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Introduction

Let g and n be nonnegative integers such that 2g − 2 + n > 0 and set

P = {p1, . . . , pn}. Let Mg,P denote the moduli orbifold of smooth compact

Riemann surfaces S of genus g with an injection P →֒ S. Mumford first no-

ticed that for n ≥ 1 Strebel’s results on quadratic differentials [Str84] make

it possible to give a combinatorial description of Mg,P in terms of metrized

ribbon graphs, in which each orbicell corresponds to an isomorphism class

of ribbon graphs of genus g with n holes marked by P . Then Harer [Har86]

used this model to establish the virtual cohomological dimension of the mod-

ular group Γg,P = πorb
1 (Mg,P ) (remember that Mg,P is a K(Γg,P , 1) as an

orbifold) and to compute the orbifold Euler characteristic of Mg,P in a joint

work with Zagier [HZ86]. We refer to Harer’s survey [Har88] for a more

detailed bibliography.

The same model (which we denote by Mcomb
g,P ) was the starting point

of Kontsevich’s work [Kon92] and allowed Witten and Kontsevich to guess

that the tautological classes κ are related to the W cycles, where W2i+3 is

supported on the subcomplex of ribbon graphs with a vertex of valency at

least 2i + 3. In fact W2i+3 determines a homology class with noncompact

support on Mg,P , so we naturally obtain a cohomology class with coefficients

in Q by Poincaré duality. More precisely Kontsevich [Kon92] conjectured

that W2i+3 is a polynomial in the kappa classes.

First results in this direction were obtained by Wolpert [Wol83] and Pen-

ner [Pen92] [Pen93], who dealt (with some minor mistakes) with the simplest

case W5 = 12κ1. The approach of Arbarello and Cornalba [AC96] passes

through Di Francesco-Itzykson-Zuber’s theorem [DFIZ93] and Kontsevich’s
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compactification M
comb
g,P and led to stronger results.

In fact let m∗ = (m−1,m0,m1, . . . ) be a sequence of nonnegative integers

such that
∑

i≥−1(2i+3)mi = 2(6g−6+3n) and let Mcomb
m∗,P be the orbicellular

complex of ribbon graphs whose top-dimensional orbicells are parametrized

by ribbon graphs with mi vertices of valency 2i + 3. Notice, by the way,

that Mcomb
m∗,P

∼= Mcomb
g,P if m∗ = (0, 4g − 4 + n, 0, 0, . . . ). For every l =

(lp1
, . . . , lpn) ∈ RP

+ denote by Mcomb
m∗,P (l) the subset of graphs in Mcomb

m∗,P

such that the pi-th hole has perimeter 2lpi
. Remark that Mcomb

m∗,P is (not

canonically) isomorphic to Mcomb
m∗,P (l) × RP

+ for any l ∈ RP
+.

Kontsevich [Kon92] proved that for every l ∈ RP
+ the orbicomplex

Mcomb
m∗,P (l) has an orientation and the classifying map Mcomb

m∗,P (l) → Mg,P

defines a homology class with noncompact support Wm∗,P on Mg,P that

does not depend on the choice of l ∈ RP
+ and which will be called com-

binatorial class. Moreover he introduced combinatorial realtive compacti-

fications M
comb
m∗,P which still have orientations and (in the case m−1 = 0)

embed as subcomplexes into M
comb
g,P ; so that they define cycles Wm∗,P (l) in

Hnc
∗ (M

comb
g,P (l); Q). Even if M

comb
g,P (l) is homeomorphic to a quotient M

′
g,P

of the Deligne-Mumford compactification Mg,P for all l ∈ RP
+ and the class

Wm∗,P (l) on M
′
g,P does not depend on l, however M

′
g,P has ugly singular-

ities, so we cannot use Poincaré duality to lift the cohomology class Wm∗,P

via the projection

Mg,P −→ M
′
g,P

∼= M
comb
g,P (l)

to Mg,P .

Back to Arbarello and Cornalba’s work, they found a way to com-

pute in principle all the Wm∗,P in terms of the kappa classes and re-

ported their results in lower codimensions, giving a strong evidence to

Witten-Kontsevich’s conjecture. For example they discovered that on

Mg,P the cycle W(0,m0,3,0,... ),P is dual (in a sense to be made precise) to

288κ3
1 − 4176κ1κ2 + 20736κ3. Looking at a number of results such as the

previous one, they refined the conjecture as follows.

Conjecture ([AC96]). Consider the algebra of polynomials

Q[t∗] := Q[t1, t2, . . . ] where each ti has degree 1. Then for every m∗
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such that m−1 = 0 there exists a polynomial fm∗ ∈ Q[t] of degree
∑

i≥1mi

such that Wm∗,P = fm∗(κ). Moreover fm∗ looks like

fm∗(t) =
∏

i≥1

(2i+1(2i+ 1)!!)mi

mi!
tmi

i + (terms of lower degree).

In any event, the meaning of the other coefficients of fm∗ was still ob-

scure.

Really they compared the combinatorial classes and the kappa classes as

functionals on the algebra generated by the psi classes, which are defined

both on Mg,P and on M
comb
g,P (l). In this way they were able to compute

the difference Wm∗,P − fm∗(κ) in some concrete cases up to some minor

uncertainty.

In this thesis we give an affirmative answer to the previous conjecture

and we exhibit a formula that permits to compute all the polynomials fm∗

inductively on their degree.

Quite recently K. Igusa [Igu02] [Igu03] and K. Igusa-M. Kleber [IK03]

have proven very similar results by different methods.

The proof proceeds in the following way. Given the projection map

Mg,P → M
comb
g,P (l) for some l, we canonically lift the cyclesW (l) in M

comb
g,P (l)

to cycles Ŵ on Mg,P using, in an essential way, a modification Â(Sg, P ) of

the arc complex (where (Sg, P ) is a P -pointed compact orientable surface

of genus g) introduced by Looijenga (see [Loo95]). This modification comes

equipped with a map

M̂comb
g,P := Â(Sg, P )/Γg,P −→ Mg,P × ∆P

which is generically 1 − 1.

Then we remark that the Ŵm∗,P classes are push-forward via the for-

getful map πQ : Mg,P∪Q → Mg,P of some generalized combinatorial classes

Ŵm∗,ρ,P associated to some ρ : Q → Z≥−1 defined prescribing that every

q ∈ Q marks a vertex of valency 2ρ(q) + 3. The simplest case is the class
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W q
2r+3 supported on the subcomplex of P ∪ {q}-marked ribbon graphs in

which q marks a vertex of valency 2r + 3.

Notice that the kappa classes are obtained as push-forward of psi classes

via the forgetful morphisms and in particular that (πq)∗(ψ
r+1
q ) = κr. So for

example in order to prove that crŴ2r+3+B̂2r+3 = κr inH2r(Mg,P ; Q) where

r ≥ 1, cr ∈ Q and B̂2r+3 is a boundary class, it is sufficient to prove that

crŴ
q
2r+3 + B̂q

2r+3 = ψr+1
q in H2r+2(Mg,P∪{q}; Q) and that (πq)∗(B̂

q
2r+3) =

B̂2r+3, since (πq)∗(Ŵ
q
2r+3) = Ŵ2r+3, if r ≥ 1.

Hence the problem translates to showing that
∫

Mg,P∪{q}

ψr+1
q ` η = cr

∫

cW q
2r+3

η +

∫

bBq
2r+3

η

for all η ∈ H∗(Mg,P∪{q}; Q).

As Kontsevich found a nice PL differential form ωq on M
comb
g,P∪{q} that

pulls back to ψq on Mg,P∪{q}, the key ideas are:

1. Translate the calculation on the combinatorial spaces to exploit the

explicit differential forms ωq: this is not difficult but involves some

technicalities and a little uncertainty in the description of the bound-

ary component B̂q
2r+3.

2. Find a deformation retraction H0 that shrinks the q-th hole and makes

it possible to recover the combinatorial class as “push-forward” of

ωr+1
q via H0. To do so we must restrict our attention to η’s living on

M
comb
g,P∪{q} which are pull-back via H0. However this will be sufficient

for our purposes.

Once we have our retraction H0, we can look at H∗
0η and discover that

ωr+1
q ∧ H∗

0η is supported on the smallest subcomplex Y 2r+3 ⊂ M
comb
g,P∪{q}

which contains all the cells parametrized by ordinary ribbon graphs whose q-

th hole is bordered by 2r+3 edges. Then we dissect Y 2r+3 into subcomplexes

Y
i
2r+3 according to the topology of the q-th hole. In this way the restriction

of H0 to each Y
i
2r+3 is generically a fibration whose fibers F i are simplicial

complexes of dimension 2r + 2. Hence
∫

cMcomb
g,P∪{q}

(l)
ψr+1

q ` H∗
0η =

∑

i

∫

H0(Y
i
2r+3(l))

η

∫

F i

ωr+1
q
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and we get the result analyzing H0(Y
i
2r+3) and computing the integral on the

fibers. For example, the class Ŵ q arises as image via H0 of top-dimensional

simplices when the hole q is contractible, i.e. no edge borders the hole q

from both sides. In this case the fiber is just one simplex and the integral

on the fiber is exactly (r+1)!
(2r+2)! .

Theorem A. For any g and n ≥ 1 the equality

Ŵ q
2r+3 =

(2r + 2)!

(r + 1)!
ψr+1

q

holds in H2r+2(Mg,P∪{q}) up to terms in the kernel of

H6g−6+2n−2r(Mg,P∪{q}) → H6g−6+2n−2r(Mg,P , ∂Mg,P ). As a conse-

quence

Ŵ2r+3 =





0 if r = −1

[Mg,P ] if r = 0

2r+1(2r + 1)!!κr if r ≥ 1

holds in H2r(Mg,P ) up to boundary terms.

In fact our proof shows more as it determines quite precisely the bound-

ary terms B̂q
2r+3 and B̂2r+3 up to some uncertainty. As an example we have

the following corollary which was already proven by Arbarello and Cornalba

in a very different manner [AC96].

Corollary A.1. For every g and n ≥ 1 such that 2g−2+n > 0 the following

equality

Ŵ5 = 12κ1 − δirr −
∑

g′,I 6=∅,P

δg′,I

holds in H2(Mg,n; Q) up to Poincaré duals of elements in the kernel of

H6g−8+2n(Mg,P ; Q) −→ H6g−8+2n(M
′
g,P ; Q), where δirr is the divisor of

irreducible surfaces with one node and δg′,I is the divisor of surfaces with

two components of type (g′, I) and (g − g′, P \ I) intersecting in a node.

Next we pass to a general combinatorial class Ŵm∗,P . As explained

before, we recover them as push-forward of some Ŵm∗,ρ,P on M̂comb
g,P∪Q via

πQ. However the notations and the results about the classes Ŵm∗,ρ,P are
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quite heavy to state, so here we content ourselves to state the theorem in the

simpler case of Ŵm∗,P and we refer to Chapter 5 for more complete results.

The techniques are analogous as in the proof of Theorem A but here new

combinatorial problems arise. However the only new idea is to think of the

retraction H0 : M
comb
g,P∪Q → M

comb
g,P∪Q as a sequence of shrinkings Hi

0 of the

holes qi in a fixed order and then to reduce the problem to the shrinking of

one hole only, which we have already dealt with before. Now we just state

the main result.

For every m∗ = (0,m0,m1,m2, . . . ) choose Q′ such that |Q′| =
∑

i≥1mi

and a ρ̃ : Q′ → N such that |ρ̃−1(j)| = mj for all j ≥ 1. Let PQ′ be the set

of partitions of Q′ and for all µ ⊂ Q′ define ρ̃µ =
∑

i∈µ ρ̃(i).

Theorem B (simplified version). For any g and n ≥ 1 the following

relation holds in H∗(Mg,P ) up to boundary terms:


2

P

q∈Q′ (ρ̃(q)+1)
∏

q∈Q′

(2ρ̃(q) + 1)!!




∑

σ∈SQ′

κr(σ) =

=
∑

M∈PQ′

m∗(M)!

m0!
c̃

M
Ŵm∗(M),P

where mi(M) = |{µ ∈M |ρ̃µ = i}| + δi,0m0 and

c̃
M

:=
∏

µ∈M

c̃µ c̃µ :=
(2ρ̃µ + 2|µ| − 1)!!

(2ρ̃µ + 1)!!

and moreover κr(σ) is a monomial in the kappa classes (see Section 1.3).

The theorem gives an inductive recipe on |Q′| to calculate all the coeffi-

cients of fm∗ . As an example we have the following.

Corollary B.2. For every nonnegative g and positive n such that

2g − 2 + n > 0 and for every a, b ≥ 1 the following identity

2δa,bŴ2a+1,2b+1 = 2a+b+2(2a+ 1)!!(2b+ 1)!!(κaκb + κa+b)

− 2a+b+1(2a+ 2b+ 3)!!κa+b

holds in H2a+2b(Mg,P ; Q) up to boundary terms.
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Chapter 1

The geometric point of view

In this chapter we recall some basic definitions and some elementary facts

from the theory of moduli spaces of curves. We follow Teichmüller’s point

of view but we introduce also the Deligne-Mumford compactification and

its stratification by topological type. Then we define the tautological ring

and its cohomological analogue and we recall some properties of the psi

and kappa classes that will be useful later. In the last section we construct

a slight modification of Kontsevich’s compactification of Mg,P which is a

quotient of Deligne-Mumford’s one. We explain why the contraction map

cannot be a morphism of schemes but just a continuous surjection.

1.1 The Teichmüller functor and the moduli space

of Riemann surfaces

Let S be a compact connected oriented surface of genus g and let P →֒ S

be an injection of n points such that 2g − 2 + n > 0.

Definition 1.1.1. A family of P -pointed surfaces is a couple (π, s) where

π : C → B is a proper differentiable submersion whose fibers are oriented

connected surfaces and {sp : B → C | p ∈ P} is a collection of disjoint sec-

tions. An (S, P )-marking is an equivalence class of oriented diffeomorphisms

f : S ×B
∼

−→ C



2 The geometric point of view

that commute with the projections onto B and such that f(p, b) = sp(b) for

every p ∈ P . Two markings f ∼ f̃ are equivalent if and only if

f̃−1 ◦ f : (S, P ) ×B −→ (S, P ) ×B

is vertically (i.e. over B) isotopic to the identity relatively to P .

A conformal structure on S\P is an atlas such that the changes of coordi-

nates are differentiable and preserve the angles. There is an obvious bijection

between conformal structures and complex structures (via isothermal coor-

dinates) and between conformal structures and Riemannian metrics up to

multiplication by a positive function. Remark that every complex structure

on S \ P can be extended to the whole S in a unique way.

Definition 1.1.2. Let (π, s) be a family of P -pointed surfaces. A conformal

structure on (π, s) is a differentiable atlas of C which endows Cb \∪sp(b) with

a conformal structure for all b ∈ B; equivalently, it is a family of metrics hb

on Cb \ ∪sp(b) smoothly depending on b up to multiplication by a positive

function on C \ ∪sp(B).

We say that two marked families (C, f) and (C′, f ′) of P -pointed sur-

faces with conformal structure are isomorphic if there is a diffeomorphism

t : C
∼

−→ C′ such that t◦f ′ = f and the restriction to each fiber tb : Cb
∼

−→ C′
b

is conformal outside the sections.

The Teichmüller functor

TS,P : (Top. Spaces) −→ (Sets)

associates to every manifold B the set of isomorphism classes of (S, P )-

marked families of P -pointed surfaces over B with conformal structure. It

is represented by a complex smooth manifold TS,P analytically isomorphic

to a ball of complex dimension 3g− 3 +n. Except in the case (g, n) = (0, 3)

it is never compact.

The modular group ΓS,P := Diff+(S, P )/Diff0(S, P ) of connected com-

ponents of the space of oriented diffeomorphisms of (S, P ) acts on the

(S, P )-markings and so on TS,P . Its quotient is denoted by Mg,P and
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classifies smooth families of compact P -pointed Riemann surfaces of genus

g. For g = 0 this functor is represented by a smooth affine variety of com-

plex dimension n − 3. On the contrary Mg,P is not represented by a space

for g ≥ 1 (due to the existence of Riemann surfaces with nontrivial auto-

morphisms); hence the topological quotient Mg,P := TS,P /ΓS,P which is a

normal quasi-projective irreducible variety of (complex) dimension 3g−3+n

is only a coarse moduli space.

The functor Mg,P admits a natural extension Mg,P that classifies flat

families of stable P -pointed complex curves of (arithmetic) genus g, where

stable means that the singularities look like {xy = 0} ⊂ C2 in local analytic

coordinates and that each connected component of the smooth locus has

negative topological Euler characteristic. The functor Mg,P hass a coarse

moduli spaceMg,P which is a normal irreducible projective variety with quo-

tient singularities and which contains Mg,P as a Zariski-dense open subset.

It can be seen that Mg,P is in fact represented by a smooth Deligne-Mumford

stack Mg,P (or an orbifold) which is proper and connected. As before, the

stack M0,P is in fact a smooth projective variety.

1.2 The system of moduli spaces of curves

Many facts suggest that one should not look at the moduli spaces of

curves Mg,n each one separately, but one must consider the whole system

(Mg,n)2g−2+n>0. An evidence is given by the existence of three families of

maps that connect different moduli spaces.

1. The forgetful map is a projective flat morphism

πq : Mg,P∪{q} −→ Mg,P

that forgets the point q and stabilizes the curve (i.e. contracts a pos-

sible two-pointed sphere). This map can be identified to the universal

family and so is endowed with natural sections

ϑ0,{pi,q} : Mg,P → Mg,P∪{q}

for all pi ∈ P .
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2. The boundary map corresponding to irreducible curves is the finite

map

ϑirr : Mg−1,P∪{p′,p′′} −→ Mg,P

(defined for g > 0) that glues p′ and p′′ together. It is generically 2−1

and its image sits in the boundary of Mg,P .

3. The boundary maps corresponding to reducible curves are the finite

maps

ϑg′,I : Mg′,I∪{p′} ×Mg−g′,Ic∪{p′′} −→ Mg,P

(defined for every 0 ≤ g′ ≤ g and I ⊆ P such that the spaces involved

are nonempty) that take two curves and glues them together identify-

ing p′ and p′′. They are generically 1 − 1 (except in the case g = 2g′

and P = ∅ when the map is generically 2 − 1) and their images sit in

the boundary of Mg,P too.

The boundary maps naturally define Cartier divisors in Mg,P corresponding

to their images. We will denote by δirr ⊂ Mg,P and δg′,I ⊂ Mg,P the cycles

supported on the image of ϑirr and ϑg′,I respectively.

We observe that Mg,P has a natural stratification by topological type of

the complex curve. In fact we can attach to every stable curve S its dual

graph γS whose vertices correspond to irreducibile components and whose

edges correspond to nodes of S. Moreover every vertex is labelled by a couple

(gv, Pv), where gv is the geometric genus of the component Sv associated to

v and Pv ⊂ P is the set of marked points lying on Sv. Moreover we call Qv

the singular points of Sv.

For every such labelled graph γ we can construct a boundary map

ϑγ :
∏

v

Mgv ,Pv∪Qv −→ Mg,P

which is a finite morphism. We call its image δγ .

When there is no risk of confusion, we will denote by the same symbol

the cycles and the associated classes in the Chow ring (or in cohomology).

Remember by the way that the moduli spaces Mg,P of complex projective

stable curves have also the structure of smooth proper Deligne-Mumford
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stacks over C (or of compact analytic orbifolds). So it is possible to define

the Chow intersection ring with rational coefficients CH∗(Mg,P )Q (in fact

it is also possible to define integral Chow rings such that CH∗(Mg,P )Q =

CH∗(Mg,P ) ⊗ Q).

1.3 Tautological classes

All the maps we have defined are in some sense tautological as they are very

naturally constructed and they reflect intrinsic relations among the various

moduli spaces. It is apparent that one can look at them as classifying maps in

the Deligne-Mumford stack Mg,P , which obviously descend to maps between

coarse moduli spaces. Hence we can consider all the cycles obtained by push-

forward or pull-back via these map as tautologically defined. However there

is an ingredient we have not considered yet: it is the relative dualizing sheaf

of the universal curve πq. One expects that it carries many informations

and that it can produce many classes of interest.

Denoted by ωπq the relative dualizing sheaf, define the Miller classes as

ψpi
:= c1(Li) ∈ CH1(Mg,P )Q

where Li := ϑ∗0,{pi,q}
ωπq and the modified (by Arbarello-Cornalba) Mumford-

Morita classes as

κj := (πq)∗(c1(ωπq(
∑

i

δ0,{pi,q}))
j+1) ∈ CHj(Mg,P )Q.

One could moreover define the l-th Hodge bundle as El := (πq)∗(ω
⊗l
πq

) and

consider the Chern classes of these bundles (for example, the lambda

classes λi := ci(E1)). However, using Grothendieck-Riemann-Roch, Mum-

ford [Mum83] and Bini [Bin02] proved that ci(Ej) can be expressed as a

linear combination of Mumford-Morita classes up to elements in the bound-

ary, so that they do not introduce anything really new.

When there is no risk of ambiguity, we will denote in the same way the

classes ψ and κ belonging to different Mg,P ’s as it is now traditional.
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Because of the natural definition of κ and ψ classes, as explained before,

the subring R∗(Mg,P ) of CH∗(Mg,P )Q they generate is called the tauto-

logical ring of Mg,P . Its image RH∗(Mg,P ) through the cycle class map is

called cohomology tautological ring.

The system of tautological rings (R∗(Mg,P ) ⊂ CH∗(Mg,P )Q )2g−2+n>0

is the minimal system of subrings that contain the classes κ and ψ which is

closed under the push-forward maps π∗, (ϑirr)∗ and (ϑg′,I)∗. The definition

is the same for the rational cohomology.

As it is evident from the definition, the classes psi and kappa are very

strictly related. In fact

(πq)∗(ψ
r1

p1
· · ·ψrn

pn
) =

∑

{i|ri>0}

ψr1

p1
· · ·ψri−1

pi
· · ·ψrn

pn

(πq)∗(ψ
r1

p1
· · ·ψrn

pn
ψb+1

q ) = ψr1

p1
· · ·ψrn

pn
κb

where the first one is the so-called string equation and the second one for

b = 0 is the dilaton equation. They have been generalized by Faber for maps

that forget more than one point in a formula which can be proven using the

second equation before and the relation

π∗q (κj) = κj − ψj
q .

Let Q := {q1, . . . , qm} and let πQ : Mg,P∪Q → Mg,P be the forgetful

map. Then

(πQ)∗(ψ
r1

p1
· · ·ψrn

pn
ψb1+1

q1
· · ·ψbm+1

qm
) = ψr1

q1
· · ·ψrn

qn
Kb1···bm

where Kb1···bm =
∑

σ∈Sm
κb(σ) and κb(σ) is defined in the following way. If

γ = (c1, . . . , cl) is a cycle, then set b(γ) :=
∑l

j=1 bcj
. If σ = γ1 · · · γν is the

decomposition in disjoint cycles (including 1-cycles), then we pose kb(σ) :=
∏ν

i=1 κb(γi). We refer to [KMZ96] for more details on Faber’s formula, to

[AC96] and [AC98] for more properties of tautological classes and to [Fab99]

for a conjectural description of the tautological rings.
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1.4 Kontsevich’s compactification

It has been observed by Witten [Wit91] that the intersection theory of kappa

and psi classes can be reduced to that of psi classes only by using the push-

pull formula with respect to the forgetful morphisms. Moreover recall that

ψp = c1(ωπp(Dp))

on Mg,P , where Dp =
∑

p′∈P δ0,{p,p′}. So, in order to find a “minimal” pro-

jective compactification of Mg,P where to compute the intersection numbers

of the psi classes, it is natural to look at the maps induced by the linear sys-

tem L :=
∑

p∈P ωπp(Dp). It is well-known that L is nef (Arakelov) and big,

so that the problem is to decide whether L is semi-ample and to determine

its exceptional locus Ex(L⊗l) for l >> 0.

It is easy to see that L⊗l pulls back to the trivial line bundle via the

boundary map Mg′,{p′} × {C} −→ Mg,P , where C is a fixed curve of genus

g − g′ with a P ∪ {p′′}-marking and the map glues p′ with p′′. Hence the

map induced by the linear system L⊗l (if base-point-free) should restrict to

the projection Mg,{p′} ×Mg−g′,P∪{p′′} −→ Mg−g′,P∪{p′′} on these boundary

components.

While L is semi-ample in characteristic p, it is not in characteristic 0

(Keel [Kee99]). However one can still topologically contract the exceptional

(with respect to L) curves to obtain Kontsevich’s map

ξ′ : Mg,P −→ M
′
g,P

which is a proper continuous surjection of orbispaces. A consequence of

Keel’s result is that the coarse M
′
g,P cannot be given a scheme structure

such that the contraction map is a morphism. It is in some sense unexpected

because the morphism behaves as if it were algebraic, in particular the fiber

product Mg,P ×
M

′
g,P

M
′
g,P is projective.

So now we leave the realm of algebraic geometry and proceed topolog-

ically to construct and describe this different compactification. In fact we

introduce a slight modification of Kontsevich’s construction (see [Kon92])

which will be very useful in the future. We realize it as a quotient of



8 The geometric point of view

Mg,P × ∆P by an equivalence relation, where ∆P is the standard simplex

∆P := {l ∈ RP
≥0|

∑
p∈P lp = 1}.

If (S, l) is an element of Mg,P × ∆P , then we say that an irreducible

component of S is positive (with respect to l) if it contains a point p ∈ P

such that lp > 0. Similarly we say that a vertex v of the dual graph γS is

positive if the associated irreducible component Sv is.

Next we declare that (S, l) is equivalent to (S′, l′) if l = l′ and there

is a homeomorphism of pointed surfaces S
∼

−→ S′ which is analytic on the

positive components of S. As this relation would not give back a Hausdorff

space we consider its closure, which can be described as follows.

Given (S, l) as before, consider the following two moves on the dual graph

γS :

1. if two nonpositive vertices v and v′ are joined by an edge e, then we can

build a new graph discarding e, melting v and v′ together and obtaining

a new vertex w which we label with (gw, Pw) := (gv + gv′ , Pv ∪ Pv′)

2. if a nonpositive vertex v has a loop e, we can make a new graph

discarding e and labelling v with (gv + 1, Pv).

Applying these moves to γS iteratively until the process ends, we are given

back a reduced dual graph γred
S,l . Call V0(S, l) the subset of vertices v of γred

S,l

such that lp = 0 for every p ∈ Pv and V+(S, l) the subset of positive vertices

of γred
S,l .

For every couple (S, l) denote by S̄ the quotient of S obtained collapsing

every nonpositive component to a point. Given (S, l) and (S′, l′) it is clear

that a homeomophism S̄ → S̄′ of P -pointed spaces induces an isomorphism

of graphs γred
S,l → γred

S′,l′ which does not necessarily preserve the labels gv.

We say that (S, l) and (S′, l′) are equivalent if l = l′ and there exists

a homeomorphism f̄ : S̄
∼

−→ S̄′ whose restriction to each component is

analytic and which induces an isomorphism f red : γred
S,l

∼
−→ γred

S′,l′ of reduced

dual graphs. Finally call

ξ : Mg,P × ∆P −→ M
△
g,P := Mg,P × ∆P /∼
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the quotient map and remark that M
△
g,P is compact and that ξ commutes

with the projection onto ∆P .

For every l in ∆P we will denote by M
△
g,P (l) the subset of points of

the type [S, l] and we will write M
△
g,P (L) for ∪l∈LM

△
g,P (l) where L ⊂ ∆P .

Then it is easy to see that M
△
g,P (∆◦

P ) is in fact homeomorphic to a product

M
△
g,P (l)×∆◦

P for any given l ∈ ∆◦
P . Observe that M

△
g,P (l) is isomorphic to

M
′
g,P for all l ∈ ∆◦

P in such a way that

ξl : Mg,P
∼= Mg,P × {l} −→ M

△
g,P (l)

identifies to ξ′.

Notice by the way that the fibers of ξ are isomorphic to moduli spaces.

More precisely consider a point [S, l] of M
△
g,P . For every v ∈ V0(S, l) call

Qv the subset of edges of γred
S,l outgoing from v. Then we have the natural

isomorphism

ξ−1([S, l]) ∼=
∏

v∈V0(S,l)

Mgv ,Pv∪Qv

according to the fact that Mg,P ×
M

′
g,P

Mg,P is projective.





Chapter 2

The combinatorial point of

view

Now we want to introduce a different approach to the moduli space of Rie-

mann surfaces, namely we want to give simplicial or cellular structure to the

objects we have met so far. First we define the arc complex (see [Har88]) and

we describe how an open subset of it triangulates Mg,P when P is nonempty.

In this description, simplices are parametrized by systems of disjoint arcs

between couples of punctures and ribbon graphs appear in some sense as a

dual notion. However they become the central object when we want to deal

with stable surfaces. We follow Looijenga’s treatment (see [Loo95]) and look

at stable surfaces as degeneration of smooth surfaces obtained by iterated

collapses. In this way we can define a modified arc complex using stable rib-

bon graphs that nearly cellularizes the Deligne-Mumford compactification

Mg,P . In the last section, we cellularizes Kontsevich’s compactification (see

[Kon92]) by means of ordinary ribbon graphs and we illustrate how these

different complexes are related to one another.

2.1 The arc complex

Fix a compact connected oriented surface S of genus g and an injection

P := {p1, . . . , pn} →֒ S with n > 0.
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Let A be the set of isotopy classes relative to P of embedded unoriented

loops or arcs α ⊂ S that intersect P exactly in the extremal point(s). The

arc complex is the abstract simplicial complex A(S, P ) whose k-simplices

are subsets α = {α0, . . . , αk} of A that are representable by a system of

k + 1 arcs and loops intersecting only in P . We will denote its geometric

realization by |A|.

A simplex α = {α0, . . . , αk} of A is called proper if its star is finite, or

equivalently if S\∪k
i=0αi is a disjoint union of open disks, each one containing

at most one point of P . The subset A∞ ⊂ A of improper simplices is a

subcomplex; we denote A◦ := A \A∞ the subset of proper ones and by |A◦|

its “geometric realization” |A| \ |A∞|.

We will associate a marked ribbon graph Gα to every proper simplex α

in a natural way and a metric on Gα to every internal point of |α|. Let us

fix some notation first.

Definition 2.1.1. An (ordinary) ribbon graph G is a triple (X(G), σ0, σ1)

such that X(G) is a nonempty finite set, σ0 is a permutation of X(G) and

σ1 is a fixed-point-free involution of X(G). Let denote by Xi(G) the set of

orbits in X(G) with respect to the action of σi for i = 0, 1.

Observe that this definition is equivalent to the intuitive one given in

terms of a graph plus a cyclic ordering of the half-edges outcoming from

each vertex (see Fig. 2.1). In fact we should look at X(G) as the set of

oriented edges of G, at X0(G) as the set of vertices and at X1(G) as the

set of unoriented edges. So we can identify σ0 with the operator that sends

an edge outcoming from a vertex v to the following edge outcoming from v

with respect to a given cyclic order, and σ1 with the operator that simply

reverses the orientation of the given (oriented) edge.

Given an oriented edge ~e in X(G) we will denote by e = [~e]1, [~e]0 and

[~e]∞ its classes in X1(G), X0(G) and X∞(G) respectively.

Observe that there is a natural bijection between connected components

of the ribbon graph G and orbits in X(G) under the action of the subgroup

〈σ0, σ1〉 ⊂ S(X(G)). Finally we can define σ∞ requiring that σ∞σ1σ0 = 1,

so that X∞(G) naturally corresponds to the set of holes of G and σ∞ rotates
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p

σ∞(e′)

e

e′

σ1(e
′)

σ0(e)

σ0

σ∞

T̄e′

Figure 2.1: Geometric representation of a ribbon graph

the edges that border each hole. To each ribbon graph (X(G), σ0, σ1) we

can associate a dual one G∗ := (X(G), σ−1
∞ , σ1) such that (G∗)∗ = G.

Definition 2.1.2. A P -marking of G is an injection

x : P →֒ X0(G) ∪X∞(G)

such that X∞(G) is in the image of x. A metrized ribbon graph is a couple

(G, l) where G is a ribbon graph and l is a unital metric on G, i.e. a point

of ∆◦
X1(G).

We call (G, x) reduced if every unmarked vertex has valency greater than

two. One can associate a reduced marked ribbon graph (G, x) to any (G, x)

(provided it is not a one-pointed or two-pointed sphere) simply “forgetting”

bivalent vertices and contracting unmarked tails (i.e. edges with a univa-

lent unmarked extremal point), so that a metric on (G, x) descends to its

reduction.

To each proper simplex α = {α0, . . . , αk} we can associate a connected

ribbon graph G∗
α simply taking as X(G∗

α) the set of oriented versions of the
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αi’s, as σ1 the sense-reversing operator and making σ0 rotate edges outcom-

ing from a point p counterclockwise with respect to the given orientation of

S. It is easy to see that Gα := (G∗
α)∗ inherits a P -marking: we call it the

“dual” ribbon graph associated to α. By the way, notice that Gα can be

“concretely” realized as embedded in S.

Actually, it is clear that a point a of |α|◦ ⊂ |A◦| correspond to a unital

metric on G∗
α and so on Gα. Moreover, if λ : |A| → ∆P is the simplicial

map that sends a vertex {α} of |A| to the barycenter of the extremal points

of the arc α (or to the extremal point if α is a loop), then the restriction of

λ to a proper simplex is the circumference function of the associated ribbon

graph, that is it sends a metrized ribbon graph (G, a) to the point whose

p-th coordinate is half the perimeter of the p-marked hole (it is zero in the

case in which p marks a vertex).

To each metrized ribbon graph (G, a) we can canonically associate a

Riemann surface

S(G, a) :=




∐

~e∈X(G)

T~e




/
∼

where T~e = [0, e(a)]×[0,∞]/[0, e(a)]×{∞} and ∼ is the equivalence relation

generated by T~e ∋ (t, 0) ∼ (e(a) − t, 0) ∈ Tσ1(~e) and T~e ∋ (e(a), s) ∼ (0, s) ∈

Tσ∞(~e). Call T̄~e the image of T~e under the above identification and (if G

is P -marked) T̄p the union of the T̄~e’s for all ~e ∈ x(p) and notice that the

conformal structures on T̄~e \ ({∞}∪{0}×{0}∪{e(a)}×{0}) ⊂ R2 ∼= C glue

to give a conformal structure on S(G) minus a finite set. So we get a well-

defined unique complex structure on S(G) and it is clear that a P -marking

descends to x′ : P →֒ S(G, a), thus determining a well-defined isotopy class

of homeomorphisms (S, P ) −→ (S(G, a), x′(P )) and a continuous classifying

map

Ψ : |A◦(S, P )| −→ TS,P

to the Teichmüller space.
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2.2 Strebel’s theorem

Consider the continuous application

(Ψ, λ) : |A◦(S, P )| −→ TS,P × ∆P

which is clearly ΓS,P -equivariant. We want to say that it is an homeomor-

phism, so we need to prove that it is bijective and open.

Remember how we constructed the metrized surface S(G, a): every

T~e ⊂ R2 ∼ C has the flat metric dz⊗ dz̄. Then notice that the holomorphic

quadratic differentials dz2 on each T~e glue to give a global meromorphic dif-

ferential β on S(G, a). It is regular outside x(P ) and has quadratic residues

− 1
4π2 (2λ(p))2 at x(p). Moreover its horizontal trajectories (i.e. the trajecto-

ries defined by Arg(β) = 0) are either closed or critical (i.e. they begin and

end in a zero or a simple pole of β). In particular the k-th order zeroes of

β correspond to (k+ 2)-valent vertices of G and the critical graph of β (i.e.

the union of all critical horizontal trajectories) corresponds to the union of

the edges of G.

Definition 2.2.1. A meromorphic quadratic differential β on a Riemann

surface S′ is called Strebel differential if its closed horizontal trajectories

cover the surface S′ up to a subset of measure zero.

It can be proved that nonclosed horizontal trajectories of a Strebel dif-

ferential are necessarily critical and in fact there are only finitely many of

them.

Summarizing, given a metrized ribbon graph G with a P -marking we

can construct a P -marked Riemann surface S′ plus a Strebel differential β

on S′ whose critical graph corresponds to G. Conversely, given a P -marked

Riemann surface S′ plus a Strebel differential β we can define a P -marked

metrized ribbon graph G from the critical graph of β.

Now we are ready to understand the full strength of the following result.

Theorem 2.2.2 (Strebel, [Str67]). Let S′ be a compact Riemann surface

and P ′ ⊂ S′ a nonempty subset (such that P ′ contains at least two points
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if S′ is a sphere). Then for every function h : P ′ → R≥0 there exists a

unique Strebel differential β(S′, P ′, h) on S′ that is holomorphic on S′ \ P ′

and which has a double pole on every p′ ∈ P ′ \ h−1(0) of quadratic residue

− 1
4π2 (2h(p′))2 and at most a simple pole on every p′ ∈ h−1(0).

This assures that the map (Ψ, λ) is bijective. In fact the previous theorem

provides a set-theoretic inverse of (Ψ, λ).

We are left to prove that the map is open. The quickiest way to do

that is to notice that |A◦(S, P )| can be given a structure of differentiable

manifold compatible with the piecewise linear one (see [HM79]), hence Ψ is

an open map by invariance of domain.

As a consequence, we get the desired isomorphism

Φ : |A◦(S, P )|/ΓS,P
∼

−→ Mg,P × ∆P

of orbifolds.

Remark. We may notice that one can construct a tautological family of

Riemann surfaces C −→ |A◦(S, P )| whose restriction over a simplex α is real-

analytic. So Ψ is continuous by the universal property of the Teichmüller

space and Ψ|α is real-analytic for every α.

2.3 The modified arc complex

Let Z ⊂ X1(G) be a nonempty subset of edges of an ordinary connected

ribbon graph G. We can construct two new ribbon graphs. The subgraph

GZ = (X(GZ), σ′0, σ
′
1) has X(GZ) equal to the set of orientations of edges

in Z, its σ′1 is the natural restriction of σ1 and its σ′0 sends an edge to the

next one belonging to X(GZ) with respect to the cyclic order induced by

σ0. If Z does not coincide with X1(G), then GZ has some new exceptional

holes corresponding to orbits in X(GZ) ⊂ X(G) under σ′∞ which are not

orbits under the action of σ∞.

Consider now a proper subset Z of X1(G). Then the quotient graph

G/GZ has X(G/GZ) equal to X(G) \ X(GZ), its σ′1 is the restriction and

its σ′∞ sends an edge to the next one of X(G/GZ) with respect to the cyclic
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order induced by σ∞. If Z is nonempty, then G/GZ has exceptional vertices

corresponding to orbits in X(GZ) ⊂ X(G) under σ′0 that are not orbits

under the action of σ0.

Notice that there is a canonical correspondence between exceptional ver-

tices of G/GZ and exceptional holes of GZ (see Fig. 2.2). In fact consider

an exceptional hole H of GZ . For every (oriented) edge ~e ∈ H call b~e > 0

the minimum integer such that σ1σ
b~e
0 (~e) belongs to H. Then the subset

{σi
0(~e)|~e ∈ H and 0 < i < b~e} is the corresponding exceptional vertex in

G/GZ . Conversely, given an exceptional vertex V of G/GZ and an ~e ∈ V

call b~e > 0 the minimum integer such that σb~e
∞σ1(~e) belongs to V . Then

{σ1σ
i
∞σ1(~e)|~e ∈ H and 0 < i < b~e} is the corresponding exceptional hole in

GZ .

p3

Z

exceptional vertex

exceptional hole

p2

p8

p1

p3

p4

p1

p8

p4

p2

GZ

G/GZ

G

p7

p5

p7

p5 p6

p6

V
p9

p9

H

V

H
p10

p10

Figure 2.2: Example of correspondence between exceptional holes and ex-

ceptional vertices
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To introduce the definition of stable P -marked ribbon graph think at

how an ordinary metrized P -marked ribbon graph G can degenerate: it

happens when the lengths of a subset Z of edges go to zero. As we can work

componentwise, we suppose Z connected. Then various cases can occur:

1. Z is a tree and contains at most one marked point, so it is contractible:

then we can collapse it to a vertex and put if necessary the marking

on it, that is we simply obtain G/GZ (see Fig. 2.3)

e1

e11

e10

e9

e2 e3

e4

e5

e6

e7
e8

p2

e5

p1

e10

e11

e1

e2 e3

e4

e6

e7

e8

p2

Z

p1

G

e9

G/GZ

Figure 2.3: Example of contractible subset Z of edges

2. Z is homotopic to a circle and has no marked points, so we call it

semistable. If Z surrounds a single hole, then it shrinks to a vertex

which inherits the marking in G/GZ ; otherwise G/GZ contains two

exceptional vertices (see Fig. 2.4)

3. if Z is neither contractible nor semistable, then its collapsing gives

rise to a new irreducible component. If Z contains no unmarked tails,

then we call Z a stable subset. Notice that every Z contains a maximal

stable subset Zst (see Fig. 2.5).

Now we want to produce a stable version of ribbon graphs successively col-

lapsing semistable or stable subsets of edges.
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Z

p2

ι

G/GZG

p2

p1

p1

Figure 2.4: Example of semistable subset Z of edges

Given an ordinary connected P -marked ribbon graph (G, x), we call

Z• = (Z0, Z1, . . . , Zk) a permissible sequence for (G, x) if Z0 = X1(G) and

Zj+1 ⊂ Zst
j is a nonempty subset not containing a whole component of Zst

j

for every j = 0, . . . , k − 1. Given such a Z• we can produce a (quasi)stable

P -marked ribbon graph taking the triple (G(Z•), x̄, ι) where

G(Z•) := (GZ0
/GZ1

) ⊔ (G
Zst

1

/GZ2
) ⊔ · · · ⊔ (G

Zst
k−1

/GZk
) ⊔G

Zst
k

,

x̄ : P →֒ X∞(G(Z•)) ∪ X0(G(Z•)) is induced by x and ι is a fixed-point-

free involution that exchanges every exceptional hole with its corresponding

exceptional vertex. The “stabilized” P -marked ribbon graph is simply ob-

tained discarding possible unstable components, namely unmarked spheres

with two exceptional holes, and making ι exchange the two corresponding

exceptional vertices. In any case, ι never exchanges two holes. We say that

the (stable) components of G
Zst

i

/GZi+1
have order i and we define Hi as the

set of holes belonging to components of order i and Vi as the set of marked

or exceptional vertices belonging to components of order i. Finally we say

that Σ := ∪i(Hi ∪ Vi) is the set of special points.
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Z

G/GZ

ι

p3

p2

p3

p2

p3

G

GZst

GZ

p1

p1

Figure 2.5: Example of stable subset Zst of edges

Definition 2.3.1. A stable metric with respect to Z• is a sequence of metrics

(ai)
k
i=0 where a0 ∈ ∆◦

Z0\Z1
and ai is a metric on Zst

i \ Zi+1 which is unital

on every irreducible component.

So given a stable metric for Z• we can build a stable marked Riemann

surface S(G,Z•, a•). In fact we first consider the disjoint union of the sur-

faces S(G
Zst

i

/GZi+1
, ai) for i = 0, . . . , k and then we identify some pairs

of points according to ι. Remark that there is an extended circumference

function

Λ̂ : {unital metrics on S(G,Z•)} −→
k∏

i=0

∆Hi

that restricts to a map λ̂ := Λ̂0 : {unital metrics on S(G,Z•)} −→ ∆P .

Remark. Let C be a stable P -marked Riemann surface and let

ν : C̃ = ⊔jCj → C

be its normalization. Let Pj := ν−1(P ) ∩ Cj and Qj := ν−1(nodes) ∩ Cj .

Consider the set Cir(C) of all circumference functions Λ̂ associated to P -

marked stable ribbon graphs G(Z•) such that S(G,Z•) is a stable P -marked
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belongs to V1

belongs to V0 belongs to H1
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order 0order 0

order 0

order 0
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p2

p3

p4
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p4
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p3
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order 0

p2

ι

GZ0

order 1

ι

ι order 1

order 2

GZ1

GZ1

/GZ2

GZ0
/GZ1

ι

ι

ι
GZ2

GZ0
/GZ1

Figure 2.6: Example of iterated collapses

surface homeomorphic to C. Then the elements of Cir(C) take values in
∏

j ∆Pj∪Qj
, so that we can define Im(Cir(C)) ⊂

∏
j ∆Pj∪Qj

as the union of

the images of all Λ̂’s in Cir(C). Notice that for any l ∈ ∆P we can define

the subset Cir(C, l) ⊂ Cir(C) of circumference functions Λ̂ such that their

restrictions λ̂ is constantly l. It is easy to see that both Cir(C) and Cir(C, l)

are simplicial complexes.

Now we can give the formal definition of stable P -marked ribbon graph.

Definition 2.3.2. Consider a metrized (possibly disconnected) ribbon

graph G with an injection x : P →֒ Σ in a subset of “special points”

Σ ⊂ X0(G) ⊔ X∞(G) containing X∞(G) plus a fixed-point-free involution

ι acting on the set of “exceptional points” Σ \ x(P ). We say that an order

function that assigns a natural number to each connected component of G

is admissible if
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- components of order 0 contain at least a P -marked hole

- if ι exchanges each point of the component Gj with a point in a com-

ponent of order ≤ k then Gj has order ≤ k + 1

- every h ∈ X∞(G) \ x(P ) belongs to a component of order k > 0 and

the point ι(p) sits in a component of order at most k − 1 (and so is a

vertex).

We call (G, x, ι) a P -marked stable ribbon graph if there exists an admissible

order function on G and we say that (G, x, ι) is reduced if (G, x) is. A stable

metric on (G, x, ι) is the datum of a unital metric aj for every connected

component Gj of G.

Now let α(G) be a proper simplex of A whose associated marked ribbon

graph is G = Gα. Consider the set Z(G) of connected stable subsets of

X1(G) and for every a ∈ |α(G)|◦ and every Z ∈ Z(G) let |α(G)|◦ → |α(GZ)|

be the projection to a face. Define α̂(G) to be the closure of the graph of

the map

|α(G)|◦ →֒ |α(G)| ×
∏

Z∈Z(G)

|α(GZ)|

in |α(G)| ×
∏

|α(GZ)|.

It can be proven that α̂(G) parametrizes all stable degenerations of the

ribbon graph Gα. Moreover all the α̂’s can be glued to obtain a modified

arc complex Â. Remark that Â(S, P ) comes with an obvious cellularization

indexed by permissible sequences: for every Z• = (Z0, . . . , Zk) there is a

(closed) cell isomorphic to |α0| × · · · × |αk| that parametrizes stable metrics

on G(Z•). The projections |α0| × · · · × |αk| → |α0| glue to give a continuous

surjection Â(S, P ) → |A(S, P )| which is actually a quotient (i.e. |A(S, P )|

has the quotient topology).

Theorem 2.3.3 ([Loo95]). The modular group Γg,P naturally acts on

Â(S, P ) respecting the cellularization. The product of the classifying map

Â(S, P )/ΓS,P −→ Mg,P
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with λ̂ is a continuous surjection

Φ̂ : Â(S, P )/ΓS,P −→ Mg,P × ∆P

that extends Φ, so it is one-to-one when restricted to the dense open subset

|A◦(S, P )|/ΓS,P . More precisely the fiber of Φ̂ over (C, l) naturally identifies

to Im(Cir(C, l)).

In what follows we will always identify ∆P ×R+ with RP
≥0 \ {0} and we

will still denote by Φ̂ the map

Φ̂ : M̂comb
g,P := (Â(S, P )/ΓS,P ) × R+ −→ Mg,P × (RP

≥0 \ {0}).

2.4 The ribbon graph complex

Here we introduce the last complex we are interested in, which is due to

Kontsevich (see [Kon92]). The point of view is reversed: the central object

is the ribbon graph and no longer the arc system.

Form the category RGg,P of P -marked ribbon graphs of genus g as

follows. Its objects are the ribbon graphs Gα with α in A◦(S, P ), and

its morphisms are compositions of isomorphisms of pointed ribbon graphs

and contractions of one edge. Denote by M (resp. M) the functor

RGg,P −→ (Top. spaces) that associates (|α|∩|A◦|)×R+ (resp. |α|×R+) to

every Gα and by Mcomb
g,P (resp. M

comb
g,P ) its limit functor. Remark that both

functors are represented by orbicellular complexes and that Mcomb
g,P ⊂ M

comb
g,P

embeds as a dense open subspace. Moreover we can define a circumference

function λ̄ : M
comb
g,P → RP

≥0 \ {0} as in the case of the arc complex.

Remark. Notice that our definition of Mcomb
g,P and M

comb
g,P slightly differs

from Kontsevich’s one. In fact we allow some holes to have perimeter zero

(i.e. we admit marked vertices) while Kontsevich does not. Briefly Kontse-

vich’s spaces are obtained from ours by intersecting Mcomb
g,P and M

comb
g,P with

λ̄−1(RP
+).
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We observe that the points of M
comb
g,P correspond to the following data:

- a connected graph γ (the “dual graph of the pointed surface”) with

vertices labelled by pairs (gv, Pv) such that ⊔vPv = P and h1(γ) +
∑

v gv = g

- a subset V+ of vertices of γ (the “positive vertices of the dual graph”)

- for every vertex v ∈ V+ an ordinary Pv ∪ Qv-marked ribbon graph

(Gv, xv) of genus g with (nonunital) metric such that Qv marks only

vertices of Gv, where Qv bijectively correspond to the set of half-edges

of γ outgoing from v.

We require moreover that no edge of γ joins two nonpositive vertices (the

dual graph γ is “reduced”).

It is clear that an isomorphism Gα
∼

−→ Gα′ of ribbon graphs with

α, α′ ∈ A◦(S, P ) lifts to an isotopy class of oriented diffeomorphisms

(S, P )
∼

−→ (S, P ). So the natural map (|A◦(S, P )|/ΓS,P ) × R+
∼

−→ Mcomb
g,P

is a homeomorphism and commutes with λ and λ̄, hence

Mg,P × (RP
≥0 \ {0})

∼
−→ Mcomb

g,P

is a homeomorphism too. At the same time the continuous surjection

Φ : (|A(S, P )|/ΓS,P ) × R+ −→ M
comb
g,P

(naturally induced by the definition of M
comb
g,P ) is a quotient and the preim-

age of a point can be described as follows. Pick a point (γ, V+, {Gv})

in M
comb
g,P and consider the disjoint union of the marked surfaces X :=

⊔v∈V+
(S(Gv, xv) \ Qv), so that each point of Qv corresponds to an ideal

boundary component of Xv := S(Gv, xv) \ Qv. An orientation-preserving

embedding of f : X →֒ S is admissible if

- for every positive v the restriction of f to S(Gv, xv) \Qv preserves the

Pv-marking

- every edge joining two positive vertices v and v′ (which determines

points q ∈ Qv and q′ ∈ Qv′) corresponds to a cylinder in S \ f(X)
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that connects the ideal boundary components of f(Xv) and f(Xv′)

corresponding to q and q′ respectively

- every nonpositive w corresponds to a connected component Cw of S \

f(X) of genus gw which contains Pw and every edge of γ joining w

with a positive v (which determines a point q in Qv) corresponds to

the ideal boundary component of f(Xv) labelled by q coinciding with

a boundary component of Cw.

Then Φ
−1

(G) can be identified to AdmEmb(G∗, S)/Diff+(S, P ).

Finally it is easy to see that Φ̂ set-theoretically descends to a well-defined

R : M
comb
g,P

∼
−→ M

△
g,P × R+. We want to show that R is a homeomorphism.

To see that R is continuous it is sufficient to prove that M̂comb
g,P → M

△
g,P ×R+

is. This is obvious as this map is exactly ξΦ̂. Bijectivity relies again on

Strebel’s result applied componentwise; moreover R is proper, hence closed.

We summarize the preceding observations in the following commutative

diagram

(|A◦(S, P )|/ΓS,P ) × R+

(|Â(S, P )|/ΓS,P ) × R+ Mcomb
g,P

H h

vvlllllllllllllllll
� v

((RRRRRRRRRRRRRRRR

Φ∼=

M̂comb
g,P

bΦ

����

// //

��

(|A(S, P )|/ΓS,P ) × R+

Φ
����

Mg,P × (RP
≥0 \ {0})

I i

vvmmmmmmmmmmmmmm

� � // M
comb
g,P

R∼=
��

Mg,P × (RP
≥0 \ {0})

ξ // // M
△
g,P × R+

and we recall that ξ is the map that collapses nonpositive components so

that its fibers are isomorphic to products of smaller moduli spaces; while Φ̂
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is the classifying map of Looijenga’s modification of the arc complex and its

fibers are the simplicial complexes Cir(C, l) of circumference values. The

map M̂comb
g,P ։ (|A(S, P )|/ΓS,P ) × R+ is the natural projection, so it is a

sort of simplicial “blow-up”.

In what follows we will always identify M
comb
g,P and M

△
g,P ×R+ via R, so

that ξ will be a map from Mg,P × (R≥0 \ {0}) to M
comb
g,P .

Remark. The (orbi)spaces M
comb
g,P and M̂comb

g,P have an (orbi)piecewise-

linear structure so de Rham theorem holds giving an isomorphism between

rational singular cohomology and rational PL de Rham cohomology. Now all

cohomology groups will be considered with rational coefficients even though

tautological and combinatorial classes are defined over Z, so that all results

still hold in integral cohomology modulo torsion.
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Combinatorial classes

Now we introduce some remarkable subcomplexes of the combinatorial mod-

uli spaces which define interesting cycles in simplicial (cellular/singular) ho-

mology. This subcomplexes are simply defined prescribing that some vertices

have assigned odd valencies. It can be easily shown that, if we assign even

valency to some vertex, the subcomplex we obtain is not a cycle (even with

Z/2Z coefficients!).

We follow Kontsevich ([Kon92]) for the orientation of the combinatorial

cycles. In the last section we define a slight generalization of the combina-

torial classes by allowing some vertices to be marked, which will turn very

useful in the following chapter.

3.1 Combinatorial complexes

Fix S a compact Riemann surface of genus g and P = {p1, . . . , pn} ⊂ S a

subset of n points such that 2g − 2 + n > 0. Let m∗ = (m−1,m0,m1, . . . )

be a sequence of nonnegative integers such that

∑

i≥−1

(2i+ 1)mi = 4g − 4 + 2n

and define (m∗)! :=
∏

i≥−1mi! and r :=
∑

i≥−1 imi. We assume that

m−1 = 0.
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Reasoning as in Section 2.4, it is possible to construct an orbispace

M
comb
m∗,P whose cells of maximal dimension are indexed by isomorphism

classes of ordinary ribbon graphs that have exactly mi vertices of valency

2i+ 3. Analogously it is possible to define an arc complex A(S, P )m∗ (resp.

a modified arc complex Â(S, P )m∗) as the smallest subcomplex of A(S, P )

(resp. of Â(S, P )) that contains all simplices α such that Gα is an or-

dinary ribbon graph with exactly mi vertices of valency 2i + 3. Notice

that both these complexes are acted on by ΓS,P and so is A◦(S, P )m∗ :=

A(S, P )m∗ ∩A
◦(S, P ). Hence we can set M̂comb

m∗,P := (Â(S, P )m∗/ΓS,P )×R+.

Remark. In the case m−1 > 0 it is still possible to define the com-

plexes A(S, P )m∗ , A
◦(S, P )m∗ and Â(S, P )m∗ from an (extended) arc com-

plex Ã(S, P ), obtained adding to A contractible loops (i.e. unmarked

tails in the corresponding ribbon graph picture). However A(S, P )m∗ is

no longer a subcomplex of A(S, P ), so we only have the classifying maps

M̂comb
m∗,P → Mg,P × (RP

≥0 \ {0}) and Mcomb
m∗,P → Mg,P × (RP

≥0 \ {0}), which

are quite mysterious if we consider them as maps of cellular complexes.

All the spaces we have introduced fit in the following commutative dia-

gram

(|A◦(S, P )m∗ |/ΓS,P ) × R+
∼= //

� _

��

Mcomb
m∗,P

� _

��

� � // Mcomb
g,P

� _

��

(|A(S, P )m∗ |/ΓS,P ) × R+
// // M

comb
m∗,P

� � // M
comb
g,P

M̂comb
m∗,P

OOOO

� � // M̂comb
g,P

ξ bΦ

OOOO

For every l ∈ RP
≥0\{0} call Mg,P (l) the slice Mg,P×{l} ⊂ Mg,P×(RP

≥0\{0})

and similarly M
comb
g,P (l) := λ̄−1(l) ⊂ M

comb
g,P and M̂comb

g,P (l) := λ̂−1(l). In the

same way we can define M̂comb
m∗,P (l) and M

comb
m∗,P (l) and the restrictions ξl and

Φ̂l of ξ and Φ̂ respectively. Notice that the dimensions of the slices are the

expected ones because in every cell they are described by n linear equations.
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3.2 Orientation

Define Lp as the space of couples (G, v), where G is a P -marked metrized

ribbon graph in M
comb
g,P ({lp > 0}) and v is a point of S(G) belonging to an

edge that borders the p-th hole. It will be given the topology induced by

the natural piecewise-linear structure.

Clearly Lp −→ M
comb
g,P ({lp > 0}) is a combinatorial bundle with fiber

homeomorphic to S1. It is easy to see that, for a fixed l ∈ ∆P such that

lp > 0, the pull-back of Lp via

ξl : Mg,P −→ M
comb
g,P (l)

is isomorphic (as a topological bundle) to the sphere bundle associated to

L∗
p.

Lemma 3.2.1 ([Kon92]). Fix p in P and l ∈ RP
≥0 such that lp > 0. Then

on every simplex α ∈ M
comb
g,P (l) define

ωp|α :=
∑

1≤s<t≤k−1

dẽs ∧ dẽt

where ẽj =
ej(a)
2lp

and x(p) is a hole with cyclically ordered sides (e1, . . . , ek).

These 2-forms glue to give a piecewise-linear 2-form ωp on M
comb
g,P (l) which

represents −c1(Lp). Hence the pull-back class ξ∗l [ωp] is exactly ψp = c1(Lp)

in H2(Mg,P ).

Proof. We will define a differentiable 1-form β on Lp such that its integral

on each fiber is 1 and such that dβ is the pull-back of −ωp. This will prove

that ωp represents −c1(Lp).

Remember that a fiber of Lp is a k-uple of cyclically ordered distinct

points φ̄1, . . . , φ̄k of the circle R/lpZ. For all i = 1, . . . , k consider represen-

tative φi ∈ R of φ̄i = φi + lpZ such that φi ∈ [0, lp).

Then the length of the i-th edge is

ei =




φi+1 − φi if i = 1, . . . , k − 1

φ1 − φk + lp if i = k
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e2

φ̄7
φ̄4

φ̄6

e5

e4

e3
p

φ̄1

e7

φ̄5

φ̄3

e1

e6

φ̄2

0̄

Figure 3.1: A fiber of Lp

so that we can define

β :=
k∑

i=1

(
ei
lp

)
d

(
φi

lp

)
.

Then for every fiber of Lp we obtain

∫

fiber of Lp

β =
k∑

i=1

ei
lp

∫ lp

0

dφk

lp
= 1

and dβ is exactly

dβ = −
∑

1≤i<j≤k−1

d

(
ei
lp

)
∧ d

(
ej
lp

)
.

Lemma 3.2.2 ([Kon92]). For every l ∈ RP
+ the restriction of

Ω :=
∑

p∈P

l2pωp

to M
comb
g,P (l) is a nondegenerate symplectic form, so Ω

r
defines an orientation

on M
comb
m∗,P (l). Hence Ω

r
∧ λ̄∗dvolRP

+
is an orientation on M

comb
m∗,P .
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Proof. Let α be a cell of M
comb
g,P (l) whose associated ribbon graph Gα has

only vertices of odd valency. Then on α the differentials dei span the cotan-

gent space. As the perimeters lp are fixed, we have the relation dlp = 0 for

all p ∈ P . Hence

T ∗M
comb
g,P (l)|α ∼= α×

⊕

e∈X1(Gα)

R · de
/

(
∑

~e∈x(p)

de | p ∈ P ).

On the other hand the tangent bundle is

TM
comb
g,P (l)|α ∼= α×





∑

e∈X1(Gα)

be
∂

∂e

∣∣∣
∑

~e∈x(p)

be = 0 for all p ∈ P



 .

In order to prove that Ω|α : Tα −→ T ∗α is nondegenerate, we construct its

right-inverse. Define B : T ∗α −→ Tα as

B(de) =

2s∑

i=1

(−1)i ∂

∂[σi
0(~e)]1

+

2t∑

j=1

(−1)j ∂

∂[σj
0σ1(~e)]1

where ~e is any orientation of e, while 2s+1 and 2t+1 are the cardinalities of

[~e]0 and [σ1(~e)]0 respectively. We want to prove that ΩB(de) = de for every

e ∈ X1(G). To shorten the notation, set fi := [σi
0(~e)]1 and hj := [σj

0σ1(~e)]1

F1

F2

f3 F3
f4

H1

h1

e

f1

E+

E−

f2

h2

and call Fi := [σi
0(~e)]∞ for i = 1, . . . , 2s − 1 and Hj := [σj

0σq(~e)]∞ for

j = 1, . . . , 2t−1 the holes bordered respectively by {fi, fi+1} and {hj , hj+1}.
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Finally call E+ and E− the holes adjacent to e as in the previous figure.

Consequently denote by l
Fi

and l
Hj

the lengths of the half-perimeters of the

holes Fi and Hj respectively. Remark that neither the edges f and h nor

the holes F and H are necessarily distinct. This however has no importance

in the following computation.

First of all we have

B(de) = −
2s∑

i=1

(−1)i ∂

∂fi
−

2t∑

j=1

(−1)j ∂

∂hj
.

Then it is easy to see (using that the perimeters are constant) that

l2
Fi
ω

Fi
(
∂

∂fi
−

∂

∂fi+1
) = −

1

4
(dfi + dfi+1)

and analogously for the h’s. Moreover

l2
E+
ω

E+
(
∂

∂h2s
−

∂

∂f1
) =

1

4
dh2s +

1

4
df1 +

1

2
de

and similarly for E−. At last we obtain ΩB(de) = de.

Lemma 3.2.3 ([Kon92]). With the given orientation M
comb
m∗,P (l) is a cycle

for all l ∈ RP
+ and M

comb
m∗,P (RP

+) is a cycle with noncompact support.

Proof. Given a top-dimensional cell α in M
comb
m∗,P (l), each face in the bound-

ary ∂α is obtained shrinking one edge of Gα. This contraction may merge

two vertices as in Fig. 3.2. Otherwise the shrinking produces a node

(obtained identifying two vertices) as in Fig. 3.3. Let α′ ∈ ∂α be the

face of α obtained by shrinking the edge L. Then Λ6g−7+2n−2rTα′ =

Λ6g−6+2n−2rTα ⊗ N∗
α′/α and so the dual of the orientation form induced

by α on α′ is ιdL(B6g−6+2n−2r
α ) = (6g− 6 + 2n− 2r)ιdL(Bα)∧B6g−8+2n−2r

α ,

where Bα is the 2-vector field on α defined in Lemma 3.2.2.

Consider the graph Gα′ that occurs in the boundary of a top-dimensional

cell of M
comb
m∗,P (l). Suppose it is obtained merging two vertices of valencies

2t1 + 3 and 2t2 + 3 in a vertex v of valency 2(t1 + t2) + 4. Then a′ is in the

boundary of exactly 2(t1 + t2) + 4 cells of M
comb
m∗,P (l) or t1 + t2 + 2 ones in

the case t1 = t2. In any case the number of cells α′ is border of are even: we
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e2

e3

e4 e5

e5e4

e3

e2 e1

e1

e6

e6

Figure 3.2: A contraction that merges a 3-valent and a 5-valent vertex

e3 e4e3 e4

e5e2

e1 e1

Figure 3.3: A contraction that produces a node

need to prove that half of them induces on α′ an orientation and the other

half induces the opposite one. If α′ is obtained from some α contracting an

edge L, then we just have to compute the vector field ιdL(Bα), which turns

to be

ιdL(Bα) = ±

2(t1+t2)+4∑

i=1

(−1)i ∂

∂fi

where f1, . . . , f2(t1+t2)+4 are the edges of Gα′ outgoing from v. It is a

straightforward computation to check that one obtains in half the cases

a plus and in half the cases a minus.

When Gα′ has a node with 2t1+2 edges on one side (which we will denote

by f1, . . . , f2t1+2) and 2t2 + 3 edges on the other side, the computation is

similar. The cell occurs as boundary of exactly (2t1 + 2)(2t2 + 3) top-
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dimensional cells and, if α′ is obtained by α contracting the edge L, then

ιdL(Bα) = ±
2t1+2∑

i=1

(−1)i ∂

∂fi
.

A quick check ensures that the signs cancel. Hence M
comb
m∗,P (l) is a cycle and

as a consequence M
comb
m∗,P is a cycle with noncompact support.

Set ω̂p := Φ̂∗ξ∗ωp. With some modifications we have the following anal-

ogous result for combinatorial cycles on M̂comb
g,P . Really one does not need

it to establish Theorem A and Theorem B on the locus of smooth surfaces,

but only if one wants to deal with boundary terms.

Lemma 3.2.4. The symplectic form Ω̂ :=
∑

p∈P l
2
pω̂p (resp. Ω̂r ∧ λ̄∗dvolRP

+
)

gives an orientation to the complex M̂comb
m∗,P (l) for any l ∈ RP

+ (resp.

M̂comb
m∗,P (RP

+)) so that M̂comb
m∗,P (l) (resp. M̂comb

m∗,P (RP
+)) is a cycle (resp. a

cycle with noncompact support).

The spaces M̂comb
m∗,P and M

comb
m∗,P reduce to Mcomb

m∗,P when restricted to the

locus of ordinary ribbon graphs and they coincide with the closure of Mcomb
m∗,P

in M̂comb
g,P and M

comb
g,P respectively. Hence ξ∗Φ̂∗[M̂

comb
m∗,P ] = [M

comb
m∗,P ].

Define the combinatorial classes Ŵm∗,P (l) := Φ̂∗[M̂
comb
m∗,P (l)] and

Wm∗,P (l) := [Mm∗,P (l)] and observe that

Hnc
6g−6+3n−2r(Mg,P × RP

+)
∼ // H6g−6+2n−2r(Mg,P (l))

Ŵm∗,P (RP
+)

� // Ŵm∗,P (l)

and

Hnc
6g−6+3n−2r(M

comb
g,P (RP

+))
∼ // H6g−6+2n−2r(M

comb
g,P (l))

Wm∗,P (RP
+)

� // Wm∗,P (l)

for every l ∈ RP
+ naturally with respect to ξ. So, from now on we will write

Wm∗,P and Ŵm∗,P instead of Wm∗,P (l) and Ŵm∗,P (l) for the homology

classes they define in M
′
g,P

∼= M
comb
g,P (l) and Mg,P respectively for any

l ∈ RP
+. Moreover we will identify Ŵm∗,P with its Poincaré dual in

H2r(Mg,P ).
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3.3 Generalized combinatorial classes

It is possible to define a slight generalization of the previous classes, pre-

scribing that some markings hit vertices with assigned valency.

Given a finite set Q := {q1, . . . , qh} and a map ρ : Q → Z≥−1 we de-

fine mρ
∗ = (mρ

−1,m
ρ
0, . . . ) as mρ

i := |ρ−1(i)|. Consider now an m∗ and a ρ

such that mρ
−1 = m−1, m

ρ
∗ ≤ m∗ and

∑
i≥−1(2i + 1)mi = 4g − 4 + 2|P |

and call M
comb
m∗,ρ,P the subcomplex of M

comb
m∗,P∪Q whose simplices of maximal

dimension are ordinary ribbon graphs in which qj marks a vertex of valency

2ρ(qj) + 3 for every j = 1, . . . , h and denote by Wm∗,ρ,P its cohomology

class in M
comb
g,P∪Q({lq = 0 | q ∈ Q}) (as before the orientation is determined

by
∑

p∈P l
2
pi
ωp). Define analogously M̂comb

m∗,ρ,P and let Ŵm∗,ρ,P be its coho-

mology class in in Mg,P∪Q. Notice that these classes live in codimension

2
∑

i≥−1 imi +2|Q| = 2r+2|Q|. The following statement is straightforward.

Lemma 3.3.1. Let πQ : Mg,P∪Q → Mg,P be the forgetful morphism. Then

one has

(πQ)∗(Ŵm∗,ρ,P ) =
(m∗)!

(m∗ −mρ
∗)!
Ŵm∗,P

where (πQ)∗ : H2r+2|Q|(Mg,P∪Q) → H2r(Mg,P ) is the induced push-forward

map.





Chapter 4

Classes with one special

vertex

We deal with the simplest combinatorial class, namely the class W2r+3 of

graphs with only one vertex of valency 2r + 3.

At a first reading the proof may look quite involved, because of some

technicalities. However the basic ideas are quite simple. We want to describe

them in some detail before going to the formal proof.

The first observation is that Mcomb
g,P∪{q}(l) is homeomorphic to Mg,P∪{q}

for every l ∈ R
P∪{q}
≥0 \ {0}. The second remark is that the differential form

ωq lives on the slices Mcomb
g,P∪{q}(l) such that lq > 0, while the (generalized)

combinatorial class (which we briefly denote by W q
2r+3), defined prescribing

that q marks a vertex of valency (at least) 2r + 3, lives on the slices that

have lq = 0.

So a deformation retraction H0 of Mcomb
g,P∪{q} onto the slice defined by

lq = 0 would help us to compare ωr+1
q and the combinatorial class W q

2r+3 as

functionals on the cohomology of Mcomb
g,P∪{q}(l).

The deformation retraction H0 we will construct however does not pre-

serve the locus of the smooth curves, but it retracts the whole M
comb
g,P∪{q}

onto the slice M
comb
g,P∪{q}(lq = 0). In fact H0 is defined sending all the edges

bordering the q-th hole to zero (it is defined only when lq is “small”, be-

cause we must avoid the situation in which H0 would squeeze another hole
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beside q). So it shrinks a circular q-th hole (i.e. such that T̄q is a disk) to a

q-marked vertex, while it produces a “singular” graph if the topology of the

q-th hole is more complicated. But, if we subdivide the complex M
comb
g,P∪{q}

into subcomplexes Y
•
∗ according to the topology of the q-th hole, then the

restriction of H0 to each subcomplex is a simplicial fibration.

Then we consider a differential form η on M
comb
g,P∪{q}(lq = 0) and we

compare the integral of η on W
q
2r+3(l) (the closure of W q

2r+3(l)) for an l

such that lq = 0 with the integral of ωr+1
q ∧ H∗

0η on M
comb
g,P∪{q}(l

′) for an l′

such that l′q > 0. Here we notice that the form ωr+1
q ∧ H∗

0η has support

on the top-dimensional simplices whose q-th hole has exactly 2r+ 3 distinct

edges. Then the integral of ωr+1
q ∧H∗

0η is performed by calculating for each

Y
•
∗ the integral of ωr+1

q on the fibers of H0. In the case of a circular q-th

hole with 2r + 3 edges we obtain the factor 2r+1(2r + 1)!!.

The analogous result for the (ordinary) combinatorial class W 2r+3 and

κr is derived from the preceding one by simply noticing that the forgetful

morphism πq has a combinatorial analogue πcomb
q on the combinatorial spaces

(another little technical problem is due to the fact that πcomb
q is not defined

on the whole M
comb
g,P∪{q} but what we get is enough to conclude). So that

(πq)∗(ψ
r+1
q ) = κr and (πcomb

q )∗ sends W
q
2r+3 to W 2r+3. Hence we obtain our

result for the kappa classes too.

4.1 The retraction H0 and πcombq

Fix g ≥ 0 and n > 0 such that 2g − 2 + n > 0 and define P := {p1, . . . , pn}

and

CP,q := {l ∈ R
P∪{q}
≥0 | lq < lp for all p ∈ P}.

Denote by πq : Mg,P∪{q} × CP,q → Mg,P × RP
+ the map that forgets q and

the q-th coordinate. We can define πcomb
q forcing the commutativity of the
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following diagram

(Mg,P∪{q} \Dq) × CP,q
ξ̃ //

πq

��

M
comb
g,P∪{q}(CP,q) \D

comb
q

πcomb
q

��

Mg,P × RP
+

ξ // M
comb
g,P (RP

+)

(⋆)

where Dq := ∪p∈P δ0,{q,p} and Dcomb
q = ξ̃(Dq × CP,q). We remark that ξπq

does not factorize through ξ̃ : Mg,P∪{q} × CP,q → M
comb
g,P∪{q}(CP,q). In fact

ι

p

q

component

nonpositive

S2S1

Figure 4.1: πcomb
q is not defined in this case

pick a point (S, l) in Mg,P∪{q}×CP,q such that q and p lie on a two-pointed

component S1 of S of genus zero which has only one singular point and

suppose that the adjacent component S2 is nonpositive (see Fig. 4.1). Then

ξ̃(S, l) does not “remember” the analytic type of S2 but ξπq(S, l) does (if

lp > 0) because the p-marking now hits S2 after forgetting q and stabilizing.

However this is the only case, so it sufficient to cut away Dq and Dcomb
q .

Remark. The behaviour of the map πcomb
q is really misterious as we do

not know in general how Strebel’s differential changes when we delete the

marked point q and consequently how the critical graph modifies. However

we know that if q marks a vertex then the new critical graph is obtained

simply forgetting the marking. On the other hand, when this happens the

form ωq is not defined because lq = 0. All the technical problems derive from
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this dichotomy. We will overcome this difficulty by keeping the perimeter lq

positive so that ωq makes sense and by taking the limit for lq → 0. Then

we will show that, in this limit, πcomb
q is well approximated by the simplicial

map that shrinks the hole q to a vertex and forgets the q-marking.

Notation. Call Ŷh ⊂ M̂comb
g,P∪{q} (resp. Y h ⊂ M

comb
g,P∪{q}) the closure of

the locus of graphs where the hole x(q) has positive perimeter and consists

exactly of h distinct (unoriented) edges. Set Ŷ≥h := ∪i≥hŶi (resp. Y ≥h :=

∪i≥hY i).

Clearly the topological boundary ∂Ŷ≥h (resp. ∂Y ≥h) is contained in-

side Ŷ≤h−1 := ∪1≤i≤h−1Ŷi (resp. Y ≤h−1 := ∪1≤i≤h−1Y i). Moreover

Φ̂(Ŷ≥2(CP,q)) is contained inside (Mg,P∪{q} \ Dq) × CP,q and similarly

Y ≥2(CP,q) is contained inside (M
comb
g,P∪{q} \D

comb
q )×CP,q. In fact Y 1(CP,q) is

a closed neighbourhood of Dcomb
q (CP,q) inside M

comb
g,P∪{q}(CP,q). Remark, by

the way, that ωq|Y 1
= ω̂q|

bY1
= 0 because the hole q does not contain enough

edges.

Proposition 4.1.1. There is a deformation retraction

H̃ : M
comb
g,P∪{q}(CP,q) × [0, 1] −→ M

comb
g,P∪{q}(CP,q)

such that H̃1 is the identity and H̃0 is the piecewise-linear retraction onto

M
comb
g,P∪{q}(R

P
+ × {0}) that “shrinks” the q-th hole. Moreover H̃t(Y h) ⊂ Y h

for all t ∈ [0, 1].

Proof. Consider a cell λ̄−1(CP,q) ∩ |α| × R+ inside M
comb
g,P∪{q}(CP,q). Denote

by e1, . . . , eh the coordinates of |α| × R+ corresponding to the unoriented

edges of Gα that border the hole q and by f1, . . . , fk the remaining ones.

Then it is sufficient to define H̃t as the map that sends ei 7−→ t · ei and

fj 7−→ fj and to observe that all these deformation retractions glue to give

a global H̃. By definition it is obvious that H̃t(Y h) ⊂ Y h.

Call H0 : M
comb
g,P∪{q}(CP,q) ։ M

comb
g,P∪{q}(R

P
+ × {0}) the restriction of H̃0.

Since we will work with classes of the form ψr+1
q ` ξ̃∗H∗

0η and we would like

to exploit the explicit representative ωq which is defined only where lq > 0,

then we let the perimeters vary in the subset C+
P,q := CP,q ∩ {lq > 0} only.
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qq

t = 1 t = 1/2 t = 0

Figure 4.2: The deformation retraction H̃

Proposition 4.1.2. Let η be a piecewise-linear differential form on

Y ≥2(R
P
+ × {0}). Then ωq ∧ H∗

0η (which is defined only on Y ≥2(C
+
P,q)) reg-

ularly extends by zero to the whole M
comb
g,P∪{q}(C

+
P,q). Moreover, if [η] is the

restriction of (πcomb
q )∗ϕ to Y ≥2(R

P
+ × {0}), then ξ̃∗[ωq ∧ H∗

t η] is exactly

ψq ` π∗qξ
∗ϕ.

Proof. The first assertion is trivial because ωq vanishes on ∂Y ≥2(C
+
P,q) ⊂

Y 1(C
+
P,q). For the second assertion, remember that de Rham isomorphism

holds on M
comb
g,P∪{q}(C

+
P,q) and that ωq defines a cohomology class relative to

Y 1(C
+
P,q). Hence the result follows from the commutativity of (⋆) and from

the excision of Dq and Dcomb
q .

4.2 Proof of Theorem A

Now we can pass to analyze the simplest kind of combinatorial classes,

namely those with just one special vertex.

Let P := {p1, . . . , pn} and for every integer r ≥ −1 denote by Ŵ q
2r+3

the combinatorial class of Mg,P∪{q} whose vertices are all trivalent except

one which has valency 2r + 3 and is marked by q. Analogously call Ŵ2r+3
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the combinatorial class on Mg,P whose vertices are all trivalent except one

which has valency 2r + 3 (in the case r = 0 all the vertices are trivalent).

Theorem A. For any g and n ≥ 1 the equality

Ŵ q
2r+3 =

(2r + 2)!

(r + 1)!
ψr+1

q

holds in H2r+2(Mg,P∪{q}) up to terms in the kernel of

ζ∗ : H2s(Mg,P∪{q}) → H2s(Mg,P , ∂Mg,P )

where s = 3g − 3 + n− r. As a consequence

Ŵ2r+3 =





0 if r = −1

[Mg,P ] if r = 0

2r+1(2r + 1)!!κr if r ≥ 1

holds in H2r(Mg,P ) up to boundary terms.

Strategy. The (2r + 2)-form ω̂r+1
q determines a class in

H2r+2(Ŷ≥2(C
+
P,q), ∂Ŷ≥2(C

+
P,q))

and so it couples with forms of H2s(Ŷ≥2(C
+
P,q)) by Poincaré duality. Hence

[ω̂q]
r+1 may be viewed as an element of the dual space H2s(Ŷ≥2(C

+
P,q))

∗,

which maps to H2s(Ŷ≥2(CP,q))
∗.

We will determine a boundary class B̂q
2r+3 in Ŷ≥2(CP,q) such that the

equality

Ŵ q
2r+3 = 2r+1(2r + 1)!![ω̂q]

r+1 − B̂q
2r+3

holds in H2s(Ŷ≥2(CP,q))
∗ when coupled with cocycles in the image of

Φ̂∗ξ̃∗H∗
0 : H2s(Y ≥2(R

P
+ × {0})) → H2s(Ŷ≥2(CP,q)).
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Now by the commutativity of the following diagram

H2s(Ŷ≥2(CP,q))
∗

(H0ξ̃bΦ)∗ //

��

H2s(Y ≥2(R
P
+ × {0}))∗

(πq)comb
∗

��

H2s(Mg,P∪{q})

ζ∗

��

H2s(M
comb
g,P (RP

+))∗

��

H2s(Mg,P , ∂Mg,P )
∼ // H2s(M

comb
g,P (RP

+), ∂M
comb
g,P (RP

+))∗

the image of ker(H0ξ̃Φ̂)∗ in H2s(Mg,P∪{q}) is contained inside ker ζ∗. This

concludes the argument. Because of Proposition 4.1.2 and Lemma 3.3.1 we

then immediately obtain the second claim.

Proof of Theorem A. Consider a closed PL differential form η on Y ≥2(R
P
+×

{0}) of degree 2s which is the pull-back of a form via a projection onto

Y ≥2(l, 0) for some l ∈ RP
+. By Proposition 4.1.2 the form H∗

0η ∧ ωr+1
q

extends by zero to M
comb
g,P∪{q}(C

+
P,q) and its pull-back via ξ̃ is ψr+1

q ` ξ̃∗H∗
0[η].

Moreover H∗
0η ∧ ωr+1

q has support inside Y 2r+3(C
+
P,q). In fact ωr+1

q has

support inside Y ≥2r+3(C
+
P,q), while H∗

0η has support inside Y ≤2r+3(C
+
P,q)

because η has support inside Y ≤2r+3(R
P
+ × {0}).

Now decompose Y 2r+3(C
+
P,q) into three families of subsets:

1. the closure Y
disk
2r+3(C

+
P,q) of the locus of graphs where the surface T̄q is a

disk; in this case H0(Y
disk
2r+3(C

+
P,q)) is exactly the support ofW

q
2r+3(R

P
+)

consisting of graphs with one vertex of valency 2r + 3 marked by q

2. the closure Y
cyl
v1,v2

(C+
P,q) of the locus of graphs where T̄q is a cylinder

with exactly one internal edge e, which divides the other edges of x(q)

into two subsets of cardinality v1 + 1 and v2 + 1 = 2r − v1 + 1; its

image via H0 is the union of loci N
q
v1,v2

(RP
+) of graphs with one node

marked by q that is obtained identifying two vertices of valencies v1

and v2

3. the closure Y
surf
h,{v1,...,vν}(C

+
P,q) of the locus of graphs where T̄q a sur-

face of genus h with ν > 2 − 2h boundary components which touch
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v1, . . . , vν external edges (i.e. not in T̄q) respectively, where 6h − 6 +
∑ν

j=1(vj + 3) = 2r; its image via H0 is the locus Z
q
h,{v1,...,vν}(R

P
+) of

graphs with one nonpositive component of genus h which has the q-

marking and ν nodes corresponding to vertices of v1, . . . , vν valencies.

����
����
����

����
����
����

q

Y
disk
7

q

q

Y
cyl
1,3

Y
surf
2,{1,3}

Figure 4.3: Three examples of loci Y

Remark that λ̄pi
(H0(Y 2r+3(l̃))) takes values between l̃pi

− l̃q and l̃pi
. So

choose 0 < ε < L′′ << L′ and notice that H0(Y 2r+3([L
′′, L′]n, ε)) contains

(
∪h,v∗Z

q
h,v∗ ∪ supp(W

q
2r+3) ∪v1,v2

N
q
v1,v2

)
([L′′, L′ − ε]n)

and is contained inside

(
∪h,v∗Z

q
h,v∗ ∪ supp(W

q
2r+3) ∪v1,v2

N
q
v1,v2

)
([L′′ − ε, L′]n).

Since the volume of the difference [L′′ − ε, L′]n \ [L′′, L′ − ε]n goes to zero as

ε decreases, we have
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∫

[L′′,L′]n
dlp1

∧ · · · ∧ dlpn

∫

Mg,P∪{q}

ψr+1
q ` ξ̃∗H∗

0[η] = (•)

= lim
ε→0

∫

Y 2r+3([L′′,L′]n,ε)
λ̄∗(dlp1

∧ · · · ∧ dlpn) ∧ ωr+1
q ∧H∗

0η =

= lim
ε→0

( ∫

Y
disk
2r+3([L′′,L′]n,ε)

λ̄∗(dlp1
∧ . . . dlpn) ∧ ωr+1

q ∧H∗
0η+

+
∑

v1+v2=2r

∫

Y
cyl
v1,v2

([L′′,L′]n,ε)
λ̄∗(dlp1

∧ . . . dlpn) ∧ ωr+1
q ∧H∗

0η+

+
∑

h,v∗

∫

Y
surf
h,v∗ ([L′′,L′]n,ε)

λ̄∗(dlp1
∧ . . . dlpn) ∧ ωr+1

q ∧H∗
0η

)
= (••)

= lim
ε→0

( ∫

W
q
2r+3([L′′,L′−ε]n)

λ̄∗(dlp1
∧ . . . dlpn) ∧ η

∫

F disk(ε)
ωr+1

q +

+
∑

v1+v2=2r

∫

N
q
v1,v2

([L′′,L′−ε]n)
λ̄∗(dlp1

∧ . . . dlpn) ∧ η

∫

F cyl
v1,v2

(ε)
ωr+1

q +

+
∑

h,v∗

∫

Z
q
h,v∗ ([L′′,L′−ε]n)

λ̄∗(dlp1
∧ . . . dlpn) ∧ η

∫

F surf
h,v∗

(ε)
ωr+1

q

)
=

=

∫

[L′′,L′]n
dlp1

∧ · · · ∧ dlpn

( ∫

W
q
2r+3(l)

η

∫

F disk(ε)
ωr+1

q +

+
∑

v1+v2=2r

∫

N
q
v1,v2

(l)
η

∫

F cyl
v1,v2

(ε)
ωr+1

q +
∑

h,v∗

∫

Z
q
h,v∗ (l)

η

∫

F surf
h,v∗

(ε)
ωr+1

q

)

where l belongs to RP
+ and F disk(ε) is the intersection of the generic fiber of

H0 over supp(W
q
2r+3([L

′′, L′ − ε]n)) with Y 2r+3((ε,+∞)n, ε) and similarly

for F cyl and F surf .

Remark. In (•) we used Proposition 4.1.2 and the push-forward through

the map

ξ̃ε : Mg,P∪{q} × Rn
+ × {ε} −→ M

comb
g,P∪{q}(R

n
+ × {ε}).

In (••) we used that H0 restricts to

Y
disk
2r+3([L

′′, L′]n, ε)
Hdisk

0 // supp(W
q
2r+3([L

′′ − ε, L′]n))

(Hdisk
0 )−1(supp(W

q
2r+3([L

′′, L′ − ε]n)))
?�

OO

// // supp(W
q
2r+3([L

′′, L′ − ε]n))
?�

OO



46 Classes with one special vertex

where the lower map is a fibration with fiber F disk(ε) and the differ-

ences Y
disk
2r+3 \ (Hdisk

0 )−1(supp(W
q
2r+3([L

′′, L′− ε]n))) and supp(W
q
2r+3([L

′′−

ε, L′]n)) \ supp(W
q
2r+3([L

′′, L′ − ε]n)) tend to zero with ε.

It is easy to see that F disk(ε) is a simplex of dimension 2r+2 with affine

coordinates e0, . . . , e2r+2 where ej are the (unoriented) edges of the hole

x(q), so that
∑2r+2

j=0 ej = 2ε. It is also immediate to see that ωr+1
q is equal

to (r + 1)!d( e1

2ε) ∧ · · · ∧ d( e2r+2

2ε ) so that the integral of ωr+1
q on F disk(ε) is

equal to (r+1)!
(2r+2)! .

A simple computation shows that ωr+1
q vanishes on F cyl

v1,v2
if v1 and v2

are even; while ωr+1
q = (r + 1)!d( e1

2ε) ∧ · · · ∧ d( e2r+2

2ε ) if v1 and v2 are odd,

where 2e0 +
∑2r+2

j=1 ej = 2ε and e0 is the “separating” edge of the cylinder.

We conclude that for v1 and v2 odd
∫

F cyl
v1,v2

ωr+1
q = v1v2

(r + 1)!

(2r + 2)!

because F cyl
v1,v2

contains v1v2 top-dimensional simplices. On the other hand

the integral of ωr+1
q on F surf

h,v∗
is nontrivial to compute.

However the cycles N
q
v1,v2

and Z
q
h,v∗ clearly lift to cycles N̂ q

v1,v2
and Ẑq

h,v∗

on M̂comb
g,P∪{q}(R

P
+ × {0}) and so on Mg,P∪{q}, then we can define

B̂q
2r+3 :=

∑

i,j≥0
i+j=r−1

(2i+ 1)(2j + 1)
(r + 1)!

(2r + 2)!
N̂ q

2i+1,2j+1 +
∑

h,v∗

Ẑq
h,v∗

∫

F surf
h,v∗

ωr+1
q

so that the equation Ŵ q
2r+3 = 2r+1(2r+1)!!ψr+1

q −B̂q
2r+3 inH2r+2(Mg,P∪{q})

is satisfied in the sense explained before.

For the second claim, we can use an η = (πcomb
q )∗ϕ. Because of the

commutativity of the diagram (⋆) and Proposition 4.1.2 it follows that

(πq)∗(Ŵ
q
2r+3) = 2r+1(2r + 1)!!κr − B̂2r+3 (with B̂2r+3 = (πq)∗(B̂

q
2r+3))

holds in H2r(Mg,P ) up to terms in the kernel of ξ′∗ : H2s(Mg,P ) →

H2s(M
′
g,P ).

Remark. In fact we have proven more than what is stated in Theorem A as

we have determined B̂q
2r+3 and B̂2r+3 up to minor uncertainties. Moreover

the classes B̂q
2r+3 and B̂2r+3 are push-forward of combinatorial classes via
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some boundary maps. The problem now would be to compute the coeffi-

cients of Ẑq
h,v∗

and to clarify what terms we must add to B̂q
2r+3 and B̂2r+3

to obtain the full equality.

Corollary A.1. For every g and |P | = n ≥ 1 such that 2g − 2 + n > 0 the

following equalities hold up to elements in the kernel of

(Φ̂ξ̃H0)∗ : H∗(Ŷ≥2(C
+
P,q)) → H∗(Y ≥2(R

P
+ × {0}))

and in ker(ξ′∗) respectively

Ŵ q
5 = 12ψ2

q − δq
irr −

∑

g′,I 6=∅,P

δq
g′,I in H4(Mg,P∪{q})

Ŵ5 = 12κ1 − δirr −
∑

g′,I 6=∅,P

δg′,I in H2(Mg,P )

where δq
g′,I is the image of the morphism

Mg′,I∪{p′} ×M0,{q,q′,q′′} ×Mg−g′,Ic∪{p′′} → Mg,P∪{q}

that glues p′ with q′ and p′′ with q′′ (analogously for δq
irr).

The second equality of the previous corollary has been proven first by

Arbarello and Cornalba [AC96] in a very different manner. Here it is a con-

sequence of the proof of Theorem A, because for r = 1 the subset Y
surf

does

not contain simplices of top dimension while all simplices of top dimension

in Y
cyl

have v1 = v2 = 1.





Chapter 5

Classes with many special

vertices

The case of a general combinatorial class ŴM∗,ρ,P is not much more com-

plicated. The only real obstacle is the notation that becomes cumbersome,

but the main ideas are already present in the previous chapter.

The only substantially new proof concerns Lemma 5.1.3 where we com-

pute the number of admissible clusters by an inductive argument.

5.1 Proof ot Theorem B

We now want to examine the case of an arbitrary class Ŵm∗,ρ,P on Mg,P∪Q

for some ρ : Q → Z≥−1. So fix P := {p1, . . . , pn} with n ≥ 1 and Q :=

{q1, . . . , qu, qu+1, . . . , qs} such that Q̃ := ρ−1(−1) = {qu+1, . . . , qs} and let

r =
∑

i≥−1 imi. Clearly one must have 4g − 4 + 2|P | =
∑

i≥−1(2i + 1)mi.

We always assume m−1 = mρ
−1.

Notation. We denote by PQ the set of partitions of Q and by M0 the

discrete partition {{q1}, . . . , {qs}}. We denote by PQ,Q′ the subset of PQ∪Q′

consisting of M = {µ1, . . . , µk} such that the restriction M ∩ Q := {µ1 ∩

Q, . . . , µk ∩Q} is the discrete partition of Q.

Definition 5.1.1. Given P and ρ as before and M a partition of Q, consider
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the boundary map

ϑM,ρ,P : Mg,P∪M ×
∏

µ∈M

M0,µ∪{ιµ} → Mg,P∪Q

that glues every point µ ∈M with ιµ. Then we call combinatorial class with

rational tails Ŵ rt
M,ρ,P the image through ϑM,ρ,P of Ŵm∗(M),ρ|M ,P × {pt}M ,

where ρ|M : M → Z−1 sends µ to ρµ :=
∑

q∈µ ρ(q) and

mi(M) := |{µ ∈M |ρµ = i}| + δi,0(m0 −mρ
0).

Theorem B. Suppose mi = mρ
i for i 6= 0 and Q 6= ∅. Then, up to elements

in the kernel of

H6g−6+2n+2s(Mg,P∪Q) → H6g−6+2n−2s(Mg,P∪Q̃, ∂Mg,P∪Q̃),

the following equation holds in H2r+2s(Mg,P∪Q):


2

P

q∈Q(ρ(q)+1)
∏

q∈Q

(2ρ(q) + 1)!!




∏

q∈Q

ψρ(q)+1
q =

= Ŵm∗,ρ,P +
∑

M0 6=M∈PQ

c
M
Ŵ rt

M,ρ,P

where

c
M

:=
∏

µ∈M

cµ and cµ =
(2ρµ + 2|µ| − 1)!!

(2ρµ + 1)!!

For the general case, choose Q′ such that |Q′| =
∑

i≥1(mi −mρ
i ) and a

ρ̃ : Q ∪ Q′ → Z≥−1 such that |ρ̃−1(j)| = mj for all j 6= 0 and ρ̃|Q = ρ. For

every µ ⊂ Q ∪Q′ define ρ̃µ :=
∑

q∈µ ρ̃(q).

Corollary B.1. Suppose m−1 = mρ
−1 and P,Q′ 6= ∅. Then the following

relation holds in H2r+2s(Mg,P∪Q) up to boundary terms:


2

P

q∈Q∪Q′ (ρ̃(q)+1)
∏

q∈Q∪Q′

(2ρ̃(q) + 1)!!




∏

q∈Q

ψρ(q)+1
q

∑

σ∈SQ′

κr(σ) =

=
∑

M∈PQ,Q′

m∗(M)!

(m∗(M) −mτM
∗ (M))!

c̃
M
Ŵm∗(M),τM ,P

where c̃µ :=
(2ρ̃µ+2|µ|−1)!!

(2ρ̃µ+1)!! and τM : Q→ Z≥−1 sends q to ρ̃µq where µq ∋ q.
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We remark that Theorem A and Corollary B.1 give an inductive method

to express all Ŵm∗,ρ,P in terms of the tautological classes and vice versa.

In fact it is sufficient to isolate the term on the right hand side which cor-

responds to the discrete partition to obtain the recursion or to isolate the

term on the left hand side that corresponds to σ = e.

Proof of Corollary B.1. It follows immediately from Theorem B applying

Faber’s formula and Lemma 3.3.1.

Proof of Theorem B. Define Qi := {q1, . . . , qi} and and let ψi denote ψqi
.

Analogously to the previous section, let CP,k for k = 1, . . . , u be the subset

of l ∈ R
P∪Q
≥0 defined by





lqj
= 0 for all j = k + 1, s

∑k
i=j+1 lqi

< lqj
for all j = 1, . . . , k − 1

∑k
i=1 lqi

< lpj
for all j = 1, . . . , n

and set C+
P,k := CP,k ∩ {lqk

> 0}. Notice that CP,0 = RP
+ × {0}Q.

Call H0 : M
comb
g,P∪Q(CP,u) ։ M

comb
g,P∪Q(CP,0) the composition H1

0H
2
0 · · ·H

u
0

of all the retractions

Hi
0 := Hqi

0 : M
comb
g,P∪Q(CP,i) → M

comb
g,P∪Q(CP,i−1)

and remark the important fact that (Hi
0)

∗ωi−1 is not the ωi−1 on

M
comb
g,P∪Q(CP,i) but ωi ∧ (Hi

0)
∗ωi−1 and ωi ∧ ωi−1 are cohomologous. So

ξ̃∗[ω
ρ(qi)+1
i ` (Hi

0)
∗ω

ρ(qi−1)+1
i−1 ] is exactly ψ

ρ(qi)+1
i ` ψ

ρ(qi−1)+1
i−1 if ρ(qi) ≥ 0.

Now pick a closed PL differential form η of degree 6g − 6 + 2n −

2r on M
comb
g,P∪Q(CP,0) which is the pull-back of a form via a projection

M
comb
g,P∪Q(CP,0) ։ M

comb
g,P∪Q(l, {0}Q) with l ∈ RP

+. To produce a more useful

representative for the class of

ωρ(qu)+1
u ω

ρ(qu−1)+1
u−1 · · ·ω

ρ(q1)+1
1 H∗

0η

on M
comb
g,P∪Q(C+

P,u) we proceed in the following inductive way. We start with

β0(η) := η on M
comb
g,P∪Q(CP,0). The first step is to pull it back via

H1
0 : M

comb
g,P∪Q(CP,1) −→ M

comb
g,P∪Q(CP,0)
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and to cup it with the ω
ρ(q1)+1
1 living on M

comb
g,P∪Q(C+

P,1). Then we obtain

a well-defined form β1(η) on M
comb
g,P∪Q(C+

P,1). Now suppose we have already

produced βk−1(η) for k < u. Then we can pull βk−1(η) back via Hk
0 and cup

it with ω
ρ(qk)+1
k to obtain a well-defined βk on the whole M

comb
g,P∪Q(C+

P,k).

Finally we get a form β(η) := βu(η) on M
comb
g,P∪Q(C+

P,u) with the property

that the pull-back of its class to Mg,P∪Q × C+
P,u is

ψρ(qu)+1
u ψ

ρ(qu−1)+1
u−1 · · ·ψ

ρ(q1)+1
1 ξ̃∗H∗

0[η].

Call Y t1,...,tu(C+
P,u) ⊂ M

comb
g,P∪Q(C+

P,u) the closure of the locus of graphs

such that

- the hole x(qu) has tu distinct (unoriented) edges

- for all i = 1, . . . , u− 1 the hole x(qi) has ti distinct (unoriented) edges

beside those which border any of the holes x(qu), . . . , x(qi+1).

As in the previous section, it is easy to see that β(η) has support con-

tained inside the locus Y 2ρ(q1)+3,...,2ρ(qu)+3(C
+
P,u). Now we want to analyze

its image through H0 which consists of several components.

Definition 5.1.2. Given an ordinary ribbon graph, we say that a subset µ

of markings form a cluster if

- any vertex of x(µ) contains an edge that belongs to a hole in x(µ)

- any two distinct holes in x(µ) are joined by a chain of adjacent holes

belonging to x(µ).

Two clusters µ and µ′ are disjoint if µ ∪ µ′ is not a cluster (in particular µ

and µ′ are disjoint as sets).

We associate to every partition M = {µ1, . . . , µk} in PQ

the closure YM (C+
P,u) of the locus of top-dimensional simplices of

Y 2ρ(q1)+3,...,2ρ(qu)+3(C
+
P,u) such that µ1, . . . , µk form disjoint clusters. It is

obvious that {YM (C+
P,u)} is a dissection of Y 2ρ(q1)+3,...,2ρ(qu)+3(C

+
P,u). Really

they overlap on simplices of nonmaximal dimension, but it is not important
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for what follows. Strictly speaking, we would need a refinement of this dis-

section: for every tripartition M• = {Mdisk,M cyl,M surf} of M we denote

by YM•(C+
P,u) the closure of the locus in YM (C+

P,u) where every cluster in

Mdisk (resp. in M cyl or in M surf ) form a disk (resp. a cylinder or a surface

with negative Euler characteristic).

Then H0(YM•(C+
P,u)) is the union of the simplices in M

comb
g,P∪Q(CP,0) in-

dexed by ribbon graphs G such that:

1. every µ ∈ Mdisk marks a vertex lying in the smooth locus of G of

valency 2ρµ+3 (if |µ| > 1 we should say: µ marks a nonpositive sphere

that intersects only one positive component in a vertex of valency

2ρµ + 3), while all the other vertices in the smooth locus are trivalent

2. every µ ∈M cyl marks a node which is obtained identifying two vertices

of valencies v1 and v2 with v1 + v2 = 2ρµ (i.e. µ marks a nonpositive

sphere that intersects only two positive components in vertices of va-

lencies v1 and v2)

3. every µ ∈M surf marks a nonpositive component of genus h and with

ν nodes of valencies v1, . . . , vν such that 6h− 6 +
∑ν

j=1(vj + 3) = 2ρµ.

As in the simplest case, the length

λ̄pi
(H0(YM (l1, . . . , ln, ε1, . . . , εu, {0}

Q̃)))

may vary between li − ε and li, where ε =
∑u

j=1 εj . Reasoning in the same

way as in the previous section, we obtain

∫

[L′′,L′]n
dlp1

∧ · · · ∧ dlpn

∫

Mg,P∪Q

ψ
ρ(q1)+1
1 ` · · · ` ψρ(qs)+1

u ` ξ̃∗H∗
0[η] =

= lim
ε→0

∑

M•

∫

Y M• ([L′′,L′]n,ε1,...,εu,{0}Q̃)
dlp1

∧ . . . dlpn ∧ β(η) =

=

∫

[L′′,L′]n
dlp1

∧ · · · ∧ dlpn

∑

M•

∫

H0(Y M• )(l)
η

∫

FM• (ε1,...,εu)
β(1)

where l belongs to CP,0 and FM•(ε1, . . . , εu) is the intersection

of the generic fiber of H0 over H0(YM•)([L′′, L′ − ε]n, {0}Q) with

YM•((ε,+∞)n, ε1, . . . , εu, {0}
Q̃).
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As we are now interested only in cycles that do not lie in the boundary

after forgettingQ\Q̃, we may restrict to the case in whichM cyl = M surf = ∅

and Mdisk ∩ Q̃ is the discrete partition because of the wise choice of keeping

the perimeters inside C+
P,u. Hence H0(YM,∅,∅(C

+
P,u)) is exactly the support

of ξ̃(Ŵ rt
M,ρ,P (C+

P,0)).

Then we only need to compute

1

2
Pu

i=1
(ρ(qi)+1)

∏u
i=1(2ρ(qi) + 1)!!

∫

FM,∅,∅(ε1,...,εu)
β(1)

which is in fact the number of isomorphism class of (P ∪Q)-marked ribbon

graphs in FM,∅,∅(ε1, . . . , εu) that parametrize simplices of top dimension.

v

0

qi3

qi4

qi1
qi5

tail internal to qi2

q̃

qi2

Figure 5.1: An example of admissible cluster

To complete the proof, we need to determine the number cµ of all possible

isomorphism types of admissible cluster associated to µ. To be precise, cµ

is exactly the number of isomorphism classes of ribbon graphs G such that:

- G is a connected ordinary ribbon graph marked by the set µ ∪ {0, v}

- S(G) is a sphere and µ forms a cluster

- the vertices of G have valency at most three; the bivalent ones always

border the hole 0 and one of them is marked by v
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- if µ ∩ Q̃ = {q̃} is nonempty, then q̃ marks the only univalent vertex;

otherwise there are no univalent vertices

- if µ = {qi1 < · · · < qih} or {qi1 < · · · < qih , q̃} then the hole ih has

2ρ(qih) + 3 sides and for all j = 1, . . . , h− 1 the hole ij has 2ρ(qij ) + 3

sides beside those which border the holes ih, . . . , ij+1.

So we are left to prove the following lemma.

Lemma 5.1.3. Let ρ(µ) =
∑

q∈µ ρ(q). Then

cµ =
(2ρµ + 2|µ| − 1)!!

(2ρµ + 1)!!
.

where we have conventionally set (−1)!! = 1.

Proof. Remark that the calculation has a clear geometrical meaning even if

we allow some ρ(qij ) to assume the value −1. However in what follows we

will bound ourselves to the case ρ(qi1) ≥ −1 and ρ(qij ) ≥ 0 for all j > 1.

We proceed by induction on |µ|.

Clearly, if |µ| = h = 1 then cµ = 1. If h > 1 then the cluster has no

symmetries and so the possible v-markings are exactly 2ρµ+3. In particular

if h = 2 and µ ∩ Q̃ is empty, then the cluster consists of the holes qi1 with

2ρ(qi1) + 4 sides and qi2 with 2ρ(qi2) + 3 sides that have exactly one edge

in common. If h = 2 and µ ∩ Q̃ = {q̃}, then the cluster is made of a hole

qi1 with 2ρ(qi1) + 5 distinct edges and an internal tail marked by q̃. In both

cases cµ = 2ρµ + 3.

Now we deal with the case h > 2. Remember that ρ(qij ) ≥ 0 for j =

2, 3, . . . , h.

If ρ(qi1) = −1 and so the hole qi1 does not contain an internal tail,

then we look at the situation just before shrinking qi1 . We have a loop

surrounding qi1 and its vertex has valency 2ρµ+5. So this vertex is obtained

collapsing the subcluster µ′ = µ \ {qi1}. By induction hypothesis, cµ is

(2ρµ + 3)ρµ′ = (2ρµ + 3)(2(ρµ + 1) + 2(|µ| − 1) − 1) · · · (2(ρµ + 1) + 3) =

(2ρµ + 3)(2ρµ + 2|µ| − 1) · · · (2ρµ + 5).
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If ρ(qi1) ≥ 0, then we look at the situation before collapsing qi2 and qi1 .

There are two possibilities: the holes may touch each other in one edge (case

a) or in one vertex (case b). Moreover q̃ may appear as internal tail in qi1 or

qi2 . We want to show that in both cases the number of configurations (which

we denote respectively by caµ and cbµ) depends only on ρ(qi1)+ρ(qi2) and not

on ρ(qi1) and ρ(qi2) separately. Hence cµ depends only on ρ(qi1)+ρ(qi2) too

as cµ = caµ + cbµ. Hence we can apply the previous computation. Case (a)

qi1

µ′
5 µ′

1

µ′
2

µ′
3

µ′
9

µ′
8

µ′
4

µ′
7

q̃

qi2qi2

qi1

µ′′
3

µ′′
4

µ′′
5

µ′′
2

µ′′
1

µ′′
8

(a”)(a’)

µ′′
10

µ′′
7

µ′′
9

ext subcase

µ′′
6

µ′
6

Figure 5.2: Examples of cases (a’) and (a”)

immediately split into two subcases, so that caµ = ca
′

µ + ca
′′

µ .

(a’) The two holes touch in an edge and there is not an internal tail inside

qi1 or qi2 . So the holes qi3 , . . . , qih (and possibly q̃) are distributed in

t = (2ρ(qi1)+ 3)+ (2ρ(qi2)+ 3)− 1 = 2(ρ(qi1)+ ρ(qi2))+ 5 subclusters

µ′1, . . . , µ
′
t. Then we obtain

ca
′

µ =
∑

j∈J

t∏

k=1

cj−1(k)

where J = {j : µ \ {qi1 , qi2} → {1, . . . , t}|ρj−1(k) ≥ 0 ∀k}.

(a”) The two holes touch in an edge and there is an internal tail in qi1 or

in qi2 . Then the holes qi3 , . . . , qih are distributed in tint = 2(ρ(qi1) +
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ρ(qi2))+3 clusters if the tail hangs on the separating edge (int) and in

text = tvert = 2(ρ(qi1) + ρ(qi2)) + 4 clusters if it hangs on an extremal

point of the separating edge (vert) or the external perimeter (ext).

Hence

ca
′′

µ = 2
∑

j∈Jint

tint∏

k=1

cj−1(k)+4
∑

j∈Jvert

tvert∏

k=1

cj−1(k)+
∑

j∈Jext

text∏

k=1

cj−1(k)

where

Jsep = {j : µ \ {qi1 , qi2 , q̃} → {1, . . . , tint}|ρj−1(k) ≥ 0 ∀k}

Jvert = {j : µ \ {qi1 , qi2 , q̃} → {1, . . . , tvert}|ρj−1(k) ≥ δ1,k ∀k}

Jext = {j : µ \ {qi1 , qi2 , q̃} → {1, . . . , text}|ρj−1(k) ≥ 0 ∀k}

so we are done again.

µ′′
3

µ′′
1

µ′′
2

µ′′
4

q̃

qi1

qi2qi2

qi1

µ′
4

µ′
3

µ′
2

µ′
5

µ′
1

µ′
6 µ′

9

µ′
8

µ′′
7

µ′′
9

µ′′
10

µ′′
5

ext subcase

(b’) (b”)

µ′′
6

µ′′
8µ′

7

Figure 5.3: Examples of cases (b’) and (b”)

Also case (b) splits into two subcases and cbµ = cb
′

µ + cb
′′

µ .

(b’) The two holes touch in a vertex and there is no internal tail in qi1 or qi2 .

So we have t = 2(ρ(qi1) + ρ(qi2)) + 5 subclusters but µ′1 corresponding
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to the common vertex must be at least 4-valent. Moreover the two

holes can touch the cluster µ′1 in 2ρµ′
1
(2ρµ′

1
+ 3) ways (or in 2ρµ′

1
ways

if |µ′1| = 1), hence we obtain

cb
′

µ = (2ρµ + 3)
∑

j∈J

2ρµ′
1

t∏

k=1

cj−1(k)

where J = {j : µ \ {qi1 , qi2} → {1, . . . , t}|ρj−1(k) ≥ δ1,k ∀k}.

(b”) The two holes touch in a vertex and there is an internal tail in qi1
or qi2 . Then the tail may hang on a vertex (vert) or on the external

perimeter (ext). Anyway the holes qi3 , . . . , qih are distributed in t =

2(ρ(qi1) + ρ(qi2)) + 4 clusters. Hence

cb
′′

µ = 2
∑

j∈J

t∏

k=1

cj−1(k) + (2ρ(qi1) + 2ρ(qi2) + 3)
∑

j∈J

t∏

k=1

cj−1(k)

where

J = {j : µ \ {qi1 , qi2 , q̃} → {1, . . . , t}|ρj−1(k) ≥ δ1,k ∀k}

and finally we are done.

Remark that Figure 5.3 illustrates the exact situation, i.e. the two holes qi1
and qi2 cannot be nested. In fact the “internal” hole should be contracted

before the other, and so in our case it should be qi2 . But an “internal” hole

should also have one side only, while we are assuming that ρ(qi2) ≥ 0. This

explains why we have assumed that only ρ(qi1) can take value −1, which,

on the other hand, we need to perform the above explicit computation.

As an example we compute the class W2a+1,2b+1 of graphs with two

nontrivalent vertices.

Corollary B.2. For every nonnegative g and positive n such that

2g − 2 + n > 0 and for every a, b ≥ 1 the following identity holds
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2δa,bŴ2a+1,2b+1 =

= 2a+b+2(2a+ 1)!!(2b+ 1)!!(κaκb + κa+b) − (2a+ 2b+ 3)Ŵ2a+2b+1 =

= 2a+b+2(2a+ 1)!!(2b+ 1)!!(κaκb + κa+b) − 2a+b+1(2a+ 2b+ 3)!!κa+b

in H2a+2b(Mg,n) up to boundary terms.
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