Errata corrige del libro "Topologia (I edizione, 2008)"

Aggiornata al 3 luglio 2023

pagina	linea	versione corretta
13	-12	
		$f^{-1}(y_1, \dots, y_n) = \left(\frac{\sum_i y_i^2 - 1}{1 + \sum_i y_i^2}, \frac{2y_1}{1 + \sum_i y_i^2}, \dots, \frac{2y_n}{1 + \sum_i y_i^2}\right)$
46	17	Dimostrare che un'applicazione tra due spazi topologici T1 è
		continua se e solo se preserva la relazione di aderenza tra sottoinsiemi.
51	-7	
		$d(a,b) \leq M$ per ogni $a,b \in A$
90	14	\dots esistono intorni saturi aperti e disgiunti di x e y \dots
94	-11	$\left(\frac{ z_0 ^2 - z_1 ^2}{ z_0 ^2 + z_1 ^2}, i\frac{\overline{z}_0 z_1 - \overline{z}_1 z_0}{ z_0 ^2 + z_1 ^2}, \frac{\overline{z}_0 z_1 + \overline{z}_1 z_0}{ z_0 ^2 + z_1 ^2}\right)$
124	5	\dots di un insieme infinito A .
141	15	insegna che non esiste
142	-2	Rispetto all'ordinamento ereditato da X , il sottoinsieme A è strettamente induttivo e l'estremo superiore calcolato in A coincide con l'estremo superiore calcolato in X .
165	-6	$\pi_0(f) \colon \pi_0(X) \to \pi_0(Y), \qquad \pi_0(f)([x]) = [f(x)].$
173	-11	$f \in \operatorname{Mor}_{\mathbf{A}}(X,Y)$ sarà detto un isomorfismo
183	-4	parametrizzazione standard
192	-9	$\{x \in \mathbb{R}^n \mid x - p_1 = 1\} \simeq S^{n-1}$
198	-13	Se $U \subset E$ è una componente connessa di $p^{-1}(V)$, allora U è
		aperto in E e $p: U \rightarrow V$ è un omeomorfismo.

pagina	linea	versione corretta
215	10	permettono di descrivere
216	-3	$[\alpha]^{-1}p_*\pi_1(E,e)[\alpha] \subset p_*\pi_1(E,e\cdot[\alpha]).$
218	-3	Liberamente se per ogni $g \neq 1$ ed ogni $t \in T$ vale $g \cdot t \neq t$.
230	-11	bigezione naturale tra $u^{-1}(x)$ e $\pi_1(X,x)$.
236	10	della quale dobbiamo però verificare la sensatezza
241		Dato un insieme S , poniamo $A = S \cup S^{-1}$ dove S^{-1} è l'insieme degli inversi formali degli elementi di S . Indichiamo con $P(A)$ l'insieme di tutte le successioni finite ridotte a_1, a_2, \ldots, a_n in A : ridotte significa che se $a_i = s \in S$ allora $a_{i-1}, a_{i+1} \neq s^{-1}$. L'insieme $P(A)$ contiene anche la successione vuota \emptyset .
253	-12	$D^n \cup_f Y = A \cup B$
254	-8	immerso nel toro
255	8	Una categoria G si dice un gruppoide se la classe dei suoi oggetti è un insieme e se ogni morfismo in G è un isomorfismo.