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Abstract. We show that the locally closed strata of the Weierstrass flags on Mg and Mg,1 are almost never
affine.

1. Introduction

The coarse moduli space Mg,n of curves of genus g with n marked points is a quasi-projective variety.
Grothendieck [9] already wondered how many affines are needed to cover Mg,n. A first hint came from
Diaz’s upper bound [5] on the dimension of a complete subvariety of Mg,n, then strengthened by Harer’s
computation [10] of the virtual cohomological dimension of the mapping class group. Looijenga’s vanishing
[11] of the tautological classes in high degree motivated the following.

Question (Looijenga): Does Mg have an affine stratification with g− 1 layers? Does Mg,1 have an affine
stratification with g layers?

In both cases, stratifications with the right number of layers do exist and it is natural to ask whether the
layers are affine.

In this short paper, we will concentrate on the Weierstrass flag studied by Arbarello [2], whose strata had
already been defined by Rauch [13]. As Mumford pointed out in [12], Section 7, the proof of Theorem (3.27)
in [2] is incomplete. Therefore, it is still not known whether one may exclude that any single stratum of this
flag contains compact curves. Actually, one may even ask whether these strata are affine.

In this note, we will show that almost no such stratum is affine.

Clearly, these negative results about a specific stratification do not conflict with Looijenga’s question. In
fact, for g ≤ 5, Fontanari-Looijenga [7] show that a good stratification exists and Fontanari-Pascolutti [8]
exhibit a good affine cover of Mg.

1.1. Content of the paper. Proposition 3.1 deals with the Weierstrass stratification in Mg,1. The
idea is to show that the strata can be realized as open subsets of smooth varieties, whose complement
(representing a certain family of plane curves) is not purely divisorial. The techniques are borrowed from
Arbarello-Cornalba [3] (see also Chapter XXI of [1]). Similar computations can be also found in Caporaso-
Harris [4].
Proposition 3.2 deals with the stratification of Mg and relies on the same idea. The key computation is
borrowed from Diaz [6].

We work over the field of complex numbers, but all the results hold over an algebraically closed field of
characteristic zero.
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2. Linear series of Weierstrass type

Below we describe a slight variation of the theory of deformation of g1
d’s and g2

d’s on smooth curves. That
theory is described in Chapter XXI of [1]. Set

Grd,∗ = {[(C, p, Z)] | 1 ∈ Z ⊂ H0(C, dp), dim(Z) = r + 1}
which naturally sits inside the coarse space associated to Grd ×Mg

Mg,1.

Following the same arguments to prove the smoothness and to compute the dimension of G1
d as in [1], Chapter

XXI, Proposition 6.8, one proves that the variety G1
d,∗ is smooth and of dimension equal to 2g + d− 3.

2.1. Plane curves. Let us next recall the basic setting for the study of G2
d as described in Sections 8,

9 and 10, Chapter XXI of [1].
Let C be a smooth genus g curve and ϕ : C → P2 a nonconstant morphism. The normal sheaf Nϕ to this
morphism is defined by the exact sequence

0→ TC
dϕ→ ϕ∗TP2 → Nϕ → 0 .

Let

(2.1) C

π

��

ϕ̃ // P2

(U, u0)

be a deformation of ϕ parametrized by a pointed analytic space (U, u0), so that ι : C
∼=
↪→ π−1(u0) and

ϕ̃ ◦ ι = ϕ. The characteristic homomorphism of this family is the homomorphism

(2.2) Tu0(U)→ H0(C,Nϕ)

where Tu0
(U) is the Zariski tangent space to U at u0, assigning to each tangent vector to U at u0 the

Horikawa class of the corresponding infinitesimal deformation of ϕ. Denote by N ′ϕ the line bundle quotient
of Nϕ, i.e N ′ϕ = Nϕ/Torsion. The line bundle N ′ϕ may also be defined by the exact sequence

0→ TC(R)
dϕ→ ϕ∗TP2 → N ′ϕ → 0

where R be the ramification divisor of ϕ. In Proposition 9.10 (loc.cit) it is proved that, if the restriction of
ϕ̃ to each fiber of π is birational, then for a general u ∈ U the image of the characteristic homomorphism
Tu(U) → H0(Cu, Nϕu

) does not intersect the kernel of H0(Cu, Nϕu
) → H0(Cu, N

′
ϕu

), where Cu = π−1(u)
and ϕu = ϕ̃|Cu (here by general point of U we mean a general point of one of its irreducible components).

A local universal deformation for a morphism ϕ : C → P2 can be constructed as follows, at least when g ≥ 2
(the cases g = 0, 1 are best treated separately). Let d = degϕ∗(OP2(1)), let K → B be a Kuranishi family
for C. Consider the Brill-Noether variety G2

d over B and let V be the bundle of projective frames for the
universal g2

d over G2
d . Pulling back K to V, yields a deformation of ϕ

(2.3) K

��

K ×B V = Coo

Π

��

Φ // P2

B (V, v0)oo

parametrized by V, with C ∼= Π−1(v0) and ϕ ∼= ϕv0 = Φ|Cv0
. Moreover, for a general point v ∈ V, the

characteristic homomorphism yields an isomorphism

Tv(V) ∼= H0(Cv, Nϕv ) .
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In Theorem 10.1, Chapter XXI (loc.cit) it is proved that if X is an irreducible component of G2
d whose general

point corresponds to a curve C of genus g equipped with a basepoint-free g2
d, which is not composed with

an involution, then dimX = 3d + g − 9, or equivalently dimV ′ = 3d + g − 1 where V ′ := V ×G2
d
X is the

pull-back to X of the bundle V. There the theorem is proved under the assumption that g ≥ 2, but the cases
g = 0, 1 can be treated in a similar way.
In Theorem 10.14, Chapter XXI (loc.cit) it is proved that, for every (non-negative) value of d and g such
that (d− 1)(d− 2)/2 ≥ g, there exists a genus g curve C equipped with a basepoint-free g2

d which realizes C
as a plane nodal curve of degree d.

2.2. Plane curves with a total tangency point. In order to study G2
d,∗ we need to consider the

appropriate deformation problem. Let us fix a point Q and a line L in P2. Look at the deformation (2.1)
and suppose that

(a) π : C → U is a family of pointed curves i.e. π has a section σ.
(b) For each u ∈ U , ϕu(σ(u)) = Q.
(c) For each u ∈ U , ϕu is birational.
(d) The plane curve Γu = ϕu(Cu) is unibranched at Q with tangent line L intersecting Γu in Q with

multiplicity d = deg Γu.

Imitating the arguments in (loc.cit) one sees that the characteristic homomorphism (2.2) factors through the
inclusion H0(C,Nϕ(−dp)) ⊂ H0(C,Nϕ), where p = σ(u0) and that, moreover, for a general u ∈ U the image
of the characteristic homomorphism does not intersect the kernel of H0(C,Nϕ(−dp))→ H0(C,N ′ϕ(−dp)).

Assume now g ≥ 2; the cases g = 0, 1 can be easily dealt with separately.
Consider the natural morphism τ : G2

d,∗ → G2
d , which is finite-to-one, and its restriction to the irreducible

component X . An element of V ′ corresponds to a triple (C, p, ϕ), where ϕ : C → P2 is the morphism
associated to a frame of a subspace Z ⊂ H0(C, dp), with [(C, p, Z)] ∈ X . Fix a point Q and a line L in P2.
Let V∗ be the subbundle of V ′ given by those frames having the property that the corresponding morphism
ϕ : C → P2 is such that ϕ(p) = Q and ϕ∗(L) = dp. Hence, if C∗ is the restriction of the family C → V over
V∗, the family

(2.4) C∗

Π∗

��

// P2

(V∗, v)

satisfies conditions (a), (b) and (d) above and it is a local universal deformation.

Theorem 10.1, Chapter XXI (loc.cit), in the present situation, translates into the following.

Lemma 2.1. Let X be an irreducible component of G2
d,∗ whose general point corresponds to a triple (C, p, Z),

where (C, p) is a genus g pointed curve and Z is a three-dimensional subspace of H0(C, dp), with 1 ∈ Z and
whose corresponding g2

d ⊂ |dp| is basepoint-free and not composed with an involution. Then dimX = 2d+g−6.

Proof. Assume that g ≥ 2. The cases g = 0, 1 can be easily treated separately. For our purposes we
may restrict our attention to a small neighbourhood of [(C, p, Z)] in X . By assumption, h0(dp) = l > 2 and
the linear series |dp| is fixed point free and not composed with an involution; so, the family Π∗ satisfies also
condition (c) above.
Clearly,

(2.5) dimV∗ = dimX + 5 .

Since, for a plane curve, imposing a d-fold tangency with a given line L at given point Q amounts to d linear
conditions, we also have

(2.6) dimV∗ ≥ dimV ′ − d = 2d+ g − 1 .
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If v is a general point of V∗ corresponding to a point [(C, p, Z)] ∈ X and a morphism ϕ : C → P2, we get a
commutative diagram

(2.7) Tv(V∗) �
� //

α

��

Tv(V ′)

∼=
��

H0(C,Nϕ(−dp)) �
� // H0(C,Nϕ)

.

Since the image of α does not intersect the kernel of H0(C,Nϕ(−dp))→ H0(C,N ′ϕ(−dp)), we get

dimV∗ ≤ h0(N ′ϕ(−dp)) .

From (2.6) it follows that the line bundleN ′ϕ(−dp) is non-special so thatH1(C,N ′ϕ(−dp)) = H1(C,Nϕ(−dp)) =
0. On the other hand, via the Euler sequence, we get

N ′ϕ = ωC(−R)⊗ φ∗OP2(3)

By Riemann-Roch, we get

dimV∗ ≤ (deg(N ′ϕ)− d)− g + 1 = 2g − 2− deg(R) + 3d− d− g + 1

= g + 2d− 1− deg(R) ≤ g + 2d− 1 .

The lemma follows now from the above inequality, together with (2.5) and (2.6). �

Lemma 2.2. For every g and d such that (d − 1)(d − 2) ≥ 2g there exists a genus g pointed curve (C, p)
equipped with a basepoint-free g2

d ⊂ |dp| which realizes C as a plane nodal curve Γ of degree d, with a smooth
point (the image of p) whose tangent line has intersection multiplicity d with Γ.

Proof. Here again to we use a slight variation of the arguments used in Section 10 of Chapter XXI
(loc.cit). Fix a point Q and a line L in P2 and denote by Σ∗d,g the continuous system of all irreducible plane

curves Γ of degree d whose normalization has genus g, and such that (Γ · L)Q = d. Let ϕ : C → Γ be the
normalization. We consider an irreducible component Σ∗ of Σ∗d,g having the property that its general member

represents a plane curve which is smooth at Q. Then one proves that (if non-empty) Σ∗ has dimension equal
to 2d + g − 1 and that a general point of Σ∗ corresponds to a plane irreducible curve of degree d having
δ = (d− 1)(d− 2)/2− g nodes, and no other singularity. The proof of this fact is, word by word, the proof
of Theorem 10.7 (loc.cit), where one should substitute the normal sheaf Nϕ with Nϕ(−dp). To prove that
a non empty component Σ∗ exists, one may proceed as follows. Looking at the curve y = xd one sees that
Σ∗d,0 is non empty. Let Γ0 be a rational nodal curve corresponding to a general point of (a component) of

Σ∗d,0. Mimicking the arguments used to prove Lemma 10.15 (loc.cit), but again using Nϕ(−dp) instead of

Nϕ, one shows that, given any integer k with 0 ≤ k ≤ (d − 1)(d − 2)/2, there exists a deformation of Γ0

whose general member is a plane irreducible curve Γ having δ = (d − 1)(d − 2)/2 − k nodes and no other
singularity, and having Q as a simple point with (Γ · L)Q = d. �

3. On the Weierstrass flags

Let g and d be integer such that 2 ≤ d ≤ g + 1. Consider the closed subvariety

W ∗(d) = {[(C, p)] ∈Mg,1 | h0(C, dp) ≥ 2}
of Mg,1 of dimension 2g − 3 + d and notice that

W ∗(2) ⊂W ∗(3) ⊂ · · · ⊂W ∗(g) ⊂W ∗(g + 1) = Mg,1

is a stratification of Mg,1, whose locally closed strata are given by

W∗(d) = W ∗(d) \W ∗(d− 1) = {[(C, p)] ∈Mg | h0(C, dp) = 2} .
Similarly, consider the closed subvariety of Mg of dimension 2g − 3 + d

W (d) = π(W ∗(d)) = {[C] ∈Mg | ∃ p ∈ C with h0(C, dp) ≥ 2}
where π : Mg,1 →Mg is the forgetful morphism. Then

W (2) ⊂W (3) ⊂ · · · ⊂W (g) = Mg
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is a stratification of Mg, whose locally closed strata are given by

W (d) = W (d) \W (d− 1) =

{
[C] ∈Mg

∣∣∣ ∃p ∈ C with h0(C, dp) = 2, and
h0(C, (d− 1)q) = 1 for all q ∈ C

}
.

Consider first the strata W∗(d) of Mg,1.

Proposition 3.1. Let 5 ≤ d ≤ g + 1. If d is not prime, or if d is a prime and (d − 1)(d − 2) ≥ 2g, then
W∗(d) is not affine.

Proof. There is a natural forgetful morphism

G1
d,∗

// W ∗(d)

[(C, p, Z)] � // [(C, p)]

that restricts to an isomorphism
G1
d,∗ \ (G1

d−1,∗ ∪ Z) ∼= W∗(d)

where
Z = {[(C, p, Z)] ∈ G1

d,∗ | 1 ∈ Z ⊂ H0(C, dp), dim(Z) = 2, h0(dp) > 2} .
The variety G1

d,∗ is smooth and of dimension equal to 2g + d − 3. Since G1
d−1,∗ ⊂ G1

d,∗ is a divisor, in order

to show that W∗(d) is not affine we will prove that

(I) Z * G1
d−1,∗

(II) every irreducible component Z ′ of Z not entirely contained in G1
d−1,∗ satisfies the condition:

codimG1
d,∗
Z ′ > 1.

First suppose that d is not prime and set d = hk, with h > 1 and k > 1. Let C be a genus g, k-sheeted
cover of P1 with a point p of total ramification. Since d = hk, with h > 1, we may choose an element
f ∈ H0(C, dp) rH0(C, (d− 1)p) and set Z = 〈1, f〉. Then [(C, p, Z)] ∈ Z rZ ∩ G1

d−1,∗. This proves (I). We

next turn our attention to point (II).

Let Z ′ be an irreducible component of Z not entirely contained in G1
d−1,∗. We can assume that a general

point of Z ′ corresponds to a triple (C, p, Z), as above, with h0(dp) = l > 2 and h0((d− 1)p) = l− 1 (no fixed
points for |dp|).

Two cases may occur:

(i) At a general point of Z ′, the linear series |dp| is composed with an involution.
(ii) At a general point of Z ′, the linear series |dp| is not composed with an involution.

Case (i).
The curve C is a ν-sheeted cover of curve Γ, with d = kν, and with a point of total ramification. Let
F : C → Γ be this cover and let γ be the genus of Γ. The number δ of branch points of F (including F (p))
is at most

δ ≤ 2g − 2ν(γ − 1)− ν .
Therefore,

dimZ ′ ≤ δ + (2γ + k − 3)

≤ 2g + (2− 2ν)(γ − 1)− ν − k − 1, if γ ≥ 1,

dimZ ′ ≤ [(δ − 1)− 2] + [(k + 1)− 2] ≤ 2g + ν + k − 4, if γ = 0.

In all cases, using the fact that d = kν and k, ν > 1, one sees that

dimZ ′ ≤ d+ 2g − 5 = dimG1
d,∗ − 2 .

is always satisfied except for d < 5, k = ν = 2 and γ = 0. Hence, the inequality always holds if d ≥ 5.

Case (ii).
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Let [(C, p, Z)] be a general point of Z ′. By assumption h0(dp) = l > 2 and the linear series |dp| is fixed
point free and not composed with an involution. There is a natural Pl−3-bundle P over Z ′ whose fiber over
[(C, p, Z)] is P(H0(C, dp)/Z). A point of this bundle over [(C, p, Z)] can be viewed as a triple [(C, p, P )],
where P is a 3-dimensional subspace of H0(C, dp) containing Z. Thus, there is an injective map

P → G2
d,∗ .

Therefore, by Lemma 2.1,

dimZ ′ = dimP − (l − 3) ≤ 2d+ g − 3− l .
As l ≥ 3 and d ≤ g+ 1, we obtain 2d+ g− 3− l ≤ 2g+ d− 5, and so the codimension of Z ′ in G1

d,∗ is strictly
greater than 1, proving the first part of the proposition.

Suppose next that (d− 1)(d− 2)/2− g ≥ 0. Then, by Lemma 2.2, there exists an irreducible component Z ′
of Z which falls in case (ii) and again we are done.

�

Now we turn our attention to the locally closed strata W (d) of Mg.

Proposition 3.2. Let g ≥ 6 and 5 ≤ d ≤ g − 1. Then W (d) is not affine.

Proof. The forgerful map π restricts to

π|W∗(d) : W ∗(d)→W (d)

and, in particular, to

π|W∗(d)rY : W∗(d) r Y →W (d)

which is finite and surjective, where

Y = {[(C, p)] ∈W∗(d) | ∃ q 6= p, with h0(C, (d− 1)q) ≥ 2} .

Hence, W (d) is affine only if W∗(d) r Y is. Since W∗(d) is smooth, to show that W (d) is affine it suffices to
find a non-empty component Y ′ of Y of codimension greater than 1 inside W∗(d). This is a direct consequence
of Theorem 3.2 in Diaz’s paper [6]. There the following is proven.

Theorem 3.3 ( [6]). Let g ≥ 4 and let k ≤ l ≤ g − 1. If k, l ≥ 1
2 (g + 2), then there exists a non-empty

component W (k, l) of the locus of points in Mg corresponding to curves possessing both a Weierstrass point
of type k and a Weierstrass point of type l which has dimension g − 3 + k + l.

A closer inspection of Diaz’ proof also shows that:

For g ≥ 4 and k ≤ l ≤ g−1, if k < 1
2 (g+2), then there exists a non-empty component W (k, l) of the locus of

points in Mg corresponding to curves possessing both a Weierstrass point of type k and a Weierstrass point
of type l which has dimension at most 2g − 1 + l − k.

By a Weierstrass point of type h on a curve C it is a meant a point p ∈ C for which h0(C, hp) ≥ 2. In
proving this assertion, Diaz also shows that, if k < l, then for a general [C] ∈ W (k, l) there exists a point
p ∈ C with h0(C, lp) = 2. We can then take

Y ′ = π−1(W (d− 1, d)) ∩W∗(d) .

Hence, for 4 + g/2 ≤ d ≤ g − 1,

dimY ′ = g − 3 + (d− 1) + d = g + 2d− 4 ≤ d+ 2g − 5 = dim W∗(d)− 2

On the other hand, for 5 ≤ d < 4 + g/2,

dimY ′ ≤ 2g − 1 + d− (d− 1) = 2g ≤ d+ 2g − 5 = dim W∗(d)− 2 .

�
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