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We discuss the problem of determining the de Rham, Dolbeault and algebraic cohomo-
logical dimension of Mg, focusing on possible strategies of attack and then concentrating
on exhaustion functions. In the final section, we explain how these techniques can be
employed to provide a nontrivial upper bound for the Dolbeault cohomological dimen-
sion of Mg.
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1. Moduli Space of Riemann Surfaces

Let g ≥ 2 and denote by Mg, the moduli space of compact connected Riemann
surfaces of genus g up to isomorphism.

The space Mg can be viewed as an orbifold (see for instance [1]). Indeed, if
x = [S] ∈ Mg represents the isomorphism class of the Riemann surface S, points
in a neighborhood of x encode deformations of complex structures on S up to iso-
morphism. It is well-known that, such deformations are parametrized by an open
subset U of C3g−3 (see [6] or, for instance, the book [5]) and that the finite auto-
morphism group of S acts on U . As a consequence, a neighborhood of x in Mg

looks like U/Aut(S) and so Mg can be given the structure of a complex-analytic
orbifold. From the algebraic point of view, Mg can be endowed with the structure
of smooth Deligne–Mumford stack [11]. In fact, it is well-known [19], that Mg is a
global quotient of a smooth complex quasi-projective variety M̃g by the action of
a finite group G. Hence, sheaves and sections of sheaves on Mg can be defined as
G-equivariant sheaves and sections on M̃g.

Analogous considerations hold for the moduli space Mg,k of compact connected
Riemann surfaces S with k distinct marked points p1, . . . , pk ∈ S, provided the

1640008-1

http://dx.doi.org/10.1142/S0129167X16400085


2nd Reading

June 23, 2016 16:13 WSPC/S0129-167X 133-IJM 1640008

G. Mondello

hyperbolicity condition 2g − 2 + k > 0 is satisfied and so all automorphism groups
Aut(S, p1, . . . , pk) are finite.

1.1. On the cohomology of the moduli space of Riemann surfaces

Many papers are dedicated to the study of the singular cohomology of Mg.
In low degrees, genus-independent computations are due to Powell [45] and

Harer [20] for H1, to Harer [20, 23] for H2 and H3, to Edidin [14] and Polito [44]
for H4 and g ≥ 8.

As for low-genera computations, de Rham cohomology is trivial for g = 2. A
complete calculation in genus 3 is due to Looijenga [32] and in genus 4 to Tommasi
[49], but the full determination of H∗

dR(Mg) seems out of reach for g large. Further
computations are available for the moduli spaces Mg,k of surfaces with marked
points.

Still due to Harer are the following two major results, which here, we state in a
simplified version.

Theorem 1.1 ([22]). Let 2g − 2 + k > 0. Then Hd(M̃g,k; L) = 0 for every local
system L and every d > d(g, k), where

d(g, k) =



n− 3 if g = 0 and n ≥ 3

4g − 5 if g ≥ 2 and n = 0

4g − 4 + n if g ≥ 1 and n ≥ 1.

Hence, Hd
dR(Mg,k; V) = 0 for every C-local system V and every d > d(g, k).

Actually, Harer’s result is much more powerful. In particular, it implies that
there exists a G-invariant local system S on M̃g,k such that Hd(g,k)

dR (Mg,k; S) �= 0
and so that the bound is sharp.

Theorem 1.2 (Stability [21]). Fix a degree d > 0. Then there exists an integer
g(d) ≈ 3d, such that Hd(Mg+1; Z) ∼= Hd(Mg; Z) for all g ≥ g(d).

The stability threshold was improved by Ivanov [27] to g(d) ≈ 2d and then by
Boldsen [10] to the approximately optimal g(d) ≈ 3

2d. Moreover, the full rational
stable cohomology was determined by Madsen–Weiss [35].

Though very important, de Rham cohomology and even Hodge theory do not
always capture subtleties of the holomorphic geometry of a complex manifold, which
are encoded by Dolbeault cohomology: for instance, deformations of complex struc-
tures, deformations of analytic coherent sheaves, deformation of holomorphic maps
or of holomorphic subvarieties and so on. On the other hand, since de Rham coho-
mology is isomorphic to singular cohomology with rational coefficients, its compu-
tation can benefit of a whole array of topological tools, which are unavailable, if
one wishes to work with Dolbeault cohomology.

We emphasize that most genus-independent results in de Rham cohomology of
Mg are obtained via purely transcendental methods. So is, for instance, for the
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determination of the orbifold Euler characteristic by Harer–Zagier [24], Penner [41]
and Kontsevich [30]. Even the most algebro-geometric approaches (for example
[4]), seem to rely on the topological computations of H1 and H2 and on Theorem
1.1. Thus, it is not surprising that Dolbeault cohomology of Mg remains almost
completely unknown. In particular, no analogue of Theorem 1.2 exists at present
in the Dolbeault setting, whereas Theorem 1.1 is replaced by the following.

Problem 1.3 (Looijenga). Show that, for every holomorphic vector bundle E
on Mg, we have H0,q

∂
(Mg;E) = 0 for q > g − 2.

Evidence supporting Looijenga’s conjecture is basically of four types:

(1) it is confirmed for g ≤ 5 (by classical arguments for g = 2, 3 and by Fontanari–
Pascolutti [15] for g = 4, 5);

(2) it would imply Diaz’s result [13]: compact holomorphic subvarieties of Mg have
dimension at most g − 2;

(3) it would imply Looijenga’s vanishing [33] of tautological classes on Mg beyond
degree g − 2;

(4) it would imply Harer’s Theorem 1.1 through the Dolbeault-to-de Rham spectral
sequence H0,q

∂
(Mg; Ωp,0 ⊗ V) ⇒ Hp+q

dR (Mg; V).

For the (partially) compactified moduli space of Riemann surfaces, the analogous
of Looijenga’s vanishing is proven by Ionel [26] and Graber–Vakil [18], whereas an
analogous bound as in Theorem 1.1 is derived in [37]. A more detailed discussion
about the above results, the employed techniques, Looijenga’s problem and strati-
fication techniques can be found in [39].

Considerations analogous to those expressed about Dolbeault cohomology hold
for the cohomology of algebraic coherent sheaves on Mg.

2. Investigating the Cohomological Dimension

2.1. Basic properties

Let F be one of the following three categories:

(dR) F = dR the category of C-local systems of coefficients (i.e. flat complex vector
bundles) over the category C of smooth manifolds with smooth maps;

(Dol) F = Dol the category of holomorphic vector bundles,a over the category C of
complex manifolds with holomorphic maps;

(alg) F = alg the category of algebraic vector bundles,a over the category C of
complex algebraic varieties with algebraic maps.

For every object X of C, denote by FX the subcategory of F of sheaves on X .

aActually, more appropriate and functorial definitions require the category of analytic coherent
sheaves (Dol) and of algebraic coherent sheaves (alg).
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Definition 2.1. The F-cohomological dimension of X is the greatest integer d ≥ 0
for which there exists a sheaf F ∈ FX , such that Hd(X ;F) �= 0. We denote it by
coh-dimF(X).

Since, we will mostly focus on de Rham (dR) and Dolbeault (Dol) cohomolog-
ical dimensions, we leave the algebraic (alg) cohomological dimension aside for a
moment. In the following table, a few immediate properties of these invariants are
displayed.

de Rham cohomology Dolbeault cohomology

X connected manifold X connected complex manifold

X compact ⇐⇒ dimR(X) = coh-dimdR(X) X compact ⇐⇒ dimC(X) = coh-dimDol(X)

X contractible =⇒ X acyclic X Stein =⇒ X acyclic

F → Y → X proper smooth submersion F → Y → X proper holomorphic submersion

coh-dimdR(Y ) = coh-dimdR(X) + coh-dimdR(F ) coh-dimDol(Y ) = coh-dimDol(X) + coh-dimDol(F )

Y → X unramified finite cover Y → X (unramified) finite cover

=⇒ coh-dimdR(Y ) = coh-dimdR(X) =⇒ coh-dimDol(Y ) = coh-dimDol(X)

As an example, we prove one such property which will have a special meaning.

Lemma 2.1. Let C be one of the three above categories and let π : Y → X be a
morphism in C, which is a finite surjective unramified cover. Then:

(a) for every G ∈ FY the push-foward π∗G belongs to FX ;
(b) for every F ∈ FX the pull-back π∗F belongs to FY ;
(c) coh-dimF(Y ) = coh-dimF(X).

Proof Assertions (a) and (b) are clear, so we focus on property (c). Since π

is finite unramified and surjective, OX is a direct summand of π∗OY . Thus,
Hq(X ;F) is a direct summand of Hq(X,F ⊗OX π∗OY ) = Hq(Y, π∗F) and so
coh-dimF(X) ≤ coh-dimF(Y ). On the other hand, Hq(Y,G) = Hq(X,π∗G) implies
that coh-dimF(Y ) ≤ coh-dimF(X).

We remark that de Rham (respectively Dolbeault, or algebraic) cohomology can
be defined also for the category F of complex local systems on orbifolds (respectively
of holomorphic vector bundles on complex-analytic orbifolds, or of algebraically
coherent locally free sheaves on Deligne–Mumford stacks over C).

Remark 2.1. The above lemma shows that, if X = [Y/G] is a global quotient of
Y by the action of a finite group, then coh-dimF(X) = coh-dimF(Y ).

Notice that, if M = BΓ for a virtually torsion-free discrete group Γ, then
coh-dimdR(M) coincides with the virtual cohomological dimension of Γ (see [7]).
In this language, Theorem 1.1 can be rephrased as follows.

Theorem 2.1 (Harer [22]). Coh-dimdR(Mg,k) = d(g, k).
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Also Problem 1.3 has the following rephrasing.

Problem 2.2 (Looijenga). Show that coh-dimDol(Mg) ≤ g − 2.

We remark that the Dolbeault-to-de Rham spectral sequence together with
Harer’s result coh-dimdR(Mg) = 4g − 5 already implies that coh-dimDol(Mg) ≥
g−2. Thus, Looijenga’s problem is equivalent to exactly determining the Dolbeault
cohomological dimension of Mg.

2.2. Strategies of attack

Suppose that, we want to bound the de Rham cohomological dimension of a non-
compact manifold M . We review four basic ideas to attack this problem.

(1dR) Let U = {Ui}i∈I of M be a locally finite open cover, such that

— for every nonempty finite subset I = {i0, . . . , ip} ⊆ I of cardinality p+ 1,
the de Rham cohomological dimension of UI := Ui0 ∩ · · · ∩Uip is at most
d− p (and so in particular UI = ∅ for |I| > d+ 1).
Then the spectral sequence

⊕
|I|=pH

q
dR(UI ; V)⇒Hp+q

dR (M ; V) for every
C-local system V on M allows to conclude that coh-dimdR(M) ≤ d.

(2dR) Let M0 ∪M1 ∪ · · · ∪M r be a stratification of M , such that

(a) the closure of M q is
⋃

i≥0M
q+i and each M q+i has a neighborhood in

M q that retracts by deformation onto M q+i;
(b) M q is a locally closed smooth submanifold of M of codimension q;
(c) the de Rham cohomological dimension of M q is at most d− q.

Then (a) allows to thicken each M q to produce an open cover U =
{U0, . . . , Ur} of M in such a way that

(i) Uq contains M q and it deformation retracts onto M q;
(ii) for every q and 0 = i0 < i1 < · · · < ip, the open subset Uq ∩Uq+i1 ∩ · · ·∩

Uq+ip is homotopy equivalent to a fibration over M q+ip with compact
fibers of dimension (i1 − 1) + (i2 − i1 − 1) + · · · + (ip − ip−1 − 1) =
ip − p, and so they have de Rham cohomological dimension at most
[d− (q + ip)] + (ip − p) ≤ d− p.

By (1dR), it follows that coh-dimdR(M) ≤ d.
(3dR) Assume that M retracts by deformation onto a CW complex K of dimension

d. Using the isomorphism between de Rham and singular homology, one can
conclude that the de Rham cohomological dimension of M is at most d.

(4dR) Suppose that one can exhibit a C2 proper function ξ : M → R bounded
below (also known as exhaustion funtion) with isolated critical points and
such that the Hessian at its critical points is nondegenerate and of index at
most d. Then Morse theory tells us that M is homotopy equivalent to a CW
complex of dimension at most d and so coh-dimdR(M) ≤ d.
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Suppose, now that, we have a complex manifold X and we would like to bound its
Dolbeault cohomological dimension. While strategy (1) can be translated word by
word in this setting, variant (2) needs much more care. We do not have a handy
analogue of (3) but approach (4) can be adapted as follows.

(4Dol) Exhibit an exhaustion function ξ : X → R, such that at every point x ∈ X

the complex Hessian i∂∂ξ restricts to a positive-definite Hermitian form on
a subspace Wx ⊂ TxX of codimension d (at least in a suitable distributional
sense). By Andreotti–Grauert [3], it follows that coh-dimDol(X) ≤ d.

We stress that, despite the formal analogies between (4dR) and (4Dol), the proof by
Andreotti–Grauert is not Morse-theoretic: it passes through producing a complete
Kähler metric on X with respect to which all but d eigenvalues of i∂∂ξ are one
and the remaining d eigenvalues of i∂∂ξ are greater than −ε, and then applying
Bochner technique [8, 9] as in Kodaira–Akizuki–Nakano’s proof [29, 2]. See also the
book [12].

Similar considerations on strategies (1) and (2) hold for a complex algebraic
variety Y , and its algebraic cohomological dimension, provided the cover U is open
in the Zariski topology. More specifically, a popular way to pursue these strategies
in the algebraic setting is the following (see also [46]).

(1alg) Let Y be a smooth compactification of Y in which ∂Y := Y \Y is a divi-
sor. Suppose that D0, . . . , Dd ⊂ Y are effective ample divisors, such that⋂d

i=0Di ⊆ ∂Y . Then Y is union of d+1 affine subsets Y \D0, . . . , Y \Dd and
so coh-dimalg(Y ) ≤ d.

(2alg) Let Y 0 ⊃ · · · ⊃ Y d be a stratification of Y , such that Y q =
⋃

i≥0 Y
q+i

and Yq has codimension q in Y . Suppose that each Y q is affine. Then
coh-dimalg(Y ) ≤ d.

Since affines are Stein, (1alg) implies (1Dol).
Finally, strategy (4) has the following incarnation in the algebraic setting.

(4alg) Exhibit a smooth compactification Y of Y and a holomorphic line bundle
L→ Y with a Hermitian metric h such that

(i) the added points at infinity ∂Y := Y \Y form a Cartier divisor;
(ii) there exists a holomorphic section σ of L that vanishes exactly on ∂Y ;
(iii) at every point y ∈ Y the complex Hessian −i∂∂ log ‖s‖2

h restricts to a
positive-definite Hermitian form on a subspace Wy ⊂ TyY of codimen-
sion d, where s is any nonvanishing holomorphic section of L defined on
a neighborhood of y.

A suitable modification of the argument by Andreotti–Grauert [3] similar to
Girbau’s [16, 17] (see Demailly [12]) implies that coh-dimalg(Y ) ≤ d.

By letting ξ := −log ‖σ‖2
h, we easily see that (4alg) implies (4Dol).
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3. Dolbeault Cohomological Dimension of Mg

via Exhaustion Functions

3.1. Hyperbolic surfaces

Suppose, we want to bound the Dolbeault cohomological dimension of the mod-
uli space Mg of compact connected Riemann surfaces of genus g ≥ 2 by taking
approach (4Dol) described in Sec. 2.2. We have then to look for natural, and possi-
bly geometric, exhaustion functions on Mg.

Remark 3.1. Using the uniformization theorem [43], one can endow every com-
pact connected Riemann surface S of genus g ≥ 2 with its Poincaré hyperbolic
metric. Moreover, such a hyperbolic metric depends real-analytically on the com-
plex structure on S.

Definition 3.1. For every nontrivial simple closed curve γ on S, we define �hyp
γ (S)

as the hyperbolic length of the unique geodesic on S freely homotopic to γ and the
systole �hyp

sys (S) as the hyperbolic length of the shortest nontrivial closed curve on S.

Almost by definition, the variation of the hyperbolic length functions (which are
well-defined locally on Mg) real-analytically depends on the variation of complex
structure on the Riemann surface. Moreover, the following is rather easy to check.

Lemma 3.1. The function �hyp
sys : Mg → R is locally the minimum of finitely many

hyperbolic length functions. Hence, �hyp
sys is locally Lipschitz.

The following result is well-known.

Theorem 3.1 (Mumford [40]). For every ε > 0, the locus Mε
g of Mg consisting

of Riemann surfaces S, such that their shortest nontrivial closed geodesic has length
�hyp
sys (S) ≥ ε is compact.

Thus, we are given a very natural and geometric exhaustion function.

Corollary 3.1. (�hyp
sys )−2 : Mg → R is an exhaustion function and it locally agrees

with the maximum of finitely many real-analytic functions of type (�hyp
γ )−2.

In order to pursue strategy (4Dol), we need to compute the complex Hessian
of (�hyp

sys )−2. Certainly, the fact that such a function is not C2 might require some
smoothing argument, but a big part of the calculation should boil down to compute
i∂∂(�hyp

γ )−2 for each fixed γ. This calculation has already been performed, but the
upshot is not what we hoped for.

Theorem 3.2 (Wolpert [53]). The complex Hessian of the locally defined func-
tion (�hyp

γ )−1 is strictly negative-definite.

Hence, i∂∂(�hyp
γ )−2 has positive index at most 1 and so using the hyperbolic

systole to pursue strategy (4Dol) is not possible. On the other hand, (4dR) turns
out to be not so easy to implement either (see [47], for instance): the attempt proved
to be successful in the case of M2,1 (see [48]).
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3.2. Flat surfaces

Being plurisuperharmonic (i.e. having negative-definite complex Hessian), hyper-
bolic length functions proved not so useful for (4Dol) but, one can hope that flat
length functions work better.

By a result by Troyanov [50], we can endow every Riemann surface (S, p) with
one marked point with a canonical flat metric h, that forms a conical singularity of
angle (2g − 1)2π at p. Moreover, such h is unique up to rescaling.

Thus, if A(h) is the area and �sys(h) is the systole of h, then the quantity
A(h) · �sys(h)−2 is invariant under rescaling and work [28] by Kerckhoff–Masur–
Smillie yields the following.

Corollary 3.2. (A · �−2
sys) : Mg,1 → R is an exhaustion function and it locally agrees

with the maximum of finitely many real-analytic functions of type (A · �−2
γ ).

Since i∂∂(eF ) = ieF [∂∂F + ∂F ∧ ∂F ], the index of positivity of i∂∂F is either
the same as that of i∂∂(eF ) or one less. Thus, analyzing the complex Hessian of
A · �−2

sys is almost the same as treating i∂∂ log(A) − i∂∂ log(�2sys).
A natural way to locally study such functions is the following.
Consider a surface (S, p) ∈ Mg,1 and fix a universal cover π : S̃ → S and a point

p̃ ∈ P̃ := π−1(p). The canonical flat metric h lifts to a flat metric h̃ on S̃, with
conical singularities at all points in P̃ . Thus, there exists a holomorphic differential
ϕ̃ on S̃ with zeroes of order 2g− 2 at P̃ , such that |ϕ̃|2 = h̃. Moreover, there exists
a holonomy representation ρ : π1(S) → U(1), such that an element α ∈ π1(S) acts
on S̃ via a biholomorphism τα : S̃ → S̃ that satisfies τ∗α(ϕ̃) = ρ(α)−1ϕ̃.

Given a one-parameter holomorphic family ε �→ (Sε, pε) ∈ Mg,1 of one-pointed
Riemann surfaces with (S0, p0) = (S, p), we can biholomorphically identify all
universal covers of Sε to the same S̃. Thus, there is a family of flat canonical
metrics hε that lifts to h̃ε on S̃ and so there are induced one-parameter fami-
lies of points P̃ε and of holomorphic differentials ϕ̃ε on S̃, such that |ϕ̃ε|2 = h̃ε.
Whereas the position of the points P̃ε varies holomorphically with ε, we stress
that h̃ε need not depend holomorphically on ε, if ρε is not constantly equal
to ρ.

Let γ be a shortest closed curve on S, which we may assume that starts and
ends at p, but does not meet p elsewhere (otherwise it would not be shortest). It
can be lifted to a curve γ̃ between two distinct points p̃, p̃′ ∈ P̃ . Hence,

�γ(hε)2 =

∣∣∣∣∣
∫ p̃′

ε

p̃ε

ϕ̃ε

∣∣∣∣∣
2

and so ε �→ �γ(hε)2 is the squared norm of a holomorphic function, if the holon-
omy representation ρε is independent of ε. In this latter case, ε �→ log(�−2

γ (hε)) is
harmonic and so ε �→ log(�−2

sys(hε)) is weakly subharmonic, because the maximum
of subharmonic functions is subharmonic.
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In order to obtain more positivity from length functions, we can consider more
curves instead of just the shortest one. The problem is that a flat geodesic γ for h
may not be smooth, that is it may pass through p, thus breaking into a union of
finitely many segments γ(k): in this case, the length function associated to the path
γ locally agrees with the sum of the length functions �γ(k) . Thus, even assuming that
ρε does not vary and so ε �→ �γ(k)(hε) is locally the absolute value of a holomorphic
function, ε �→ �−2

γ (hε) is weakly subharmonic near ε = 0 if γ is smooth, but it need
not be if γ is not smooth.

A way to get around this latter problem is to consider the set B of 2g-ples
B = {γ1, . . . , γ2g} of simple closed curves on S based at p that generate H1(S, p; R)
and to define

�−2
B = max

B∈B
�−2
B , �−2

B =
∑
γ∈B

�−2
γ .

For small ε, the value of �−2
B (hε) is attained at finitely many bases B made of

smooth h-geodesics. Thus, ε �→ �−2
B (hε) is again subharmonic, if ρε does not vary.

A harder problem is to study the Laplacian of ε �→ A(hε). Again, the situation
is simpler, if the holonomy ρε does not vary: this computation was performed by
Veech [51]. The calculation for deformations that truly vary the holonomy is still
missing. A simple way to ensure that the holonomy is constant in ε is to require
that ρε takes values at torsion points of U(1) for every ε.

Remark 3.2. Notice that a flat metric with r-torsion linear holonomy is of type
|ψ| 2r = (ψψ̄)

1
r , where ψ is a nonzero holomorphic section of K⊗r

S . In particular, flat
surfaces with trivial linear holonomy, namely couples (S, ϕ) with 0 �= ϕ ∈ H1,0(S),
are also called “translation surfaces”.

It will be clear in the next section, that the locus of pointed surfaces (S, p) ∈
Mg,1 such that the canonical flat metric h has trivial holonomy is a closed complex
algebraic subvariety of codimension g − 1.

One can study flat surfaces with more than one singularity in a similar fashion,
again using Troyanov’s result, which here we state more formally.

Theorem 3.3 (Troyanov [50]). Let m = (m1, . . . ,mk) be a positive vector, such
that m1 + · · · +mk = 2g − 2. Every (S, p1, . . . , pk) ∈ Mg,k can be endowed with a
conformal flat metric h with conical singularity of angle 2π(mi + 1) at pi and such
a metric is unique up to rescaling. Moreover, the metric h with unit area depends
real-analytically on the complex structure of (S, p1, . . . , pk).

Analogously, the locus of flat surfaces with torsion or trivial holonomy plays a
special role.

Definition 3.2. Let m = (m1, . . . ,mk) be a positive integral vector such that
m1 + · · · + mk = 2g − 2. The moduli space of translation surfaces of genus g

with marked singularities of type m is the space ΩMg,k(m) that parametrizes
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triples (S, P, ϕ), where (S, P = {p1, . . . , pk}) ∈ Mg,k and ϕ is a nonzero Abelian
differential on S that vanishes to order mi at pi.

If we consider nonzero Abelian differentials ϕ up to rescaling, we obtain the
moduli space of projective translation surfaces PΩMg,k(m). We remark that
PΩMg,k(m) agrees with the locus inside Mg,k of pointed surfaces whose asso-
ciated flat metric h has trivial holonomy. Indeed, for (S, P, ϕ) ∈ ΩMg,k(m) the flat
metric is recovered as h = |ϕ|2 and so its area is simply

A(h) =
i

2

∫
S

ϕ∧ϕ.

It might then be a bit more clear, why the computation of the complex Hessian of
A is easier in this case.

3.3. Translation surfaces with prescribed singularities

Fix a string m =(m1, . . . ,mk) of positive integers such that
∑

i mi = 2g − 2. The
moduli spaces ΩMg,k(m) are not connected in general.

Theorem 3.4 (Kontsevich–Zorich [31]). Let g≥ 2. The moduli space ΩMg,k

(m) is the disjoint union of ΩMhyp
g,k (m) and ΩMnon−hyp

g,k (m).

(a) The only nonempty hyperelliptic components are ΩMhyp
g,1 (2g − 2) and

ΩMhyp
g,2 (g− 1, g− 1) and they consist entirely of hyperelliptic curves. The locus

ΩMnon−hyp
g,k (m) is made of components which are generally made of nonhyper-

elliptic curves. Clearly, there are no nonhyperelliptic components in genus 2.
(b) Let g ≥ 3 and suppose that the integral vector m is not divisible by 2. Then

ΩMnon−hyp
g,k (m) is nonempty and connected.

(c) Let m = 2n, where n = (n1, . . . , nk) is integral. For every (S, P, ϕ) ∈
ΩMnon−hyp

g,k (m), let L = OS(n1p1 + · · ·+ nkpk) be the holomorphic line bundle
on S such that L⊗2 ∼= KS.

(c1) For g = 3, the space ΩMnon−hyp
g,k (m) = ΩModd

g,k (m) is nonempty and
connected.

(c2) For g ≥ 4, the space ΩMnon−hyp
g,k (m) has two connected components:

ΩModd
g,k (m) and ΩMeven

g,k (m). The former consists of (S, P, ϕ), such that
h0(S,L) is odd; the latter consists of (S, P, ϕ) such that h0(S,L) is even.

Really, if we want to apply strategy (4Dol) to estimate the Dolbeault cohomo-
logical dimension of PΩMg,k(m), connectedness is not so important (equivalently,
we can work with each connected component separately, if we prefer).

Certainly, smoothness of the space is important. The following well-known result
was proven in different ways by Hubbard–Masur [25], Veech [51] and Möller [36].

Theorem 3.5 ([25, 51, 36]). The moduli space ΩMg,k(m) is smooth of dimen-
sion 2g − 1 + k.
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The above result can be made more precise by describing special holomorphic
charts, known as period coordinates. These will be very useful in the computation
of the complex Hessian of log(A · �−2

B ).
Let U be an open subset of ΩMg,k(m). By the universal property of ΩMg,k(m),

there is an induced holomorphic family S → U of Riemann surfaces of genus g
together with disjoint sections p1, . . . ,pk : U → S.

Suppose now that U is contractible. Then the family S → U can be smoothly
(but not holomorphically!) trivialized, so that f : S ∼=−→ S × U and the section
pi : U → S ∼= S × U is constantly equal to a fixed point pi ∈ S. Thus, every point
u in U corresponds to a couple (Ju, ϕu), where Ju is a complex structure on S

and ϕu is a Ju-holomorphic differential one-form on S that vanishes to order mi at
pi. In particular, ϕu is closed and so it defines a relative cohomology class (ϕu) ∈
H1(S, P ; C), where P = {p1, . . . , pk}. Hence, there is an induced local period map

P : U −→ H1(S, P ; C)

defined as P(u) := (ϕu). Theorem 3.5 can be then made more precise as follows.

Theorem 3.6 ([25, 51, 36]). The map P is a local biholomorphism. A different
choice of the trivialization f corresponds to a post-composition of P with an integral
automorphism of H1(S, P ; C).

By the analysis done in the previous section, the function �−2
B : ΩMg,k(m) → R

is strongly plurisubharmonic, since the maximum is ranging over the set B of certain
R-bases of H1(S, P ; R). Moreover, i∂∂ log(�−2

B ) is strictly positive in any direction
different from the ray along which the differential ϕ is rescaled.

On the other hand, the area function A : ΩMg,k(m) → R is now easy to study.
Indeed, in local period coordinates, it can be expressed as

A(u) =
i

2

∫
S

ϕu ∧ϕu

and so it is a Hermitian quadratic form on H1(S, P ; C). Hence, by identifying
T(ϕb)H

1(S, P ; C) to H1(S, P ; C), the complex Hessian i∂∂A can be identified to A
itself. Now notice that

i

2

∫
S

ψ ∧ψ ≥ 0 for ψ closed one-form such that ψ0,1 is exact,

where ψ0,1 is the (0, 1)-component of ψ with respect to the Ju-holomorphic
structure.

We conclude that the Hermitian form A : H1(S, P ; C) → R has positivity g,
negativity g and nullity k − 1, and in particular, we obtain the following.

Lemma 3.2. The function A (respectively �−2
B ) satisfies the following weak

(respectively strong) (
)-property:

(
) its complex Hessian is non-negative (respectively strictly positive) along defor-
mations ε �→ (Jε, ϕ + εϕ̇), such that the (0, 1)-component (with respect to J0)
of ϕ̇ is exact.
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Deformations involved in property (
) describe a complex subspace of codimension
g of the tangent space.

Hence, strategy (4Dol) applied to PΩMg,k(m) and the function ξm := A · �−2
B

gives the following estimate.

Corollary 3.3 ([38]). The complex Hessian of the exhaustion function ξm :
PΩMg,k(m) → R is strictly positive (in the distributional sense) along a smooth
distribution of complex codimension g of the tangent bundle. Hence, coh-dimDol

(PΩMg,k(m)) ≤ g.

A more careful computation shows that there exist points (S, P, [ϕ]) ∈
PΩMg,k(m) at which the complex Hessian of ξm has indeed index of negativity
exactly g, and so this function can provide no better bound for the cohomological
dimension. On the other hand, we know that such an estimate is not optimal.

Proposition 3.1. The following components of the moduli spaces of projective
translation surfaces are affine:

(a) PΩMhyp
g,1 (2g − 2) and PΩMhyp

g,2 (g − 1, g − 1);
(b) PΩModd

3,1 (4) and PΩM3,2(3, 1);
(c) PΩModd

4,1 (6), PΩMeven
4,1 (6) and PΩMeven

5,1 (8).

Hence, both their algebraic and Dolbeault cohomological dimensions are zero.

As hyperelliptic curves are branched, double covers of CP1 part (a) can be
considered classical. Almost as classical is part (b), which relies on the esplicit
description of nonhyperelliptic smooth Riemann surfaces of genus 3 as plane
quartics (see, for instance, [32, 34]). During conversations on this topic with
Eduard Looijenga, he pointed out that works of Pinkham [42] and Vitulli [52]
on deformations of affine monomial curves imply that certain components of
type PΩModd

g,1 (2g − 2),PΩMeven
g,1 (2g − 2) are the complement of a discriminant

hypersurface inside a complete intersection in a weighted projective space, which
implies part (c) of the above proposition.

Question 3.1. Are the spaces PΩMg(m) affine?

We will see below, that a positive answer would have consequences on the coho-
mological dimension of Mg.

3.4. Hodge bundle

Translation surfaces of genus g without marked points and with no fixed pattern
of zeroes are determined by couples (S, ϕ), where S ∈ Mg and 0 �= ϕ ∈ H1,0(S).
Hence, they are naturally parametrized by the space ΩMg, an algebraic (Cg\{0})-
bundle over Mg, whose fiber over S is exactly H1,0(S)\{0}. Thus, projective trans-
lation surfaces without marked points and with no fixed pattern of zeroes are
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parametrized by the projectivization PΩMg, which is an algebraic CPg−1-bundle
over Mg, and so coh-dimF(Mg) = coh-dimF(PΩMg) − (g − 1) for F = Dol, alg.

For every m = (m1, . . . ,mk) string of positive integers with m1 + · · · + mk =
2g − 2, the map PΩMg,k(m) → PΩMg, that forgets the marked points is finite
over its image, which we denote by PΩMg(m).

We want to estimate the Dolbeault cohomological dimension of PΩMg, which
is stratified by subvarieties PΩMg(m) of codimension 2g − 2 − k.

Remark 3.3. The stratum PΩMg(m) is affine if and only if PΩMg,k(m) is. If
Question 3.1 has a positive answer, then (2alg) implies that coh-dimalg(PΩMg) ≤
2g − 3 and so coh-dimalg(Mg) ≤ (2g − 3) − (g − 1) = g − 2.

Unfortunately, dealing with Dolbeault cohomology, we cannot invoke the line
of proof (2alg), but we need to use strategy (1Dol). Having already an inspiring
stratification of PΩMg, the rough idea is to proceed as follows:

(i) thicken each stratum PΩMg(m) to an open subset Um in such a way that
Um and Um′ intersect, if and only if, one stratum is contained in the closure
of the other;

(ii) for every m, extend ξm to Um, so that i∂∂ξm is non-negative along a (2g −
2 − k)-codimensional distribution that complements TPΩMg(m);

(iii) define ζm : Um → R with the following properties:

(a) ζm is non-negative and it vanishes on PΩMg(m),
(b) there exists a constant c > 0 independent of m such that lim inf(C,P,[ϕ])

ζm ≥ c > 0 for every (C,P, [ϕ]) ∈ Um\PΩMg(m),
(c) the complex Hessian of ζm is strictly positive in the directions transverse

to PΩMg(m),

(iv) define a smaller open neighborhood Vm = {ζm < c′} ⊂ Um of PΩMg(m) for
a suitable c′ ∈ (0, c);

(v) consider the function ξ̂m := ξm + χ ◦ ζm, where χ > 0 satisfies χ(0) = 1,
χ′ > 0 and χ′′ > 0.

Suppose that the above steps are accomplished. It follows that ξ̂m : Vm → R is
an exhaustion function and a quick computation shows that the i∂∂ξ̂m satisfies a
suitable phrasing of the strong (
) property.

Consider now the open cover V = {Vm} of PΩMg. Every intersection of open
sets in V is of type Vm0 ∩ · · · ∩ Vml , where PΩMg(mh) is in the closure of
PΩMg(mh−1) for h = 1, . . . , l. Observe finally that:

(a) ξ̂m0 + · · · + ξ̂ml is an exhaustion function on Vm0 ∩ · · · ∩ Vml that satisfies
strong (
) and so coh-dimDol(Vm0 ∩ · · · ∩ Vml ) ≤ g;

(b) a nonempty intersection of open sets in V involves at most 2g − 2 elements.

Hence, (1Dol) allows to conclude as follows.

Theorem 3.7 ([38]). coh-dimDol(PΩMg) ≤ 3g − 3.
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Recalling that PΩMg → Mg is a holomorphic CPg−1-fibration, we have the
following estimate.

Corollary 3.4 ([38]). coh-dimDol(Mg) ≤ 2g − 2.

We underline that, analogously to the case of those affine strata (see Proposi-
tion 3.1) for which Corollary 3.3 provided a nonoptimal upper bound to the Dol-
beault cohomological dimension, for Mg too the above result remains g steps off a
positive solution to Looijenga’s problem.
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