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Abstract

Given a hyperbolic surface with geodesic boundary S, the lengths
of a maximal system of disjoint simple geodesic arcs on S that
start and end at ∂S perpendicularly are coordinates on the Te-
ichmüller space T (S). We express the Weil-Petersson Poisson
structure of T (S) in this system of coordinates and we prove that
it limits pointwise to the piecewise-linear Poisson structure de-
fined by Kontsevich on the arc complex of S. At the same time,
we obtain a formula for the first-order variation of the distance
between two closed geodesics under Fenchel-Nielsen deformation.

Introduction

The Teichmüller space T (S) of a compact oriented surface S with
marked points is endowed with a Kähler metric, first defined by Weil
using Petersson’s pairing of modular forms. By the work of Wolpert
([Wol81], [Wol82] and [Wol85]), the Weil-Petersson Kähler form ωWP

can be neatly rewritten using Fenchel-Nielsen coordinates.
Algebraic geometers became interested in Weil-Petersson volumes of

the moduli space of curvesM(S) = T (S)/Γ(S) since Wolpert [Wol83a]
showed that the class of ωWP is proportional to the tautological class
κ1, previously defined by Mumford [Mum83] in the algebro-geometric
setting and then by Morita [Mor84] in the topological setting. The
reason for this interest relies on the empirical fact that many problems
in enumerative geometry of algebraic curves can be reduced to the in-
tersection theory of the so-called tautological classes (namely, ψ and κ)
on the moduli space of curves.

A major breakthrough in the 1980s and early 1990s was the discovery
(due to Harer, Mumford, Penner and Thurston) of a cellularization of
the moduli space of punctured Riemann surfaces, whose cells are indexed
by ribbon graphs (also called fatgraphs), that is finite graphs together
with the datum of a cyclic order of the half-edges incident at each vertex.
To spell it out better, if S is a compact oriented surface with distinct
marked points c1, . . . , cm ∈ S such that the punctured surface Ṡ =
S \ {c1, . . . , cm} has χ(Ṡ) < 0, then there is a homeomorphism between
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2 GABRIELE MONDELLO

M(S)×Rm
+ and the piecewise-linear spaceMcomb(S) of metrized ribbon

graphs whose fattening is homotopy equivalent to Ṡ.
By means of this cellularization, many problems could be attacked

using simplicial methods (for instance, the orbifold Euler characteristic
of M(S) [HZ86] [Pen88] and the virtual homological dimension of
the mapping class group Γ(S) [Har86]). A major success was also
Kontsevich’s proof [Kon92] of Witten’s conjecture [Wit91], which says
that the generating series of the intersection numbers of the ψ classes
on the compactified moduli spaces satisfies the KdV hierarchy of partial
differential equations. One of the key steps in Kontsevich’s proof was to
explicitly rewrite the ψ classes on each cell ofMcomb(S) in terms of the
affine coordinates, i.e. the lengths of the edges of the graph indexing
the cell.

A different approach to Witten’s conjecture was developed by Mirza-
khani [Mir07], by noticing that the intersection numbers appearing in
the generating series can be better understood as Weil-Petersson vol-
umes of the moduli space of hyperbolic surfaces with geodesic bound-
aries of fixed lengths. Generalizing a remarkable identity of McShane
[McS98] involving lengths of simple closed geodesics, she was able to
unfold the integral over M(S) to an integral over the space of couples
(Σ, γ), where Σ is a hyperbolic surface with geodesic boundary homo-

topy equivalent to Ṡ and γ ⊂ Σ is a simple closed geodesic, and then
to relate this space to the moduli spaces of hyperbolic surfaces home-
omorphic to Σ \ γ. The recursions she obtains are known as Virasoro
equations and (together with string and dilaton equation) are equivalent
to the KdV hierarchy.

In Mirzakhani’s approach, hyperbolic surfaces with boundary play a
key role as the recursion is really built on the process of cutting a surface
along a simple closed geodesic.

Back to the cellularization, there is not just one way to attach a
metrized ribbon graph to a Riemann surface. A first way is due to
Harer-Mumford-Thurston (and is described in [Har86] and [Kon92])
and uses existence and uniqueness of quadratic differentials with closed
horizontal trajectories on Σ and double poles of prescribed quadratic
residues at the punctures (see [Str84]). Another way to rephrase it
is the following: given a Riemann surface Σ with m marked points
c1, . . . , cm and positive numbers p1, . . . , pm, there exists a unique way to
give a metric g (with conical singularities) to the surface in its conformal
class and to dissect Σ into pointed polygons (Pi, ci), such that each

(Ṗi, g|Ṗi
) is isometric to a semi-infinite flat cylinder of circumference pi

with ci at infinity. The boundaries of the polygons describe a ribbon
graph G embedded in S and the lengths of the sides of the polygons
provide local affine coordinates for the cells indexed by the isomorphism
type of G (as unmetrized ribbon graph).
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TRIANGULATED RIEMANN SURFACES WITH BOUNDARY 3

Now, we are going to describe a second way to produce a ribbon
graph out of a punctured surface, which uses hyperbolic geometry and
which is due to Penner [Pen87] and Bowditch-Epstein [BE88] (see also
[ACGH] for a detailed explanation).

The uniformization theorem endows every compact or punctured Rie-
mann surface Σ̇ (homotopy equivalent to Ṡ) with χ(Σ̇) < 0 with a hy-
perbolic metric of finite volume, so that its punctures correspond to
cusps. In this case, a decoration of a punctured Riemann surface Σ̇ is a
choice of a horoball Bi at the i-th puncture for every i. If the radii pi of
the horoballs are sufficiently small, then the Bi’s are all disjoint and we
can consider the spine of the truncated surface Σp := Σ \⋃iBi, that is

the locus of points whose distance from the boundary
⋃

i ∂Bi is realized
by at least two paths. The wanted ribbon graph is given by this spine,
which is a one-dimensional CW-complex embedded in the surface with
geodesic edges. Mimicking what done with quadratic differentials, one
could choose the lengths of the edges of the spine as local coordinates.
This choice works well for a topological treatment, but for geometric
purposes there are more useful options.

A first interesting system of coordinates on the Teichmüller space of
decorated surfaces T (S)×Rm

+ (defined by Penner) is given by the lengths
{ãi}, where {αi} is a maximal system of arcs on S (see Section 1.7),
ãi(f : S → Σ) = ℓ(f(αi)∩Σp) and f(αi) is understood to be the unique
geodesic representative in its homotopy class. Beside its naturality, the
interest for these coordinates is also due to the following.

Theorem 0.1 ([Pen92]). Let {αi} be a maximal system of arcs on
the pointed surface S. The Weil-Petersson form ω on T (S) pulls back
on T (S)× Rm

+ to

−1

2

∑

t∈H

(dãi ∧ dãj + dãj ∧ dãk + dãk ∧ dãi)

where H is the set of ideal triangles in S \⋃i αi and (αi, αj , αk) are the
arcs bounding t, in the cyclic order compatible with the orientation of t.

On top-dimensional cells ofMcomb(S), the system of arcs dual to the
spine is maximal and so the theorem above expresses the restriction of
the Weil-Petersson form ω to maximal cells. This would be enough to
integrate all overMcomb(S) if we knew how to describe top-dimensional
cells in the ãi’s.

On the other hand, cells can be easily described in a second remark-
able system of coordinates. Penner’s simplicial coordinates associated
to the spine are the lengths of the horocyclic segments that are projec-
tions of edges of the spine. In these coordinates, cells look like straight
simplices but the lengths of the dual arcs cannot be easily expressed as
functions of their simplicial coordinates.
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To compute intersection numbers on a compactification of M(S),
Kontsevich [Kon92] integrates over simplices of maximal dimension in
Mcomb(S), even though he used Harer-Mumford-Thurston’s construc-
tion to produce the ribbon graph and the lengths of the edges as local
affine coordinates.

Clearly, these systems of coordinates are very different, but the in-
tegration schemes in [Pen92] and [Kon92] for volumes of M(S) are
the same as described above. The reason of this similarity relies on the
following observation.

Let S be a compact oriented surface with m boundary components.
The moduli space M∗(S) of hyperbolic surfaces Σ homeomorphic to
S together with a choice of a preferred point on each component of
∂Σ carries a “Weil-Petersson” symplectic structure (see [Wol83b] and
[Gol84]). Strictly related to the boundary length function L :M∗(S)→
Rm is the moment map L2/2 for the natural (S1)m-action on M∗(S)
(see [Mir07]), whose quotient is M(S). The symplectic reductions are
exactly the loci M(S)(p1, . . . , pm) ⊂ M(S) of hyperbolic surfaces with
boundaries of length p1, . . . , pm > 0, endowed with the Weil-Petersson
symplectic form.

By general considerations on the symplectic reduction, one can notice
that the (class of the) “symplectic form” Ω =

∑
p2

iψi used by Kontse-
vich represents the normalized limit of the Weil-Petersson form ω on
M(S)(p1, . . . , pm) as (p1, . . . , pm) diverges. Thus, Kontsevich also com-
puted suitably normalized Weil-Petersson volumes. On the other hand,
decorated surfaces can be thought of as Riemann surfaces with infini-
tesimal boundaries.

In this paper, we define a natural Poisson structure η on the Te-
ichmüller space of Riemann surfaces with boundary using the doubling
construction. Results of Wolpert [Wol83b] and Goldman [Gol84] im-
ply that the associated bivector field on T (S) has the form

(*) ηS = −
∑

i

∂

∂ℓi
∧ ∂

∂τi

where the sum ranges over a maximal system of disjoint simple closed
curves, that are not boundary components. As before, the symplectic
leaves of this Poisson structure are the loci T (S)(p1, . . . , pm) of sur-
faces with fixed boundary lengths p1, . . . , pm, endowed with the Weil-
Petersson symplectic structure (in [Gol06] it is shown that this happens
more generally for spaces of representations of π1(S) inside a Lie group).

Remark 0.2. As noted by the referee, if Σ is a compact hyperbolic
surface with no boundary, Wolpert’s formula (*) descends from the more
basic symplectic duality ω(∂/∂τξ ,−) = dℓξ and from Fenchel-Nielsen
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TRIANGULATED RIEMANN SURFACES WITH BOUNDARY 5

coordinates. It is not clear whether the next theorem can descend from
an analogous “duality” for hyperbolic surfaces with boundary.

Given a hyperbolic surface with geodesic boundary Σ, we can imme-
diately take its spine and so produce a ribbon graph with no need of
decorations. Clearly, if {αi} is a maximal system of arcs on S, then
the hyperbolic lengths {ai} defined as ai(f : S → Σ) = ℓ(f(αi)) are
coordinates on T (S) (Ushijima [Ush99]) and one can check that the
difference ai − aj limits to the ãi − ãj for all i, j as the pk’s converge to
zero. More interestingly, Luo [Luo07] showed that the lengths of the
projections of the edges of the spine to ∂S (which we will call “widths”)
are also coordinates, which in fact specialize to simplicial coordinates
for infinitesimal boundary lengths (under a suitable normalization).

Our goal is to rewrite the Weil-Petersson Poisson structure η in terms
of the ai’s. Our main result is the following.

Theorem. Let S be a compact oriented surface with m boundary
components C and let α = {α1, . . . , α6g−6+3m} be a maximal system of
arcs of S. The Weil-Petersson Poisson structure on T (S) at [f : S → Σ]
can be written as

ηS =
1

4

∑

C∈C

∑

yi∈f(αi∩C)
yj∈f(αj∩C)

sinh(pC/2− dC(yi, yj))

sinh(pC/2)

∂

∂ai
∧ ∂

∂aj

where pC = ℓC and dC(yi, yj) is the length of geodesic arc running from
yi to yj along f(C) in the positive direction.

The proof of the theorem above relies on the formula (∗) and on the
understanding of how the distance between two geodesics in a surface
R without boundary (we will then take R to be the double of Σ) varies
at first order, when we perform a Fenchel-Nielsen deformation. Let
us recall that the (right) Fenchel-Nielsen deformation along a simple
closed geodesic ξ of R is obtained by cutting R along ξ, letting the left
component slide forward of t and then reglueing the left with the right
part. According to Thurston, it is called “right” because one jumps to
the right when one crosses the fault line. We call ∂/∂τξ its associated
vector field on T (R).

The following result (which we state in a simplified version, for brevity)
might be interesting on its own: a more complete statement (Theo-
rem 3.7) can be found in Section 3.5. It should be compared to Theo-
rem 3.4 of [Wol83b].

Theorem. Let R be a hyperbolic surface without boundary and δ ⊂ R
a simple geodesic arc running from y1 ∈ γ1 to y2 ∈ γ2 that realizes the
distance between the geodesics γ1 and γ2 in its homotopy class. Assume
that ξ does not intersect δ and that no portion of ξ is homotopic to δ.
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6 GABRIELE MONDELLO

Then
∂

∂τξ
(h) = c1 + c2

where ci =
∑

xi∈ξ∩γi

ci(xi) and

ci(xi) =





sgn(d(yi, xi))
exp[−|d(yi, xi)|]

2
sin(νxi

) if γi is open

sinh(pi/2− d(yi, xi))

2 sinh(pi/2)
sin(νxi

) if γi is closed

where h is the length of δ, pi is the length of γi (if γi is closed), νi is the
angle of intersection at xi between ξ and γi. If γi is open, then d(yi, xi)
is the distance with sign between yi and xi along γi; if γi is closed, then
we set d(yi, xi) ∈ (0, pi).

As suggested by the referee, it seems that the same methods can be
employed to obtain a formula for the second twist derivative. Though
reasonable, the upshot looks quite complicated, so we will not pursue
this calculation here.

As an easy corollary of our main theorem, we obtain that Kontsevich’s
piecewise-linear form Ω on Mcomb(S) that represents the class

∑
i p

2
iψi

is the pointwise limit (under a suitable normalization) of twice the Weil-
Petersson form 2ω(p1,...,pm) on M(S)(p1, . . . , pm) as (p1, . . . , pm) −→
+∞.

Quite recently, Carfora-Dappiaggi-Gili [CDG06] have found a dif-
ferent procedure to relate decorated hyperbolic surfaces, “decorated”
flat surfaces with conical points and hyperbolic surfaces with geodesic
boundary components. It would be interesting to understand how it
relates to the constructions that we employ here.

Plan of the paper. Section 1 deals with preliminary results on Rie-
mann surfaces S with boundary, the construction of the real double dS
and intrinsic metrics. We recall the definition of Teichmüller space T (S)
and Weil-Petersson form, and we establish a link between the Poisson
structure of T (dS) and that of T (S). We also recall the definition of
arc complex of a surface with boundary.

In Section 2, we describe the construction of the spine and we illus-
trate the results of Ushijima and Luo, who define two different system
of coordinates on T (S) using triangulations of S, and we show how to
decompose T (S) into ideal cells in a Γ(S)-equivariant way. We compare
their theorems to previous results of Penner, who proved the analogous
statements in the case of decorated Riemann surfaces, and we show that
Ushijima and Luo’s coordinates specialize to Penner’s ones.
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TRIANGULATED RIEMANN SURFACES WITH BOUNDARY 7

In Section 3, we review the Fenchel-Nielsen deformation and we use
techniques of Wolpert to compute the first-order variation of the dis-
tance between two geodesics.

In Section 4, we establish our main result and write the Weil-Petersson
Poisson structure in the coordinates {ai = ℓαi

} for every maximal sys-
tem of arcs {αi} on S, using Wolpert’s formula and the result of Sec-
tion 3. As a corollary, we deduce that Kontsevich’s PL representative
for Ω is the pointwise limit of the Weil-Petersson form, when the bound-
ary components become infinitely large. We also check that our result
agrees with Penner’s computations for decorated surfaces.

Appendix A collects a few formulae of elementary hyperbolic trigonom-
etry, that are used in the rest of the paper.

Acknowledgements. I would like to thank Enrico Arbarello, William
Goldman, Curtis McMullen, Tomasz Mrowka, Robert Penner and Scott
Wolpert for useful discussions. In particular, I thank Francesco Bon-
sante for suggesting to me to use Wolpert’s techniques in the proof of
Theorem 3.3 and for many fruitful conversations. Finally, I am grateful
to an anonymous referee for carefully reading this paper and for helpful
remarks and comments.

1. Riemann surfaces with boundary

1.1. Double of a surface with boundary. A compact surface with
nodes and boundary is a compact Hausdorff topological space R with
countable basis that is locally homeomorphic either to C, or to {z ∈
C | Im(z) ≥ 0} or to {(z,w) ∈ C2 | zw = 0}. Points of R that have
a neighbourhood of the first type are said smooth; in the second case,
points on the real line are said to belong to the boundary; in the third
case, the point {z = w = 0} is called a node. We will always assume
that ∂R is homeomorphic to a disjoint union of b copies of S1, that R
is connected (unless differently specified) and that R is always endowed
with the unique differentiable structure away from the nodes.

The (arithmetic) genus of such a connected surface is g = 1+(ν−χ−
b)/2, where χ is the Euler characteristic, b is the number of boundary
components and and ν is the number of nodes.

Consider a compact oriented surface Σ of genus g with boundary
circles C1, . . . , Cn (endowed with the orientation induced by Σ) and let

c1, . . . , cm ∈ Σ be distinct smooth marked points. We will also write Σ̇
for the punctured surface Σ \ {c1, . . . , cm}.

Call Σ′ the oriented surface obtained from Σ switching the orienta-
tion and similarly denote by C ′

1, . . . , C
′
n its boundary components and

c′1, . . . , c
′
m its marked points. In general, for every point x ∈ Σ call x′

the corresponding point in Σ′.
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8 GABRIELE MONDELLO

The double of Σ is the compact oriented surface dΣ of arithmetic genus
2g + (n + m) − 1 without boundary obtained from Σ ⊔ Σ′ identifying
x ∼ x′ for every x ∈ ∂Σ ∪ {c1, . . . , cm}. Clearly, dΣ is connected if
n+m > 0 and it has nodes if m > 0. Call ι : Σ →֒ dΣ and ι′ : Σ′ →֒ dΣ
the natural inclusions.

The surface dΣ has a natural orientation-reversing involution σ which
exchanges ι(Σ) with ι′(Σ′) and fixes ι({c1, . . . , cm}) and ι(∂Σ) pointwise.

Suppose now that dΣ has a complex-analytic structure J , meaning
that the nodes of dΣ have a neighbourhood biholomorphic to {(z,w) ∈
C2 | zw = 0, |z| < ε, |w| < ε}. We say that J is compatible with the
involution σ if the homeomorphism σ : dΣ → dΣ is anti-holomorphic,
or in other words σ∗J = −J . This implies that ι(∂Σ) is a totally real
submanifold (and the ι(cj)’s are real points) of (dΣ, J). Conversely,
an atlas of charts on Σ, which are holomorphic on Σ◦ := Σ \ ∂Σ and
map the boundary of Σ to R ⊂ C and the marked points to 0 ∈ C,
is the restriction through ι of a complex structure on dΣ compatible
with σ. In this case, we will say that (Σ, ι∗J) is a Riemann surface with
boundary and we will denote it just by Σ when the complex structure is
understood.

A morphism between Riemann surfaces with boundary is a contin-
uous application Σ1 → Σ2 that maps ∂Σ1 to ∂Σ2 in a real-analytic
way and that restricts to a holomorphic map Σ◦

1 → Σ◦
2 on the interior,

preserving the marked points. Equivalently, it is the restriction of a
holomorphic map between the doubles dΣ1 → dΣ2 that commutes with
the σ-involutions.
1.2. Metrics on a Riemann surface with boundary. We can as-
sociate two natural metrics to a smooth Riemann surface Σ of genus g
with n boundary components and m marked points, if χ(Σ̇) < 0 (which
actually coincide if n = 0).

This is a consequence of the uniformization theorem, which says that
the universal cover of a Riemann surface is biholomorphic either to
the Riemann sphere CP1, or to the complex plane C or to the upper
half-plane H. The crucial fact is that H has a complete Hermitean
metrics of constant curvature (the hyperbolic metric y−2dz dz̄) that is
preserved by all analytic automorphisms. Similarly, the Fubini-Study
metric on CP1 is complete, of constant positive curvature and invariant
under automorphisms that preserve the real line RP1. The flat metric
dz dz̄ on C is canonically defined up to rescaling. We call these metrics
standard.

Back to Σ, the first natural metric is defined considering Σ̇◦ as an open

Riemann surface: excluding the case Σ ∼= CP1, the universal cover ˜̇Σ◦ is
isomorphic to C if (g, n,m) = (0, 0, 1), (0, 0, 2), (1, 0, 0), and to H other-

wise. In the last case, the covering map ˜̇Σ◦ → Σ̇◦ determines a holonomy

representation ρ : π1(Σ̇
◦) →֒ Aut(˜̇Σ◦) = Iso( ˜̇Σ◦), uniquely defined up to
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TRIANGULATED RIEMANN SURFACES WITH BOUNDARY 9

inner automorphisms of Aut( ˜̇Σ◦). The standard Hermitean metric on
˜̇Σ◦ descends to a complete Hermitean metric on ˜̇Σ◦/Im(ρ) ∼= Σ̇◦.

The second natural metric on Σ is obtained by restricting the stan-
dard metric on the double dΣ via the inclusion ι. The universal cover
of (each connected component of) the smooth locus dΣsm of dΣ is iso-

morphic to H if (g, n+m) 6= (0, 0), (0, 1), (0, 2), (1, 0). In these cases, Σ̇
inherits a complete Hermitean metric of curvature −1 with totally geo-
desic boundary ∂Σ, which is called the intrinsic metric. Under a suitable
normalization (which fixes the curvature or the area), it is uniquely de-

termined by the isomorphism class of Σ̇. Both metrics acquire cusps at
the marked points.

1.3. The extended Teichmüller space. Fix a compact oriented smooth
surface S of genus g with boundary components C1, . . . , Cn and let Σ be
a smooth Riemann surface, possibly with boundary and marked points.
An S-marking of Σ is a smooth map f : S −→ Σ that may contract
boundary components to marked points such that fint : S◦ −→ Σ̇◦ is an
orientation-preserving diffeomorphism.

The extended Teichmüller space of S is the space T̃ (S) the space of
equivalence classes of S-marked Riemann surfaces

T̃ (S) := {f : S −→ Σ |Σ Riemann surface}/ ∼
where f : S −→ Σ is an S-marking and the equivalence relation ∼
identifies f and f ′ : S

∼−→ Σ′ if and only if there exists an isomorphisms
of Riemann surfaces h : Σ

∼−→ Σ′ such that (f ′int)
−1 ◦ h ◦ fint is isotopic

to the identity. The Teichmüller space T (S) ⊂ T̃ (S) is the locus of
those class of markings f : S → Σ which do not shrink any boundary
component to a point.

There are several ways to put a topology on T̃ (S). For instance,
we have seen in Section 1.2 that a complex structure on Σ determines
and is determined by a complete hyperbolic metric on Σ̇ with totally
geodesic boundary. The universal cover of Σ̇◦ has a developing map
into H and so a holonomy map π1(Σ̇

◦) → PSL2R is induced. Pulling

it back through the marking fint : S◦ → Σ̇◦, we get a global injection
(originally due to Fricke)

T̃ (S)
�

� // Hom(π1(S),PSL2R)/PSL2R

which is independent of the choices made: thus, we can endow T̃ (S)
with the subspace topology.

Hence, the Teichmüller space of S can be thought of as the space of
complete hyperbolic metrics on S with totally geodesic boundary (up

to isotopy). Points in T̃ (S) \ T (S) correspond to S-marked hyperbolic
surfaces in which some boundary components of S are collapsed to cusps
of Σ.

XXX XXX



10 GABRIELE MONDELLO

Thus, we have a natural boundary-lengths map

L : T̃ (S) // Rn
≥0

[f : S → (Σ, g)] � // (ℓC1
(f∗g), . . . , ℓCn(f∗g))

If we call T̃ (S)(p1, . . . , pn) the submanifold L−1(p1, . . . , pn), then T (S) =

T̃ (S)(Rn
+).

Define the mapping class group Γ(S) as π0Diff+(S), that is the group
of orientation-preserving diffeomorphisms of S that send each boundary
component to itself, up to isotopy.

The group Γ(S) acts properly and discontinuously on T̃ (S): its quo-

tient M̃(S) := T̃ (S)/Γ(S) is the extended moduli space of Riemann
surfaces with boundary. The moduli space itself M(S) = T (S)/Γ(S) ⊂
M̃(S) is naturally an orbifold.
1.4. Deformation theory of Riemann surfaces with boundary.

Let S be a smooth compact Riemann surface with boundary and χ(S) <

0, and let [f : S → Σ] ∈ T̃ (S). We want to understand the deformations
of Σ as a Riemann surface with boundary (and possibly cusps). We refer
to [DM69], [Ber74] and [Ber75] for a more detailed treatment of the
case of surfaces with nodes.

A first way to approach the problem is to pass to its double dΣ.
Suppose first that Σ has no cusps and so dΣ is smooth.

The space of first-order deformations of complex structure on the
surfaces dΣ can be identified to the complex vector space H(dΣ) of
harmonic Beltrami differentials. If g is the hyperbolic metric on dΣ
and Q(dΣ) is the space of holomorphic quadratic differentials on dΣ
(i.e. holomorphic sections of (T ∗

dΣ)⊗2), then the elements of H(dΣ) are
(0, 1)-forms µ with values in the tangent bundle of Σ which are harmonic
with respect to g, so that they can be written as µ = ϕ/g, for a suitable
ϕ ∈ Q(dΣ). Thus, H(dΣ) can be identified to the dual of Q(dΣ).

To construct complex-analytic charts of T (dS) (or of M(dS)), one
can use a method mostly due to Grothendieck and whose details can
be found in [AC] and in [ACGH]. It relies on the fact that smooth
compact Riemann surfaces, with negative Euler characteristic, can be
embedded through the tricanonical linear system in a complex projective
space. Thus, all holomorphic families of such curves can be pulled back
from a smooth open subset V of a Hilbert scheme and a semi-universal
deformation D(dΣ) of dΣ (which means that the Kodaira-Spencer map
is an isomorphism at every point of D(dΣ)) can be obtained just taking
a suitable slice of V. After restricting the family over a ball, D(dΣ) gives
an complex-analytic orbifold chart for [dΣ] ∈ M(dS) and (choosing a
smooth trivialization of the family) an honest chart for a neighbourhood
of any [f : dS → dΣ] ∈ T (dS).

Because σ acts on D(dΣ) as an antiholomorphic involution, then the
first-order deformations of complex structure on dS compatible with
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TRIANGULATED RIEMANN SURFACES WITH BOUNDARY 11

the σ-involution are parametrized by the real subspace H(dΣ)σ , dual to
Q(dΣ)σ (which can be identified to the real vector space of holomorphic
quadratic differentials on Σ, whose restriction to ∂Σ is real).

If Σ has k cusps, then dΣ has k nodes ν1, . . . , νk and the semi-universal
deformation D(dΣ) (and so the orbifold chart for M(dS) around [dΣ])
can still be constructed slicing the Hilbert scheme of curves embedded
using the third power of their dualizing line bundle.

If S → D(dΣ) is the tautological family, one can find an open subset
Ui ⊂ S with local analytic coordinates zi, wi such that the deformation
of the node νi looks like {ziwi = ti}, where {t1, . . . , tk, s1, . . . , sN} are a
system of coordinates at [dΣ] on D(dΣ).

The smooth divisor Ni = {ti = 0} ⊂ D(dΣ) parametrizes those

deformations of dΣ in which the node νi survives. Call N =
⋂k

i=1Ni.
As a consequence, the space of first-order deformations of dΣ is given

by

0 // TdΣN // TdΣD(dΣ) // NN/D(dΣ) // 0

H(dΣ)

∼=

OO

Ck

∼=

OO

where in this case H(dΣ) is the space of harmonic Beltrami differentials
on dΣ that vanish at the nodes and Ck is spanned by the ∂/∂ti’s.

Consequently, the space of first-order deformations of Σ is given by

0 // H(dΣ)σ // TΣD(Σ) //
Rk // 0

where Rk = (Ck)σ. However, only the directions that project to (R≥0)
k ⊂

Rk (corresponding to t1, . . . , tk ≥ 0) belong to the tangent cone. In fact,
being interested in the deformations of dΣ that preserve the symmetry
σ, we can choose wi = zi, and so ti = ziwi = |zi|2 ≥ 0.

From a different perspective (using harmonic maps), it follows from

[Wol91] that the tangent cone to T̃ (S) at [f : S → Σ] can be parametrized
by the space Q(Σ) of quadratic differentials, which are holomorphic on

Σ̇, real along the boundary components and that look like (a2
−2z

−2 +

a−1z
−1 + . . . )dz2 at the cusps, with a−2 ≤ 0.

Both approaches show that T̃ (S) can be made into a real-analytic
smooth variety with corners.

From a global point of view, the Teichmüller space T (S) has a natural
embedding D : T (S) →֒ T (dS) onto the real-analytic submanifold of
dS-marked Riemann surfaces that carry an anti-holomorphic involution
isotopic to σ.

Remark 1.1. The inclusion above can be extended to an embed-
ding D : T (S) →֒ T (dS), where T (which contains T̃ ) is the Deligne-
Mumford bordification of T . We will not deal with T : for further
details, see also [Loo95] or [ACGH].
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1.5. The Weil-Petersson form. Let S be a smooth compact Rie-
mann surface with boundary with χ = χ(S) < 0 and consider the

universal family π : S −→ T̃ (S) over the Teichmüller space of S. The
fibers of π are S-marked surfaces endowed with a metric of constant
negative curvature −1, that is the vertical tangent bundle Tπ over S is
endowed with a Hermitean metric g.

Definition 1.2. The Weil-Petersson bivector field on T̃ (S) at [f :
S → (Σ, g)] is given by

ηS(ϕ,ψ) := Im

∫

Σ

ϕψ̄

g

for every ϕ,ψ ∈ Q(Σ) ∼= T ∗
[f ]T̃ (S).

Clearly, we can also easily define the Weil-Petersson 2-form ωS on
T (S) at [f : S → (Σ, g)] (i.e. where Σ acquires no cusps) as

ωS(µ, ν) := Im

∫

Σ
µν̄ · g

for µ, ν ∈ H(Σ) ∼= T[f ]T (S).

Remark 1.3. The divergence occurring when Σ acquires cusps, that
is when dΣ acquires nodes, was first shown by Masur ([Mas76]) using
local coordinates due to Earle and Marden. As one can notice below,
the Weil-Petersson form is smooth in Fenchel-Nielsen coordinates. Thus,
the differentiable structure ofMg,n underlying the complex-analytic one
is different from the Fenchel-Nielsen differentiable structure; a phenom-
enon that was investigated more deeply by Wolpert ([Wol85]).

There is another way to describe the Weil-Petersson form on T̃ (S). A
pair of pants decomposition of S determines Fenchel-Nielsen coordinates
ℓ1, . . . , ℓ3g−3+n ∈ R+, τ1, . . . , τ3g−3+n ∈ R and also pi = ℓCi

≥ 0 for
every boundary component Ci of S.

Theorem 1.4 ([Wol83b], [Gol84]). The Weil-Petersson 2-form can
be written as

ωS =

3g−3+n∑

i=1

dℓi ∧ dτi

on T̃ (S), with respect to any pair of pants decomposition.

Remark 1.5. Literally, Wolpert proved Theorem 1.4 for closed Rie-
mann surfaces, but an inspection of his paper [Wol83b] shows that the
statement holds also for Riemann surfaces with boundary.

In [Gol84], Goldman defines the Weil-Petersson symplectic form on
the representation variety of a closed surface. The same definition and
treatment can be extended to the representation variety of nonclosed
surfaces with or without prescribed holonomy along the boundary com-
ponents (see, for instance, [Gol06]).
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As a consequence, if S is a closed surface, then (T (S), ωS) is a sym-
plectic manifold. If S has n boundary components, then ωS is degener-
ate on T̃ (S), but (T̃ (S)(p1, . . . , pn), ωS) is a symplectic manifold for all
p1, . . . , pn ≥ 0.

1.6. Double of a Riemann surface and Weil-Petersson Poisson

structure. Consider a smooth compact hyperbolic Riemann surface S
of genus g with boundary components C1, . . . , Cn and let dS be its
double.

It follows directly from the definition that the embeddingD : T (S) →֒
T (dS) induced by the doubling construction is Lagrangian. Hence, we
relate the Weil-Petersson structures on T (S) and T (dS) in a different
way.

There is a natural map πι : T (dS) −→ T (S) induced by the inclu-

sion ι : S →֒ dS that associates to [f : dS
∼−→ (R, g)] the S-marked

hyperbolic subsurface of R with geodesic boundary isotopic to f(ι(S)).

Call TT (dS)
∣∣∣
T (S)

the restriction of the tangent bundle of T (dS)

through D.

Definition 1.6. Set η̂S := (πι)∗

(
ηdS

∣∣∣
T (S)

)
, where ηdS is the Weil-

Petersson bivector field on T (dS) and (πι)∗ : TT (dS)
∣∣∣
T (S)

−→ TT (S).

Proposition 1.7. The bivector field η̂S coincides with ηS on T (S)

and we can extend η̂S to T̃ (S) by setting it equal to ηS, so that they

define a Poisson structure on T̃ (S), whose symplectic leaves are the

fibers of L : T̃ (S)→ Rn
≥0.

Proof. The bivector η̂S defines a Poisson structure on T (S) because it
is obtained pushing ηdS forward and ηdS defined a Poisson structure on
T (dS). The equality ηS = η̂S follows from Wolpert’s work [Wol83b].

To verify this second claim, pick a pair of pants decomposition for S.
On T (dS) we have Fenchel-Nielsen coordinates ℓi, τi, ℓ

′
i, τ

′
i for 1 ≤ i ≤

3g − 3 + n plus (pj , τ̂j), where pj = ℓι(Cj ) and τ̂j is the twist parameter

of ι(Cj). By Theorem 1.4 we have

ηdS = −
3g−3+n∑

i=1

(
∂

∂ℓi
∧ ∂

∂τi
− ∂

∂ℓ′i
∧ ∂

∂τ ′i

)
−
∑

j

∂

∂pj
∧ ∂

∂τ̂j

because switching orientation changes the sign of the twist. Hence

(πι)∗

(
ηdS

∣∣∣
T (S)

)
= −

3g−3+n∑

i=1

∂

∂ℓi
∧ ∂

∂τi

which is vertical with respect to L and whose restriction to each fiber of
L is dual to the Weil-Petersson form according to Theorem 1.4. q.e.d.
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14 GABRIELE MONDELLO

1.7. The complex of arcs. Let S be a smooth compact Riemann sur-
face with boundary components C1, . . . , Cn and marked points c1, . . . , cm.
Assume n+m > 0.

An arc on S is an embedded unoriented path with endpoints in
∂S ∪ {c1, . . . , cm}, which is homotopically nontrivial relatively to ∂S ∪
{c1, . . . , cm}. A k-system of arcs is a set of k arcs that are allowed to
intersect only at the marked points of S, and which are pairwise nonho-
motopic (relatively to ∂S ∪ {c1, . . . , cm}). We will always consider arcs
and systems of arcs up to isotopy of systems of arcs.

Definition 1.8. The complex of arcs A(S) of S is the simplicial
complex, whose k-simplices are (k + 1)-systems of arcs on S. Maximal
simplices of A(S) are called triangulations.

The complex of arcs was introduced by Harer in [Har86] (see also
[Loo95]).

A systems of arcs α = {α0, . . . , αk} ∈ A(S) fills if S \ ⋃i αi is a
disjoint union of discs; α quasi-fills if S\⋃i αi is a disjoint union of discs,
pointed discs and annuli that retract onto a boundary component. Call
A
◦(S) ⊂ A(S) the subset of systems that quasi-fill and A∞(S) ⊂ A(S)

the subset of those that do not: A∞(S) is a subcomplex of A(S). Write
|A◦(S)| for |A(S)| \ |A∞(S)|, which is open and dense inside |A(S)|.

Also, define |A◦(S)|R := |A◦(S)| × R+. The space of ribbon graphs
Mcomb(S) mentioned in the introduction is homeomorphic to |A◦(S)|R/Γ(S):
given a system of arcs α that quasi-fills, we can construct a ribbon graph
embedded in S by drawing edges transversely to the arcs of α. In this
duality, the weight of an arc corresponds to the length of its dual edge
in the ribbon graph.

Remark 1.9. If Σ is a hyperbolic surface, by an arc α on Σ we will
usually mean the unique geodesic arc in the isotopy class of α that meets
∂Σ perpendicularly, unless differently specified.

2. Triangulations and spines

Let S be a compact hyperbolic Riemann surface with nonempty
boundary. For every arc α on S, we have the length function ℓα :
T̃ (S) → (0,+∞] that associates to [f : S → (Σ, g)] the length of the
arc f(α).

Definition 2.1. The s-length of the arc α is s(α) = cosh(ℓα/2).

Remark 2.2. The definition above is due to Ushijima [Ush99] up to

a factor
√

2.

As a triangulation of a hyperbolic surface produces a dissection into
hyperbolic hexagons with geodesic edges and right angles, we have the
following.
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Proposition 2.3 ([Ush99]). Let S be a compact hyperbolic Riemann
surface with boundary. Fix a triangulation α = {α1, . . . , α6g−6+3n} of

S. The map s(α) : T (S)→ R
6g−6+3n
+ is a real-analytic diffeomorphism.

Every S-marked hyperbolic surface (Σ, g) has a preferred system of
arcs, that is actually a triangulation for most surfaces. It can be equiv-
alently obtained using the convex hull construction [Ush99] (following
[Pen87], [EP88] and [Koj92]) or using the spine [BE88]. We follow
this second way.

2.1. Spine of a Riemann surface with boundary. Let Σ be a com-
pact hyperbolic Riemann surface with nonempty boundary, and possibly
cusps.

We define the valence ν(u) of a point u ∈ Σ which is not a cusp as the
number of shortest geodesics joining u to ∂Σ that realize the distance
d(u, ∂Σ). Clearly ν(u) ≥ 1 (the constant geodesic being allowed).

To define the valence of a cusp c, consider a geodesic γ ending in c.
Fix a small embedded horoball B at c and define the reduced length
ℓBγ of γ as the length of the truncated geodesic γ \ B. The shortest
geodesics ending at c are the nonconstant geodesics joining c with ∂Σ,
which minimize ℓB . Different choices of B change the reduced length
by a constant term, so that shortest geodesics ending at a cusp are
well-defined. Thus, we can say that the valence ν(c) of a cusp c is the
number of shortest geodesics ending at c.

v1

v2

v3

βe1

βe2

βe3

c

Define the loci N := {u ∈ Σ̇ | ν(u) = 2} and V := {u ∈ Σ | ν(u) ≥
3}∪{cusps}. Notice that N is a finite disjoint union N =

∐
e∈Efin

βe of

simple open geodesic arcs (edges) and V is a finite collection of points
(vertices).

Definition 2.4. The spine Sp(Σ) of Σ is the 1-dimensional CW-
complex embedded in Σ given by V ∪N .

Let e ∈ Efin be an edge of the spine of Σ. Pick any point u ∈ βe and
let γ1 and γ2 be the two shortest geodesics that join u with ∂Σ. The
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16 GABRIELE MONDELLO

isotopy class of the unoriented arc with support γ1 ∪ γ2 is called dual
to βe. We will denote by αe the geodesic arc dual to βe that meets the
boundary perpendicularly.

Pick B ⊂ Σ a small embedded horoball at the cusp c such that
B ∩ V = {c} and call sectors of the cusp c the connected components
of B \ Sp(Σ). Clearly, sectors of c bijectively correspond to shortest
geodesics ending in c. Let E∞ be the set of sectors of all cusps in Σ.
For every e ∈ E∞, call αe the corresponding shortest geodesic.

Thus, we can attach to Σ a preferred system of arcs Sp∗(Σ) :=
Sp∗

fin(Σ)∪ Sp∗
∞(Σ) ∈ A(Σ), where Sp∗

fin := {αe | e ∈ Efin} and Sp∗
∞ :=

{αe | e ∈ E∞}. Call E := Efin ∪ E∞ and notice that Σ \⋃e∈E αe is a
disjoint union of discs, so that Sp∗(Σ) really belongs to A

◦(Σ). Also,
Σ \ ⋃e∈Efin

αe is a disjoint union of discs and pointed discs, so that

Sp∗
fin(Σ) belongs to A

◦(Σ) too.

αe′

αe1

αe2

αe3

c

Figure 1. αe′ is the shortest geodesic outgoing from the
unique sector of the cusp c.

2.2. Spine of a truncated surface. Let Σ be a compact hyperbolic
surface with boundary circles C1, . . . Cn and cusps c1, . . . , cm. Fix p =
(p1, . . . , pm) a vector of nonnegative real numbers.

For small ε > 0 let Σεp be the truncated surface obtained from Σ by

removing the open horoball of radius εpi at the i-th cusp (which will be
disjoint for ε small enough).

On Σεp there are well-defined boundary distance and valence function.

Define Sp(Σεp) to be the spine of Σεp.

Lemma 2.5. The closure of limε→0 Sp(Σεp) is a 1-dimensional CW-

complex embedded in Σ, which actually coincides with the spine Sp(Σ).

Proof. In fact, for every point u ∈ Σ which is not a cusp the restriction
of the boundary distance function d(−, ∂Σεp) : Σεp → R to a fixed small
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neighbourhood of u stabilizes as ε→ 0 and coincides with the restriction
of d(−, ∂Σ) : Σ → R ∪ {∞}. So that the valence function νεp also

stabilizes. As Sp(Σεp) is a 1-dimensional CW-complex for positive ε,
the same holds for the limit. Thus, in this case, the limit is independent
of the choice of p. q.e.d.

We attach Σεp the system of arcs dual to the spine Sp∗(Σεp) ∈
A
◦(Σεp). For ε small, Sp∗(Σεp) coincides with Sp∗(Σ), so they define

the same arc system in A
◦(Σεp) ∼= A

◦(Σ).

2.3. Spine of a decorated surface. Let Σ be a hyperbolic surface
with cusps c1, . . . , cm and no boundary circles. Choose a nonzero vec-
tor of nonnegative numbers p = (p1, . . . , pm) and denote by Σεp the
truncated surface.

As the geodesics that realize the minimum distance from the bound-
ary meet the horocycles perpendicularly, it is easy to see that d(u, ∂Σεp) =

d(u, ∂Σε′p)+log(ε′/ε) for every u ∈ Σεp∩Σε′p. Thus, the valence ν does

not depend on ε (when it is defined), which essentially proves the fol-
lowing lemma.

Lemma 2.6. The homeomorphism type of Sp(Σεp) stabilizes when
ε→ 0.

We call Sp(Σ, p) the closure inside Σ of limε→0 Sp(Σεp). Following

Section 2.1, let Efin be the set of edges of Sp(Σ, p) and E∞ the set
of sectors of cusps ci with pi = 0. Define analogously Sp∗(Σ, p) :=
Sp∗

fin(Σ, p) ∪ Sp∗
∞(Σ, p) ∈ A

◦(Σ).

Definition 2.7 ([Pen87]). A decorated surface is a couple (Σ, p)
where Σ is a hyperbolic surface with m cusps and no boundary circles,
and p = (p1, . . . , pm) is a nonzero vector of nonnegative numbers.

Notice that Sp(Σ, p), Sp∗(Σ, p) and Sp∗
fin(Σ, p) depend only on the

choice of a projective class [p] ∈ (Rm
≥0 \ {0})/R+

∼= ∆m−1. Moreover,
the i-th cusp is a vertex of the spine if and only if pi = 0.

2.4. Γ-equivariant cellular decomposition of T (S). Let α be a tri-
angulation of a compact hyperbolic surface Σ with nonempty boundary
(and possibly cusps).

Let −→αi and −→αj be two distinct oriented arcs whose supports belong to
α and which point toward the boundary component C. Define d(−→αi ,

−→αj)
to be the length of the path along C that runs from the endpoint of −→αi to
the endpoint of −→αj in the positive direction (according to the orientation
induced on C). Clearly, d(−→αi ,

−→αj)+d(
−→αj ,
−→αi) = ℓC , which is actually zero

if C is a cusp.
Now, let −→αi,

−→αj ,
−→αk the oriented arcs that bound a chosen connected

component t of Σ \ ⋃α∈α
α. Assume that (−→αi,

−→αj ,
−→αk) are cyclically
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18 GABRIELE MONDELLO

ordered according to the orientation induced by t. Define

wα(−→αi) :=
1

2
(d(−→αi ,

←−αj) + d(−→αk,
←−αi)− d(−→αj ,

←−αk)) and

wα(αi) := wα(−→αi) + wα(←−αi)

where ←−α is obtained by reversing the orientation of −→α .

Definition 2.8. Given an arc α of the triangulation α ∈ A(Σ), we
call wα(α) the width of α with respect to α.

Remark 2.9. Luo [Luo07] used the term “E-invariant” for the width.

Proposition 2.10. With the notation above,

sinh(wα(−→αi)) =
s(αj)

2 + s(αk)
2 − s(αi)

2

2s(αj)s(αk)
√
s(αi)2 − 1

Proof. We prove the statement in the case when wα(−→αr) ≥ 0 for
r = i, j, k. The other cases can be treated similarly. We will denote by
ar the length of αr and by fr the orthogonal projection of u on the side
of H facing αr for r = i, j, k (see Figure 2).

zi

yi

mi

fi

zj

yj

mj

fj

zk

yk

mk

fk

u
γi

γj

γk

Figure 2. Geometry of the hexagon t.

Call γi the angle m̂i u fk = f̂j umi and define analogously γj and γk.
Notice that γi +γj +γk = π. As (mj yj zk mk u) is a pentagon with four
right angles, Lemma A.3 gives

cosh(
⌢
yjzk) =

cosh(aj/2) cosh(ak/2) + cos(γj + γk)

sinh(aj/2) sinh(ak/2)
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As (zi yi zj yj zk yk) is an hexagon with six right angles, by Lemma A.4
we have

cosh(
⌢
yjzk) =

cosh(aj) cosh(ak) + cosh(ai)

sinh(aj) sinh(ak)
=

=
cosh(aj) cosh(ak) + cosh(ai)

4 sinh(aj/2) sinh(ak/2) cosh(aj/2) cosh(ak/2)

so that cosh(aj/2) cosh(ak/2)+cos(γj+γk) =
cosh(aj) cosh(ak) + cosh(ai)

4 cosh(aj/2) cosh(ak/2)
.

As (mi yi fk u) is a quadrilateral with three right angles, then part
(a) of Lemma A.2 gives

sinh(ai/2) sinh(
⌢
yifk) = cos(γi) = − cos(γj + γk)

Because wα(−→αi) =
⌢
yifk, we deduce

cosh(aj/2) cosh(ak/2)−sinh(ai/2) sinh(wα(−→αi)) =
cosh(aj) cosh(ak) + cosh(ai)

4 cosh(aj/2) cosh(ak/2)
.

From s(αr) = cosh(ar/2), we get cosh(ar) = 2s(αr)
2−1 and sinh(ar/2) =√

s(αr)2 − 1. Substituting inside the expression above, we get the
wanted result. q.e.d.

Remark 2.11. As a byproduct of the proof above, we have also ob-
tained that

cos(γi) =
s(αj)

2 + s(αk)
2 − s(αi)

2

2s(αj)s(αk)

Other length functions that are sometimes useful are the b-lengths: for
every hexagon in Σ \ ⋃i αi, the b-lengths are the lengths of the edges
lying on a boundary component. In Figure 2, the b-length bt,i is the
length of the path from yj to zk passing through fi. Using Lemma A.4,
we have

cosh(bt,i) =
cosh(aj) cosh(ak) + cosh(ai)

sinh(aj) sinh(ak)

Fixed a triangulation, the set of all b-lengths is too large to be a system
of coordinates, but Ushijima proved [Ush99] that their relations are
generated by homogeneous quadratic ones in their hyperbolic cosines.

If we deal with the system of arcs Sp∗
fin(Σ) instead of a general tri-

angulation, we can define the widths even if Sp∗(Σ) is not a maximal
system.

Consider an arc αe with e ∈ Efin, choose an orientation −→αe of αe and
view −→αe as pointing upwards. For every point u ∈ βe, call P−→αe

(u) the
projection of u to the boundary component pointed by −→αe.
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Call wsp(
−→αe) the length (with sign) of the boundary arc that runs

from the endpoint of −→αe leftward to the projection P−→αe
(vl) of the left

endpoint vl of βe. Define wsp(αe) := wsp(
−→αe) + wsp(

←−αe).

Remark 2.12. The width wsp(αe) is always positive, but wsp(
−→αe) or

wsp(
←−αe) might be zero or negative. Notice that, given [f : S → (Σ, g)] ∈

T̃ (S) \ T̃ (S)(0) the system f∗wsp defines a point in |A◦(S)|R.

The following results by Ushijima and Luo adapt and generalize Pen-
ner’s work on ideal triangulations [Pen87] (see Section 2.5).

Theorem 2.13 ([Ush99]). Let Σ be a hyperbolic surface with nonempty
boundary and possibly cusps. There is at least one triangulation α such
that wα(α) ≥ 0 for all α ∈ α. Moreover, the intersection of all these
triangulations is Sp∗(Σ) and wsp(α) > 0 for all α ∈ Sp∗

fin(Σ).

Theorem 2.14 ([Luo07]). Let S be a compact hyperbolic surface
with boundary. The induced map

T̃ (S) \ T̃ (S)(0) // |A◦(S)|R
[f : S → (Σ, g)] � // f∗wsp

is a Γ(S)-equivariant homeomorphism.

Theorem 2.14 gives a Γ(S)-equivariant cellular decomposition of T̃ (S)\
T̃ (S)(0) and so an orbisimplicial decomposition of the moduli space

M̃(S) \ M̃(S)(0).

2.5. The cellular decomposition for decorated surfaces. Let (Σ, p)
be a decorated hyperbolic surface (see Definition 2.7) with cusps c1, . . . , cm
and no boundary, and let α ∈ A(Σ) be a triangulation.

Take a small ε > 0 such that the horoballs at c1, . . . , cm with radii

εp1, . . . , εpm are embedded and disjoint. The truncated length ℓ
εp
α of

an arc α ∈ α is the length of the truncation α ∩ Σεp. As ℓ
ε′p
α = ℓ

εp
α +

2 log(ε/ε′) for small ε, ε′ > 0, then we can define ℓ
p
α := ℓ

εp
α + 2 log(ε),

which is independent of ε.

Theorem 2.15 ([Pen87]). Let S be a hyperbolic surface with m

cusps and let α ∈ A(S) be a triangulation. The lengths {ℓpα |α ∈ α}
are real-analytic coordinates on the space T̃ (S)(0) × Rm

+ of positively
decorated surfaces ([f : S → Σ], p).

In the theorem above, really Penner used the λ-lengths, defined as

λ(α, p) :=

√
2 exp(ℓ

p
α). Notice that Penner’s λ-lengths are the limit of

the s-lengths in the following sense: given a sequence ([fn : S → Σn])

in T (S) that converges to [f : S → Σ] ∈ T̃ (S)(0), we have

lim
n→∞

s(αi)(fn)

s(αj)(fn)
=
λ(αi, p

(∞))(f)

λ(αj , p(∞))(f)
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whenever [p(n)]→ [p(∞)] in ∆m−1 (and we have set p(n) = L(fn)).

On the other hand, the role of the distance d(−→αi,
−→αj) between the

endpoints of two oriented arcs −→αi and −→αj (defined in Section 2.4) is
played by the length dp(

−→αi,
−→αj) of the horocyclic segment, running from

the endpoint of −→αi ∩ Σp to the endpoint of −→αj ∩ Σp in the positive
direction.

Pick a connected component t of Σ \⋃α∈α
α and let (−→αi ,

−→αj ,
−→αk) the

arcs that bound t with the induced orientation and cyclic order.
Penner defined the “simplicial coordinate” Xi := X(−→αi, p) +X(←−αi , p)

associated to αi setting

X(−→αi, p) :=
λ(αj , p)

2 + λ(αk, p)
2 − λ(αi, p)

2

λ(αi, p)λ(αj , p)λ(αk, p)

For a sequence ([fn : S → Σn]) as above, we also have

lim
n→∞

wα(−→αi)(fn)
∑m

k=1 p
(n)
k

=
X(−→αi , p

(∞))(f)
∑m

k=1 p
(∞)
k

Similarly, fixed a triangulation α, Penner defined the h-lengths to be
the lengths one-half the lengths of the horocyclic arcs appearing in the
truncated triangles of Σεp \

⋃
i αi. If t is a truncated triangle, bounded

by arcs αi, αj , αk (cyclically ordered), then Penner showed that ht,i =
λi

λjλk
. One can observe that

lim
n→∞

bt,i(fn)
∑m

k=1 p
(n)
k

=
2ht,i(f, p

(∞))
∑m

k=1 p
(∞)
k

so the b-lengths limit to the h-lengths (up to a factor 2).
The convex hull construction, or equivalently the spine Sp(Σ, p), gives

a preferred system of arcs Sp∗(Σ, p) on Σ. Analogously to what done
in Section 2.4 with the widths, one can define simplicial coordinates
Xsp for arcs in Sp∗(Σ, p) as half the lengths of their projection to the
truncating horocycles.

Theorem 2.16 ([Pen87]). Let (Σ, p) be a hyperbolic decorated sur-
face. There is at least one triangulation α such that X(α, p) ≥ 0 for all
α ∈ α. Moreover, the intersection of all these triangulations is Sp∗(Σ)
and Xsp(α, p) > 0 for all α ∈ Sp∗

fin(Σ).

Theorem 2.17 ([Pen87]). Let S be a hyperbolic surface with m
boundary components. The induced map

T̃ (S)(0) × (∆m−1 × R+) // |A◦(S)|R
([f : S → (Σ, g)], p) � // f∗Xsp

is a Γ(S)-equivariant homeomorphism.
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Theorem 2.17 provides a Γ(S)-equivariant cellular decomposition of

T̃ (S)(0) × (∆m−1 × R+). and so an orbisimplicial decomposition of

M̃(S)(0) × (∆m−1 × R+).

3. Fenchel-Nielsen deformations and distances between

geodesics

3.1. The Fenchel-Nielsen deformation. Let R be a hyperbolic sur-
face without boundary and ξ ⊂ R a simple closed geodesic. A (right)
Fenchel-Nielsen deformation Twtξ of R along ξ of translation distance
t is obtained by cutting R along ξ, sliding the left side forward by t
relatively to the right side and regluing the two sides. Notice that the
deformation is an isometry outside ξ.

The terminology is due to the fact that the deformation pushes one
to the right when one passes the default line.

Remark 3.1. Let R be a compact hyperbolic surface without bound-
ary and {ξ1, . . . , ξN} a maximal system of simple closed curves. Let
(ℓi, τi)

N
i=1 be the associated Fenchel-Nielsen coordinates. Then, the

Fenchel-Nielsen deformation along ξ1 of translation distance t acts as
(ℓ1, τ1, . . . , ℓN , τN ) 7→ (ℓ1, τ1 + t, ℓ2, τ2, . . . , ℓN , τN ).

The Fenchel-Nielsen deformation Twtξ : T (R)→ T (R) is the flow of
a Fenchel-Nielsen vector field ∂/∂τξ on T (R) (see [Wol83b]).

Let H = {z ∈ C | Im(z) > 0} be the Poincaré upper half-plane and
let ∂H = R = R ∪ {∞} the extended real line.

Choose a uniformization π : H → R and let G = Aut(π) ∼= π1(R).

Fix a simple closed geodesic ξ ⊂ R and let ξ̃ =
⌢
s1s2 ⊂ H be a lift of ξ,

that is a connected component of π−1(ξ), where s1, s2 ∈ ∂H and
⌢
s1s2

denotes the geodesic on H with limit points s1 and s2. The lift of Twtξ

is the composition of the Fenchel-Nielsen deformations Twtξ̃ along all

the lifts ξ̃ of ξ.
The Fenchel-Nielsen deformation of R ∼= H/G can be described as

H/wtGw
−1
t , where (wt : H → H)t is a continuous family of quasi-

conformal automorphisms that fix 0, 1 and ∞, and w0 is the identity.
A typical case (described in [Wol83b]) is when G is the cyclic group

generated by the hyperbolic transformation (z 7→ λz) with λ > 0 and
the Fenchel-Nielsen deformation is performed along the simple closed

geodesic π(
⌢

0∞).

Let θ = arg(z) and Φ(θ) =
∫ θ
0 ϕ(α)dα, where ϕ : (0, π) → R≥0 is a

smooth function with compact support and
∫ π
0 ϕ(α)dα = 1/2. Then,

wt is given by

(1) wt(z) = z · exp[2tΦ(θ)]
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In this case, by ∂z/∂τ ⌢
0∞

(at the identity) we will mean ∂wt(z)/∂t

(evaluated at t = 0) for every z ∈ H.

3.2. Cross-ratio and Fenchel-Nielsen deformation. Endow the
extended real line R = R∪{∞} with the natural cyclic ordering ≺ com-
ing from R ∼= S1. Given p, q, r, s ∈ R, their cross-ratio (p, q, r, s) ∈ R is
defined as

(p, q, r, s) :=
(p− r)(q − s)
(p− s)(q − r)

Wolpert computed how the cross-ratio (p, q, r, s) varies under infinitesi-

mal Fenchel-Nielsen deformation of H along the geodesic
⌢
s1s2 with limit

points s1, s2 ∈ R.

Lemma 3.2 ([Wol83b]). Assume z1, z2, z3, z4 ∈ R are distinct and
s1, s2 ∈ R are distinct. Then

∂

∂τ ⌢
s1s2

(z1, z2, z3, z4) = (z1, z2, z3, z4)
4∑

j=1

χL(zj)
[
(zσ(j), s1, s2, zj)− (zτ(j), s1, s2, zj)

]

where σ =

(
1 2 3 4
3 4 1 2

)
, τ =

(
1 2 3 4
4 3 2 1

)
∈ S4 and χL is the

characteristic function of [s2, s1] ⊂ R (where [s2, s1] = {x ∈ R | s1 ≺
x ≺ s2}).

The proof follows from the explicit expression of wt given in Equa-
tion 1.

Consider two nonintersecting

geodesics
⌢
qr and

⌢
ps in the up-

per half-plane H with endpoints
p, q, r, s ∈ R. The distance h =

ℓδ between
⌢
qr and

⌢
ps is given by

cosh(h) = 1−2(p, q, r, s), or equiv-
alently (p, q, r, s) = − sinh2(h/2).

δ

pq r s

H

ε

x

pq r s

H Consider two intersecting

geodesics
⌢
qr and

⌢
ps in the up-

per half-plane H with endpoints
p, q, r, s ∈ R. The angle ε = p̂xq is
given by cos(ε) = 2(p, q, r, s) −
1, or equivalently (p, q, r, s) =
cos2(ε/2).

3.3. The variation of the distance between two geodesics. Let
R be a hyperbolic surface without boundary and let γ1 and γ2 are two
(possibly closed) geodesics in R. Let δ ⊂ R a (nonconstant) geodesic
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arc meeting γ1 and γ2 perpendicularly at its endpoints y1, y2. Orient γi

in such a way that, if we travel along γi in the positive direction, then
at yi we see δ on our left.

Let ξ ⊂ R be a simple closed geodesic. If xi ∈ ξ ∩ γi, then we will
denote by νxi

the positive angle at xi formed by a positively oriented
vector along γi and ξ and by d(yi, xi) the length of the path obtained by
travelling from yi to xi along γi (which is a well-defined real number, if
γi is open, whereas it is required to belong to the interval (0, pi), if γi is
closed). The proof of the theorem below adapts arguments of Wolpert
in [Wol83b].

Theorem 3.3. With the above notation, assume that ξ are δ are
disjoint and that νx = π/2 for every x ∈ ξ ∩ (γ1 ∪ γ2). Then

∂

∂τξ
(h) = c1 + c2 with ci =

∑

xi∈ξ∩γi

ci(xi)

where pi = ℓγi
, h = ℓδ and

ci(xi) =





σ

2
exp(−|d(yi, xi)|) if γi is open

sinh(pi/2− d(yi, xi))

2 sinh(pi/2)
if γi is closed

with σ = sgn(d(yi, xi)).

Remark 3.4. To check that the result and the coefficients in the
formula above are reasonable, think of the case when ξ intersects γ1 in
one point x1 and it does not intersect γ2. If d(y1, x1) > 0 is very small,
then the derivative is close to 1/2. In fact, after performing a right twist
of length ε along ξ, the new geodesic γ1 will interpolate the two broken
branches of the old γ1, and so it will be farther from γ2 by ε/2.

Choose π : H→ R a uniformization and pick a lift δ̃ ⊂ H of δ. Call ỹi

the endpoint of δ̃ mapped to yi. Let γ̃i be the lift of γi passing through

ỹi and call p, q, r, s ∈ R their ideal endpoints in such a way that γ̃1 =
⌢
ps,

γ̃2 =
⌢
qr and p ≺ s ≺ q ≺ r ≺ p in the cyclic order ≺ of R ∼= S1. Call

the portions γ̃+
1 :=

⌢
ỹ1s ⊂ γ̃1 (resp. γ̃−1 :=

⌢
pỹ1 ⊂ γ̃1) and γ̃+

2 :=
⌢
ỹ2r ⊂ γ̃2

(resp. γ̃−2 :=
⌢
qỹ2 ⊂ γ̃2) positive (resp. negative). Under the hypotheses

of Theorem 3.3, a lift ξ̃ of ξ does not intersect δ̃ and it may intersect at
most one of the four geodesic segments γ̃±i .
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δ̃

p

q

r

s

s1

s2

x̃k
1

ỹ1

ỹ2

γ̃−

1

γ̃+

1

γ̃−

2

γ̃+

2

νx1

ξ̃

k > 0

Pick xi ∈ γi ∩ ξ. If γi self-intersects at xi, then consider each branch of
γi separately.

If γi is open, then xi has only one lift that lies on γ̃i. Call it x̃0
i if it

belongs to γ̃+
i and x̃−1

i if it belongs to γ̃−i .

If γi is closed, then let x̃0
i the lift of xi which belongs to γ̃+

i and which

is closest to ỹi. Consider γi as a loop based at xi and define x̃k
i to be the

endpoint of the lift of (γi)
k that starts at x̃0

i for every k ∈ Z. Clearly,
x̃k

i ∈ γ̃+
i for k ≥ 0 and x̃k

i ∈ γ̃−i for k < 0. Notice that the distance with

sign d(ỹi, x̃
k
i ) (that is, the length of the portion of γ̃i running from ỹi to

x̃k
i in the positive direction) is exactly d(yi, xi) + kpi.

Call ξ̃(x̃k
i ) the only lift of ξ that passes through x̃k

i . The deriva-
tive ∂(p, q, r, s)/∂τξ , which we will sometimes denote by ∂ξ(p, q, r, s) for

brevity, is the sum of ∂ξ̃(p, q, r, s) for all lifts ξ̃ of ξ. Notice immediately

that the deformation along ξ̃ does not contribute if ξ̃ does not intersect
γ̃1 ∪ γ̃2.

Define the contribution of xi ∈ ξ ∩ γi to ∂(p, q, r, s)/∂τξ as

∂(p, q, r, s)

∂τξ,xi

:=





∂(p, q, r, s)

∂τξ̃(x̃0
i
)

if γi is open and d(yi, xi) > 0

∂(p, q, r, s)

∂τξ̃(x̃−1

i )

if γi is open and d(yi, xi) < 0

∑

k∈Z

∂(p, q, r, s)

∂τξ̃(x̃k
i )

if γi is closed

and ci(xi) =
tanh(h/2)

(p, q, r, s)

∂(p, q, r, s)

∂τξ,xi

.

3.4. Proof of Theorem 3.3. Now we compute the contribution of the
Fenchel-Nielsen infinitesimal deformation along ξ̃(x̃k

i ) for xi ∈ ξ ∩ γi.
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3.4.1. Contribution of ξ̃(x̃k
1) for k ≥ 0. Let ξ̃(x̃k

1) =
⌢
s1s2 in such a

way that s ∈ (s2, s1) and call Dk the geodesic segment joining ỹ1 and
x̃k

1 .
Lemma 3.2 gives us

∂ ⌢
s1s2

(p, q, r, s) = (p, q, r, s)[(q, s1, s2, s)− (p, s1, s2, s)]

The geodesics γ̃1 =
⌢
ps and

⌢
s1s2 intersect orthogonally. Hence, (p, s1, s2, s) =

1/2 and so (q, s1, s2, s) − (p, s1, s2, s) = 1/2 cos(π − ϑ). We have so far
obtained

∂ ⌢
s1s2

(p, q, r, s) =
1

2
(p, q, r, s) cos(π − ϑ) = −1

2
(p, q, r, s) cos(ϑ)

where ϑ is the angle shown in the picture below.

δ̃

p

q

r

s

n
λ m

ϑ
s1

s2

x̃k
1

ỹ1

ỹ2

γ̃1

γ̃2

Figure 3. Picture for k ≥ 0

Let m be the midpoint of δ̃ and let λ be the geodesic segment that

meets δ̃ and
⌢
qs orthogonally. Notice that, if p, q, r, s are fixed, then

⌢
s1s2

is uniquely determined by ℓDk
and cos(ϑ) is a real-analytic function of

ℓDk
.

In the picture above, we are assuming that
⌢
s1s2 does not meet λ, but

the formula for cos(ϑ) we will derive in this case will hold even in the

case when
⌢
s1s2 intersects λ, because of the real-analyticity mentioned

above.
Applying part (a) of Lemma A.2 to the quadrilateral (q ỹ2mn), we

obtain

sinh(l) =
1

sinh(h/2)
=⇒ cosh(l) =

√
1 +

1

sinh2(h/2)
=

1

tanh(h/2)
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where h = ℓδ̃ and l = ℓλ.

Applying Lemma A.3 to the pentagon (ϑnm ỹ1 x̃
k
1), we obtain

cosh(h/2) =
cosh(l) cosh(dk) + cos(ϑ)

sinh(l) sinh(dk)

where dk = ℓDk
. Thus

cos(ϑ) = cosh(h/2) sinh(l) sinh(dk)− cosh(l) cosh(dk) =

=
sinh(dk)− cosh(dk)

tanh(h/2)
= − exp(−dk)

tanh(h/2)

Hence, ∂ξ̃(x̃k
1
)(p, q, r, s) = (p, q, r, s)

exp(−dk)

2 tanh(h/2)
. If γ1 is closed, dk =

d0 + kp1 for k ≥ 0, and so ∂ξ̃(x̃k
1
)(p, q, r, s) = (p, q, r, s)

exp(−d0 − kp1)

2 tanh(h/2)
.

3.4.2. Contribution of ξ̃(x̃k
1) for k < 0. Let ξ̃(x̃k

1) =
⌢
s1s2 in such a

way that p ∈ (s1, s2) ⊂ R. Lemma 3.2 gives us

∂ ⌢
s1s2

(p, q, r, s) = (p, q, r, s)[(p, s1, s2, r)− (p, s1, s2, s)]

As in the previous case, (p, s1, s2, s) = 1/2 and so (p, s1, s2, r)−(p, s1, s2, s) =
1/2 cos(ϑ). Thus

∂ ⌢
s1s2

(p, q, r, s) =
1

2
(p, q, r, s) cos(ϑ)

where ϑ is the angle shown in the picture below.

δ̃

p

q

r

s

n
λm

ϑ
s1

s2

x̃k
1

ỹ1

ỹ2

γ̃1

γ̃2

Figure 4. Picture for k < 0

Arguing as in the case k ≥ 0, we obtain

cos(ϑ) = cosh(h/2) sinh(l) sinh(dk)− cosh(l) cosh(dk) =
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=
sinh(dk)− cosh(dk)

tanh(h/2)
= − exp(−dk)

tanh(h/2)

Hence, ∂ξ̃(x̃k
1
)(p, q, r, s) = −(p, q, r, s)

exp(−dk)

2 tanh(h/2)
. If γ1 is closed, dk =

−kp1−d0 for k < 0 and so ∂ξ̃(x̃k
1
)(p, q, r, s) = −(p, q, r, s)

exp(d0 + kp1)

2 tanh(h/2)
.

3.4.3. Contribution of x1. If γ1 is open, there is only one summand,
which we have already computed. If γ1 is closed, we obtain

∂(p, q, r, s)

∂τξ,x1

=
∑

k≥0

∂(p, q, r, s)

∂τξ̃(x̃k
1
)

+
∑

k<0

∂(p, q, r, s)

∂τξ̃(x̃k
1
)

=

= (p, q, r, s)


∑

k≥0

exp(−d0 − kp1)

2 tanh(h/2)
−
∑

k<0

exp(d0 + kp1)

2 tanh(h/2)


 =

=
(p, q, r, s)

2 tanh(h/2)


exp(−d0)

∑

k≥0

[exp(−p1)]
k − exp(d0 − p1)

∑

j≥0

[exp(−p1)]
j


 =

=
(p, q, r, s)

2 tanh(h/2)

exp(−d0)− exp(d0 − p1)

1− exp(−p1)

Multiplying and dividing by exp(p1/2), we get

(2)
∂(p, q, r, s)

∂τξ,x1

=
(p, q, r, s)

2 tanh(h/2)

sinh(p1/2− d(y1, x1))

sinh(p1/2)

because d0 = d(ỹ1, x̃
0
1) = d(y1, x1).

3.4.4. Contribution of x2. Because of the symmetry between γ1 and
γ2, we can apply the same argument above to every point x2 ∈ ξ ∩ γ2.

End of the proof of Theorem 3.3. Differentiating the relation log |(p, q, r, s)| =
log sinh2(h/2) we get

dh

d(p, q, r, s)
=

tanh(h/2)

(p, q, r, s)

Using the above computations and the chain rule

∂h

∂τξ
=

dh

d(p, q, r, s)

∂(p, q, r, s)

∂τξ

we get the result. q.e.d.

3.5. The general case. It turns out that the result can be extended
to the case when the ν’s are not necessarily right angles and ξ may
intersect δ.

A point of intersection z ∈ ξ ∩ δ is near γi if ∃xi ∈ ξ ∩ γi such that
[z, yi] ⊂ δ, [yi, xi] ⊂ γi and [xi, z] ⊂ ξ are the sides of a geodesic triangle
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Tz (locally) embedded in R. We say that z is distant if it is not near γ1

or γ2.
Suppose that γi is a closed geodesic, z ∈ ξ ∩ δ is near γi with Tz =

(xi yi z). Travelling from xi in the direction of z (along a side of T ),
consider the maximum number r of intersections z = z1, z2, . . . , zr ∈ ξ∩δ
such that the loop obtained as a union of the two arcs [zj , zj+1] ⊂ ξ and
[zj+1, zj ] ⊂ δ is homotopic to γi for all j = 1, . . . , r − 1. If xi does not
belong to any Tz, then we set r = 0.

Remark 3.5. The exceptional case xi = yi must always be treated:

- as if xi comes just after yi according to the orientation of γi, in
case νxi

> π/2;
- as if xi comes just before yi, in case νxi

< π/2.

Define r(xi) = r if (yi xi z) is a positively oriented triangle and r(xi) =
−r if (yi xi z) is negatively oriented.

δ̃

x̃1

ξ̃

ỹ1

ỹ2

γ̃1

γ̃2

p

q

s

r

T̃z z̃

Figure 5. Example of lifting of Tz to the universal cover
of R.

We will write [xi, x3−i] ∼ δ (with i ∈ {1, 2}) if an oriented segment
[xi, x3−i] ⊂ ξ, running between xi ∈ ξ ∩ γi and x3−i ∈ ξ ∩ γ3−i, is
homotopic to δ through a homotopy that keeps the starting point of the
segment on γi and the endpoint on γ3−i.
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δ

x1

x2

ξ

y1

y2

γ1

γ2

Figure 6. Example of [x1, x2] homotopic to δ.

Remark 3.6 (On the definition of d(yi, xi)). If γi is an open geodesic,
then the distance (with sign) d(yi, xi) between yi ∈ δ∩γi and xi ∈ ξ∩γi

is clearly well-defined.
If γi is closed, then

- if [xi, x3−i] ∼= δ for some x3−i ∈ γ3−i, then d(yi, xi) is the distance
(with sign) between yi and xi along the path described by the
homotopy that deforms [xi, x3−i] to δ;

- otherwise, we set d(yi, xi) ∈ [0, pi).

Theorem 3.7. If ξ is any simple closed geodesic, then

∂

∂τξ
(h) = c1 + c2 + c0

and we have set

c0 =
∑

z∈ξ∩δ
distant

cosα(z)

where α(z) is the smallest angle one has to rotate the arc of geodesic
⌢
z y1 (starting at z) clockwise in order to lie on ξ;

ci =
∑

xi∈ξ∩δ

ci(xi)
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for i ∈ {1, 2} and

ci(xi) =





γi open





tanh(h/2) cos(νxi
) if [xi, x3−i] ∼ δ

εσ

2
exp [−εσ d(yi, xi)] sin(νxi

) otherwise

γi closed





sinh(−d(yi, xi))

2[exp(pi)− 1]
sin(νxi

) + tanh(h/2) cos(νxi
) if [xi, x3−i] ∼ δ

sinh[pi/2− d(yi, xi)− r(xi)pi]

2 sinh(pi/2)
sin(νxi

) otherwise

with σ = sgn(d(yi, xi)), ε = −1 if r(xi) 6= 0 and ε = 1 if r(xi) = 0.

The formula above must be compared with Theorem 3.4 in [Wol83b].
The summand c0 comes from distant intersections and is treated in

Section 3.5.5.
To examine c1 (we will deal similarly with c2), as before, pick x1 ∈

γ1 ∩ ξ and consider each branch of γ1 separately, if γ1 self-intersects at
x1.

If γ1 is open, then the unique lift of x1 along γ̃1 will be called x̃0
1 if

the lift of ξ through it separates s from r, and x̃−1
1 otherwise.

If γ1 is closed, then let x̃0
1 ∈ γ̃1 the lift of x1 that separates s from

r and which is farthest from s (in the Euclidean metric of the disc).
Similarly, if γ2 is closed, then x̃0

2 is the lift of x2 that separates r from
s and which is farthest from r.

If γi is closed, consider it as a loop based at xi and define x̃k
i to be

the endpoint of the lift of (γi)
k that starts at x̃0

i for every k ∈ Z. In
this case, the distance with sign d(ỹi, x̃

k
i ) (that is, the length of the

portion of γ̃i running from ỹi to x̃k
i in the positive direction) is exactly

d(yi, xi) + (r(xi) + k)pi. As before, ξ̃(x̃k
i ) is the lift of ξ that passes

through x̃k
i .

The contribution of xi ∈ ξ ∩ γi to ∂(p, q, r, s)/∂τξ is

∂(p, q, r, s)

∂τξ,xi

:=





∂(p, q, r, s)

∂τξ̃(x̃0
i )

if γi is open and ξ̃(x̃0
i ) separates s and r

∂(p, q, r, s)

∂τξ̃(x̃−1

i
)

if γi is open and ξ̃(x̃−1
i ) does not separate s and r

∑

k∈Z

∂(p, q, r, s)

∂τξ̃(x̃k
i )

if γi is closed

and ci(xi) =
tanh(h/2)

(p, q, r, s)

∂(p, q, r, s)

∂τξ,xi

.
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3.5.1. Case of ξ̃(x̃k
1) separating s from {p, q, r}. By definition, k ≥

0. As in the case with right angles, we have

∂ ⌢
s1s2

(p, q, r, s) = (p, q, r, s)[(q, s1, s2, s)−(p, s1, s2, s)] =
(p, q, r, s)

2
(cos ν − cos ϑ)

where ν = νx1
.

δ̃

p

q r

s

n
λ m

ϑs1

s2

x̃k
1

ỹ1

ỹ2

γ̃1

γ̃2

β

ν

As before, the picture does not exhaust all the possible cases, but
the formula we will find will hold in all cases, because of the analyticity
mentioned above.

From the previous computations, we know that cosβ =
exp(−dk)

tanh(h/2)
.

Call e the length of the segment from x̃k
1 to the vertex of β and f the

length of the segment from x̃k
1 to the vertex of ϑ.

cosh e =
cos β cos(π/2) + cos 0

sinβ sin(π/2)
=

1

sin β
=⇒ tanh e = cos β

and cosh f =
− cos ν cos ϑ+ 1

sin ν sinϑ
because of part (b) of Lemma A.1 applied

to the triangles (β x̃k
1 s) and (ϑ x̃k

1 , s). We also have

sinϑ

sinh e
=

sin β

sinh f
=⇒ sinϑ sinh f = cosβ

because of part (a) of Lemma A.1 applied to (x̃k
1 ϑβ). From sinh2 f sin2 ϑ =

cos2 β we obtain

exp(−2dk)

tanh2(h/2)
=

(1− cos ν cos ϑ)2 − sin2 ν sin2 ϑ

sin2 ν

Simplifying the expression, we get

(cos ν − cos ϑ)2 =
exp(−2dk) sin2 ν

tanh2(h/2)
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As ν < ϑ, we finally obtain

cos ν − cos ϑ =
exp(−dk) sin ν

tanh(h/2)

and so ∂ ⌢
s1s2

(p, q, r, s) =
(p, q, r, s)

2 tanh(h/2)
exp(−dk) sin ν.

3.5.2. Case of ξ̃(x̃k
1) separating p from {s, q, r}. By definition, k <

0. Arguing as in the previous case,

cos ϑ+ cos ν = −exp(−dk) sin ν

tanh(h/2)

Hence, we obtain

∂ ⌢
s1s2

(p, q, r, s) = (p, q, r, s)[(p, s1, s2, r)− (p, s1, s2, s)] =

=
(p, q, r, s)

2
(cos ϑ+ cos ν) =

= − (p, q, r, s)

2 tanh(h/2)
exp(−dk) sin ν

3.5.3. Case of ξ̃(x̃0
1) = ξ̃(x̃0

2) separating {p, r} from {q, s}. This
happens when the segment [x1, x2] ⊂ ξ is homotopic to δ. By Lemma 3.2

∂ ⌢
s1s2

(p, q, r, s) = (p, q, r, s)[(s, s1, s2, q)−(r, s1, s2, q)+(q, s1, s2, s)−(p, s1, s2, s)]

which gives ∂ ⌢
s1s2

(p, q, r, s) = (p, q, r, s)(cos νx1
+ cos νx2

).

3.5.4. The terms ci(xi) when γi is closed. We argue similarly to

the case with right angles. If ξ̃(x̃0
i ) does not separate {p, r} from {q, s},

then d0 = d(yi, xi)+ r(xi)pi, where d(yi, xi) ∈ [0, pi), and dk = d0 + kpi.

∂(p, q, r, s)

∂τξ,xi

=
(p, q, r, s)

2 tanh(h/2)

sinh[pi/2− d(yi, xi)− r(xi)pi]

sinh(pi/2)
sin(νxi

)

If ξ̃(x̃0
i ) separates {p, r} from {q, s}, then

∂(p, q, r, s)

∂τξ,xi

=
(p, q, r, s)

2 tanh(h/2)

sinh[−d(yi, xi)]

exp(pi)− 1
sin(νxi

) + (p, q, r, s) cos(νxi
)

where the right summand is the contribution of x̃0
i .

3.5.5. Contribution of distant intersections. Suppose z ∈ ξ ∩ δ is
a distant intersection with angle α(z) = α and the situation looks like
in the figure below, when lifted to the universal cover.
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δ̃

p

q r

s

n
λ m

ϑqs

s1

s2

t

z̃

ỹ1

ỹ2

γ̃1

γ̃2

β
α

Let e = d(m, z̃) be the distance (with sign) between m and z̃, where δ̃
is oriented in such a way that h = d(ỹ2, ỹ1) = −d(ỹ1, ỹ2). In Figure 3.5.5,
we have e > 0.

In this case, Lemma 3.2 gives us

∂ ⌢
s1s2

(p, q, r, s) = (p, q, r, s)[(r, s1, s2, p) + (q, s1, s2, s)− 1]

which can be rewritten as

∂ ⌢
s1s2

(p, q, r, s) = −1

2
(p, q, r, s)[cos(ϑqs) + cos(ϑrp)]

where ϑqs is the angle shown in the figure above.
To begin, we have sinhλ sinh(h/2) = 1 from the quadrilateral

(nm ỹ2 q). Moreover, (nm z̃ β) tells us that

sinh e

sinh(h/2)
= sinh e sinhλ = cos β and cosh t =

coshλ

sinβ

where t is the length of
⌢
β z̃. Looking at the triangle (z̃ ϑqs β), we have

cosh t =
cos(π − β) cos(α− π/2) + cos(ϑqs)

sin(π − β) sin(α− π/2) =
− cos β sinα+ cos(ϑqs)

− sin β cosα
.

Because coshλ =
√

1 + sinh2 λ =

√
1 + sinh−2(h/2) = coth(h/2), we

conclude that

cos(ϑqs) = cos β sinα− coshλ cosα =
sinh e sinα

sinh(h/2)
− cosα

tanh(h/2)
.

Symmetrically, we have cos(ϑrp) =
sinh(−e) sinα

sinh(h/2)
− cosα

tanh(h/2)
and

so

∂ ⌢
s1s2

(p, q, r, s) =
(p, q, r, s)

tanh(h/2)
cosα .
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4. The Weil-Petersson Poisson structure

In this section we want to prove the following.

Theorem 4.1. Let S be a compact hyperbolic surface with boundary
components C and no cusps. If α = {α1, . . . , α6g−6+3n} is a triangula-
tion of S, then the Weil-Petersson bivector field on T (S) at [f : S → Σ]
can be written as

ηS =
1

4

∑

C∈C

∑

yi∈f(αi∩C)
yj∈f(αj∩C)

sinh(pC/2− dC(yi, yj))

sinh(pC/2)

∂

∂ai
∧ ∂

∂aj

where ai = ℓαi
, pC = ℓC and dC(yi, yj) ∈ (0, pC) is the length of geodesic

arc running from yi to yj along f(C) in the positive direction.

Remark 4.2. The statement of the theorem still holds if we consider
surfaces with boundary not consisting only of cusps, that is if we work
on T̃ (S) \ T̃ (S)(0). In this case, when computing the bivector field at
the point [f : S → Σ], one must use a triangulation adapted to Σ and
the sum involves only arcs of S whose image through f does not meet
the cusps of Σ.

Proof. The triangulation α of S determines a pair of pants decompo-
sition {α̂1, . . . , α̂6g−6+3n} of the double dS, where α̂i is the double of αi.
As usual, let ι, ι′ : S →֒ dS be the two inclusions and D : T (S)→ T (dS)
the doubling map induced by ι.

Suppose the arc αi joins the boundary components Cs and Ct of S.
Then, the function ai : T (dS) → R+ that measures the length of the
shortest path homotopic to ι(αi) that joins the closed geodesics freely
homotopic to ι(Cs) and ι(Ct) reduces to the usual ai, when restricted
to D(T (S)). Similarly, we can define a′i : T (dS) → R+ as the length
of the shortest path homotopic to ι′(αi) that joins the closed geodesics
homotopic to ι′(Cs) and ι′(Ct).

By Wolpert’s theorem (see Section 1.6), the Weil-Petersson bivector
field on T (dS) can be written as

ηdS = −
6g−6+3n∑

i=1

∂

∂ℓi
∧ ∂

∂τi

where ℓi = ℓα̂i
and τi is the twist parameter associated to α̂i. It is

immediate to realize that D∗(dτi) = 0; really, we can fix the conventions

about the twist coordinates in such a way that τi

∣∣∣
D(T (S))

≡ 0.

Proposition 1.7 tells us that (πι)∗

(
ηdS

∣∣∣
T (S)

)
= ηS is the Weil-

Petersson bivector field on T (S), where πι : T (dS) → T (S) associates
to [f : dS → R] the “half” of the surface R corresponding to f(ι(S)).
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Now, let’s consider the following diagram

0 // TdΣT (dS)
ϕ //

πι

))S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

TΣT (S)⊕ TΣT (S)′ ⊕
(⊕

C

R
∂

∂τC

)

π1

��

//
⊕

C

R
∂

∂pC
// 0

TΣT (S)

where π1 is the projection onto the first summand. Clearly, at dΣ

ϕ

(
∂

∂τi

)
=
∑

j

∂aj

∂τi

∂

∂aj
+
∑

k

∂a′k
∂τi

∂

∂a′k
+
∑

C∈C

∂τC
∂τi

∂

∂τC

using the bases {∂/∂ai} for TΣT (S) and {∂/∂a′i} for TΣT (S)′. Hence

(πι)∗
∂

∂τi
=
∑

j

∂aj

∂τi

∂

∂aj

Moreover, ϕ

(
∂

∂ℓi

)
=

1

2

(
∂

∂ai
+

∂

∂a′i

)
implies that (πι)∗

∂

∂ℓi
=

1

2

∂

∂ai
.

As a consequence, we deduce

ηS = −1

2

∑

i,j

∂aj

∂τi

∂

∂ai
∧ ∂

∂aj

Given an oriented arc −→αi on S, call y(−→αi) the endpoint of −→αi and C(−→αi)
the boundary component that contains y(−→αi). At [f : S → Σ] ∈ T (S),
we will denote by f(y(−→αi)) the endpoint of the geodesic arc in the class
of f(−→αi).

Given two distinct oriented arcs −→αi and −→αj that end on the same
component C = C(−→αi) = C(−→αj), the distance dC(−→αj ,

−→αi) at [f ] is the
length of the path from f(y(−→αj)) to f(y(−→αi)) along f(C) in the positive
direction.

Applying Theorem 3.3, we obtain

∂aj

∂τi
=

1

2

∑

−→αj ,−→αi

C=C(−→αj)=C(−→αi)

sinh(pC/2− dC(−→αj ,
−→αi))

sinh(pC/2)

where pC is the length of f(C). Thus, we have

ηS = −1

2

∑

i

∂

∂ai
∧ ∂

∂τi
= −1

2

∑

i,j

(
∂aj

∂τi

)
∂

∂ai
∧ ∂

∂aj
=

=
1

4

∑

−→αi,
−→αj

C=C(−→αi)=C(−→αj )

sinh(pC/2− dC(−→αi,
−→αj))

sinh(pC/2)

∂

∂ai
∧ ∂

∂aj
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which can also be rewritten as

ηS =
1

4

∑

C∈C

∑

yi∈f(αi∩C)
yj∈f(αj∩C)

sinh(pC/2− dC(yi, yj))

sinh(pC/2)

∂

∂ai
∧ ∂

∂aj

q.e.d.

4.1. The case of large boundary lengths. Let α = {αi}Ni=1 be
a triangulation of S and suppose that there is a sequence of points

[fn : S −→ Σn] ∈ T (S) such that a
(n)
i = ℓαi

(fn)→ 0 (and so s(αi)
(n) =

cosh(a
(n)
i )→ 1) for all i as n→ +∞. We want to study the limit of ηS

at [fn] as n→ +∞.
Let −→αi,

−→αj ,
−→αk be the oriented arcs that bound a hexagon in S \⋃t αt.

zi

yi

mi

fi

zj

yj

mj

fj

zk

yk

mk

fk

uγi

γj
γk

Remark 2.11 gives cos(γi) =
s(αj)

2 + s(αk)
2 − s(αi)

2

2s(αj)s(αk)
→ 1

2
.

From sinh(wα(−→αi)) sinh(ai/2) = cos(γi), we also have ai exp(wi/2)→
2, where wi = wα(αi).

Hence, wi ≍ −2 log(ai/2) and
∂

∂ai
≍ − exp(wi/2)

∂

∂wi
in the limit.

Let −→αi and −→αq be arcs whose endpoints belong to the same boundary
component C and suppose that the positive path along C from the
endpoint of −→αi to the endpoint of −→αq meets the endpoints of the oriented
arcs −→αi0 ,

−→αi1 , . . . ,
−→αil (where i0 = i, il = q and we use the convention

←−αk = −−→α−k). Then, dC(−→αi ,
−→αq) =

l∑

r=1

dC(−−−→αir−1
,−→αir) and in the limit

dC(−→αi ,
−→αq) ≍

wi + wq

2
+

l−1∑

r=1

wr.

Also,
sinh(pC/2− dC(−→αi,

−→αq))

sinh(pC/2)
≍ exp(−dC(−→αi,

−→αq))−exp(dC(−→αi,
−→αq)−

pC).
Let’s compute the limit of the contribution of (−→αi,

−→αq) to ηS .
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If −→αq comes just after −→αi (that is, −→αq = ←−αj in the picture), then we
obtain a contribution

≍ 1

4

[
exp

(
−wi +wq

2

)
− exp

(
wi + wq

2
− pC

)]
exp

(
wi + wq

2

)
∂

∂wi
∧ ∂

∂wq

which tends to 0 if −→αi and −→αq are the only oriented arcs incident on C,

and tends to
1

4

∂

∂wi
∧ ∂

∂wq
otherwise. We get a similar result if −→αq is the

oriented arc that comes just before −→αi along C.
On the contrary, if −→αi and −→αq are not adjacent, then we get a contri-

bution

≍ 1

4

[
exp

(
−wi + wq

2
−

l−1∑

r=1

wr

)
− exp

(
wi + wq

2
+

l−1∑

r=1

wr − pC

)]
·

· exp

(
wi + wq

2

)
∂

∂wi
∧ ∂

∂wq

whose coefficient tends to zero, because all the wr’s diverge in the limit.

Let’s use the following normalization: w̃i :=
2wi∑
C pC

, so that
∑

i

w̃i =

1. Then,
∂

∂wi
=

2∑
C pC

∂

∂w̃i
and we obtain the following.

Theorem 4.3. Let α = {αi} is a triangulation of S and suppose
that there is a sequence of points [fn : S −→ Σn] ∈ T (S) such that

a
(n)
i = ℓαi

(fn) → 0 for all i as n → +∞. Call η
(n)
S = (ηS)[fn] and let

η̃
(n)
S =

(
1
2

∑
C p

(n)
C

)2
η

(n)
S . Then

lim
n→∞

η̃
(n)
S =

1

2

∑

h∈H

(
∂

∂w̃i
∧ ∂

∂w̃j
+

∂

∂w̃j
∧ ∂

∂w̃k
+

∂

∂w̃k
∧ ∂

∂w̃i

)

where H is the collection of hexagons in S \⋃t αt and (αi, αj , αk) is the
cyclically ordered triple of arcs that bound h ∈ H.

We can also compute the class of the limit of η̃
(n)
S in a different way.

The following observations are due to Mirzakhani [Mir07].
The space T ∗(S) is the Teichmüller space of surfaces with m bound-

ary components, together with a marked point xC at each boundary
circle C. If we have points at the boundaries, we can still define a θC

for each C, so that the symplectic Weil-Petersson form can be restored

as
∑

i

dℓi ∧ dτi +
∑

C

dpC ∧ dθC .

The forgetful map T ∗(S) −→ T (S) is clearly a principal T = (S1)m-
bundle and the function µ = 1

2L2 : T ∗(S) −→ Rm
≥0 is a moment map

for the action of T. Notice that all values of µ are regular. In fact, the
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Teichmüller space (T (S)(p), ωp) is recovered as the symplectic reduction

µ−1(p2
1/2, . . . , p

2
m/2)/T.

Hence, using the coisotropic embedding theorem (see [Gui94], for
instance), Mirzakhani could conclude that the following cohomological
identity holds

[ωp] = [ω0] +
1

2

∑

C

p2
CψC

where ψC is the first Chern class of the circle bundle over T (S) associ-

ated to C. Call ω̃p the class obtained dividing ωp by

(
1

2

∑

C

pC

)2

.

As ω̃p is dual to η̃p, we are interested in computing

[ω̃p] =
4[ω0] + 2

∑
C p

2
CψC

(
∑

C pC)2
≍ 1

2

∑

C

p̃2
CψC

where p̃C =
2pC∑

i pi
.

However, the argument above involves cohomology classes: we would
like to obtain a pointwise statement.

Theorem 2.14 gives us a homeomorphism Φ : T̃ (S) \ T̃ (S)(0) −→
|A◦(S)|R. The cells |α|◦ ⊂ |A◦(S)|R have affine coordinates {ei}, where
ei is the weight of αi ∈ α, and Φ∗(ei) = wi.

Kontsevich [Kon92] wrote a piecewise-linear 2-form Ω on |A◦(S)|R
representing (the pull-back from M(S) of)

∑
C p

2
CψC and a piecewise-

linear bivector field β, which is the dual of Ω/4. The expression of β on
the top-dimensional cells is the following

β =
∑

h∈H

(
∂

∂ei
∧ ∂

∂ej
+

∂

∂ej
∧ ∂

∂ek
+

∂

∂ek
∧ ∂

∂ei

)

and its normalized version is

β̃ =
4β

(
∑

C pC)2
=
∑

h∈H

(
∂

∂ẽi
∧ ∂

∂ẽj
+

∂

∂ẽj
∧ ∂

∂ẽk
+

∂

∂ẽk
∧ ∂

∂ẽi

)

where ẽt =
2et∑
C pC

and pC is the sum of the weights of the arcs incident

on C. By direct comparison of the explicit expressions for β̃ and η̃, we
have the following.

Corollary 4.4. As n→∞, the following limits

2Φ∗η̃[fn] → β̃ and 2Φ∗ω̃[fn] → Ω̃

hold pointwise, where Ω̃ =
4Ω

(
∑

C pC)2
.
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4.2. The case of small boundary lengths. Let S be a Riemann
surface with boundary components C = {C1, . . . , Cm} and χ(S) < 0.

Remember that L : T̃ (S) → Rm
≥0 is the boundary length map, so that

T̃ (S)(0) = L−1(0) is the locus of the surfaces with m cusps.
Penner has computed the pull-back through the forgetful map F :

T̃ (S)(0) × Rm
+ −→ T̃ (S)(0) ⊂ T̃ (S) of the Weil-Petersson form.

Theorem 4.5 ([Pen92]). Fix a triangulation α = {αi} of S and

let ãi : T̃ (S)(0) × Rm
+ −→ R+ be the reduced length function ([f : S →

Σ], p) 7→ ℓ
p
αi(f). Then the pull-back F ∗ω of the Weil-Petersson 2-form

coincides with

ωP := −1

2

∑

t∈H

(dãi ∧ dãj + dãj ∧ dãk + dãk ∧ dãi)

where H is the set of hexagons in S \⋃i αi and (αi, αj , αk) is the set of
cyclically ordered arcs that bound the hexagon t.

Remark 4.6. Using the obvious embedding (∆◦)m−1 →֒ Rm
+ , we

can pull the functions ãi’s and ωP back on T̃ (S)(0) × (∆◦)m−1. How-
ever, when we regard (∆◦)m−1 as Rm

+/R+, the natural coordinates on

T̃ (S)(0) × (∆◦)m−1 are the differences (ãi − ãi0)i6=i0 for any fixed i0.
Notice that a different choice of the constant M > 0 used for the em-
bedding (∆◦)m−1 →֒ {p ∈ Rm

+ | p1 + · · · + pm = M} ⊂ Rm
+ will just

produce a shift ãi 7→ ãi + logM . Thus, the differences ãi− ãj , the dãi’s

and ωP on T̃ (S)(0) × (∆◦)m−1 are well-defined.

For every ([f ], p) ∈ T̃ (S)(0) × Rm
+ , define

η[f ],p =
1

4

∑

C∈C

∑

yi∈f(αi∩C)
yj∈f(αj∩C)

(
1− 2dC(yi, yj)

pC

)
∂

∂ãi
∧ ∂

∂ãj

where dC(yi, yj) ∈ (0, pC) is the distance along the horocycle corre-

sponding to f(C). It descends to a bivector field on T̃ (S)(0)× (∆◦)m−1

and describes the extension of η over the real blow-up BlT̃ (S)(0)T̃ (S)

(whose fiber over T̃ (S)(0) can be identified to T̃ (S)(0) × ∆m−1), be-
cause (ai − aj)(fn)→ (ãi − ãj)(f) for all i, j as n→∞.

Proposition 4.7. Fix a triangulation α of S. For every ([f ], p) ∈
T̃ (S)(0) × Rm

+

ωP (η[f ],p(dã)) = dã+ d log(p+) + d log(p−)

where ã = ℓ
p
α and α ∈ α joins C+ and C−.

Fix a surface with a projective decoration ([f : S → Σ], [p]) ∈
T̃ (S)(0)×(∆◦)m−1, where p = (p1, . . . , pm) ∈ Rm

+ , such that Sp∗
fin(Σ, p)
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is a triangulation, and call ci = f(Ci) the i-th cusp of Σ. Consider a se-

quence of points [fn : S −→ Σn] ∈ T (S) such that ([fn], [p(n)]) converges

to ([f ], [p]) in T̃ (S)×∆m−1 as n→ +∞, where p(n) = L(fn).

Corollary 4.8. The limit symplectic structure along the leaf L−1(p(n))

at [fn] dual to η converges to ωP at ([f ], [p]) ∈ T̃ (S)(0) ×∆m−1 (as it
must be).

Notice that the assertion follows from Proposition 4.7 and the fact
that the symplectic leaves of T̃ (S)(0) × Rm

+ are defined by dp1 = · · · =
dpm = 0.

Notation. Let ([f : S → Σ], p) be a decorated hyperbolic surface
and let Σp be the associated truncated surface. For every oriented arc
−→αi of α starting at the boundary component C, call e(−→αi) the sum
of the lengths of the two horocyclic arcs running around f(C) from the
starting point of f(−→αi)∩Σp to the previous and the following arc. Given

a portion ϑx of the oriented component C running from x to x′, where

x, x′ are consecutive points in PC := C ∩
(⋃

αi

)
, then the arc opposed

to ϑx is the arc ϑop
x ∈ α facing ϑx in the truncated triangle that contains

ϑx. Denote by f(PC) the corresponding points of ∂Σp ∩ f(
⋃
αi).

Proof of Proposition 4.7. Pick a truncated triangle t of S \⋃α∈α
α and

let αi, αj , αk ∈ α be the (cyclically ordered) arcs that bound t. Then the

length of the horocyclic arc between f(αj) and f(αk) is 2ht,i =
2λi

λjλk
.

This implies that 2
∂ht,i

∂ai
= ht,i, whereas 2

∂ht,i

∂aj
= −ht,i and 2

∂ht,i

∂ak
=

−ht,i. Because pC is the sum of all the horocyclic arcs around f(C)
running between consecutive points of f(PC), we easily get

dpC = −1

2

∑

−→αi out
from C

e(−→αi)dãi +
1

2

∑

x∈PC

hxdh
op
x

where hx (resp. hop
x ) is the length of ϑx (resp. ϑop

x ).
Let −→α be an orientation of the arc α ∈ α and let C+ = C(←−α ) be the

“source” of −→α and call p+ = ℓC+
and x0 the starting point of −→α . Define

similarly C−, p− and y0.
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x0
x1

x2

xk

xk−1

y0 y1

y2

yl

yl−1

−→α

−→
β1

−→
β2

−→
βk

−−→
βk−1

−→γ1

−→γ2

−→γl = ϑop
x0

−−→γl−1

ϑx0

C+

C−

Starting from −→α and moving along C+ in the positive direction, call−→
β1,
−→
β2, . . . ,

−→
βk the (ordered) arcs outgoing from C+ and let xi be the

starting point of
−→
βi . Similarly, call −→γ1, . . . ,

−→γl the arcs outgoing from C−

and let yj be their starting point. Denote by b̃i the length of Σp ∩ f(βi)

and by c̃j the length of Σp ∩ f(γj).

In analyzing ω ◦ η(dã), we get four different contributions: the con-

tribution to dã; the contribution to db̃1 (and similarly to db̃k, dc̃1, dc̃l);

the contribution to db̃i for i 6= 1, k (and similarly to dc̃j for j 6= 1, l);
the contribution to dhop

xi for i 6= 0, k (and similarly to dhop
yj for j 6= 0, l).

The other contributions are immediately seen to vanish.
A direct computation shows that

ω ◦ η(dã) = −dã
4

[
−
(

1− 2dC+
(xk, x0)

p+

)
−
(

1− 2dC+
(x0, x1)

p+

)
+

−
(

1− 2dC−
(y0, y1)

p−

)
−
(

1− 2dC−
(yl, y0)

p−

)]
=

= dã− dã

2

(
e(−→α )

p+
+
e(←−α )

p−

)

which is exactly the contribution to dã of dã+ d log(p+) + d log(p−).
Similar computations can be carried over in the other three cases.

q.e.d.

Appendix A. Some formulae from hyperbolic trigonometry

The following results of elementary hyperbolic trigonometry are fre-
quently used throughout the paper. Proofs can be found on [Rat06].

The first lemma is the statement of the hyperbolic laws of sines and
cosines.
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Lemma A.1. Let A,B,C be the vertices of a hyperbolic triangle with
angles α, β, γ (resp. at A,B,C).

(a) (sine law)

sinα

sinh(BC)
=

sin β

sinh(AC)
=

sin γ

sinh(AB)

(b) (cosine law)

cosh(AB) =
cosα cos β + cos γ

sinα sin β

cos(α) =
cosh(AB) cosh(AC)− cosh(BC)

sinh(AB) sinh(AC)

The following lemma is about quadrilaterals with at least two right
angles.

Lemma A.2. Let A,B,C,D be the vertices of a hyperbolic quadri-
lateral.

(a) If the angles at A,B,C are right, then

sinh(AB) · sinh(BC) = cos(γ)

where γ is the angle at D.
(b) If the angles at C and D are right, then

cosh(AB) =
cos(α) cos(β) + cosh(CD)

sin(α) sin(β)

where α is the angle at A and β is the angle at B.

The next lemma is about pentagons with four right angles.

Lemma A.3. Let A,B,C,D,E be the vertices of a hyperbolic pen-
tagon with four right angles at A,B,C,D. Then

cosh(BC) =
cosh(AB) · cosh(CD) + cos(γ)

sinh(AB) · sinh(CD)

where γ is the angle at E (which is thus opposed to BC).

The last lemma deals with the well-known case of hexagons with six
right angles.

Lemma A.4. Let A,B,C,D,E, F be the vertices of a hyperbolic
hexagon with six right angles. Then

cosh(BC) =
cosh(AB) · cosh(CD) + cosh(EF )

sinh(AB) · sinh(CD)
.
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