VI.2.4)

0−→π∗(Ω1
X(KX + L+ pσ))−→Ω1

S(KS + pσ)−→OR(π∗(KX + pσ))−→0

where R ⊂ S is the ramification divisor.

Using the results of section III.1, we get for p ≥ 2a

h1(OD(KX + pσ)) ≤ h1(X, (p− 2)σ + 2f) + h2(X,KX + (p− 2a)σ + 4f) = 0

h1(π∗Ω1
X(KX + L+ pσ)) = h1(Ω1

X(KX + L+ pσ)) + h1(Ω1
X(KX + pσ)) = 1

and the proof follows from the equality h1(OR(π∗(KX + pσ))) = h1(OD(KX + pσ)). ut

Theorem 2.4. In the notation above Ext1
Y0

(Ω1
Y0
,−pσ) = 0 for every p ≥ 2a .

Proof. Y0 is a Gorenstein surface, in particular KY0 + pσ is a Cartier divisor and by Serre

duality ([Ha1] pag. 243)

Ext1
Y0

(Ω1
Y0
,−pσ)∨ = Ext1

Y0
(Ω1

Y0
(KY0 + pσ),KY0)∨H1(Ω1

Y0
(KY0 + pσ))
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We use the following exact sequence of sheaves on Y0 ([Kas],[Pi2])

0−→Ω1
Y0
−→δ∗Ω1

S
α−→Cy0−→0

where for every open subset E ⊂ U ⊂ S and every ω ∈ H0(U,Ω1
S), α(ω) = 0 if and only

if the holomorphic two-form dω vanishes in E . It is immediate to observe that Ω1
Y0

, being

locally generated by closed 1-form, is contained in the kernel of α ; the converse inclusion

requires some computation ([Kas] p. 55). Note moreover that, according to I.5.5, the sheaf

δ∗Ω1
S is reflexive and then the exactness of the above sequence is equivalent to the equality

H1
{y0}(Y0,Ω1

Y0
) = C .

Twisting the above exact sequence by KY0 + pσ = δ∗(KS + pσ) we get

0−→Ω1
Y (KY0 + pσ)−→δ∗Ω1

S(KS + pσ) α−→Cy0−→0

Our first step is to prove that, for p ≥ 2a , H1(Ω1
Y0

(KY0 + pσ)) = H1(δ∗Ω1
S(KS + pσ)), i.e.

that α is surjective on the global sections. Actually holds the following stronger result

Lemma 2.5. In the above notation if p ≥ 2 then the composition of H0(α) with the pullback

map π∗ : H0(Ω1
X(KX + pσ))→ H0(Ω1

S(KS + pσ)) is surjective.

Proof. Let s, z be the principal affine coordinates on X = F4 (cf. III.1) and consider ω =

s−2dz(dz ∧ ds) ∈ H0(Ω1
X(KX + pσ)).

In the open set U0,0 ⊂ X with coordinates z, s′ , ω = dz(ds′∧dz), σ∞ = {s′ = 0} and locally

S is the double cover of X defined by equation ξ2 = s′ and then π∗ω = 2ξdz(dξ ∧ dz).

Now dξ∧dz extends to a holomorphic invertible section of KS in a neighbourhood of E and

then, up to nonzero scalar multiplication, α(π∗ω) = α(ξdz) 6= 0 since d(ξdz) = dξ ∧ dz . ut

The Leray spectral sequence gives an exact sequence

0−→H1(δ∗Ω1
S(KS + pσ))−→H1(Ω1

S(KS + pσ)) r−→H0(R1δ∗Ω1
S(KS + pσ))

and if r 6= 0 then by lemma 2.3 the proof is complete.

For any open set E ⊂ U ⊂ S there exists an exact sequence

0−→H0(U,Ω1
S(KS + pσ))

β−→H0(U − E,Ω1
S(KS + pσ)) d−→

d−→H1
E(Ω1

S(KS + pσ)) rU−→H1(U,Ω1
S(KS + pσ))

On the open set V = δ(U) ⊂ Y , according to I.5.5, the coherent sheaf δ∗Ω1
S(KS + pσ) is

reflexive, in particular the above map β is an isomorphism and the map rU is injective.

Since H1
E(Ω1

S(KS + pσ)) = H1
E(Ω1

S) 6= 0 the above inclusion factors as

H1
E(Ω1

S) ⊂ H1(S,Ω1
S(KS + pσ)) rU−→H1(U,Ω1

S(KS + pσ))

and then r = lim
→
rU 6= 0. ut
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As in the previous chapters we shall call natural deformations of S the deformations obtained

by deforming the branch divisor D = σ∞ ∪D′ ∼ 2aσ − 4f . Since σ∞ is a fixed part of the

linear system |D| the natural deformations are parametrized by H0(X, (2a− 1)σ).

The singularity (Y0, y0) is rational and therefore, as in chapter II, it is possible to define

the blow-down morphism β:DefS−→DefY0 . It is clear that every (infinitesimal) natural

deformation of S is trivial in a neighbourhood of E and its blow-down is a deformation of

Y0 locally trivial at y0 .

Therefore, taking first order deformations, we get a commutative diagram

H0(X, (2a− 1)σ) Nat−→ T 1
Sy% yβ

T 1LT (Y0, y0) −→ T 1
Y0

Where β is the blow-down map described in chapter II and T 1LT (Y0, y0) is the kernel of

the natural restriction map T 1
Y0
→ T 1

(Y0,y0) . Note that the natural deformations never give a

complete family of deformations of S , since the nontrivial contribution of the nodal curve E

to the space T 1
S ([B-W]).

Theorem 2.6. The above map % is surjective and the blow down of the family of natural

deformations of S is a complete family of deformations of Y0 , locally trivial at the vertex,

with smooth base space.

Proof. According to the results of VI.2 there exists an exact sequence

H0(OR(π∗D)) ε−→Ext1
S(Ω1

S ,OS) σ−→H1(θX)⊕H1(θX(−L))

and the image of ε is the set of first order natural deformations. Given an open subset V ⊂ X
the inclusion π∗Ω1

X → Ω1
S induces a commutative diagram

Ext1
S(Ω1

S ,OS) −→ Ext1
π−1(V )(Ω

1
π−1(V ),Oπ−1(V ))yσ y

H1(θX)⊕H1(θX(−L))
γV−→ H1(θV )⊕H1(θV (−L))

Lemma 2.7. In the above set up, if σ∞ ⊂ V , then the map γV is injective.

Proof. It is clearly sufficient to prove that the two natural maps

γ1:H1(θX)→ H1(θX ⊗Oσ∞) γ2:H1(θX(−L))→ H1(θX(−L)⊗Oσ∞)

are isomorphisms.

Note first that h1(θX ⊗Oσ∞) = 3, h1(θX(−L)⊗Oσ∞) = 1 and by corollary III.1.4 h1(θX) =

3, h1(θX(−L)) = h1(Ω1
X((a− 2)σ0)) = 1, h2(θX(−σ∞)) = h0(Ω1

X(−σ0 − 2f)) = 0.

Thus γ1 is surjective and then it is an isomorphism, in order to show that γ2 is surjective we

prove that the natural map H2(θX(−L−σ∞))→ H2(θX(−L)) or its Serre dual H0(Ω1
X((a−
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2)σ0))→ H0(Ω1
X((a− 2)σ0 + σ∞)) is an isomorphism but this is exactly the result of lemma

III.1.2. ut

Returning to the proof of theorem 2.6 we note that the open sets π−1(V ), σ∞ ⊂ V are a

fundamental system of neighbourhoods of E . Thus from lemma 2.7 it follows that for every

open subset U ⊂ S with E ⊂ U , the kernel of the natural map

α: Ext1
S(Ω1

S ,OS)→ Ext1
U (Ω1

U ,OU )

is contained in the set of first order natural deformations kerσ = Im ε .

We now apply this fact to a smooth open subset E ⊂ U such that δ(U) is an affine open

neighbourhood of y0 . According to the Cartesian diagram (cf. Chapter II)

T 1
S

α−→ H1(U, θU )yβ yβU
T 1
Y0

r−→ T 1
Y0,y0

we have β(kerα) = ker r = T 1LT (Y0, y0) and since % = β ◦ ε the first part of the theorem is

proved.

For the second part we introduce the functor of Artin rings LT (Y0, y0) of deformations of Y0

which are locally trivial at the point y0 .

More generally for every complex space Z with isolated singularities and for every finite

subset {z1, ..., zn} ⊂ Z we can define the functor D of deformations of Z which are locally

trivial at the points z1, ..., zn . This functor has been studied by several authors, in [G-K] it

is proved that:

i) D satisfies the Schlessinger conditions H1,H2 and H3.

ii) There exists a closed analytic subgerm (possibly nonreduced) V of Def(Z) such that the

restriction of the semiuniversal deformation of Z to V is a complete family of deformations

locally trivial at z1, ..., zn .

iii) The Zariski tangent space of V is the kernel of the differential of the natural morphism

Def(Z)→ ΠDef(Z, zi).

Applying these results to the functor LT (Y0, y0) we conclude the proof. ut

3. The Kuranishi family of a degenerate double cover.

Let Y0
π−→W0 be a degenerate double cover of P2 ramified over the union of the vertex w0

and a divisor D′ ∼ (2a − 1)σ with a ≥ 3. Here we construct explicitly a smooth complete

family of deformations of Y0 , this will imply in particular that the moduli space at Y0 is

locally irreducible and then the closure on the moduli space of the set N(P2,O(h)) is a

connected component for every h ≥ 4.

The idea is to describe deformations of Y0 as canonical coverings of suitable deformations of

the cone W0 and then prove that they give a complete family.
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We first recall some well known facts about cyclic coverings associated to Q -Cartier divisors.

For every normal complex space X we denote by MX the sheaf of meromorphic functions on

X and for every analytic Weil divisor D ⊂ X we denote by OX(D) the reflexive subsheaf of

MX of meromorphic functions f such that div(f)+D ≥ 0. We keep this explicit description

of OX(D) throughout all this section.

Let L be a Weil divisor on a normal irreducible variety X such that nL is Cartier and let

s ∈ H0(X,nL) be a meromorphic function such that the divisor D = div(s) + nL is reduced

and is contained in the set of points where L is Cartier.

The multiplication by s gives a morphism of OX -modules OX(−nL) → OX and we may

define in a natural way a coherent analytic reflexive OX -algebra (cf. [Reid] 3.6, [E-V] 1.4)

A(L, s) =
n−1
⊕
i=0
Ai =

n−1
⊕
i=0
OX(−iL)

If (X,x) is a normal analytic singularity, its local analytic class group is by definition the

quotient of the free Abelian group generated by the germs of analytic Weil divisors modulo

the subgroup of principal divisors. For a twodimensional rational singularity it is a finite

group naturally isomorphic to the first homology group of the link of X ([Bri]).

Lemma 3.1. Let n,L, s,D be as above, if x 6∈ D then the local analytic Ox -algebra Ax(L, s)

depends, up to isomorphism, only by the class of L in the local analytic class group of the

analytic singularity (X,x) .

Proof. Let n,L′, s′, D′ be another set of data with x 6∈ D′ and assume L − L′ principal at

x . This means that there exists an analytic open neighbourhood U of x and a meromorphic

function f on U such that L = L′ + div(f) and div(s)|U = −nL , div(s′)|U = −nL′ .
Therefore s−1s′f−n is an invertible holomorphic function on U and, possibly shrinking U , it

admits a n -th root g . Thus s′ = s(fg)n and the multiplication map (fg)i:OU (−iL′)−→OU (−iL)

gives the required isomorphism. ut

On the algebra A acts the cyclic group µn

µn ×Ai 3 (ξ, h)→ ξ−ih ∈ Ai

and then the finite map

Z = SpecanX(A(L, s)) π−→X

is a cyclic covering of normal varieties (Specan ([Fi] 1.14) is the analytic spectrum, if X is

projective then by GAGA principles is the same of the usual algebraic spectrum ([Ha1] II,

Ex. 5.17)).

According to lemma 3.1 if x 6∈ div(s) + nL the germ of the covering over the point x is

independent from s .

Corollary 3.2. In the above set-up assume X compact and let T be a sufficiently small

analytic open neighbourhood of s in H0(X,nL) .
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Let ZT
π−→X ×T be the cyclic covering of degree n associated to the Weil divisor L×T and

multiplication given by s(x, t) = t(x) , t ∈ T .

If X−→S is a flat map such that the composition Z−→X−→S is flat then also the compo-

sition ZT−→X × T−→S × T is flat.

Proof. Let U ⊂ X be the open subset where L is Cartier, if T is sufficiently small then

st(x) = 0 for some t ∈ T implies that x ∈ U . Therefore if x 6∈ U then by lemma 3.1

the germ of ZT over (x, s) is locally isomorphic to Z × T . On the other hand the map

U × T−→S × T is flat and the restriction of the algebra A over U × T is locally free and

then the restriction of π over U × T is a flat map. ut

Therefore, in case S = point , we have a morphism from deformations of s to deformations

of Z . Consider for example the hypersurface Z ⊂ P3×C of equation z1z2− z2
3 = tz2

0 , t ∈ C
and the involution τ :Z → Z , τ(t, z0, z1, z2, z3) = (t, z0,−z1,−z2,−z3).

Let t:Z → C be the projection on the coordinate t and let Zt the projective subvariety of Z

of points with fixed t . It is immediate to observe that Zt is a smooth quadric for t 6= 0, Z0

is the cone over a nonsingular conic and t gives the semiuniversal deformation of the isolated

singularity (Z0, (1, 0, 0, 0, 0)).

The quotient Z/τ is the variety W ⊂ P5 × C defined by the equation

(3.3) rank

 x1 x2 x3 + tx0

x2 x3 x4

x3 + tx0 x4 x5

 ≤ 1

where x0 = z2
0 , x1 = z2

1 , x2 = z1z3 , x3 = z2
3 , x4 = z2z3 , x5 = z2

2 .

The quotient family W−→C , (x, t) → t is a deformation of W0 and is exactly the degen-

eration of P2 obtained by sweeping out the cone over the Veronese surface V ⊂ P5 . To see

this let C(V, v) ⊂ P6 be the projective cone over the image of the map P2
u → P5

x , x1 = u2
0 ,

x2 = u0u1 , x3 = u2
1 , x4 = u1u2 , x5 = u2

2 , x6 = u0u2 − u2
1 . It is defined by the equation

(3.4) rank

 x1 x2 x3 + x6

x2 x3 x4

x3 + x6 x4 x5

 ≤ 1

V is the intersection of C(V, v) with the hyperplane x0 = 0 and the vertex v is the point of

homogeneous coordinates (1, 0, 0, 0, 0, 0, 0).

Let Ht ⊂ P6 , t ∈ C be the hyperplane of equation x6− tx0 = 0, then Ht∩V = V ∩{x6 = 0}
is a smooth hyperplane section and the surface Wt = C(V, v) ∩ Ht is exactly the surface

defined in (3.3).

Let H ⊂W be the Weil divisor defined by the equation x2 = x3 = x4 = 0. Then OW (−H) is

the ideal sheaf of H and 2H is the hyperplane section x3 = 0 of W . In fact the closed subset
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{x1 = x3 = x5 = 0} has codimension 3 in W and then it is sufficient to prove the equality

2H = div(x3) on its complement. An easy computation then shows that on every affine

subset W ∩ {xi 6= 0} i = 1, 3, 5 holds the ideals equality (x2x−1
i , x3x−1

i , x4x−1
i )2 = (x3x−1

i ).

Note that π∗OZ = OW ⊕
z0

z3
OW (−H) and then there exists an isomorphism of OW -algebras

π∗OZ = OW ⊕ OW (−H) where the algebra structure in the right side is induced by the

multiplication morphism
x0

x3
:OW (−2H)−→OW .

Let now Y0
π0−→W0 ⊂ P5 be a fixed degenerate double cover, then, according to III.1.5, W0 is

projectively normal in P5 and then there exists a section s0 ∈ H0(P5,O(2a− 1)) such that

π0 is ramified over w0 and over the divisor of the restriction of s0 to W0 .

Let T be a small open neighbourhood of s0 and consider the double covers

YT = SpecanW×T (OW×T ⊕OW×T (−(2a− 1)H × T )))−→W × T

where the algebra structure is induced by the section s(x, t) = st(x) st ∈ T, x ∈ W . This

makes sense since 2H × T is a Cartier divisor linearly equivalent to {s(x, t) = 0} .

By previous results (3.1, 3.2) it follows that:

(i) The map YT−→T is a deformation of the space

Y = SpecanW (OW ⊕OW (−(2a− 1)H)))

with the algebra structure induced by s0 .

(ii) Over the vertex w0 the space Y is isomorphic to the above space Z and then the

composition Y−→W−→C gives a complete deformation of the node (Y0, y0).

It is now easy to prove the following

Theorem 3.5. In the above notation the composition

f :YT−→W × T−→C × T

is a smooth complete family of deformations of Y0 .

Proof. We need to prove that f−1(0, s0) = Y0 and that the Kodaira-Spencer map of the

family is surjective.

By definition f−1(0, s0) = SpecW0(OW0⊕(OW (−(2a−1)H)⊗OW0)) while from the definition

and the normality of Y0 we have Y0 = SpecW0(OW0 ⊕OW0(−L)) where L = aσ−2l , l ⊂W0

is a line through w0 .

Note that all lines through w0 are linearly equivalent, L is linearly equivalent to (4a − 2)l ,

the intersection H0 = H ∩W0 is the union the two lines l1 = {x1 = x2 = x3 = x4 = 0} ,

l2 = {x5 = x2 = x3 = x4 = 0} and then the natural map OW (nH)⊗OW0

jn−→OW0(2nl) is an

isomorphism over W0 − {w0} for every integer n .

In a neighbourhood of the vertex w0 , since the sheaf OW (nH) is reflexive on W and invertible

for n even, according to ([E-V] 2.1, cf. also the proof of IV.1.3) the map jn is injective for
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every n and an isomorphism for n even, moreover the ideal of H0 ⊂ W0 is generated

by x2x
−1
0 , x3x

−1
0 , x4x

−1
0 and then j−1 is also surjective. Tensoring with the line bundle

OW (2pH), p ∈ Z , we get the surjectivity of jn for every integer n . In particular since j1−2a

is an isomorphism Y0 is a fibre of f .

By (ii) the composition of the Kodaira-Spencer map of f with the natural map

T 1(Y0) r−→T 1(Y0, y0) is surjective, therefore it is sufficient to prove that YT contains every de-

formation locally trivial at the vertex. But this is an immediate consequence of Theorem 2.6

and the surjectivity of the map H0(P5,O(2a−1))→ H0(W0, (2a−1)σ) = H0(F4, (2a−1)σ).

ut

Corollary 3.6. Every degenerate double cover deforms to a smooth double cover of P2 , in

particular for h odd ≥ 5 the subset N(P2,O(h)) is not closed in the moduli space.

Corollary 3.7. The line bundle σ of Y0 can be extended to every deformation of Y0 .

Proof. The pull back of the hyperplane section 2H to YT is an extension of σ to a complete

family. ut

Proof of theorem A: the case h even follows from 1.4. If h is odd then N is open and

irreducible in the moduli space but, according to 3.6, it is not closed in the moduli space.

Again by 1.4 and 3.5 the moduli space at every point of N is locally irreducible and then

N is open. ut

4. Proof of theorem C.

For n = 1 theorem C is an immediate consequence of theorems 1.4 and 3.5, for n ≥ 2 part

(i) is a consequence of the following

Proposition 4.1. Let L1, ..., Ln ∈ Pic(P2) be a good sequence (def. B), Li = O(li) and let

X0 be the canonical model of a surface belonging to the closure of N(P2, L1, ..., Ln) . Then

either X0 is a simple iterated double cover of P2 associated to L1, ..., Ln or there exists a

degenerate double cover Y0 of P2 of discrete building data a =
ln + 1

2
such that X0 is a

simple iterated double cover of Y0 associated to the sequence M1, ...,Mn−1 , Mi =
li
2
σ .

Proof. The proof is similar to the proof of VI.3.10 and then we give only a sketch. Let

f :X−→∆ be a deformation of X0 such that for t 6= 0 Xt is a simple iterated double cover

of P2 associated to L1, ..., Ln .

We now prove by induction on n that, up to base change, there exists a factorization

f :X
p−→Y g−→∆

where g is a deformation of a (possibly degenerated) double cover Y0 of the projective plane

with Yt , t 6= 0, smooth double cover associated to Ln and p is a simple iterated double
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cover of Y associated to M̃1, ..., M̃n−1 with M̃i the unique extension of Mi to Y (if Y0 is

not degenerate we set Mi = g∗0Li .

This is trivially true if n = 1, if n > 1 we consider the action of the trivial involution τ on

X and, by induction we get a factorization of f

X
π−→Z = X/τ

δ−→Zcan
p−→Y g−→∆

with π flat double cover (since r(Zt) is even) and p, g as before.

Now working exactly as in the proof of VI.3.10 we prove that δ is an isomorphism and

π∗OX = OZ ⊕ p∗OZ(−M̃1). ut

Part (ii) of theorem C follows from

Proposition 4.2. Let Y0 be a degenerate double cover of P2 of degree a ≥ 3 and let L1, ..., Ln

be line bundle on Y with Li = piσ , pi > 2pi+1, pn ≥ 2a .

Then every simple iterated double cover of Y associated to L1, ..., Ln has unobstructed de-

formations.

Proof. According to 2.1, 2.4, 3.5 and 3.7 the surface Y0 and the line bundles L1, ..., Ln satisfy

the hypotheses of corollary VI.2.11. ut

5. Numerical examples.

In this section we want to find examples, using simple iterated double covers, of surfaces

belonging to different connected components of the same Md with self-intersection of the

canonical class as small as possible. Unfortunately even in this cases our surfaces will have

the topological Euler characteristic of the order of thousands and then any attempt to find

global handle decomposition or to apply Kirby calculus seems quite prohibitive.

Since K2 and the index are algebraic functions on the parameters of the branching divisor

it is natural to expect that, in order to find examples, we need at least 3 parameters, i.e. we

must consider 4-fold covers of P1 × P1 and 8-fold covers of P2 .

Example 5.1. Let X,X ′ be simple iterated double covers of P1×P1 associated respectively

to the sequences L1 = O(6, 9), L2 = O(6, 4) and L′1 = O(6, 10), L′2 = O(6, 3). X,X ′ have

the same invariants K2 = 880, I = −624, c2 = (K2− 3I)/2 = 1376, r = 1 and according to

corollary VI.4.7 X is not deformation equivalent to X ′ .

Example 5.2. If X is a simple iterated double cover of P2 associated to a sequence Li =

O(li) then according to VI.5.1 the invariants K2
X , IX and r(X) depends only by

∑
li and∑

l2i .

For n = 3 we can consider the pairs of sequences

l1 = 3T − 24, l2 = T, l3 = 5 l′1 = 3T − 22, l′2 = T − 6, l′3 = 9
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Then
∑
li =

∑
l′i ,
∑
l2i =

∑
l′i

2 and Li = O(li), L′i = O(l′i) are good sequences for every

even number T ≥ 26.

For T = 26 the associated simple iterated double covers have K2 = 53792, I = −28928,

c2 = 70288, r = 82.

Example 5.3. Let X → P2 , Y → P1 × P1 be simple iterated double covers associated

to L1 = O(26), L2 = O(12), L3 = O(5) and L1 = O(20, 40), L2 = O(22, 2). A calculation

shows that X and Y belong to the same Md and it is not difficult to see that X,Y are not

deformation equivalent.

In fact the equation of a generic Y is{
z2 = f + wh f ∈ H0(O(40, 80)), h ∈ H0(O(18, 78))
w2 = g g ∈ H0(O(44, 4))

with f, g, h generic and the same arguments used in section VI.4 show that the unique auto-

morphism of Y is the trivial involution z → −z and its quotient is the surface Y1 = {w2 = g} .

Since the invariants of Y1 are different from the invariants of elements of N(P2, L2, L3), Y

cannot belong to N(P2, L1, L2, L3).

Although is not easy to find explicitly simple iterated double covers of P2 with the same

invariants it is not difficult to see that, using these surfaces, we can prove again a lower

bound for the number of connected components of type δ ≥ (K2)c logK2
with c positive

constant.

In fact for n sufficiently big if qn is the number of of sequences l1, ..., ln such that
∑
li =

Tn = 8·3n + 3, ln ≥ 5 odd, li even for i < n and li > 2li+1 then log qn ≥ an2 for a positive

constant a independent on n .

For every one of the above qn sequences its quadratic sum
∑
l2i is smaller than T 2

n and then

there exists at least qn/T 2
n good sequences giving simple iterated double covers with the same

invariants K2 = 2nT 2
n and I = 2n(1−

∑
l2i ). An easy computation gives the required lower

bound of δ .
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