
Riemann surfaces, ribbon graphs

and combinatorial classes

Gabriele Mondello

Imperial College of London

Department of Mathematics, Huxley Building

South Kensington Campus

London SW7 2AZ, United Kingdom

e-mail: g.mondello@imperial.ac.uk

2000 Mathematics Subject Classification: 32G15, 30F30, 30F45.

Keywords: Moduli of Riemann surfaces, ribbon graphs, Witten cycles.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of the chapter. . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Systems of arcs and ribbon graphs . . . . . . . . . . . . . . . . . . . 8
2.1 Systems of arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Ribbon graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Differential and algebro-geometric point of view . . . . . . . . . . . 22
3.1 The Deligne-Mumford moduli space . . . . . . . . . . . . . . . 22
3.2 The system of moduli spaces of curves . . . . . . . . . . . . . . 25
3.3 Augmented Teichmüller space . . . . . . . . . . . . . . . . . . . 26
3.4 Tautological classes . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Kontsevich’s compactification . . . . . . . . . . . . . . . . . . . 32

4 Cell decompositions of the moduli space of curves . . . . . . . . . . 35
4.1 Harer-Mumford-Thurston construction . . . . . . . . . . . . . . 35
4.2 Penner-Bowditch-Epstein construction . . . . . . . . . . . . . . 44
4.3 Hyperbolic surfaces with boundary . . . . . . . . . . . . . . . . 45

5 Combinatorial classes . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1 Witten cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



2 Gabriele Mondello

5.2 Witten cycles and tautological classes . . . . . . . . . . . . . . 58
5.3 Stability of Witten cycles . . . . . . . . . . . . . . . . . . . . . 60

1 Introduction

1.1 Overview

1.1.1 Moduli space and Teichmüller space. Consider a compact ori-
ented surface S of genus g together with a finite subset X = {x1, . . . , xn},
such that 2g − 2 + n > 0.

The moduli space Mg,X is the set of all X-pointed Riemann surfaces of
genus g up to isomorphism. Its universal cover (in the orbifold sense) can
be identified with the Teichmüller space T (S,X), which parametrizes com-
plex structures on S up to isotopy (relative to X); equivalently, T (S,X)
parametrizes isomorphism classes of (S,X)-marked Riemann surfaces. Thus,
Mg,X is the quotient of T (S,X) under the action of the mapping class group
Γ(S,X) = Diff+(S,X)/Diff0(S,X).

As T (S,X) is contractible (Teichmüller [68]), we also have that Mg,X ≃
BΓ(S,X). However, Γ(S,X) acts on T (S,X) discontinuously but with finite
stabilizers. Thus, Mg,X is naturally an orbifold andMg,X ≃ BΓ(S,X) must
be intended in the orbifold category.

1.1.2 Algebro-geometric point of view. As compact Riemann surfaces
are complex algebraic curves, Mg,X has an algebraic structure and is in fact
a Deligne-Mumford stack, which is the algebraic analogue of an orbifold. The
underlying space Mg,X (forgetting the isotropy groups) is a quasi-projective
variety.

The problem of counting curves with suitable properties, a topic which is
also called “enumerative geometry of curves”, has always been central in alge-
braic geometry. The usual set-up is to describe the loci inMg,X of curves that
satisfy the wished properties and then to compute their intersection, which nat-
urally leads to seeking for a suitable compactification of Mg,X . Deligne and
Mumford [15] understood that it was sufficient to consider algebraic curves
with mild singularities to compactify Mg,X . In fact, their compactification
Mg,X is the moduli space of X-pointed stable (algebraic) curves of genus
g, where a complex projective curve C is “stable” if its only singularities are
nodes (that is, in local analytic coordinates C looks like {(x, y) ∈ C2 |xy = 0})
and every irreducible component of the smooth locus of C \ X has negative
Euler characteristic.

The main tool to prove the completeness of Mg,X is the stable reduction
theorem, which essentially says that a smooth holomorphic family C∗ → ∆∗ of
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X-pointed Riemann surfaces of genus g over the pointed disc can be completed
to a family over ∆ (after a suitable change of base z 7→ zk) using a stable curve.

The beauty ofMg,X is that it is smooth (as an orbifold) and that its coarse
space Mg,X is a projective variety (Mumford [56], Gieseker [21], Knudsen [38]
[39], Kollár [40] and Cornalba [14]).

1.1.3 Tautological maps. The map Mg,X∪{y} → Mg,X that forgets the
y-marking (and then stabilizes the possibly unstable X-marked curve) can
be identified to the universal family over Mg,X and is the first example of
tautological map.

Moreover,Mg,X has a natural algebraic stratification, in which each stra-
tum corresponds to a topological type of curve: for instance, smooth curves
correspond to the open stratumMg,X . As another example: irreducible curves
with one node correspond to an irreducible locally closed subvariety of (com-
plex) codimension 1, which is the image of the (generically 2 : 1) tautological
boundary mapMg−1,X∪{y1,y2} →Mg,X that glues y1 to y2. Thus, every stra-
tum is the image of a (finite-to-one) tautological boundary map, and thus is
isomorphic to a finite quotient of a product of smaller moduli spaces.

1.1.4 Augmented Teichmüller space. Teichmüller theorists are more in-
terested in compactifying T (S,X) rather thanMg,X . One of the most popular
way to do this is due to Thurston (see [20]): the boundary of T (S,X) is thus
made of projective measured laminations and it is homeomorphic to a sphere.

Clearly, there cannot be any clear link between a compactification of T (S,X)
and ofMg,X , as the infinite discrete group Γ(S,X) would not act discontinu-
ously on a compact boundary ∂T (S,X).

Thus, a Γ(S,X)-equivariant bordification of T (S,X) whose quotient is
Mg,X cannot be compact. A way to understand such a bordification is to
endow Mg,X (and T (S,X)) with the Weil-Petersson metric [70] and to show
that its completion is exactly Mg,X [48]. Hence, the Weil-Petersson comple-
tion T (S,X) can be identified to the set of (S,X)-marked stable Riemann
surfaces.

Similarly to Mg,X , also T (S,X) has a stratification by topological type
and each stratum is a (finite quotient of a) product of smaller Teichmüller
spaces.

1.1.5 Tautological classes. The moduli spaceMg,X comes equipped with
natural vector bundles: for instance, Li is the holomorphic line bundle whose
fiber at [C] is the cotangent space T ∗

C,xi
. Chern classes of these line bundles

and their push-forward through tautological maps generate the so-called tau-
tological classes (which can be seen in the Chow ring or in cohomology). The
κ classes were defined by Mumford [57] and Morita [54] and then modified
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(to make them behave better under tautological maps) by Arbarello and Cor-
nalba [5]. The ψ classes were defined by E.Miller [49] and their importance
was successively rediscovered by Witten [71].

The importance of the tautological classes is due to the following facts
(among others):

• their geometric meaning appears quite clear

• they behave very naturally under the tautological maps (see, for instance,
[5])

• they often occur in computations of enumerative geometry; that is,
Poincaré duals of interesting algebraic loci are often tautological (see
[57]) but not always (see [24])!

• they are defined onMg,X for every g and X (provided 2g−2+ |X | > 0),
and they generate the stable cohomology ring over Q due to Madsen-
Weiss’s solution [47] of Mumford’s conjecture (see Section 5.3)

• there is a set of generators (ψ’s and κ’s) which have non-negativity prop-
erties (see [4] and [57])

• they are strictly related to the Weil-Petersson geometry of Mg,X (see
[73], [76], [77] and [50]).

1.1.6 Simplicial complexes associated to a surface. One way to ana-
lyze the (co)homology of Mg,X , and so of Γ(S,X), is to construct a highly
connected simplicial complex on which Γ(S,X) acts. This is usually achieved
by considering complexes of disjoint, pairwise non-homotopic simple closed
curves on S \ X with suitable properties (for instance, Harvey’s complex of
curves [29]).

If X is nonempty (or if S has boundary), then one can construct a complex
using systems of homotopically nontrivial, disjoint arcs joining two (not neces-
sarily distinct) points in X (or in ∂S), thus obtaining the arc complex A(S,X)
(see [27]). It has an “interior” A◦(S,X) made of systems of arcs that cut S \X
in discs (or pointed discs) and a complementary “boundary” A∞(S,X).

An important result, which has many fathers (Harer-Mumford-Thurston
[27], Penner [58], Bowditch-Epstein [12]), says that the topological realization
|A◦(S,X)| of A◦(S,X) is Γ(S,X)-equivariantly homeomorphic to T (S,X) ×
∆X (where ∆X is the standard simplex in RX). Thus, we can transfer the cell
structure of |A◦(S,X)| to an (orbi)cell structure onMg,X ×∆X .

The homeomorphism is realized by coherently associating a weighted sys-
tem of arcs to every X-marked Riemann surface, equipped with a decoration
p ∈ ∆X . There are two traditional ways to do this: using the flat structure aris-
ing from a Jenkins-Strebel quadratic differential (Harer-Mumford-Thurston)
with prescribed residues at X or using the hyperbolic metric coming from
the uniformization theorem (Penner and Bowditch-Epstein). Quite recently,
several other ways have been introduced (see [44], [45], [53] and [52]).
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1.1.7 Ribbon graphs. To better understand the homeomorphism between
|A◦(S,X)| and T (S,X)×∆X , it is often convenient to adopt a dual point of
view, that is to think of weighted systems of arcs as of metrized graphs G,
embedded in S \X through a homotopy equivalence.

This can be done by picking a vertex in each disc cut by the system of
arcs and joining these vertices by adding an edge transverse to each arc.
What we obtain is an (S,X)-marked metrized ribbon graph. Thus, points
in |A◦(S,X)|/Γ(S,X) ∼= Mg,x × ∆X correspond to metrized X-marked rib-
bon graphs of genus g.

This point of view is particularly useful to understand singular surfaces (see
also [12], [41], [43], [62], [78], [7] and [52]). The object dual to a weighted sys-
tem of arcs in A∞(S,X) is a collection of data that we called an (S,X)-marked
“enriched” ribbon graph. Notice that an X-marked “enriched” metrized rib-
bon graph does not carry all the information needed to construct a stable
Riemann surface. Hence, the map Mg,X × ∆X → |A(S,X)|/Γ(S,X) is not
injective on the locus of singular curves, but still it is a homeomorphism on a
dense open subset.

1.1.8 Topological results. The utility of the Γ(S,X)-equivariant homotopy
equivalence T (S,X) ≃ |A◦(S,X)| is the possibility of making topological com-
putations on |A◦(S,X)|. For instance, Harer [27] determined the virtual coho-
mological dimension of Γ(S,X) (and so ofMg,X) using the high connectivity
of |A∞(S,X)| and he has established that Γ(S,X) is a virtual duality group,
by showing that |A∞(S,X)| is spherical. An analysis of the singularities of
|A(S,X)|/Γ(S,X) is in [63].

Successively, Harer-Zagier [28] and Penner [59] have computed the orbifold
Euler characteristic of Mg,X , where by “orbifold” we mean that a cell with
stabilizer G has Euler characteristic 1/|G|. Because of the cellularization, the
problem translates into enumerating X-marked ribbon graphs of genus g and
counting them with the correct sign.

Techniques for enumerating graphs and ribbon graphs (see, for instance,
[9]) have been known to physicists for long time: they use asymptotic ex-
pansions of Gaussian integrals over spaces of matrices. The combinatorics of
iterated integrations by parts is responsible for the appearance of (ribbon)
graphs (Wick’s lemma). Thus, the problem of computing χorb(Mg,X) can
be reduced to evaluating a matrix integral (a quick solution is also given by
Kontsevich in Appendix D of [41]).

1.1.9 Intersection-theoretical results. AsMg,X ×∆X is not just homo-
topy equivalent to |A◦(S,X)|/Γ(S,X) but actually homeomorphic (through a
piecewise real-analytic diffeomorphism), it is clear that one can try to rephrase
integrals overMg,X as integrals over |A◦(S,X)|/Γ(S,X), that is as sums over
maximal systems of arcs of integrals over a single simplex. This approach
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looked promising in order to compute Weil-Petersson volumes (see Penner
[60]). Kontsevich [41] used it to compute volumes coming from a “symplectic
form” Ω = p2

1ψ1 + · · · + p2
nψn, thus solving Witten’s conjecture [71] on the

intersection numbers of the ψ classes.
However, in Witten’s paper [71] matrix integrals entered in a different way.

The idea was that, in order to integrate over the space of all conformal struc-
tures on S, one can pick a random decomposition of S into polygons, give each
polygon a natural Euclidean structure and extend it to a conformal structure
on S, thus obtaining a “random” point of Mg,X . Refining the polygonaliza-
tion of S leads to a measure onMg,X . Matrix integrals are used to enumerate
these polygonalizations.

Witten also noticed that this refinement procedure may lead to different
limits, depending on which polygons we allow. For instance, we can consider
decompositions into A squares, or into A squares and B hexagons, and so on.
Dualizing this last polygonalization, we obtain ribbon graphs embedded in S
with A vertices of valence 4 and B vertices of valence 6. The corresponding
locus in |A◦(S,X)| is called a Witten subcomplex.

1.1.10 Witten classes. Kontsevich [41] and Penner [61] proved that Witten
subcomplexes obtained by requiring that the ribbon graphs have mi vertices
of valence (2mi + 3) can be oriented (see also [13]) and they give cycles in

Mcomb

g,X := |A(S,X)|/Γ(S,X) × R+, which are denoted by Wm∗,X . The Ω-

volumes of these Wm∗,X are also computable using matrix integrals [41] (see
also [16]).

In [42], Kontsevich constructed similar cycles using structure constants of
finite-dimensional cyclic A∞-algebras with positive-definite scalar product and
he also claimed that the classes Wm∗,X (restriction of Wm∗,X to Mg,X) are
Poincaré dual to tautological classes.

This last statement (usually called Witten-Kontsevich’s conjecture) was
settled independently by Igusa [31] [32] and Mondello [51], whereas very little
is known about the nature of the (non-homogeneous) A∞-classes.

1.1.11 Surfaces with boundary. The key point of all constructions of a
ribbon graph out of a surface is that X must be nonempty, so that S \X can
be retracted by deformation onto a graph. In fact, it is not difficult to see
that the spine construction of Penner and Bowditch-Epstein can be performed
(even in a more natural way) on hyperbolic surfaces Σ with geodesic boundary.
The associated cellularization of the corresponding moduli space is due to Luo
[44] (for smooth surfaces) and by Mondello [52] (also for singular surfaces,
using Luo’s result).

The interesting fact (see [53] and [52]) is that gluing semi-infinite cylinders
at ∂Σ produces (conformally) punctured surfaces that “interpolate” between
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hyperbolic surfaces with cusps and flat surfaces arising from Jenkins-Strebel
differentials.

1.2 Structure of the chapter.

In Sections 2.1 and 2.2, we carefully define systems of arcs and ribbon graphs,
both in the singular and in the nonsingular case, and we explain how the dual-
ity between the two works. Moreover, we recall Harer’s results on A◦(S,X) and
A∞(S,X) and we state a simple criterion for compactness inside |A◦(S,X)|/Γ(S,X).

In Sections 3.1 and 3.2, we describe the Deligne-Mumford moduli space
of curves and the structure of its boundary, the associated stratification and
boundary maps. In 3.3, we explain how the analogous bordification of the
Teichmüller space T (S,X) can be obtained as completion with respect to the
Weil-Petersson metric.

Tautological classes and rings are introduced in 3.4 and Kontsevich’s com-
pactification ofMg,X is described in 3.5.

In 4.1, we explain and sketch a proof of Harer-Mumford-Thurston cellular-
ization of the moduli space and we illustrate the analogous result of Penner-
Bowditch-Epstein in 4.2. In 4.3, we quickly discuss the relations between the
two constructions using hyperbolic surfaces with geodesic boundary.

In 5.1, we define Witten subcomplexes and Witten cycles and we prove
(after Kontsevich) that Ω orients them. We sketch the ideas involved in the
proof the Witten cycles are tautological in Section 5.2.

Finally, in 5.3, we recall Harer’s stability theorem and we exhibit a combi-
natorial construction that shows that Witten cycles are stable. The fact (and
probably also the construction) is well-known and it is also a direct conse-
quence of Witten-Kontsevich’s conjecture and Miller’s work.

1.3 Acknowledgments

It is a pleasure to thank Shigeyuki Morita, Athanase Papadopoulos and Robert
C. Penner for the stimulating workshop “Teichmüller space (Classical and
Quantum)” they organized in Oberwolfach (May 28th-June 3rd, 2006) and
the MFO for the hospitality.

I would like to thank Enrico Arbarello for all I learnt from him about
Riemann surfaces and for his constant encouragement.
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2 Systems of arcs and ribbon graphs

Let S be a compact oriented differentiable surface of genus g with n > 0
distinct marked points X = {x1, . . . , xn} ⊂ S. We will always assume that
the Euler characteristic of the punctured surface S \ X is negative, that is
2− 2g − n < 0. This restriction only rules out the cases in which S \X is the
sphere with less than 3 punctures.

Let Diff+(S,X) be the group of orientation-preserving diffeomorphisms of
S that fix X pointwise. The mapping class group Γ(S,X) is the group of
connected components of Diff+(S,X).

In what follows, we borrow some notation and some ideas from [43].

2.1 Systems of arcs

2.1.1 Arcs and arc complex. An oriented arc in S is a smooth path −→α :
[0, 1] → S such that −→α ([0, 1]) ∩X = {−→α (0),−→α (1)}, up to reparametrization.
Let Aor(S,X) be the space of oriented arcs in S, endowed with its natural
topology. Define σ1 : Aor(S,X) → Aor(S,X) to be the orientation-reversing
operator and we will write σ1(

−→α ) = ←−α . Call α the σ1-orbit of −→α and denote
by A(S,X) the (quotient) space of σ1-orbits in Aor(S,X).

A system of (k + 1)-arcs in S is a collection α = {α0, . . . , αk} ⊂ A(S,X)
of k + 1 unoriented arcs such that:

• if i 6= j, then the intersection of αi and αj is contained in X

• no arc in α is homotopically trivial

• no pair of arcs in α are homotopic to each other.

We will denote by S \ α the complementary subsurface of S obtained by re-
moving α0, . . . , αk.

Each connected component of the space of systems of (k+1)-arcsASk(S,X)
is clearly contractible, with the topology induced by the inclusionASk(S,X) →֒
A(S,X)/Sk.

Let Ak(S,X) be the set of homotopy classes of systems of k + 1 arcs, that
is Ak(S,X) := π0ASk(S,X).

The arc complex is the simplicial complex A(S,X) =
⋃

k≥0

Ak(S,X).

Notation. We will implicitly identify arc systems α and α′ that are homo-
topic to each other. Similarly, we will identify the isotopic subsurfaces S \ α
and S \α′.

2.1.2 Proper simplices. An arc system α ∈ A(S,X) fills (resp. quasi-fills)
S if S \α is a disjoint union of subsurfaces homeomorphic to discs (resp. discs
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and pointed discs). It is easy to check that the star of α is finite if and only if
α quasi-fills S. In this case, we also say that α is a proper simplex of A(S,X).

Denote by A∞(S,X) ⊂ A(S,X) the subcomplex of non-proper simplices
and let A◦(S,X) = A(S,X) \ A∞(S,X) be the collection of proper ones.

Notation. We denote by |A∞(S,X)| and |A(S,X)| the topological realiza-
tions of A∞(S,X) and A(S,X). We will use the symbol |A◦(S,X)| to mean
the complement of |A∞(S,X)| inside |A(S,X)|.

2.1.3 Topologies on |A(S,X)|. The realization |A(S,X)| of the arc com-
plex can be endowed with two natural topologies (as is remarked in [12], [43]
and [7]).

The former (which we call standard) is the finest topology that makes the
inclusions |α| →֒ |A(S,X)| continuous for all α ∈ A(S,X); in other words,
a subset U ⊂ |A(S,X)| is declared to be open if and only if U ∩ |α| is open
for every α ∈ A(S,X). The latter topology is induced by the path metric d,
which is the largest metric that restricts to the Euclidean one on each closed
simplex.

The two topologies are the same where |A(S,X)| is locally finite, but the
latter is coarser elsewhere. We will always consider all realizations to be en-
dowed with the metric topology.

2.1.4 Visible subsurfaces. For every system of arcs α ∈ A(S,X), define
S(α)+ to be the largest isotopy class of open subsurfaces of S such that

• every arc in α is contained in S(α)+

• α quasi-fills S(α)+.

The visible subsurface S(α)+ can be constructed by taking the union of a
thickening a representative of α inside S and all those connected components
of S\α which are homeomorphic to discs or punctured discs (this construction
appears already in [12]). We will always consider S(α)+ as an open subsurface
(up to isotopy), homotopically equivalent to its closure S(α)+, which is an
embedded surface with boundary.

x1

x2

x3

S

Figure 1. The invisible subsurface is the dark non-cylindrical component.
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One can rephrase 2.1.2 by saying that α is proper if and only if all S is
α-visible.

We call invisible subsurface S(α)− associated to α the union of the interior
of the connected components of S \S(α)+ which are not unmarked cylinders.
Thus, S \ (S(α)+ ∪ S(α)−) is a disjoint union of circles and cylinders.

We also say that a marked point xi is (in)visible for α if it belongs to the
α-(in)visible subsurface.

2.1.5 Ideal triangulations. A maximal system of arcs α ∈ A(S,X) is also
called an ideal triangulation of S. In fact, it is easy to check that, in this case,
each component of S \ α bounded by three arcs and so is a “triangle”. (The
term “ideal” comes from the fact that one often thinks of (S,X) as a hyperbolic
surface with cusps at X and of α as a collection of hyperbolic geodesics.) It
is also clear that such an α is proper.

x1

x2

S

Figure 2. An example of an ideal triangulation for (g, n) = (1, 2).

A simple calculation with the Euler characteristic of S shows that an ideal
triangulation is made of exactly 6g − 6 + 3n arcs.

2.1.6 The spine of |A◦(S,X)|. Consider the baricentric subdivision A(S,X)′,
whose k-simplices are chains (α0 ( α1 ( · · · ( αk). There is an obvious
piecewise-affine homeomorphism |A(S,X)′| → |A(S,X)|, that sends a vertex
(α0) to the baricenter of |α0| ⊂ |A(S,X)|.

Call A◦(S,X)′ the subcomplex of A(S,X)′, whose simplices are chains of
simplices that belong to A◦(S,X). Clearly, |A◦(S,X)′| ⊂ |A(S,X)′| is con-
tained in |A◦(S,X)| ⊂ |A(S,X)| through the homeomorphism above.

It is a general fact that there is a deformation retraction of |A◦(S,X)| onto
the spine |A◦(S,X)′|: on each simplex of |A(S,X)′| ∩ |A◦(S,X)| this is given
by projecting onto the face contained in |A◦(S,X)′|. It is also clear that the
retraction is Γ(S,X)-equivariant.

In the special case of X = {x1}, a proper system contains at least 2g
arcs; whereas a maximal system contains exactly 6g− 3 arcs. Thus, the (real)
dimension of |A◦(S,X)′| is (6g − 3)− 2g = 4g − 3.
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Proposition 2.1 (Harer [27]). If X = {x1}, the spine |A◦(S,X)′| has dimen-
sion 4g − 3.

2.1.7 Action of σ-operators. For every arc system α = {α0, . . . , αk}, de-
note by E(α) the subset {−→α0,

←−α0, . . . ,
−→αk,
←−αk} of π0Aor(S,X). The action of

σ1 clearly restricts to E(α).
For each i = 1, . . . , n, the orientation of S induces a cyclic ordering of the

oriented arcs in E(α) outgoing from xi.
If −→αj starts at xi, then define σ∞(−→αj) to be the oriented arc in E(α) outgo-

ing from xi that comes just before −→αj . Moreover, σ0 is defined by σ0 = σ−1
∞ σ1.

If we call Et(α) the orbits of E(α) under the action of σt, then

• E1(α) can be identified with α

• E∞(α) can be identified with the set of α-visible marked points

• E0(α) can be identified to the set of connected components of S(α)+\α.

Denote by [−→αj ]t the σt-orbit of −→αj , so that [−→αj ]1 = αj and [−→αj ]∞ is the starting
point of −→αj , whereas [−→αj ]0 is the component of S(α)+ \ α adjacent to αj and
which induces the orientation −→αj on it.

2.1.8 Action of Γ(S,X) on A(S,X). There is a natural right action of
the mapping class group

A(S,X)× Γ(S,X) // A(S,X)

(α, g)
� // α ◦ g

The induced action on A(S,X) preserves A∞(S,X) and so A◦(S,X).
It is easy to see that the stabilizer (under Γ(S,X)) of a simplex α fits in

the following exact sequence

1→ Γcpt(S \α, X)→ stabΓ(α)→ S(α)

where S(α) is the group of permutations of α and Γcpt(S \α, X) is the map-
ping class group of orientation-preserving diffeomorphisms of S \α with com-
pact support that fix X . Define the image of stabΓ(α) → S(α) to be the
automorphism group of α.

We can immediately conclude that α is proper if and only if stabΓ(α) is
finite (equivalently, if and only if Γcpt(S \α, X) is trivial).

2.1.9 Weighted arc systems. A point w ∈ |A(S,X)| consists of a map
w : A0(S,X)→ [0, 1] such that

• the support of w is a simplex α = {α0, . . . , αk} ∈ A(S,X)

•
k∑

i=0

w(αi) = 1.
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We will call w the (projective) weight of α. A weight for α is a point of
w ∈ |A(S,X)|R := |A(S,X)| × R+, that is a map w : A0(S,X) → R+ with
support on α. Call w its associated projective weight.

2.1.10 Compactness in |A◦(S,X)|/Γ(S,X). We are going to prove a
simple criterion for a subset of |A◦(S,X)|/Γ(S,X) to be compact.

Call C(S,X) the set of free homotopy classes of simple closed curves on
S \X , which are neither contractible nor homotopic to a puncture.

Define the “intersection product”

ι : C(S,X)× |A(S,X)| → R≥0

as ι(γ, w) =
∑

α ι(γ, α)w(α), where ι(γ, α) is the geometric intersection num-
ber. We will also refer to ι(γ, w) as to the length of γ at w. Consequently, we
will say that the systol at w is

sys(w) = inf{ι(γ, w) | γ ∈ C(S,X)}.
Clearly, the function sys descends to

sys : |A(S,X)|/Γ(S,X)→ R+

Lemma 2.2. A closed subset K ⊂ |A◦(S,X)|/Γ(S,X) is compact if and only
if ∃ε > 0 such that sys([w]) ≥ ε for all [w] ∈ K.

Proof. In RN we easily have d2 ≤ d1 ≤
√
N · d2, where dr is the Lr-distance.

Similarly, in |A(S,X)| we have

d(w, |A∞(S,X)|) ≤ sys(w) ≤
√
N · d(w, |A∞(S,X)|)

where N = 6g − 7 + 3n. The same holds in |A(S,X)|/Γ(S,X).
Thus, if [α] ∈ A◦(S,X)/Γ(S,X), then |α|∩sys−1([ε,∞))∩|A◦(S,X)|/Γ(S,X)

is compact for every ε > 0. As |A◦(S,X)|/Γ(S,X) contains finitely many cells,
we conclude that sys−1([ε,∞)) ∩ |A◦(S,X)|/Γ(S,X) is compact.

Vice versa, if sys : K → R+ is not bounded from below, then we can
find a sequence [wm] ⊂ K such that sys(wm) → 0. Thus, [wm] approaches
|A∞(S,X)|/Γ(S,X) and so is divergent in |A◦(S,X)|/Γ(S,X).

2.1.11 Boundary weight map. Let ∆X be the standard simplex in RX .
The boundary weight map ℓ∂ : |A(S,X)|R → ∆X ×R+ ⊂ RX is the piecewise-
linear map that sends {α} 7→ [−→α ]∞ + [←−α ]∞. The projective boundary weight
map 1

2ℓ∂ : |A(S,X)| → ∆X instead sends {α} 7→ 1
2 [−→α ]∞ + 1

2 [←−α ]∞.

2.1.12 Results on the arc complex. A few things are known about the
topology of |A(S,X)|.
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(a) The space of proper arc systems |A◦(S,X)| can be naturally given the
structure of piecewise-affine topological manifold with boundary (Hubbard-
Masur [30], credited to Whitney) of (real) dimension 6g − 7 + 3n.

(b) The space |A◦(S,X)| is Γ(S,X)-equivariantly homeomorphic to T (S,X)×
∆X , where T (S,X) is the Teichmüller space of (S,X) (see 3.1.1 for def-
initions and Section 4 for an extensive discussion on this result), and
so is contractible. This result could also be probably extracted from
[30], but it is more explicitly stated in Harer [27] (who attributes it to
Mumford and Thurston), Penner [58] and Bowditch-Epstein [12]. As the
moduli space of X-marked Riemann surfaces of genus g can be obtained
as Mg,X

∼= T (S,X)/Γ(S,X) (see 3.1.2), then Mg,X ≃ BΓ(S,X) in the
orbifold category.

(c) The space |A∞(S,X)| is homotopy equivalent to an infinite wedge of
spheres of dimension 2g − 3 + n (Harer [27]).

Results (b) and (c) are the key step in the following.

Theorem 2.3 (Harer [27]). Γ(S,X) is a virtual duality group (that is, it has
a subgroup of finite index which is a duality group) of dimension 4g − 4 + n
for n > 0 (and 4g − 5 for n = 0).

Actually, it is sufficient to work with X = {x1}, in which case the upper
bound is given by (b) and Proposition 2.1, and the duality by (c).

2.2 Ribbon graphs

2.2.1 Graphs. A graph G is a triple (E,∼, σ1), where E is a finite set, σ1 :
E → E is a fixed-point-free involution and ∼ is an equivalence relation on E.

In ordinary language

• E is the set of oriented edges of the graph

• σ1 is the orientation-reversing involution of E, so that the set of unori-
ented edges is E1 := E/σ1

• two oriented edges are equivalent if and only if they come out from the
same vertex, so that the set V of vertices is E/ ∼ and the valence of
v ∈ E/∼ is exactly |v|.

A ribbon graph G is a triple (E, σ0, σ1), where E is a (finite) set, σ1 : E → E
is a fixed-point-free involution and σ1 : E → E is a permutation. Define
σ∞ := σ1 ◦σ−1

0 and call Et the set of orbits of σt and [·]t : E → Et the natural
projection. A disjoint union of two ribbon graphs is defined in the natural
way.
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Remark 2.4. Given a ribbon graph G, the underlying ordinary graph G =
Gord is obtained by declaring that oriented edges in the same σ0-orbit are
equivalent and forgetting about the precise action of σ0.

xi

−→e

σ0(
−→e )

σ0

←−
e′ = σ1(

−→
e′ )

T−→
e′

−→
e′

σ∞

σ∞(
−→
e′ )

Figure 3. Geometric representation of a ribbon graph

In ordinary language, a ribbon graph is an ordinary graph endowed with a
cyclic ordering of the oriented edges outgoing from each vertex.

The σ∞-orbits are sometimes called holes. A connected component of G is
an orbit of E(G) under the action of 〈σ0, σ1〉.

The Euler characteristic of a ribbon graph G is χ(G) = |E0(G)| − |E1(G)|
and its genus is g(G) = 1 + 1

2 (|E1(G)| − |E0(G)| − |E∞(G)|).
A (ribbon) tree is a connected (ribbon) graph of genus zero with one hole.

2.2.2 Subgraphs and quotients. Let G = (E, σ0, σ1) be a ribbon graph
and let Z ( E1 be a nonempty subset of edges.

The subgraph GZ is given by (Z̃, σZ
0 , σ

Z
1 ), where Z̃ = Z ×E1

E and σZ
0 , σ

Z
1

are the induced operators (that is, for every e ∈ Z̃ we define σZ
0 (e) = σk

0 (e),
where k = min{k > 0 |σk

0 (e) ∈ Z̃}).
Similarly, the quotient G/Z is (G\ Z̃, σZc

0 , σZc

1 ), where σZc

1 and σZc

∞ are the
operators induced on E \ Z̃ and σZc

0 is defined accordingly. A new vertex of
G/Z is a σZc

0 -orbit of E \ Z̃ →֒ G, which is not a σ0-orbit.
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2.2.3 Bicolored graphs. A bicolored graph ζ is a finite connected graph
with a partition V = V+ ∪ V− of its vertices. We say that ζ is reduced if no
two vertices of V− are adjacent. If not differently specified, we will always
understand that bicolored graphs are reduced.

If ζ contains an edge z that joins w1, w2 ∈ V−, then we can obtain a new
graph ζ′ merging w1 and w2 along z into a new vertex w′ ∈ V ′

− (by simply
forgetting −→z and ←−z and by declaring that vertices outgoing from w1 are
equivalent to vertices outgoing from w2).

If ζ comes equipped with a function g : V− → N, then g′ : V ′
− → N is

defined so that g′(w′) = g(w1) + g(w2) if w1 6= w2, or g′(w′) = g(w1) + 1 if
w1 = w2.

As merging reduces the number of edges, we can iterate the process only a
finite number of times. The result is independent of the choice of which edges
to merge first and is a reduced graph ζred (possibly with a gred).

t1t1

t2t2

t3t3

t4t4

s5s5 s6s6

00

33

1

1

2

x1x1

x2x2

x3x3

Figure 4. A non-reduced bicolored graph (on the left) and its reduction (on
the right). Vertices in V− are black. See Example 2.5.

2.2.4 Enriched ribbon graphs. An enriched X-marked ribbon graph Gen

is the datum of

• a connected bicolored graph (ζ, V+)

• a ribbon graph G plus a bijection V+ → {connected components of G}
• an (invisible) genus function g : V− → N

• a X-marking mapm : X → V−∪E∞(G)∪E0(G) such that the restriction
m−1(E∞(G)) → E∞(G) is bijective and the restriction m−1(E0(G)) →
E0(G) is injective (a vertex in the image of this last map is called marked)

• an injection sv : {oriented edges of ζ outgoing from v} → E0(Gv) (ver-
tices of Gv in the image of sv are called nodal; a vertex is called special
if it is either marked or nodal)

that satisfy the following properties:

• for every v ∈ V+ and y ∈ E0(Gv) we have |m−1(y)∪ s−1
v (y)| ≤ 1 (i.e. no

more than one marking or one node at each vertex of Gv)

• 2g(v)− 2 + |{oriented edges of ζ outgoing from v}|+
+|{marked points on v}| > 0 for every v ∈ V (stability condition)
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• every non-special vertex of Gv must be at least trivalent for all v ∈ V+.

We say that Gen is reduced if ζ is.
If the graph ζ is not reduced, then we can merge two vertices of ζ along

an edge of ζ and obtain a new enriched X-marked ribbon graph. Gen
1 and

Gen
2 are considered equivalent if they are related by a sequence of merging

operations. It is clear that each equivalence class can be identified to its
reduced representative. Unless differently specified, we will always refer to an
enriched graph as the canonical reduced representative.

The total genus of Gen is g(Gen) = 1−χ(ζ)+
∑

v∈V+
g(Gv)+

∑
w∈V−

g(w).

Example 2.5. In Figure 4, the genus of each vertex is written inside, x1 and
x2 are marking the two holes of G (sitting in different components), whereas
x3 is an invisible marked point. Moreover, t1, t2, t3, t4 (resp. s5, s6) are dis-
tinct (special) vertices of the visible component of genus 0 (resp. of genus
3): in particular, t4 is marking the oriented edge that goes from the genus 0
component to the genus 3 component, whereas s5 is marking the same edge
with the opposite orientation. (Note that, if xi marked a vertex s of some
visible component, then we would have written “s” close the tail that joined
v to s.) The total genus of the associated Gen is 7.

Remark 2.6. If an edge z of ζ joins v ∈ V+ and w ∈ V− and this edge is
marked by the special vertex y ∈ E0(Gv), then we will say, for brevity, that z
joins w and y.

An enriched X-marked ribbon graph is nonsingular if ζ consists of a sin-
gle visible vertex. Equivalently, an enriched nonsingular X-marked ribbon
graph consists of a connected ribbon graph G together with an injection X →֒
E∞(G)∪E0(G), whose image is exactly E∞(G)∪{special vertices}, such that
non-special vertices are at least trivalent and χ(G)− |{marked vertices}| < 0.

2.2.5 Category of nonsingular ribbon graphs. A morphism of nonsingu-
lar X-marked ribbon graphs G1 → G2 is an injective map f : E(G2) →֒ E(G1)
such that

• f commutes with σ1, σ∞ and respects the X-marking

• G1,Z is a disjoint union of trees, where Z = E1(G1) \ E1(G2).

Notice that, as f preserves theX-markings (which are injectionsX →֒ E∞(Gi)∪
E0(Gi)), then each component of Z may contain at most one special vertex.

Vice versa, if G is a nonsingular X-marked ribbon graph and ∅ 6= Z (
E1(G) such that GZ is a disjoint union of trees (each one containing at most a
special vertex), then the inclusion f : E1(G)\ Z̃ →֒ E1(G) induces a morphism
of nonsingular ribbon graphs G→ G/Z.

Remark 2.7. A morphism is an isomorphism if and only if f is bijective.
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RGX,ns is the small category whose objects are nonsingular X-marked
ribbon graphs G (where we assume that E(G) is contained in a fixed countable
set) with the morphisms defined above. We use the symbol RGg,X,ns to denote
the full subcategory of ribbon graphs of genus g.

2.2.6 Topological realization of nonsingular ribbon graphs. The topo-
logical realization |G| of the graph G = (E,∼, σ1) is the one-dimensional CW-
complex obtained from I × E (where I = [0, 1]) by identifying

• (t,−→e ) ∼ (1 − t,←−e ) for all t ∈ I and −→e ∈ E
• (0,−→e ) ∼ (0,

−→
e′ ) whenever e ∼ e′.

The topological realization |G| of the nonsingular X-marked ribbon graph
G = (E, σ0, σ1) is the oriented surface obtained from T × E (where T =
I × [0,∞]/I × {∞}) by identifying

• (t, 0,−→e ) ∼ (1− t, 0,←−e ) for all −→e ∈ E
• (1, y,−→e ) ∼ (0, y, s∞(−→e )) for all −→e ∈ E and y ∈ [0,∞].

If G is the ordinary graph underlying G, then there is a natural embedding
|G| →֒ |G|, which we call the spine.

The points at infinity in |G| are called centers of the holes and can be
identified to E∞(G). Thus, |G| is naturally an X-marked surface.

Notice that a morphism of nonsingular X-marked ribbon graphs G1 → G2

induces an isotopy class of orientation-preserving homeomorphisms |G1| →
|G2| that respect the X-marking.

2.2.7 Nonsingular (S,X)-markings. An (S,X)-marking of the nonsin-
gular X-marked ribbon graph G is an isotopy class of orientation-preserving
homeomorphisms f : S → |G|, compatible with X →֒ E∞(G) ∪ E0(G).

Define RGns(S,X) to be the category whose objects are (S,X)-marked
nonsingular ribbon graphs (G, f) and whose morphisms (G1, f1)→ (G2, f2) are

morphisms G1 → G2 such that S
f1−→ |G1| → |G2| is isotopic to f2 : S → |G2|.

As usual, there is a right action of the mapping class group Γ(S,X) on
RGns(S,X) and the quotient category RGns(S,X)/Γ(S,X) is obtained from
RGns(S,X) by adding an (iso)morphism [f : S → G] → [f ◦ g : S → G] for
each g ∈ Γ(S,X) and each object [f : S → G]. It can be shown that the
functor RGns(S,X)/Γ(S,X) → RGg,X,ns that forgets the S-marking is an
equivalence.

2.2.8 Nonsingular arcs/graph duality. Let α = {α0, . . . , αk} ∈ A◦(S,X)
be a proper arc system and let σ0, σ1, σ∞ the corresponding operators on the
set of oriented arcs E(α). The ribbon graph dual to α is Gα = (E(α), σ0, σ1),
which comes naturally equipped with an X-marking (see 2.1.7).
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Define the (S,X)-marking f : S → |G| in the following way. Fix a point cv
in each component v of S \α (which must be exactly the marked point, if the
component is a pointed disc) and let f send it to the corresponding vertex v
of |G|. For each arc αi ∈ α, consider a transverse path βi from cv′ to cv′′ that
joins the two components v′ and v′′ separated by αi, intersecting αi exactly
once, in such a way that the interiors of βi and βj are disjoint, if i 6= j. Define
f to be a homeomorphism of βi onto the oriented edge in |G| corresponding
to αi that runs from v′ to v′′.

x1

x2

S
cv′

cv′′

αi

βi

Figure 5. Thick curves represent f−1(|G|) and thin ones their dual arcs.

Because all components of S \ α are discs (or pointed discs), it is easy to
see that there is a unique way of extending f to a homeomorphism (up to
isotopy).

Proposition 2.8. The association above defines a Γ(S,X)-equivariant equiv-
alence of categories

Â◦(S,X) −→ RGns(S,X)

where Â◦(S,X) is the category of proper arc systems on (S,X), whose mor-
phisms are reversed inclusions.

In fact, an inclusion α →֒ β of proper systems induces a morphism Gβ →
Gα of nonsingular (S,X)-marked ribbon graphs.

A pseudo-inverse is constructed as follows. Let f : S → |G| be a nonsingular
(S,X)-marked ribbon graph and let |G| →֒ |G| be the spine. The graph
f−1(|G|) decomposes S into a disjoint union of one-pointed discs. For each
edge e of |G|, let αe be the simple arc joining the points in the two discs
separated by e. Thus, we can associate the system of arcs {αe | e ∈ E1(G)} to

(G, f) and this defines a pseudo-inverse RGns(S,X) −→ Â◦(S,X).
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2.2.9 Metrized nonsingular ribbon graphs. A metric on a ribbon graph
G is a map ℓ : E1(G)→ R+. Given a simple closed curve γ ∈ C(S,X) and an
(S,X)-marked nonsingular ribbon graph f : S → |G|, there is a unique simple
closed curve γ̃ = |ei1 | ∪ · · · ∪ |eik

| contained inside |G| ⊂ |G| such that f−1(γ̃)
is freely homotopic to γ.

If G is metrized, then we can define the length ℓ(γ) to be ℓ(γ̃) = ℓ(ei1) +
· · ·+ ℓ(eik

). Consequently, the systol is given by inf{ℓ(γ) | γ ∈ C(S,X)}.
Given a proper weighted arc system w ∈ |A◦(S,X)|R, supported on α ∈

A◦(S,X), we can endow the corresponding ribbon graph Gα with a metric ,
by simply setting ℓ(αi) := w(αi). Thus, one can extend the correspondence to
proper weighted arc systems and metrized (S,X)-marked nonsingular ribbon
graphs. Moreover, the notions of length and systol agree with those given in
2.1.10.

Notice the similarity between Lemma 2.2 and Mumford-Mahler criterion
for compactness in Mg,n.

2.2.10 Category of enriched ribbon graphs. An isomorphism of en-
riched X-marked ribbon graphs Gen

1 → Gen
2 is the datum of compatible iso-

morphisms of their (reduced) graphs c : ζ1 → ζ2 and of the ribbon graphs
G1 → G2, such that c(V1,+) = V2,+ and they respect the rest of the data.

Let Gen be an enriched X-marked ribbon graph and let e ∈ E1(Gv), where
v ∈ V+. Assume that |V+| > 1 or that |E1(Gv)| > 1. We define Gen/e in the
following way.

(a) If e is the only edge of Gv, then we just turn v into an invisible component
and we define g(v) := g(Gv) and m(xi) = v for all xi ∈ X that marked
a hole or a vertex of Gv. In what follows, suppose that |E1(Gv)| > 1.

(b) If [−→e ]0 and [←−e ]0 are distinct and not both special, then we obtain Gen/e
from Gen by simply replacing Gv by Gv/e.

(c) If [−→e ]0 = [←−e ]0 is not special, then replace Gv by Gv/e. If {−→e } was a
hole marked by xj , then mark the new vertex of Gv/e by xj . Otherwise,
add an edge to ζ that joins the two new vertices of Gv/e (which may or
may not split into two visible components).

(d) In case [−→e ]0 and [←−e ]0 are both special vertices (whether or not they are
distinct), add a new invisible component w of genus 0 to ζ, replace Gv by
Gv/e (if Gv/e is disconnected, the vertex v splits) and join w to the new
vertices (one or two) of Gv/e and to the old edges s−1

v ([−→e ]0)∪s−1
v ([←−e ]0).

Moreover, if {−→e } was a hole marked by xj , then mark w by xj .

Notice that Gen/e can be not reduced, so we may want to consider the reduced

enriched graph G̃en/e associated to it. We define Gen → G̃en/e to be an
elementary contraction.

X-marked enriched ribbon graphs form a (small) category RGX , whose
morphisms are compositions of isomorphisms and elementary contractions.
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Call RGg,X the full subcategory of RGX whose objects are ribbon graphs of
genus g.

Remark 2.9. Really, the automorphism group of an enriched ribbon graph
must be defined as the product of the automorphism group as defined above

by
∏

v∈V−

Aut(v), where Aut(v) is the group of automorphisms of the generic

Riemann surface of type (g(v), n(v)) (where n(v) is the number of oriented
edges of ζ outgoing from v and of marked points on v). Fortunately, Aut(v)
is almost always trivial, except if g(v) = n(v) = 1, when Aut(v) ∼= Z/2Z.

2.2.11 Topological realization of enriched ribbon graphs. The topo-
logical realization of the enriched X-marked ribbon graph Gen is the nodal
X-marked oriented surface |Gen| obtained as a quotient of




∐

v∈V+

|Gv|




∐




∐

w∈V−

Sw





by a suitable equivalence relation, where Sw is a compact oriented surface of
genus g(w) with marked points given by m−1(w) and by the oriented edges of
ζ outgoing from w. The equivalence relation identifies couples of points (two
special vertices of G or a special vertex on a visible component and a point on
an invisible one) corresponding to the same edge of ζ.

As in the nonsingular case, for each v ∈ V+ the positive component |Gv|
naturally contains an embedded spine |Gv|. Notice that there is an obvious
correspondence between edges of ζ and nodes of |Gen|.

Moreover, the elementary contraction Gen → Gen/e to the non-reduced
Gen/e defines a unique homotopy class of maps |Gen| → |Gen/e|, which may
shrink a circle inside a positive component of |Gen| to a singular point (only
in cases (c) and (d)), and which are homeomorphisms elsewhere.

If G̃en/e is the reduced graph associated to Gen/e, then we also have a map

|G̃en/e| → |Gen/e| that shrinks some circles inside the invisible components
to singular points and is a homeomorphism elsewhere.

|Gen|

$$II
II

III
II

|G̃en/e|

yytt
tt

tt
tt

t

|Gen/e|

2.2.12 (S,X)-markings of Gen. An (S,X)-marking of an enriched X-
marked ribbon graph Gen is a map f : S → |Gen| compatible with X →֒
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E∞(G) ∪ E0(G) such that f−1({nodes}) is a disjoint union of circles and f
is an orientation-preserving homeomorphism elsewhere, up to isotopy. The
subsurface S+ := f−1(|G| \ {special points}) is the visible subsurface.

An isomorphism of (S,X)-marked (reduced) enriched ribbon graphs is an

isomorphism Gen
1 → Gen

2 such that S
f1−→ |Gen

1 | → |Gen
2 | is homotopic to

f2 : S → |Gen
2 |.

Given (S,X)-markings f : S → |Gen| and f ′ : S → |G̃en/e| such that

S
f−→ |Gen| → |Gen/e| is homotopic to S

f ′

−→ |G̃en/e| → |Gen/e|, then we de-

fine (Gen, f)→ (G̃en/e, f ′) to be an elementary contraction of (S,X)-marked
enriched ribbon graphs.

Define RG(S,X) to be the category whose objects are (equivalence classes
of) (S,X)-marked enriched ribbon graphs (Gen, f) and whose morphisms are
compositions of isomorphisms and elementary contractions.

Again, the mapping class group Γ(S,X) acts on RG(S,X) and the quotient
RG(S,X)/Γ(S,X) is equivalent to RGg,X .

2.2.13 Arcs/graph duality. Let α = {α0, . . . , αk} ∈ A◦(S,X) be an arc
system and let σ0, σ1, σ∞ the corresponding operators on the set of oriented
arcs E(α).

Define V+ to be the set of connected components of S(α)+ and V− the set
of components of S(α)−. Let ζ be a graph whose vertices are V = V+ ∪ V−
and whose edges correspond to connected components of S \(S(α)+∪S(α)−),
where an edge connects v and w (possibly v = w) if the associated component
bounds v and w.

Define g : V− → N to be the genus function associated to the connected
components of S(α)−.

Call Sv the subsurface associated to v ∈ V+ and let Ŝv be the quotient of
Sv obtained by identifying each component of ∂Sv to a point. We denote by
α ∩ Ŝv the system of arcs induced on Ŝv by α.

As α ∩ Ŝv quasi-fills Ŝv, we can construct a dual ribbon graph Gv and
a homeomorphism Ŝv → |Gv| by sending ∂Sv to nodal vertices of |Gv| and
marked points on Ŝv to centers or marked vertices of |Gv|. These homeomor-
phisms glue to give a map S → |Gen| that shrinks circles and cylinders in
S \ (S(α)+ ∪ S(α)−) to nodes and is a homeomorphism elsewhere, which is
thus homotopic to a marking of |Gen|.

We have obtain an enriched (S,X)-marked (reduced) ribbon graph Gen
α

dual to α.

Proposition 2.10. The above construction defines a Γ(S,X)-equivariant equiv-
alence of categories

Â(S,X) −→ RG(S,X)
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where Â(S,X) is the category of arc systems on (S,X), whose morphisms are
reversed inclusions.

As before, an inclusion α →֒ β of systems of arcs induces a morphism
Gen
β → Gen

α of (S,X)-marked enriched ribbon graphs.

To construct a pseudo-inverse, start with (Gen, f) and call Ŝv the surface
obtained from f−1(|Gv|) by shrinking each boundary circle to a point. By
nonsingular duality, we can construct a system of arcs αv inside Ŝv dual to
fv : Ŝv → |Gv|. As the arcs miss the vertices of f−1

v (|Gv|) by construction, αv

can be lifted to S. The wanted arc system on S is α =
⋃

v∈V+
αv.

2.2.14 Metrized enriched ribbon graphs. A metric on Gen is a map
ℓ : E1(G) → R+. Given γ ∈ C(S,X) and an (S,X)-marking f : S → |Gen|,
we can define γ+ := γ ∩ S+. As in the nonsingular case, there is a unique
γ̃+ = |ei1 | ∪ · · · ∪ |eik

| inside |G| ⊂ |G| such that f−1(γ̃+) ≃ γ+.
Hence, we can define ℓ(γ) := ℓ(γ+) = ℓ(ei1) + · · ·+ ℓ(eik

). Clearly, ℓ(γ) =
i(γ, w), where w is the weight function supported on the arc system dual
to (Gen, f). Thus, the arc/graph duality also establishes a correspondence
between weighted arc systems on (S,X) and metrized (S,X)-marked enriched
ribbon graphs.

3 Differential and algebro-geometric point of view

3.1 The Deligne-Mumford moduli space

3.1.1 The Teichmüller space. Fix a compact oriented surface S of genus
g and a subset X = {x1, . . . , xn} ⊂ S such that 2g − 2 + n > 0.

A smooth family of (S,X)-marked Riemann surfaces is a commutative di-
agram

B × S f
//

((QQQQQQQQQQQQQ
C

π

��

B

where f is an oriented diffeomorphism, B×S → B is the projection on the first
factor and the fibers Cb of π are Riemann surfaces, whose complex structure
varies smoothly with b ∈ B.

Two families (f1, π1) and (f2, π2) over B are isomorphic if there exists a
continuous map h : C1 → C2 such that

• hb◦f1,b : (S,X)→ (C2,b, hb◦f1,b(X)) is homotopic to f2,b for every b ∈ B
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• hb : (C1,b, f1,b(X))→ (C2,b, f2,b(X)) is biholomorphic for every b ∈ B.

The functor T (S,X) : (manifolds)→ (sets) defined by

B 7→
{
smooth families of (S,X)-marked

Riemann surfaces over B

}
/iso

is represented by the Teichmüller space T (S,X).
It is a classical result that T (S,X) is a complex-analytic manifold of (com-

plex) dimension 3g − 3 + n (Ahlfors [1], Bers [8] and Ahlfors-Bers [3]) and is
diffeomorphic to a ball (Teichmüller [68]).

3.1.2 The moduli space of Riemann surfaces. A smooth family of X-
marked Riemann surfaces of genus g is

• a submersion π : C → B

• a smooth embedding s : X ×B → C
such that the fibers Cb are Riemann surfaces of genus g, whose complex struc-
ture varies smoothly in b ∈ B, and sxi

: B → C is a section for every xi ∈ X .
Two families (π1, s1) and (π2, s2) over B are isomorphic if there exists a

diffeomorphism h : C1 → C2 such that π2 ◦ h = π1, the restriction of h to each
fiber hb : C1,b → C2,b is a biholomorphism and h ◦ s1 = s2.

The existence of Riemann surfaces with nontrivial automorphisms (for g ≥
1) prevents the functor

Mg,X : (manifolds) // (sets)

B
� //

{
smooth families of X-marked

Riemann surfaces over B

}
/iso

from being representable. However, Riemann surfaces with 2g − 2 + n > 0
have finitely many automorphisms and so Mg,X is actually represented by
an orbifold, which is in fact T (S,X)/Γ(S,X) (in the orbifold sense). In the
algebraic category, we would rather say thatMg,X is a Deligne-Mumford stack
with quasi-projective coarse space. In any case, we will always refer to Mg,X

as the moduli space of X-marked Riemann surfaces of genus g.

3.1.3 Stable curves. Enumerative geometry is traditionally reduced to in-
tersection theory on suitable moduli spaces. In our case, Mg,X is not a com-
pact orbifold. To compactify it in an algebraically meaningful way, we need
to look at how algebraic families of complex projective curves can degenerate.

In particular, given a holomorphic family C∗ → ∆∗ of algebraic curves over
the punctured disc, we must understand how to complete the family over ∆.

Example 3.1. Consider the family C∗ = {(b, [x : y : z]) ∈ ∆∗ × CP2 | y2z =
x(x− bz)(x−2z)} of curves of genus 1 with the marked point [2 : 0 : 1] ∈ CP2,
parametrized by b ∈ ∆∗. Notice that the projection C∗b → CP1 given by
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[x : y : z] 7→ [x : z] (where [0 : 1 : 0] 7→ [1 : 0]) is a 2 : 1 cover, branched over
{0, b, 2,∞}. Fix a b ∈ ∆∗ and consider a closed curve γ ⊂ CP1 that separates
{b, 2} from {0,∞} and pick one of the two (simple closed) lifts γ̃ ⊂ C∗

b
.

This γ̃ determines a nontrivial element of H1(C∗b ). A quick analysis tells

us that the endomorphism T : H1(C∗b ) → H1(C∗b ) induced by the monodromy

around a generator of π1(∆
∗, b) is nontrivial. Thus, the family C∗ → ∆∗

cannot be completed over ∆ as smooth family (because it would have trivial
monodromy).

If we want to compactify our moduli space, we must allow our curves to
acquire some singularities. Thus, it makes no longer sense to ask them to be
submersions. Instead, we will require them to be flat.

Given an open subset 0 ∈ B ⊂ C, a flat family of connected projective
curves C → B may typically look like (up to shrinking B)

• ∆×B → B around a smooth point of C0

• {(x, y) ∈ C2 |xy = 0} × B → B around a node of C0 that persists on
each Cb

• {(b, x, y) ∈ B × C2 |xy = b} → B around a node of C0 that does not
persist on the other curves Cb with b 6= 0

in local analytic coordinates.
Notice that, in the above cases, the (arithmetic) genus of each fiber gb =

1− 1
2 [χ(Cb)− νb] is constant in b, where νb is the number of nodes in Cb.

To prove that allowing nodal curves is enough to compactify Mg,X , one
must show that it is always possible to complete any family C∗ → ∆∗ to a
family over ∆. However, because nodal curves may have nontrivial automor-
phisms, we shall consider also the case in which 0 ∈ ∆ is an orbifold point.
Thus, it is sufficient to be able to complete not exactly the family C∗ → ∆∗

but its pull-back under a suitable map ∆∗ → ∆∗ given by z 7→ zk. This is
exactly the semi-stable reduction theorem.

One can observe that it is always possible to avoid producing genus 0
components with 1 or 2 nodes. Thus, we can consider only stable curves, that
is nodal projective (connected) curves such that all irreducible components
have finitely many automorphisms (equivalently, no irreducible component is
a sphere with less than three nodes/marked points).

The Deligne-Mumford compactificationMg,X ofMg,X is the moduli space
of X-marked stable curves of genus g, which is a compact orbifold (alge-
braically, a Deligne-Mumford stack with projective coarse moduli space).

Its underlying topological space is a projective variety of complex dimension
3g − 3 + n.
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3.2 The system of moduli spaces of curves

3.2.1 Boundary maps. Many facts suggest that one should not look sep-
arately at each of the moduli spaces of X-pointed genus g curves Mg,X , but
one must consider the whole system (Mg,X)g,X . An evidence is given by the
existence of three families of maps that relate different moduli spaces.

(1) The forgetful map is a projective flat morphism

πq :Mg,X∪{q} −→Mg,X

that forgets the point q and stabilizes the curve (i.e. contracts a possible
two-pointed sphere). This map can be identified to the universal family
and so is endowed with tautological sections

ϑ0,{xi,q} :Mg,X →Mg,X∪{q}

for all xi ∈ X .

(2) The boundary map corresponding to irreducible curves is the finite map

ϑirr :Mg−1,X∪{x′,x′′} −→Mg,X

(defined for g > 0) that glues x′ and x′′ together. It is generically 2 : 1
and its image sits in the boundary ofMg,X .

(3) The boundary maps corresponding to reducible curves are the finite maps

ϑg′,I :Mg′,I∪{x′} ×Mg−g′,Ic∪{x′′} −→Mg,X

(defined for every 0 ≤ g′ ≤ g and I ⊆ X such that the spaces involved
are nonempty) that take two curves and glue them together identifying
x′ and x′′. They are generically 1 − 1 (except in the case g = 2g′ and
X = ∅, when the map is generically 2 : 1) and their images sit in the
boundary ofMg,X too.

Let δ0,{xi,q} be the Cartier divisor inMg,X∪{q} corresponding to the image of
the tautological section ϑ0,{xi,q} and call Dq :=

∑
i δ0,{xi,q}.

3.2.2 Stratification by topological type. We observe that Mg,X has a
natural stratification by topological type of the complex curve. In fact, we can
attach to every stable curve Σ its dual graph ζΣ, whose vertices V correspond to
irreducible components and whose edges correspond to nodes of Σ. Moreover,
we can define a genus function g : V → N such that g(v) is the genus of the
normalization of the irreducible component corresponding to v and a marking
function m : X → V (determined by requiring that xi is marking a point on
the irreducible component corresponding to m(xi)). Equivalently, we will also
say that the vertex v ∈ V is labelled by (g(v), Xv := m−1(v)). Call Qv the
singular points of Σv.
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For every such labeled graph ζ, we can construct a boundary map

ϑζ :
∏

v∈V

Mgv ,Xv∪Qv
−→Mg,X

which is a finite morphism.

3.3 Augmented Teichmüller space

3.3.1 Bordifications of T (S,X). Fix a compact oriented surface S of
genus g and let X = {x1, . . . , xn} ⊂ S such that 2g − 2 + n > 0.

It is natural to look for natural bordifications of T (S,X): that is, we look
for a space T (S,X) ⊃ T (S,X) that contains T (S,X) as a dense subspace and
such that the action of the mapping class group Γ(S,X) extends to T (S,X).

A remarkable example is given by Thurston’s compactification T Th
(S,X) =

T (S,X)∪PML(S,X), in which points at infinity are (isotopy classes of) pro-
jective measured laminations with compact support in S\X . Thurston showed
that PML(S,X) is compact and homeomorphic to a sphere. As Γ(S,X) is

infinite and discrete, this means that the quotient T Th
(S,X)/Γ(S,X) cannot

be too good and so this does not sound like a convenient way to compactify
Mg,X .

We will see in Section 4 that T (S,X) can be identified to |A◦(S,X)|. Thus,
another remarkable example will be given by |A(S,X)|.

A natural question is how to define a bordification T (S,X) such that
T (S,X)/Γ(S,X) ∼=Mg,X .

3.3.2 Deligne-Mumford augmentation. A (continuous) family of stable
(S,X)-marked curves is a commutative diagram

B × S f
//

((QQQQQQQQQQQQQ
C

π

��

B

where B × S → B is the projection on the first factor and

• the family π is obtained as a pull-back of a flat stable family ofX-marked
curves C′ → B′ through a continuous map B → B′

• if Nb ⊂ Cb is the subset of nodes, then f−1(ν) is a smooth loop in S×{b}
for every ν ∈ Nb

• for every b ∈ B the restriction fb : S\f−1(Nb)→ Cb\Nb is an orientation-
preserving homeomorphism, compatible with the X-marking.

Isomorphisms of such families are defined in the obvious way.
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Example 3.2. Start with a flat family C′ → ∆ such that C′b are all homeomor-
phic for b 6= 0. Then consider the path B = [0, ε) ⊂ ∆ and call C := C′ ×∆ B.
Over (0, ε), the family C is topologically trivial, whereas C0 may contain some
new nodes.

Consider a marking S → Cε/2 that pinches circles to nodes, is an oriented
homeomorphism elsewhere and is compatible with X . The homeomorphism
S×(0, ε)→ Cε/2×(0, ε)

∼−→ C extends over 0 to a map S×[0, ε) →֒ BlC0
C ։ C,

where BlC0
C is the real-oriented blow-up of C along C0. This is our wished

(S,X)-marking.

The Deligne-Mumford augmentation of T (S,X) is the topological space

T DM
(S,X) that classifies families of stable (S,X)-marked curves.

It follows easily that T DM
(S,X)/Γ(S,X) = Mg,X as topological spaces.

However, T DM
(S,X)→Mg,X has infinite ramification at ∂DMT (S,X), due

to the Dehn twists around the pinched loops.

3.3.3 Hyperbolic length functions. Let [f : S → Σ] be a point of T (S,X).
As χ(S \X) = 2−2g−n < 0, the uniformization theorem provides a universal
cover H→ Σ\ f(X), which endows Σ\ f(X) with a hyperbolic metric of finite
volume, with cusps at f(X).

In fact, we can interpret T (S,X) as the classifying space of (S,X)-marked
families of hyperbolic surfaces. It is clear that continuous variation of the
complex structure corresponds to continuous variation of the hyperbolic metric
(uniformly on the compact subsets, for instance), and so to continuity of the
holonomy map H : π1(S \X)× T (S,X)→ PSL2(R).

In particular, for every γ ∈ π1(S \X) the function ℓγ : T (S,X)→ R that
associates to [f : S → Σ] the length of the unique geodesic in the free homotopy
class f∗γ is continuous. As cosh(ℓγ/2) = |Tr(Hγ/2)|, one can check that H
can be reconstructed from sufficiently (but finitely) many length functions. So
that the continuity of these is equivalent to the continuity of the family.

3.3.4 Fenchel-Nielsen coordinates. Let γ = {γ1, . . . , γN} be a maximal
system of disjoint simple closed curves of S \X (and so N = 3g − 3 + n) such
that no γi is contractible in S \X or homotopic to a puncture and no couple
γi, γj bounds a cylinder contained in S \X .

The system γ induces a pair of pants decomposition of S, that is S \ (γ1 ∪
· · · ∪ γN ) = P1 ∪ P2 ∪ · · · ∪ P2g−2+n, and each Pi is a pair of pants (i.e. a
surface of genus 0 with χ(Pi) = −1).

Given [f : S → Σ] ∈ T (S,X), we have lengths ℓi(f) = ℓγi
(f) for i =

1, . . . , N , which determine the hyperbolic type of all pants P1, . . . , P2g−2+n.
The information about how the pants are glued together is encoded in the twist
parameters τi = τγi

∈ R, which are well-defined up to some choices. What is
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important is that, whatever choices we make, the difference τi(f1) − τi(f2) is
the same and it is well-defined.

The Fenchel-Nielsen coordinates (ℓi, τi)
N
i=1 exhibit a real-analytic diffeo-

morphism T (S,X)
∼−→ (R+ × R)N (which clearly depends on the choice of

γ).

3.3.5 Fenchel-Nielsen coordinates around nodal curves. Points of ∂DMT (S,X)
are (S,X)-marked stable curves or, equivalently (using the uniformization the-
orem componentwise), (S,X)-marked hyperbolic surfaces with nodes, i.e. ho-
motopy classes of maps f : S → Σ, where Σ is a hyperbolic surface with nodes
ν1, . . . , νk, the fiber f−1(νj) is a simple closed curve γj and f is an oriented
diffeomorphism outside the nodes.

Complete {γ1, . . . , γk} to a maximal set γ of simple closed curves in (S,X)
and consider the associated Fenchel-Nielsen coordinates (ℓj , τj) on T (S,X).
As we approach the point [f ], the holonomies Hγ1

, . . . , Hγk
tend to parabolics

and so the lengths ℓ1, . . . , ℓk tend to zero. In fact, the hyperbolic metric on
the surface Σ has a pair of cusps at each node νj .

This shows that the lengths functions ℓ1, . . . , ℓk continuously extend to
zero at [f ]. On the other hand, the twist parameters τ1(f), . . . , τk(f) make no
longer sense.

If we look at what happens on Mg,X , we may notice that the couples
(ℓj, τj)

k
j=1 behave like polar coordinate around [Σ], so that it seems natural

to set ϑm = 2πτm/ℓm for all m = 1, . . . , N and define consequently a map
Fγ : (R2)N → Mg,X , that associates to (ℓ1, ϑ1, . . . , ℓN , ϑN ) the surface with

Fenchel-Nielsen coordinates (ℓm, τm = ℓmϑm/2π). Notice that the map is well-
defined, because a twist along γj by ℓj is a diffeomorphism of the surface (a
Dehn twist).

The map Fγ is an orbifold cover Fγ : R2N → Fγ (R2N ) ⊂ Mg,X and its

image contains [Σ]. Varying γ, we can cover the wholeMg,X and thus give it
a Fenchel-Nielsen smooth structure.

The bad news, analyzed by Wolpert [75], is that the Fenchel-Nielsen smooth
structure is different (at ∂Mg,X) from the Deligne-Mumford one. In fact, if
a boundary divisor is locally described by {z1 = 0}, then the length ℓγ of the
corresponding vanishing geodesic is related to z1 by |z1| ≈ exp(−1/ℓγ), which

shows that the identity map MFN

g,X → M
DM

g,X is Lipschitz, but its inverse it
not Hölder-continuous.

3.3.6 Weil-Petersson metric. Let Σ be a Riemann surface of genus g with
marked pointsX →֒ Σ such that 2g−2+n > 0. First-order deformations of the
complex structure can be rephrased in terms of ∂ operator as ∂ + εµ∂ + o(ε),
where the Beltrami differential µ ∈ Ω0,1(TΣ(−X)) can be locally written as
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µ(z)
dz

dz
with respect to some holomorphic coordinate z on Σ and µ(z) vanishes

at X .

Given a smooth vector field V = V (z)
∂

∂z
on Σ that vanishes at X , the

deformations induced by µ and µ+∂V differ only by an isotopy of Σ generated
by V (which fixes X).

Thus, the tangent space T[Σ]Mg,X can be identified to H0,1(Σ, TΣ(−X)).
As a consequence, the cotangent space T ∗

[Σ]Mg,X identifies to the spaceQ(Σ, X)

of integrable holomorphic quadratic differentials on Σ \X , that is, which are
allowed to have a simple pole at each xi ∈ X . The duality between T[Σ]Mg,X

and T ∗
[Σ]Mg,X is given by

H0,1(Σ, TΣ(−X))×H0(Σ,K⊗2
Σ (X)) // C

(µ, ϕ) � //

∫

Σ

µϕ

If Σ \X is given the hyperbolic metric λ, then elements in H0,1(Σ, TΣ(−X))
can be identified to the space of harmonic Beltrami differentials H(Σ, X) =
{ϕ/λ |ϕ ∈ Q(Σ, X)}.

The Weil-Petersson Hermitean metric h = g + iω (defined by Weil [70]
using Petersson’s pairing of modular forms) is

h(µ, ν) :=

∫

Σ

µν · λ

for µ, ν ∈ H(Σ, X) ∼= TΣMg,X .
This metric has a lot of properties: it is Kähler (Weil [70] and Ahlfors

[2]) and it is mildly divergent at ∂Mg,X , so that the Weil-Petersson distance
extends to a non-degenerate distance on Mg,X and all points of ∂Mg,X are
at finite distance (Masur [48], Wolpert [72]).

Because Mg,X is compact and so WP-complete, the lifting of the Weil-
Petersson metric to T (S,X) is also complete. Thus, T (S,X) can be seen as
the Weil-Petersson completion of T (S,X).

3.3.7 Weil-Petersson form. We should emphasize that the Weil-Petersson
symplectic form ωWP depends more directly on the hyperbolic metric on the
surface than on its holomorphic structure.

In particular, Wolpert [74] has shown that

ωWP =
∑

i

dℓi ∧ dτi

on T (S,X), where (ℓi, τi) are Fenchel-Nielsen coordinates associated to any
pair of pants decomposition of (S,X).
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On the other hand, if we identify T (S,X) with an open subset of Hom(π1(S\
X), SL2(R))/SL2(R), then points of T (S,X) are associated g-local systems ρ
on S \X (with parabolic holonomies at X and hyperbolic holonomies other-
wise), where g = sl2(R) is endowed with the symmetric bilinear form 〈α, β〉 =
Tr(αβ).

Goldman [23] has proved that, in this description, the tangent space to
T (S,X) at ρ is naturally H1(S,X ; g) and that ωWP is given by ω(µ, ν) =
Tr(µ ⌣ ν) ∩ [S].

Remark 3.3. Another description of ω in terms of shear coordinates and
Thurston’s symplectic form on measured laminations is given by Bonahon-
Sözen [65].

One can feel that the complex structure J on T (S,X) inevitably shows
up whenever we deal with the Weil-Petersson metric, as g(·, ·) = ω(·, J ·).
On the other hand, the knowledge of ω is sufficient to compute volumes and
characteristic classes.

3.4 Tautological classes

3.4.1 Relative dualizing sheaf. All the maps between moduli spaces we
have defined are in some sense tautological as they are very naturally con-
structed and they reflect intrinsic relations among the various moduli spaces.
It is evident that one can look at these as classifying maps to the Deligne-
Mumford stackMg,X (which obviously descend to maps between coarse mod-
uli spaces). Hence, we can consider all the cycles obtained by pushing forward
or pulling back via these maps as being “tautologically” defined.

Moreover, there is an ingredient we have not considered yet: it is the relative
dualizing sheaf of the universal family πq : Mg,X∪{q} → Mg,X . One expects
that it carries many informations and that it can produce many classes of
interest.

The relative dualizing sheaf ωπq
is the sheaf on Mg,X∪{q}, whose local

sections are (algebraically varying) Abelian differentials that are allowed to
have simple poles at the nodes, provided the two residues at each node are
opposite. The local sections of ωπq

(Dq) (the logarithmic variant of ωπq
) are

sections of ωπq
that may have simple poles at the X-marked points.

3.4.2 MMMAC classes. The Miller classes are

ψxi
:= c1(Li) ∈ CH1(Mg,X)Q
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where Li := ϑ∗0,{xi,q}
ωπq

and the Mumford-Morita classes (suitably modified

by Arbarello-Cornalba) are

κj := (πq)∗(ψ
j+1
q ) ∈ CHj(Mg,X)Q.

One could moreover define the l-th Hodge bundle as El := (πq)∗(ω
⊗l
πq

) and con-
sider the Chern classes of these bundles (for example, the λ classes λi := ci(E1)).
However, using Grothendieck-Riemann-Roch, Mumford [57] and Bini [10] proved
that ci(Ej) can be expressed as a linear combination of Mumford-Morita classes
up to elements in the boundary, so that they do not introduce anything really
new.

When there is no risk of ambiguity, we will denote in the same way the
classes ψ and κ belonging to differentMg,X ’s as it is now traditional.

Remark 3.4. Wolpert has proven [73] that, onMg, we have κ1 = [ωWP ]/π2

and that the amplitude of κ1 ∈ A1(Mg) (and so the projectivity of Mg) can
be recovered from the fact that [ωWP /π

2] is an integral Kähler class [76]. He
also showed that the cohomological identity [ωWP /π

2] = κ1 = (πq)∗ψ
2
q admits

a clean pointwise interpretation [77].

3.4.3 Tautological rings. Because of the natural definition of κ and ψ
classes, as explained before, the subring R∗(Mg,X) of CH∗(Mg,X)Q they gen-
erate is called the tautological ring of Mg,X . Its image RH∗(Mg,X) through
the cycle class map is called cohomology tautological ring.

From an axiomatic point of view, the system of tautological rings (R∗(Mg,X))
is the minimal system of subrings of (CH∗(Mg,X)) is the minimal system of
subrings such that

• every R∗(Mg,X) contains the fundamental class [Mg,X ]

• the system is closed under push-forward maps π∗, (ϑirr)∗ and (ϑg′,I)∗.

R∗(Mg,X) is defined to be the image of the restriction map R∗(Mg,X)→
CH∗(Mg,X). The definition for the rational cohomology is analogous (where
the role of [Mg,X ] is here played by its Poincaré dual 1 ∈ H0(Mg,X ; Q)).

It is a simple fact to remark that all tautological rings contain ψ and κ
classes and in fact that R∗(Mg,X) is generated by them. Really, this was the
original definition of R∗(Mg,X).

3.4.4 Faber’s formula. The ψ classes interact reasonably well with the for-
getful maps. In fact

(πq)∗(ψ
r1

x1
· · ·ψrn

xn
) =

∑

{i|ri>0}

ψr1

x1
· · ·ψri−1

xi
· · ·ψrn

xn

(πq)∗(ψ
r1

x1
· · ·ψrn

xn
ψb+1

q ) = ψr1

x1
· · ·ψrn

xn
κb
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where the first one is the so-called string equation and the second one for b = 0
is the dilaton equation (see [71]). They have been generalized by Faber for
maps that forget more than one point: Faber’s formula (which we are going
to describe below) can be proven using the second equation above and the
relation π∗

q (κj) = κj − ψj
q (proven in [5]).

Let Q := {q1, . . . , qm} and let πQ :Mg,X∪Q →Mg,X be the forgetful map.
Then

(πQ)∗(ψ
r1

x1
· · ·ψrn

xn
ψb1+1

q1
· · ·ψbm+1

qm
) = ψr1

x1
· · ·ψrn

xn
Kb1···bm

where Kb1···bm
=

∑
σ∈Sm

κb(σ) and κb(σ) is defined in the following way. If γ =

(c1, . . . , cl) is a cycle, then set b(γ) :=
∑l

j=1 bcj
. If σ = γ1 · · ·γν is the decom-

position in disjoint cycles (including 1-cycles), then we let kb(σ) :=
∏ν

i=1 κb(γi).
We refer to [36] for more details on Faber’s formula, to [5] and [6] for more
properties of tautological classes and to [19] (and [55]) for a conjectural de-
scription (which is now partially proven) of the tautological rings.

3.5 Kontsevich’s compactification

3.5.1 The line bundle L. It has been observed by Witten [71] that the
intersection theory of κ and ψ classes can be reduced to that of ψ classes
only by using the push-pull formula with respect to the forgetful morphisms.
Moreover recall that

ψxi
= c1(ωπxi

(Dxi
))

on Mg,X , where Dxi
=

∑
j 6=i δ0,{xi,xj} (as shown in [71]). So, in order to

find a “minimal” projective compactification of Mg,X where to compute the
intersection numbers of the ψ classes, it is natural to look at the maps induced
by the linear system L :=

∑
xi∈X ωπxi

(Dxi
). It is well-known that L is nef and

big (Arakelov [4] and Mumford [57]), so that the problem is to decide whether
L is semi-ample and to determine its exceptional locus Ex(L⊗d) for d≫ 0.

It is easy to see that L⊗d pulls back to the trivial line bundle via the
boundary map Mg′,{x′} × {C} −→Mg,X , where C is a fixed curve of genus
g − g′ with a X ∪ {x′′}-marking and the map glues x′ with x′′. Hence the
map induced by the linear system L⊗d (if base-point-free) should restrict to
the projectionMg,{x′} ×Mg−g′,X∪{x′′} −→Mg−g′,X∪{x′′} on these boundary
components.

Whereas L is semi-ample in characteristic p > 0, it is not so in characteristic
0 (Keel [37]). However, one can still topologically contract the exceptional
(with respect to L) curves to obtain Kontsevich’s map

ξ′ :Mg,X −→M
K

g,X



Riemann surfaces, ribbon graphs and combinatorial classes 33

which is a proper continuous surjection of orbispaces. A consequence of Keel’s

result is that the coarse M
K

g,P cannot be given a scheme structure such that
the contraction map is a morphism. This is in some sense unexpected, because
the morphism behaves as if it were algebraic: in particular, the fiber product
Mg,X ×M

K

g,X

Mg,X is projective.

Remark 3.5. MK

g,X can be given the structure of a stratified orbispace, where
the stratification is again by topological type of the generic curve in the fiber

of ξ′. Also, the stabilizer of a point s inMK

g,X will be the same as the stabilizer
of the generic point in (ξ′)−1(s).

3.5.2 Visibly equivalent curves. So now we leave the realm of algebraic
geometry and proceed topologically to construct and describe this different
compactification. In fact we introduce a slight modification of Kontsevich’s
construction (see [41]). We realize it as a quotient of Mg,X × ∆X by an
equivalence relation, where ∆X is the standard simplex in RX .

If (Σ, p) is an element of Mg,X × ∆X , then we say that an irreducible
component of Σ (and so the associated vertex of the dual graph ζΣ) is visible
with respect to p if it contains a point xi ∈ X such that pi > 0.

Next, we declare that (Σ, p) is equivalent to (Σ′, p′) if p = p′ and there is

a homeomorphism of pointed surfaces Σ
∼−→ Σ′, which is biholomorphic on

the visible components of Σ. As this relation would not give back a Hausdorff
space we consider its closure, which we are now going to describe.

Consider the following two moves on the dual graph ζΣ:

(1) if two invisible vertices w and w′ are joined by an edge e, then we can
build a new graph discarding e, merging w and w′ along e, thus obtaining
a new vertex w′′, which we label with (gw′′ , Xw′′) := (gw +gw′, Xw∪Xw′)

(2) if an invisible vertex w has a loop e, we can make a new graph discarding
e and relabeling w with (gw + 1, Xw).

Applying these moves to ζΣ iteratively until the process ends, we end up with
a reduced dual graph ζred

Σ,p . Call V−(Σ, p) the subset of invisible vertices and

V+(Σ, p) the subset of visible vertices of ζred
Σ,p .

For every couple (Σ, p) denote by Σ the quotient of Σ obtained collapsing
every invisible component to a point.

We say that (Σ, p) and (Σ′, p′) are visibly equivalent if p = p′ and there exist

a homeomorphism Σ
∼−→ Σ

′
, whose restriction to each component is analytic,

and a compatible isomorphism f red : ζred
Σ,p

∼−→ ζred
Σ′,p′ of reduced dual graphs.

Remark 3.6. In other words, (Σ, p), (Σ′, p′) are visibly equivalent if and only
if: p = p′ and there exists a third stable Σ′′ and maps h : Σ′′ → Σ and
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h′ : Σ′′ → Σ′ such that h, h′ are biholomorphic on the visible components and
are a stable marking on the invisible components of (Σ′′, p) (that is, they may
shrink some disjoint simple closed curves to nodes and are homeomorphisms
elsewhere).

Finally call

ξ :Mg,X ×∆X −→M
∆

g,X :=Mg,X ×∆X/∼

the quotient map and remark that M∆

g,X is compact and that ξ commutes
with the projection onto ∆X .

Similarly, one can say that two (S,X)-marked stable surfaces ([f : S →
Σ], p) and ([f ′ : S → Σ′], p′) are visibly equivalent if there exists a third stable
(S,X)-marked surface [f ′′ : S → Σ′′] and maps h : Σ′′ → Σ and h′ : Σ′′ → Σ′

such that h ◦ f ′′ ≃ f , h′ ◦ f ′′ ≃ f ′ and (Σ, p), (Σ′, p′) are visibly equivalent

through h, h′ (see the remark above). Consequently, we can define T ∆
(S,X)

as the quotient of T (S,X) × ∆X obtained by identifying visibly equivalent
(S,X)-marked surfaces.

For every p in ∆X , we will denote by M∆

g,X(p) the subset of points of

the type [Σ, p]. Then it is clear that M∆

g,X(∆◦
X) is in fact homeomorphic to

a product M∆

g,X(p) × ∆◦
X for any given p ∈ ∆◦

X . Observe that M∆

g,X(p) is

isomorphic to MK

g,X for all p ∈ ∆◦
X in such a way that

ξp :Mg,X
∼=Mg,X × {p} −→M

∆

g,X(p)

identifies to ξ′.
Notice, by the way, that the fibers of ξ are isomorphic to moduli spaces.

More precisely consider a point [Σ, p] of M∆

g,X . For every w ∈ V−(Σ, p), call

Qv the subset of edges of ζred
Σ,p outgoing from w. Then we have the natural

isomorphism

ξ−1([Σ, p]) ∼=
∏

w∈V−(Σ,p)

Mgw,Xw∪Qw

according to the fact that Mg,X ×M
K

g,X

Mg,X is projective.
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4 Cell decompositions of the moduli space of curves

4.1 Harer-Mumford-Thurston construction

One traditional way to associate a weighted arc system to a Riemann surface
endowed with weights at its marked points is to look at critical trajectories of
Jenkins-Strebel quadratic differentials. Equivalently, to decompose the punc-
tured surface into a union of semi-infinite flat cylinders with lengths assigned
to their circumference.

4.1.1 Quadratic differentials. Let Σ be a compact Riemann surface and
let ϕ be a meromorphic quadratic differential, that is ϕ = ϕ(z)dz2 where z
is a local holomorphic coordinate and ϕ(z) is a meromorphic function. Being
a quadratic differential means that, if w = w(z) is another local coordinate,

then ϕ = ϕ(w)

(
dz

dw

)2

dw2.

Regular points of Σ for ϕ are points where ϕ has neither a zero nor a pole;
critical points are zeroes or poles of ϕ.

We can attach a metric to ϕ, by simply setting |ϕ| :=
√
ϕϕ. In coordinates,

|ϕ| = |ϕ(z)|dz dz. The metric is well-defined and flat at the regular points and
it has conical singularities (with angle α = (k+ 2)π) at simple poles (k = −1)
and at zeroes of order k. Poles of order 2 or higher are at infinite distance.

If P is a regular point, we can pick a local holomorphic coordinate z at
P ∈ U ⊂ Σ such that z(P ) = 0 and ϕ = dz2 on U . The choice of z is unique
up sign. Thus, {Q ∈ U | z(Q) ∈ R} defines a real-analytic curve through P on
Σ, which is called a horizontal trajectory of ϕ. Similarly, {Q ∈ U | z(Q) ∈ iR}
defines the vertical trajectory of ϕ through P .

Horizontal (resp. vertical) trajectories τ are intrinsically defined by asking
that the restriction of ϕ to τ is a positive-definite (resp. negative-definite)
symmetric bilinear form on the tangent bundle of τ .

If ϕ has at worst double poles, then the local aspect of horizontal trajecto-
ries is as in Figure 6 (horizontal trajectories through q are drawn thicker).
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qq

qqq

f(z) = dz2 f(z) = z dz2 f(z) = z2 dz2

f(z) =
dz2

z
f(z) = −adz

2

z2

a > 0

f(z) = a
dz2

z2

Figure 6. Local structure of horizontal trajectories.

Trajectories are called critical if they meet a critical point. It follows from
the general classification (see [67]) that

• a trajectory is closed if and only if it is either periodic or it starts and
ends at a critical point;

• if a horizontal trajectory τ is periodic, then there exists a maximal open
annular domain A ⊂ Σ and a number c > 0 such that

(
A,ϕ

∣∣∣
A

)
∼−→

(
{z ∈ C | r < |z| < R},−cdz

2

z2

)

and, under this identification, τ = {z ∈ C |h = |z|} for some h ∈ (r,R);

• if all horizontal trajectories are closed of finite length, then ϕ has at
worst double poles and there it has negative quadratic residue (i.e. at a

double pole, ϕ looks like −adz
2

z2
, with a > 0).

4.1.2 Jenkins-Strebel differentials. There are many theorems about ex-
istence and uniqueness of quadratic differentials ϕ with specific behaviors of
their trajectories and about their characterization using extremal properties
of the associated metric |ϕ| (see Jenkins [35]). The following result is the one
we are interested in.
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Theorem 4.1 (Strebel [66]). Let Σ be a compact Riemann surface of genus g
and X = {x1, . . . , xn} ⊂ Σ such that 2g − 2 + n > 0. For every (p1, . . . , pn) ∈
RX

+ there exists a unique quadratic differential ϕ such that

(a) ϕ is holomorphic on Σ \X
(b) all horizontal trajectories of ϕ are closed

(c) it has a double pole at xi with quadratic residue −
( pi

2π

)2

(d) the only annular domains of ϕ are pointed discs at the xi’s.

Moreover, ϕ depends continuously on Σ and on p = (p1, . . . , pn).

xi

Figure 7. Example of horizontal foliation of a Jenkins-Strebel differential.

Remark 4.2. Notice that the previous result establishes the existence of a
continuous map

RX
+ −→ {continuous sections of Q(S, 2X)→ T (S,X)}

where Q(S, 2X) is the vector bundle whose fiber over [f : S → Σ] is the space
of quadratic differentials on Σ, which can have double poles at X and are
holomorphic elsewhere. Hubbard and Masur [30] proved (in a slightly different
case, though) that the sections ofQ(S, 2X) are piecewise real-analytic and gave
precise equations for their image.

Quadratic differentials that satisfy (a) and (b) are called Jenkins-Strebel
differentials. They are particularly easy to understand because their critical
trajectories form a graph G = GΣ,p embedded inside the surface Σ and G

decomposes Σ into a union of cylinders (with respect to the flat metric |ϕ|),
whose circumferences are horizontal trajectories.

Property (d) is telling us that Σ\X retracts by deformation onto G, flowing
along the vertical trajectories out of X .
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Remark 4.3. It can be easily seen that Theorem 4.1 still holds for p1, . . . , pn ≥
0 but p 6= 0. Condition (d) can be rephrased by saying that every annular
domain corresponds to some xi for which pi > 0, and that xj ∈ G if pj = 0.
It is still true that Σ \X retracts by deformation onto G.

We sketch the traditional existence proof of Theorem 4.1.

Definition 4.4. The modulus of a standard annulus A(r,R) = {z ∈ C | r <
|z| < R} is m(A(r,R)) =

1

2π
log(R/r) and the modulus of an annulus A is

defined to be that of a standard annulus biholomorphic toA. Consider a simply
connected domain 0 ∈ U ⊂ C and let z be a holomorphic coordinate at 0. The
reduced modulus of the annulus U∗ = U \ {0} is m(U∗, z) = m(U∗ ∩ {|z| >
ε})+ 1

2π log(ε), which is independent of the choice of a sufficiently small ε > 0.

Notice that the extremal length Eγ of a circumference γ inside A(r,R) is
exactly 1/m(A(r,R)).

Existence of Jenkins-Strebel differential. Fix holomorphic coordinates z1, . . . , zn

at x1, . . . , xn. A system of annuli is a holomorphic injection s : ∆ ×X →֒ Σ
such that s(0, xi) = xi, where ∆ is the unit disc in C. Call mi(s) the reduced
modulus m(s(∆ × {xi}), zi) and define the functional

F : {systems of annuli} // R

s � //

n∑

i=1

p2
imi(s)

which is bounded above, because Σ \X is hyperbolic. A maximizing sequence
sn converges (up to extracting a subsequence) to a system of annuli s∞. Let
Di = s∞(∆× {xi}). Notice that the restriction of s∞ to ∆× {xi} is injective
if pi > 0 and is constantly xi if pi = 0.

Clearly, s∞ is maximizing for every choice of z1, . . . , zn and so we can
assume that, whenever pi > 0, zi is the coordinate induced by s∞.

Define the L1
loc-quadratic differential ϕ on Σ \X as ϕ :=

(
− p2

i

4π2

dz2
i

z2
i

)
on

Di (if pi > 0) and ϕ = 0 elsewhere. Notice that F (s∞) = ‖ϕ‖red, where the
reduced norm is given by

‖ϕ‖red :=

∫

Σ



|ϕ|2 −
∑

i:pi>0

p2
i

4π2

dzi dzi

|zi|2
χ(|zi| < εi)



 +
n∑

i=1

p2
i

2π
log(εi)

which is independent of the choice of sufficiently small ε1, . . . , εn > 0.
As s∞ is a stationary point for F , so is for ‖ · ‖red. Thus, for every smooth

vector field V = V (z)∂/∂z on Σ, compactly supported on Σ\X , the first-order
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variation of

‖f∗
t (ϕ)‖red = ‖ϕ‖red + 2t

∫

S

Re(ϕ∂V ) + o(t)

must vanish, where ft = exp(tV ). Thus, ϕ is holomorphic on Σ \X by Weyl’s
lemma and it satisfies all the requirements.

4.1.3 The nonsingular case. Using the construction described above, we
can attach to every (Σ, X, p) a graph GΣ,p ⊂ Σ (and thus an (S,X)-marked

ribbon graph GΣ,p) which is naturally metrized by |ϕ|. By arc/graph duality

(in the nonsingular case, see 2.2.8), we also have a weighted proper system
of arcs in Σ. Notice that, because of (c), the boundary weights are exactly
p1, . . . , pn.

If [f : S → Σ] is a point in T (S,X) and p ∈ (RX
≥0) \ {0}, then the pre-

vious construction (which is explicitly mentioned by Harer in [27], where he
attributes it to Mumford and Thurston) provides a point in |A◦(S,X)| × R+.
It is however clear that, if a > 0, then the Strebel differential associated to
(Σ, ap) is aϕ. Thus, we can just consider p ∈ P(RX

≥0)
∼= ∆X , so that the

corresponding weighted arc system belongs to |A◦(S,X)| (after multiplying by
a factor 2).

Because of the continuous dependence of ϕ on Σ and p, the map

ΨJS : T (S,X)×∆X −→ |A◦(S,X)|

is continuous.
We now show that a point w ∈ |A◦(S,X)| determines exactly one (S,X)-

marked surface, which proves that ΨJS is bijective.
By 2.2.9, we can associate a metrized (S,X)-marked nonsingular ribbon

graph Gα to eachw ∈ |A◦(S,X)|R supported onα. However, if we realize |Gα|
by gluing semi-infinite tiles T−→αi

of the type [0, w(αi)]x × [0,∞)y ⊂ Ĉz, which
naturally come together with a complex structure and a quadratic differential
dz2, then |Gα| becomes a Riemann surface endowed with the (unique) Jenkins-
Strebel quadratic differential ϕ determined by Theorem 4.1. Thus, Ψ−1

JS(w) =
([f : S → |Gα|], p), where pi is obtained from the quadratic residue of ϕ at
xi. Moreover, the length function defined on |A◦(S,X)|R exactly corresponds
to the |ϕ|-length function on T (S,X)×∆X × R+.

Notice that ΨJS is Γ(S,X)-equivariant by construction and so induces a
continuous bijection ΨJS :Mg,X×∆X → |A◦(S,X)|/Γ(S,X) on the quotient.
If we prove that ΨJS is proper, then ΨJS is a homeomorphism. To conclude
that ΨJS is a homeomorphism too, we will use the following.

Lemma 4.5. Let Y and Z be metric spaces acted on discontinuously by a
discrete group of isometries G and let h : Y → Z be a G-equivariant continuous
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injection such that the induced map h : Y/G → Z/G is a homeomorphism.
Then h is a homeomorphism.

Proof. To show that h is surjective, let z ∈ Z. Because h is bijective, ∃![y] ∈
Y/G such that h([y]) = [z]. Hence, h(y) = z · g for some g ∈ G and so
h(y · g−1) = z.

To prove that h−1 is continuous, let (ym) ⊂ Y be a sequence such that
h(ym) → h(y) as m → ∞ for some y ∈ Y . Clearly, [h(ym)] → [h(y)] in Z/G
and so [ym]→ [y] in Y/G, because h is a homeomorphism. Let (vm) ⊂ Y be a
sequence such that [vm] = [ym] and vm → y and call gm ∈ G the element such
that ym = vm · gm. By continuity of h, we have dZ(h(vm), h(y)) → 0 and by
hypothesis dZ(h(vm) · gm, h(y)) → 0. Hence, dZ(h(y), h(y) · gm) → 0 and so
gm ∈ stab(h(y)) = stab(y) for large m, because G acts discontinuously on Z.
As a consequence, ym → y and so h−1 is continuous.

The final step is the following.

Lemma 4.6. ΨJS :Mg,X ×∆X → |A◦(S,X)|/Γ(S,X) is proper.

Proof. Let ([Σm], p
m

) be a diverging sequence inMg,X ×∆X and call λm the
hyperbolic metric on Σ \ X . By the Mumford-Mahler criterion, there exist
simple closed hyperbolic geodesics γm ⊂ Σm such that ℓλm

(γm)→ 0. Because
the hyperbolic length and the extremal length are approximately proportional
for short curves, we conclude that the extremal length E(γm)→ 0.

Consider now the metric |ϕm| induced by the Jenkins-Strebel differential
ϕm uniquely determined by (Σm, pm

). Call ℓϕ(γm) the length of the unique
geodesic γ̃m with respect to the metric |ϕm|, freely homotopic to γm ⊂ Σm.
Notice that γ̃m is a union of critical horizontal trajectories.

Because |ϕm| has infinite area, define a modified metric gm on Σm in the
same conformal class as |ϕm| as follows.

• gm agrees with |ϕm| on the critical horizontal trajectories of ϕm

• Whenever pi,m > 0, consider a coordinate z at xi such that the annular
domain of ϕm at xi is exactly ∆∗ = {z ∈ C | 0 < |z| < 1} and ϕm =

−
p2

i,mdz
2

4π2z2
. Then define gm to agree with |ϕm| on exp(−2π/pi,m) ≤

|z| < 1 (which becomes isometric to a cylinder of circumference pi,m and
height 1, so with area pi,m) and to be the metric of a flat Euclidean
disc of circumference pi,m centered at z = 0 (so with area πp2

i,m) on
|z| < exp(−2π/pi,m).

Notice that the total area A(gm) is π(p2
1,m + · · ·+p2

n,m)+(p1,m + · · ·+pn,m) ≤
π + 1.

Call ℓg(γm) the length of the shortest gm-geodesic γ̂m in the class of γm.
By definition, ℓg(γm)2/A(gm) ≤ E(γm) → 0 and so ℓg(γm) → 0. As a gm-
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geodesic is either longer than 1 or contained in the critical graph of ϕ, then
γ̂m coincides with γ̃m for m≫ 0.

Hence, ℓϕ(γm)→ 0 and so sys(wm)→ 0. By Lemma 2.2, we conclude that
ΨJS(Σm, pm

) diverges in |A◦(S,X)|/Γ(S,X).

Remark 4.7. Suppose that ([fm : S → Σm], p
m

) converges to ([f : S →
Σ], p) ∈ T g,X ×∆X and let Σ′ ⊂ Σ be an invisible component, that is a com-

ponent of Σ with no positively weighted marked points. Then, S′ = f−1(Σ′)
is bounded by simple closed curves γ1, . . . , γk ⊂ S and ℓf∗

mϕm
(γi) → 0 for

i = 1, . . . , k. Just analyzing the shape of the critical graph of ϕm, one can
check that ℓϕm

(γ) ≤ ∑k
i=1 ℓϕm

(γi) for all γ ⊂ S′. Hence, ℓf∗
mϕm

(γ) → 0 uni-
formly in γ, and so f∗

mϕm tends to zero uniformly on the compact subsets of
(S′)◦.

4.1.4 The case of stable curves. We want to extend the map ΨJS to
Deligne-Mumford’s augmentation and, by abuse of notation, we will still call
ΨJS : T (S,X)×∆X → |A(S,X)| this extension.

Given ([f : S → Σ], p), we can construct a Jenkins-Strebel differential ϕ
on each visible component of Σ, by considering nodes as marked points with
zero weight. Extend ϕ to zero over the invisible components. Clearly, ϕ is a
holomorphic section of ω⊗2

Σ (2X) (the square of the logarithmic dualizing sheaf
on Σ): call it the Jenkins-Strebel differential associated to (Σ, p). Notice that
it clearly maximizes the functional F , used in the proof of Theorem 4.1.

As ϕ defines a metrized ribbon graph for each visible component of Σ,
one can easily see that thus we have an (S,X)-marked enriched ribbon graph
Gen (see 2.2.4), where ζ is the dual graph of Σ and V+ is the set of visible
components of (Σ, p), m is determined by the X-marking and s by the position
of the nodes.

By arc/graph duality (see 2.2.13), we obtain a system of arcs α in (S,X)
and the metrics provide a system of weights w with support on α. This defines
the set-theoretic extension of ΨJS . Clearly, it is still Γ(S,X)-equivariant and
it identifies visibly equivalent (S,X)-marked surfaces. Thus, it descends to a

bijection ΨJS : T ∆
(S,X)→ |A(S,X)| and we also have

ΨJS :M∆

g,X −→ |A(S,X)|/Γ(S,X)

where |A(S,X)|/Γ(S,X) can be naturally given the structure of an orbispace
(essentially, forgetting the Dehn twists along curves of S that are shrunk to
points, so that the stabilizer of an arc system just becomes the automorphism
group of the corresponding enriched X-marked ribbon graph).

The only thing left to prove is that ΨJS is continuous. In fact, M∆

g,X is

compact and |A(S,X)|/Γ(S,X) is Hausdorff: hence, ΨJS would be (continuous
and) automatically proper, and so a homeomorphism. Using Lemma 4.5 again
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(using a metric pulled back from M∆

g,X), we could conclude that ΨJS is a
homeomorphism too.

Continuity of ΨJS. Consider a differentiable stable family

S × [0, ε]
f

//

%%KK
KK

KK
KK

K
C

g

��

[0, ε]

of (S,X)-marked curves (that is, obtained restricting to [0, ε] a smooth family
over the unit disc ∆), such that g is topologically trivial over (0, ε] with fiber
a curve with k nodes. Let also p : [0, ε] → ∆X be a differentiable family of
weights.

We can assume that there are disjoint simple closed curves γ1, . . . , γk, η1, . . . , ηh ⊂
S such that f(γi × {t}) is a node for all t, that f(ηj × {t}) is a node for t = 0
and that Ct is smooth away from these nodes.

Fix a nonempty open relatively compact subset K of S \ (γ1 ∪ · · · ∪ γk ∪
η1 ∪ · · · ∪ ηh) that intersects every connected component. Define a reduced L1

norm of a section ψt of ω⊗2
Ct

(2X) to be ‖ψ‖red =
∫

ft(K) |ψ|. Notice that L1

convergence of holomorphic sections ψt as t→ 0 implies uniform convergence
of f∗

t ψt on the compact subsets of S \ (γ1 ∪ · · · ∪ γk ∪ η1 ∪ · · · ∪ ηh).
Call ϕt the Jenkins-Strebel differential associated to (Ct, pt

) with annular
domains D1,t, . . . , Dn,t.

As all the components of Ct are hyperbolic, ‖ϕt‖red is uniformly bounded
and we can assume (up to extracting a subsequence) that ϕt converges to a
holomorphic section ϕ′

0 of ω⊗2
C0

(2X) in the reduced norm. Clearly, ϕ′
0 will have

double poles at xi with prescribed residue.
Remark 4.7 implies that ϕ′

0 vanishes on the invisible components of C0,
whereas it certainly does not on the visible ones.

For all those (i, t) ∈ {1, . . . , n} × [0, ε] such that pi,t > 0, let zi,t be the

coordinate at xi (uniquely defined up to phase) given by zi,t = u−1
i,t

∣∣∣
Di,t

and

ui,t : ∆ −→ Di,t ⊂ Ct

is continuous on ∆ and biholomorphic in the interior for all t > 0 and ϕt

∣∣∣
Di,t

=

−
p2

i,tdz
2
i,t

4π2z2
i,t

for t ≥ 0. Whenever pi,t = 0, choose zi,t such that ϕt

∣∣∣
Di,t

= zk dz2,

with k = ordxi
ϕt. When pi,t > 0, we can choose the phases of ui,t in such a

way that ui,t vary continuously with t ≥ 0.
If pi,0 = 0, then set Di,0 = ∅. Otherwise, pi,0 > 0 and so Di,0 cannot shrink

to {xi} (because Ft would go to −∞ as t → 0). In this case, call Di,0 the
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region {|zi,0| < 1} ⊂ C0. Notice that ϕ′
0 has a double pole at xi with residue

pi,0 > 0 and clearly ϕ′
0

∣∣∣
Di,0

= −
p2

i,0dz
2
i,0

4π2z2
i,0

.

We want to prove that the visible subsurface of C0 is covered by
⋃

iDi,0

and so ϕ′
0 is a Jenkins-Strebel differential on each visible component of C0. By

uniqueness, it must coincide with ϕ0.
Consider a point y in the interior of f−1

0 (C0,+) \X . For every t > 0 there
exists an yt ∈ S such that ft(yt) does not belong to the critical graph of ϕt and
the f∗

t |ϕt|-distance dt(y, yt) < t. As ϕt → ϕ0 in reduced norm and y, yt /∈ X ,
then d0(y, yt)→ 0 as t→ 0.

We can assume (up to discarding some t’s) that ft(yt) belongs to Di,t for
a fixed i and in particular that ft(yt) = ui,t(ct) for some ct ∈ ∆. Up to
discarding some t’s, we can also assume that ct → c0 ∈ ∆. Call y′t the point
given by f0(y

′
t) = ui,0(ct).

d0(y
′
t, y) ≤ d0(yt, y) + d0(y

′
t, yt) ≤ d0(yt, y) + d0(f

−1
0 ui,0(ct), f

−1
t ui,t(ct)) ≤

≤ d0(yt, y) + d0(f
−1
0 ui,0(ct), f

−1
0 ui,0(c0))+

+ d0(f
−1
0 ui,0(c0), f

−1
t ui,t(c0)) + d0(f

−1
t ui,t(c0), f

−1
t ui,t(ct))

and all terms go to zero as t → 0. Thus, every point in the smooth locus
C0,+\X is at |ϕ0|-distance zero from some Di,0. Hence, ϕ0 is a Jenkins-Strebel
differential on the visible components.

With a few simple considerations, one can easily conclude that

• the zeroes of ϕt move continuously as t ∈ [0, ε]

• if et is an edge of the critical graph of ϕt which starts at y1,t and ends at
y2,t, and if yi,t → yi,0 for i = 1, 2, then et → e0 the corresponding edge
of the critical graph of ϕ0 starting at y1,0 and ending at y2,0; moreover,
ℓ|ϕt|(et)→ ℓ|ϕ0|(e0)

• the critical graph of ϕt converges to that of ϕ0 for the Gromov-Hausdorff
distance.

Thus, the associated weighted arc systems wt ∈ |A(S,X)| converge to w0 for
t→ 0.

Thus, we have proved the following result, claimed by Kontsevich in [41]
(see Looijenga’s [43] and Zvonkine’s [78]).

Proposition 4.8. The map defined above

ΨJS : T ∆
(S,X) −→ |A(S,X)|

is a Γ(S,X)-equivariant homeomorphism, which commutes with the projection

onto ∆X . Hence, ΨJS : M∆

g,X → |A(S,X)|/Γ(S,X) is a homeomorphism of
orbispaces too.
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A consequence of the previous proposition and of 2.2.13 is that the realiza-
tion BRGg,X,ns is the classifying space of Γ(S,X) and that BRGg,X →Mg,X

is a homotopy equivalence (in the category of orbispaces).

4.2 Penner-Bowditch-Epstein construction

The other traditional way to obtain a weighted arc system out of a Riemann
surface with weighted marked points is to look at the spine of the truncated
surface obtained by removing horoballs of prescribed circumference. Equiva-
lently, to decompose the surface into a union of hyperbolic cusps.

4.2.1 Spines of hyperbolic surfaces. Let [f : S → Σ] be an (S,X)-marked
hyperbolic surface and let p ∈ ∆X . Call Hi ⊂ Σ the horoball at xi with
circumference pi (as pi ≤ 1, the horoball is embedded in Σ) and let Σtr =
Σ \ ⋃

i Hi be the truncated surface. The datum (Σ, ∂H1, . . . , ∂Hn) is also
called a decorated surface.

For every y ∈ Σ \X at finite distance from ∂Σtr, let the valence val(y) be
the number of paths that realize dist(y, ∂Σtr), which is generically 1. We will
call a projection of y a point on ∂Σtr which is at shortest distance from y:
clearly, there are val(y) of them.

Let the spine Sp(Σ, p) be the locus of points of Σ which are at finite distance

from ∂Σtr and such that val(y) ≥ 2 (see Figure 8). In particular, val−1(2) is
a disjoint union of finitely many geodesic arcs (the edges) and val−1([3,∞))
is a finite collection of points (the vertices). If pi = 0, then we include xi in
Sp(Σ, p) and we consider it a vertex. Its valence is defined to be the number
of half-edges of the spine incident at xi.

There is a deformation retraction of Σtr ∩ Σ+ (where Σ+ is the visible
subsurface) onto Sp(Σ, p), defined on val−1(1) simply flowing away from ∂Σtr

along the unique geodesic that realizes the distance from ∂Σtr.
This shows that Sp(Σ, p) defines an (S,X)-marked enriched ribbon graph

Gen
sp . By arc/graph duality, we also have an associated spinal arc system

αsp ∈ A(S,X).

4.2.2 Horocyclic lengths and weights. As Σ is a hyperbolic surface, we
could metrize Sp(Σ, p) by inducing a length on each edge. However, the rela-
tion between this metric and p would be a little involved.

Instead, for every edge e of Gen
sp (that is, of Sp(Σ, p)), consider one of its

two projections pr(e) to ∂Σtr and define ℓ(e) to be the horocyclic length of e,
that is the hyperbolic length of pr(e), which clearly does not depend on the
chosen projection. Thus, the boundary weights vector ℓ∂ is exactly p.
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Σtr

αi

ei

wi

Figure 8. Weights come from lengths of horocyclic arcs.

This endows Gen
sp with a metric and so αsp with a projective weight wsp ∈

|A(S,X)|. Notice that visibly equivalent surfaces are associated to the same
point of |A(S,X)|.

This defines a Γ(S,X)-equivariant map

Φ0 : T ∆
(S,X) −→ |A(S,X)|

that commutes with the projection onto ∆X .
Penner [58] proved that the restriction of Φ0 to T (S,X)×∆◦ is a homeo-

morphism; the statement that the whole Φ0 is a homeomorphism appears in
Bowditch-Epstein’s [12] (and a very detailed treatment will appear in [7]). We
refer to these papers for a proof of this result.

4.3 Hyperbolic surfaces with boundary

The purpose of this informal subsection is to briefly illustrate the bridge
between the cellular decomposition of the Teichmüller space obtained using
Jenkins-Strebel differentials and that obtained using spines of decorated sur-
faces.
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4.3.1 Teichmüller and moduli space of hyperbolic surfaces. Fix a
compact oriented surface S as before and X = {x1, . . . , xn} ⊂ S a nonempty
subset.

A stable hyperbolic surface Σ is a nodal surface such that Σ \ {nodes} is
hyperbolic with geodesic boundary and/or cusps. Notice that, by convention,
∂Σ includes the cusps but it does not include the possible nodes of Σ.

AnX-marking of a (stable) hyperbolic surface Σ is a bijectionX → π0(∂Σ).
An (S,X)-marking of the (stable) hyperbolic surface Σ is an isotopy class

of maps f : S \X → Σ, that may shrink disjoint simple closed curves to nodes
and are homeomorphisms onto Σ \ (∂Σ ∪ {nodes}) elsewhere.

Let T ∂
(S,X) be the Teichmüller space of (S,X)-marked stable hyperbolic

surfaces. There is a natural map ℓ∂ : T ∂
(S,X)→ RX

≥0 that associates to [f :

S → Σ] the boundary lengths of Σ, which thus descends to ℓ∂ :M∂

g,X → RX
≥0.

Call T ∂
(S,X)(p) (resp. M∂

g,X(p)) the leaf ℓ−1
∂ (p) (resp. ℓ

−1

∂ (p)).

There is an obvious identification between T ∂
(S,X)(0) (resp. M∂

g,X(0))

and T (S,X) (resp. Mg,X).

Call M̂g,X the blow-up ofM∂

g,X alongM∂

g,X(0): the exceptional locus can
be naturally identified to the space of (projectively) decorated surfaces with

cusps (which is homeomorphic toMg,X ×∆X). Define similarly T̂ (S,X).

4.3.2 Tangent space to the moduli space. The conformal analogue of a
hyperbolic surface with geodesic boundary Σ is a Riemann surface with real
boundary. In fact, the double of Σ is a hyperbolic surface with no boundary
and an orientation-reversing involution, that is a Riemann surface with an anti-
holomorphic involution. As a consequence, ∂Σ is a real-analytic submanifold.

This means that first-order deformations are determined by Beltrami dif-

ferentials on Σ which are real on ∂Σ, and so T[Σ]M
∂

g,X
∼= H0,1(Σ, TΣ), where

TΣ is the sheaf of tangent vector fields V = V (z)∂/∂z, which are real on ∂Σ.

Dually, the cotangent space T ∗
[Σ]M

∂

g,X is given by the space Q(Σ) of holo-

morphic quadratic differentials that are real on ∂Σ. If we callH(Σ) = {ϕ/λ |ϕ ∈
Q(Σ)}, where λ is the hyperbolic metric on Σ, then H0,1(Σ, TΣ) is identified
to the space of harmonic Beltrami differentials H(Σ).

As usual, if Σ has a node, then quadratic differentials are allowed to have
a double pole at the node, with the same quadratic residue on both branches.

If a boundary component of Σ collapses to a cusp xi, then the cotangent

cone toM∂

g,X at [Σ] is given by quadratic differentials that may have at worst
a double pole at xi with positive residue. The phase of the residue being zero
corresponds to the fact that, if we take Fenchel-Nielsen coordinates on the
double of Σ which are symmetric under the real involution, then the twists
along ∂Σ are zero.
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4.3.3 Weil-Petersson metric. Mimicking what is done for surfaces with
cusps, we can define Hermitean pairings on Q(Σ) and H(Σ), where Σ is a
hyperbolic surface with boundary. In particular,

h(µ, ν) =

∫

Σ

µ ν · λ

h∗(ϕ, ψ) =

∫

Σ

ϕψ

λ

where µ, ν ∈ H(Σ) and ϕ, ψ ∈ Q(Σ).
Thus, if h = g + iω, then g is the Weil-Petersson Riemannian metric and

ω is the Weil-Petersson form. Write similarly h∗ = g∗ + iω∗, where g∗ is the
cometric dual to g and ω∗ is the Weil-Petersson bivector field.

Notice that ω and ω∗ are degenerate. This can be easily seen, because
Wolpert’s formula ω =

∑
i dℓi ∧ dτi still holds. We can also conclude that the

symplectic leaves of ω∗ are exactly the fibers of the boundary length map ℓ∂ .

4.3.4 Spines of hyperbolic surfaces with boundary. The spine con-
struction can be carried on, even in a more natural way, on hyperbolic surfaces
with geodesic boundary.

In fact, given such a Σ whose boundary components are called x1, . . . , xn,
we can define the distance from ∂Σ and so the valence of a point in Σ and
consequently the spine Sp(Σ), with no need of further information.

Similarly, if Σ has also nodes (that is, some holonomy degenerates to a
parabolic element), then Sp(Σ) is embedded inside the visible components of
Σ, i.e. those components of Σ that contain a boundary circle of positive length.

The weight of an arc αi ∈ αsp dual to the edge ei of Sp(Σ) is still defined
as the hyperbolic length of one of the two projections of ei to ∂Σ. Thus, the
above construction gives a point wsp ∈ |A(S,X)| × (0,∞).

Σ

αi

ei

wi
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Figure 9. Weights come from lengths of geodesic boundary arcs.

It is easy to check (see [53] or [52]) that wsp converges to the wsp defined
above when the hyperbolic surface with boundary converges to a decorated
surface with cusps in T̂ (S,X). Thus, the Γ(S,X)-equivariant map

Φ : T̂ (S,X) −→ |A(S,X)| × [0,∞)

reduces to Φ0 for decorated surfaces with cusps.

Theorem 4.9 (Luo [44]). The restriction of Φ to smooth surfaces with no
boundary cusps gives a homeomorphism onto its image.

The continuity of the whole Φ is proven in [52], using Luo’s result.

The key point of Luo’s proof is the following. Pick a generic hyperbolic
surface with geodesic boundary Σ and suppose that the spinal arc system is
the ideal triangulation αsp = {α1, . . . , αM} ∈ A◦(Σ, X) with weight wsp. We
can define the length ℓαi

as the hyperbolic length of the shortest geodesic α̃i

in the free homotopy class of αi.
The curves {α̃i} cut Σ into hyperbolic hexagons, which are completely

determined by {ℓβ1
, . . . ℓβ2M

}, where the βj ’s are the sides of the hexagons
lying on ∂Σ. Unfortunately, going from the ℓβj

’s to wsp is much easier than the
converse. In fact, wα1

, . . . , wαM
can be written as explicit linear combinations

of the ℓβj
’s: in matrix notation, B = (ℓβj

) is a solution of the systemW = RB,
where R is a fixed (M × 2M)-matrix (that encodes the combinatorics is αsp)
and W = (wαi

). Clearly, there is a whole affine space EW of dimension M
of solutions of W = RB. The problem is that a random point in EW would
determine hyperbolic structures on the hexagons of Σ \αsp that do not glue,
because we are not requiring the two sides of each αi to have the same length.

Starting from very natural quantities associated to hyperbolic hexagons
with right angles, Luo defines a functional on the space (b1, . . . , b2M ) ∈ R2M

≥0 .
For every W , the space EW is not empty (which proves the surjectivity of Φ)
and the restriction of Luo’s functional to EW is strictly concave and achieves
its (unique) maximum exactly when B = (ℓβj

) (which proves the injectivity
of Φ).

The geometric meaning of this functional is still not entirely clear, but
it seems related to some volume of a three-dimensional hyperbolic manifold
associated to Σ. Quite recently, Luo [45] (see also [25]) has introduced a
modified functional Fc, which depends on a parameter c ∈ R, and he has
produced other realizations of the Teichmüller space as a polytope, and so
different systems of “simplicial” coordinates.

4.3.5 Surfaces with large boundary components. To close the circle,
we must relate the limit of Φ for surfaces whose boundary lengths diverge to
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ΨJS . This is the topic of [52]. Here, we only sketch the main ideas. To simplify
the exposition, we will only deal with smooth surfaces.

Consider an X-marked hyperbolic surface with geodesic boundary Σ. De-
fine gr∞(Σ) to be the surface obtained by gluing semi-infinite flat cylinders at
∂Σ of lengths (p1, . . . , pn) = ℓ∂(Σ).

Thus, gr∞(Σ) has a hyperbolic core and flat ends and the underlying con-
formal structure is that of an X-punctured Riemann surface. This infinite
grafting procedure defines a map

(gr∞, ℓ∂) : T ∂(S,X) −→ T (S,X)× RN
≥0

For more details about (finite) grafting, see [18].

Σ

Figure 10. A grafted surface gr
∞

(Σ).

Proposition 4.10 ([52]). The map (gr∞, ℓ∂) is a Γ(S,X)-equivariant home-
omorphism.

The proof is a variation of Scannell-Wolf’s [64] that finite grafting is a
self-homeomorphism of the Teichmüller space.

Thus, the composition of (gr∞, ℓ∂)−1 and Φ gives (after blowing up the
locus {ℓ∂ = 0}) the homeomorphism

Ψ : T (S,X)×∆X × [0,∞) −→ |A◦(S,X)| × [0,∞)

Proposition 4.11 ([52]). The map Ψ extends to a Γ(S,X)-equivariant home-
omorphism

Ψ : T (S,X)×∆X × [0,∞] −→ |A◦(S,X)| × [0,∞]

and Ψ∞ coincides with Harer-Mumford-Thurston’s ΨJS.
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The main point is to show that a surface Σ with large boundaries and with
spine Sp(Σ) is very close in T (S,X) to the flat surface whose Jenkins-Strebel
differential has critical graph isomorphic to Sp(Σ) (as metrized ribbon graphs).

To understand why this is reasonable, consider a sequence of hyperbolic
surfaces Σm whose spine has fixed isomorphism type G and fixed projective
metric and such that ℓ∂(Σm) = cm(p1, . . . , pn), where cm diverges as m→∞.
Consider the grafted surfaces gr∞(Σm) and rescale them so that

∑
i pi =

1. The flat metric on the cylinders is naturally induced by a holomorphic
quadratic differential, which has negative quadratic residue at X . Extend this
differential to zero on the hyperbolic core.

Because of the rescaling, the distance between the flat cylinders and the
spine goes to zero and the differential converges in L1

red to a Jenkins-Strebel
differential.

Dumas [17] has shown that an analogous phenomenon occurs for closed
surfaces grafted along a measured lamination tλ as t→ +∞.

4.3.6 Weil-Petersson form and Penner’s formula. Using Wolpert’s re-
sult and hyperbolic geometry, Penner [60] proved that the pull-back of the
Weil-Petersson form on the space of decorated hyperbolic surfaces with cusps,
which can be identified to T (S,X) × ∆X , can be neatly written in the fol-
lowing way. Fix a triangulation α = {α1, . . . , αM} ∈ A◦(S,X). For every
([f : S → Σ], p) ∈ T (S,X)×∆X , let α̃i be the geodesic representative in the
class of f∗(αi) and call ai := ℓ(α̃i∩Σtr), where Σtr be the truncated hyperbolic
surface. Then

π∗ωWP =
∑

t∈T

(dat1 ∧ dat2 + dat2 ∧ dat3 + dat3 ∧ dat1)

where π : T (S,X) × ∆X → T (S,X) is the projection, T is the set of ideal
triangles in which the α̃i’s decompose Σ, and the sides of t are (αt1 , αt2 , αt3)
in the cyclic order induced by the orientation of t (see Figure 11).
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Σtr

αt1

αt3

αt2 t

Figure 11. An ideal triangle in T .

To work onMg,X×∆X (for instance, to compute Weil-Petersson volumes),
one can restrict to the interior of the cells Φ−1

0 (|α|) whose associated system
of arcs α is a triangulation and write the pull-back of ωWP with respect to α.

4.3.7 Weil-Petersson form for surfaces with boundary. Still using meth-
ods of Wolpert [74], one can generalize Penner’s formula to hyperbolic surfaces
with boundary. The result is better expressed using the Weil-Petersson bivec-
tor field than the 2-form.

Proposition 4.12 ([53]). Let Σ be a hyperbolic surface with boundary com-
ponents C1, . . . , Cn and let α = {α1, . . . , αM} be a triangulation. Then the
Weil-Petersson bivector field can be written as

ω∗ =
1

4

n∑

b=1

∑

yi∈αi∩Cb

yj∈αj∩Cb

sinh(pb/2− db(yi, yj))

sinh(pb/2)

∂

∂ai
∧ ∂

∂aj

where ai = ℓ(αi) and db(yi, yj) is the length of the geodesic arc running from
yi to yj along Cb in the positive direction (according to the orientation induced
by Σ on Cb).

The idea is to use Wolpert’s formula ω∗ = −∑
i ∂ℓi
∧ ∂τi

on the double dΣ
of Σ with the pair of pants decomposition induced by doubling the arcs {αi}.
Then one must compute the (first-order) effect on the ai’s of twisting dΣ along
αj .

Though not immediate, the above formula can be shown to reduce to Pen-
ner’s, when the boundary lengths go to zero, as we approximate sinh(x) ≈ x for
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small x. Notice that Penner’s formula shows that ω linearizes (with constant
coefficients!) in the coordinates given by the ai’s.

More interesting is to analyze what happens for (Σ, tp) with p ∈ ∆X , as
t → +∞. Assume the situation is generic and so ΨJS(Σ) is supported on a
triangulation, whose dual graph is G.

Once again, the formula dramatically simplifies as we approximate 2 sinh(x) ≈
exp(x) for x ≫ 0. Under the rescalings ω̃∗ = c2ω∗ and w̃i = wi/c with
c =

∑
b pb/2, we obtain that

lim
t→∞

ω̃∗ = ω∗
∞ :=

1

2

∑

v∈E0(G)

(
∂

∂w̃v1

∧ ∂

∂w̃v2

+
∂

∂w̃v2

∧ ∂

∂w̃v3

+
∂

∂w̃v3

∧ ∂

∂w̃v1

)

where v = {v1, v2, v3} and σ0(vj) = vj+1 (and j ∈ Z/3Z).

v

ev1
ev2

ev3

Figure 12. A trivalent vertex v of G.

Thus, the Weil-Petersson symplectic structure is again linearized (and with
constant coefficients!), but in the system of coordinates given by the wj ’s,
which are in some sense dual to the ai’s.

It would be nice to exhibit a clear geometric argument for the perfect
symmetry of these two formulae.

5 Combinatorial classes

5.1 Witten cycles

Fix as usual a compact oriented surface S of genus g and a subset X =
{x1, . . . , xn} ⊂ S such that 2g − 2 + n > 0.

We introduce some remarkable Γ(S,X)-equivariant subcomplexes of A(S,X),

which define interesting cycles in the homology ofMK

g,X as well as in the Borel-
Moore homology of Mg,X and so, by Poincaré duality, in the cohomology of
Mg,X (that is, of Γ(S,X)).
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These subcomplexes are informally defined as the locus of points of |A◦(S,X)|,
whose associated ribbon graphs have prescribed odd valences of their vertices.
It can be easily shown that, if we assign even valence to some vertex, the
subcomplex we obtain is not a cycle (even with Z/2Z coefficients!).

We follow Kontsevich ([41]) for the orientation of the combinatorial cycles,
but an alternative way is due to Penner [61] and Conant and Vogtmann [13].

Later, we will mention a slight generalization of the combinatorial classes
by allowing some vertices to be marked.

Notice that we are going to use the cellularization of the moduli space

of curves given by ΨJS , and so we will identify M∆

g,X with the orbispace
|A(S,X)|/Γ(S,X). As the arguments will be essentially combinatorial/topological,
any of the decompositions described before would work.

5.1.1 Witten subcomplexes. Letm∗ = (m0,m1, . . . ) be a sequence of non-
negative integers such that

∑

i≥0

(2i+ 1)mi = 4g − 4 + 2n

and define (m∗)! :=
∏

i≥0mi! and r :=
∑

i≥0 imi.

Definition 5.1. The combinatorial subcomplex Am∗
(S,X) ⊂ A(S,X) is the

smallest simplicial subcomplex that contains all proper simplices α ∈ A◦(S,X)
such that S \α is the disjoint union of exactly mi polygons with 2i+ 3 sides.

It is convenient to set |Am∗
(S,X)|R := |Am∗

(S,X)| × R+. Clearly, this

subcomplex is Γ(S,X)-equivariant. Hence, if we callMcomb

g,X :=M∆

g,X ×R+
∼=

|A(S,X)|R/Γ(S,X), then we can define Mcomb

m∗,X to be the subcomplex of

Mcomb

g,X induced by Am∗
(S,X).

Remark 5.2. We can introduce also univalent vertices by allowing m−1 > 0.
It is still possible to define the complexes Am∗

(S,X) and A◦
m∗

(S,X), just
allowing (finitely many) contractible loops (i.e. unmarked tails in the corre-
sponding ribbon graph picture). However, Am∗

(S,X) would no longer be a
subcomplex of A(S,X). Thus, we should construct an associated family of

Riemann surfaces over Mcomb

m∗,X (which can be easily done) and consider the

classifying mapMcomb

m∗,X →M
comb

g,X , whose existence is granted by the universal

property ofMg,X , but which would no longer be cellular.

For every p ∈ ∆X × R+ call Mcomb

g,X (p) := ℓ̄−1
∂ (p) ⊂ Mcomb

g,X and define

Mcomb

m∗,X(p) :=Mcomb

m∗,X ∩M
comb

g,X (p).
Notice that the dimensions of the slices are the expected ones because in

every cell they are described by n independent linear equations.
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5.1.2 Combinatorial ψ classes. Define Li as the space of couples (G, y),

where G is an X-marked metrized ribbon graph inMcomb

g,X ({pi > 0}) and y is
a ray that joins xi to a point of |G| ⊂ |G| that bounds the xi-th hole.

Clearly Li −→ M
comb

g,X ({pi > 0}) is a topological bundle with fiber home-
omorphic to S1. It is easy to see that, for a fixed p ∈ ∆X × R+ such that
pi > 0, the pull-back of Li via

ξp :Mg,X −→M
comb

g,X (p)

is isomorphic (as a topological bundle) to the sphere bundle associated to L∗i .

Lemma 5.3 ([41]). Fix xi in X and p ∈ ∆X ×R+ such that pi > 0. Then on

every simplex |α|(p) ∈ Mcomb

g,X (p) define

ηi

∣∣∣
|α|(p)

:=
∑

1≤s<t≤k−1

dẽs ∧ dẽt

where ẽj =
ℓ(ej)

pi
and xi marks a hole with cyclically ordered sides (e1, . . . , ek).

These 2-forms glue to give a piecewise-linear 2-form ηi on Mcomb

g,X (p), that
represents c1(Li). Hence, the pull-back class ξ∗p [ηi] is exactly ψi = c1(Li) in

H2(Mg,X).

xi

e1
e2

e3

e4

e5

e6

e7

φ1

φ2

φ3

φ4

φ5 φ6

φ7

y

Figure 13. A fiber of the bundle Li over a hole with 7 sides.

The proof of the previous lemma is very easy.

5.1.3 Orientation of Witten subcomplexes. The following lemma says
that the η forms can be assembled in a piecewise-linear “symplectic form”,
that can be used to orient maximal cells of Witten subcomplexes.
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Lemma 5.4 ([41]). For every p ∈ ∆X × R+ the restriction of

Ω :=

n∑

i=1

p2
i ηi

to the maximal simplices of Mcomb

m∗,X(p) is a non-degenerate symplectic form.

Hence, Ω
r

defines an orientation on Mcomb

m∗,X(p). Also, Ω
r ∧ ℓ̄∗∂VolRX is a

volume form on Mcomb

m∗,X .

Proof. Let |α|(p) be a cell of Mcomb

g,X (p), whose associated ribbon graph Gα
has only vertices of odd valence.

On |α|(p), the differentials dei span the cotangent space. As the pi’s are
fixed, we have the relation dpi = 0 for all i = 1, . . . , n. Hence

T ∗Mcomb

g,X (p)
∣∣∣
|α|(p)

∼= |α|(p)×
⊕

e∈E1(α)

R · de
/




∑

[−→e ]0=xi

de
∣∣∣ i = 1, . . . , n





On the other hand the tangent bundle is

TMcomb

g,X (p)
∣∣∣
|α|(p)

∼= |α|(p)×





∑

e∈E1(α)

be
∂

∂e

∣∣∣
∑

[−→e ]0∈xi

be = 0 for all i = 1, . . . , n




 .

In order to prove that Ω|α : T |α|(p) −→ T ∗|α|(p) is non-degenerate, we
construct its right-inverse. Define B : T ∗|α|(p) −→ T |α|(p) as

B(de) =

2s∑

i=1

(−1)i ∂

∂[σi
0(
−→e )]1

+

2t∑

j=1

(−1)j ∂

∂[σj
0(
←−e )]1

where ~e is any orientation of e, while 2s + 1 and 2t + 1 are the cardinalities
of [−→e ]0 and [←−e ]0 respectively. We want to prove that ΩB(de) = 4de for every
e ∈ E1(α).
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f1

f2

f3

f4

h1

h2

H1

F1

F2

F3

E+

E
−

−→e

Figure 14. An example with s = 2 and t = 1.

To shorten the notation, set fi := [σi
0(
−→e )]1 and hj := [σj

0(
←−e )]1 and call

Fi := [σi
0(
−→e )]∞ for i = 1, . . . , 2s− 1 and Hj := [σj

0(
←−e )]∞ for j = 1, . . . , 2t− 1

the holes bordered respectively by {fi, fi+1} and {hj , hj+1}. Finally call E+

and E− the holes adjacent to e as in Figure 14. Remark that neither the edges
f and h nor the holes F and H are necessarily distinct. This however has no
importance in the following computation.

B(de) = −
2s∑

i=1

(−1)i ∂

∂fi
−

2t∑

j=1

(−1)j ∂

∂hj

It is easy to see (using that the perimeters are constant) that

p2
Fi
ηFi

(
∂

∂fi
− ∂

∂fi+1

)
= dfi + dfi+1

and analogously for the h’s. Moreover

p2
E+
ηE+

(
∂

∂h2s
− ∂

∂f1

)
= dh2s + df1 + 2de

and similarly for E−. Finally, we obtain ΩB(de) = 4de.

Remark 5.5. Notice that B is the piecewise-linear extension of the restriction
of the Weil-Petersson bivector field 2ω̃∗

∞ to the open maximal simplices. Thus,
Ω is the piecewise-linear extension of 2ω̃∞.
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Finally, we can show that the (cellular) chain obtained by adding maximal
simplices of Witten subcomplexes (with the orientation determined by Ω) is
in fact a cycle.

Lemma 5.6 ([41]). With the given orientation Mcomb

m∗,X(p) is a cycle for all

p ∈ ∆X × R+ and Mcomb

m∗,X(RX
+ ) is a cycle with non-compact support.

Proof. Given a top-dimensional cell |α|(p) in Mcomb

m∗,X(p), each face in the
boundary ∂|α|(p) is obtained by shrinking one edge of Gα. This contrac-
tion may merge two vertices as in Fig. 15.

e1

e1

e2

e2

e3

e3

e4

e4

e5

e5

e6

e6

Figure 15. A contraction that merges a 3-valent and a 5-valent vertex.

Otherwise the shrinking produces a node, as in Fig. 16.

e1
e1

e2

e3e3
e4e4

e5

Figure 16. A contraction produces a node.

Let |α′|(p) ∈ ∂|α|(p) be the face of |α|(p) obtained by shrinking the edge e.

Then Λ6g−7+2n−2rT |α′|(p) = Λ6g−6+2n−2rT |α|(p)⊗N∗
|α′|/|α| and so the dual

of the orientation form induced by |α|(p) on |α′|(p) is ιde(B
6g−6+2n−2r
α ) =

(6g − 6 + 2n− 2r)ιde(Bα) ∧ B6g−8+2n−2r
α , where Bα is the bivector field on

|α|(p) defined in Lemma 5.4.
Consider the graph Gα′ that occurs in the boundary of a top-dimensional

cell of Mcomb

m∗,X(p). Suppose it is obtained merging two vertices of valences
2t1 + 3 and 2t2 + 3 in a vertex v of valence 2(t1 + t2) + 4. Then |α′|(p) is in
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the boundary of exactly 2(t1 + t2) + 4 cells of Mcomb

m∗,X(p) or t1 + t2 + 2 ones
in the case t1 = t2. In any case, the number of cells |α′|(p) is bordered by
are even: we need to prove that half of them induces on |α′|(p) an orientation
and the other half induces the opposite one. If Gα′ is obtained from some Gα
contracting an edge e, then we just have to compute the vector field ιde(Bα),
which turns to be

ιde(Bα) = ±
2(t1+t2)+4∑

i=1

(−1)i ∂

∂fi

where f1, . . . , f2(t1+t2)+4 are the edges of Gα′ outgoing from v. It is a straight-
forward computation to check that one obtains in half the cases a plus and in
half the cases a minus.

When Gen
α′ has a node with 2t1 +2 edges on one side (which we will denote

by f1, . . . , f2t1+2) and 2t2 + 3 edges on the other side, the computation is sim-
ilar. The cell occurs as boundary of exactly (2t1 +2)(2t2 +3) top-dimensional
cells and, if Gα′ is obtained by Gα contracting the edge e, then

ιde(Bα) = ±2

2t1+2∑

i=1

(−1)i ∂

∂fi
.

A quick check ensures that the signs cancel.

Define the Witten classes Wm∗,X(p) := [Mcomb

m∗,X(p)] and let Wm∗,X(p) be

its restriction toMcomb
g,X (p), which defines (by Poincaré duality) a cohomology

class in H2r(Mg,X), independent of p.

5.1.4 Generalized Witten cycles. It is possible to define a slight gener-
alization of the previous classes, prescribing that some markings hit vertices
with assigned valence.

These generalized Witten classes are related to the previous Wm∗,X in an
intuitively obvious way, because forgetting the markings of some vertices will
map them onto one another. We will omit the details and refer to [51].

5.2 Witten cycles and tautological classes

In this subsection, we will sketch the proof of the following result, due to
K. Igusa [31] and [32] (see also [33]) and Mondello [51] independently.

Theorem 5.7. Witten cycles Wm∗,X on Mg,X are Poincaré dual to polyno-
mials in the κ classes and vice versa.

In [51], the following results are also proven:
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• Witten generalized cycles onMg,X are Poincaré dual to polynomials in
the ψ and the κ classes

• ordinary and generalized Witten cycles onMcomb

g,X (p) are push-forward of

(the Poincaré dual of) tautological classes fromMg,X ; an explicit recipe
to produce such tautological classes is given.

5.2.1 The case with one special vertex. We want to consider a combi-
natorial cycle onMg,X supported on ribbon graphs, whose vertices are gener-
ically all trivalent except one, which is (2r+3)-valent (and r ≥ 1). To shorten
the notation, call this Witten cycle W2r+3.

We also define a generalized Witten cycle on the universal curve Cg,X ⊂
Mg,X∪{y} supported on the locus of ribbon graphs, which have a (2r+3)-valent
vertex marked by y and all the other vertices are trivalent and unmarked. Call
W y

2r+3 this cycle.
We would like to show that PD(W y

2r+3) = c(r)ψr+1
y , where c(r) is some

constant. As a consequence, pushing the two hand-sides down through the
proper map πy : Cg,X →Mg,X , we would obtain PD(W2r+3) = c(r)κr .

Lemma 5.3 gives us the nice piecewise-linear 2-form ηy, that is pulled back
to ψy through ξ. The only problem is that ηy is defined only for py > 0,
whereas W y

2r+3 is exactly contained in the locus {py = 0}.
To compare the two, one can look at the blow-up Blpy=0M

comb

g,X∪{y} of

Mcomb

g,X∪{y} along the locus {py = 0}. Points in the exceptional locus E can
be identified with metrized (nonsingular) ribbon graphs G, in which y marks
a vertex, plus angles ϑ between consecutive oriented edges outgoing from y.
One must think of these angles as of infinitesimal edges.

It is clear now that ηy extends to E by

ηy||α|(p) :=
∑

1≤s<t≤k−1

dẽs ∧ dẽt

where ẽj =
ϑj

2π
, y marks a vertex with cyclically ordered outgoing edges

(−→e 1, . . . ,
−→e k) and ϑj is the angle between −→e j and −→e j+1 (with j ∈ Z/kZ).

Thus, pushing forward ηr+1
y through E → Mcomb

g,X (py = 0), we obtain

c(r)W
y

2r+3 plus other terms contained in the boundary, and the coefficient
c(r) is exactly the integral of ηr+1

y on a fiber (that is, a simplex), which turns

out to be c(r) =
(r + 1)!

(2r + 2)!
. Thus, W y

2r+3 is Poincaré dual to 2r+1(2r+1)!!ψr+1
y .

5.2.2 The case with many special vertices. To mimic what done for
one non-trivalent vertex, let’s consider combinatorial classes with two non-
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trivalent vertices. Thus, we look at the class ψr+1
y ψs+1

z (with r, s ≥ 1) on
C2

g,X := Cg,X ×Mg,X
Cg,X .

Look at the blow-up Blpy=0,pz=0M
comb

g,X∪{y} of Mcomb

g,X∪{y,z} along the locus
{py = 0}∪{pz = 0} and let E = Ey∩Ez , where Ey and Ez are the exceptional
loci.

As before, we can identify E ∩ {y 6= z} with the set of metrized ribbon
graphs G, with angles at the vertices y and z. Thus, pushing ηr+1

y ηs+1
z forward

through the blow-up map (which forgets the angles at y and z), we obtain a
multiple of the generalized combinatorial cycles given by y marking a (2r+3)-
valent vertex and z marking a (2s+3)-valent (distinct) vertex. The coefficient

c(r, s) will just be
(r + 1)!(s+ 1)!

(2r + 2)!(2s+ 2)!
.

Points in E ∩ {y = z} can be thought of as metrized ribbon graphs G
with two infinitesimal holes (respectively marked by y and z) adjacent to each
other. If we perform the push-forward of ηr+1

y ηs+1
z forgetting first the angles

at z and then the angles at y, then we obtain some contribution only from the
loci in which the infinitesimal z-hole has (2s+ 3) edges and the infinitesimal
y-hole has (2r + 4) edges (including the common one). Thus, we obtain the
same contribution for each of the b(r, s) configurations of two adjacent holes
of valences (2s+ 3) and (2r + 4).

Thus, we obtain a cycle supported on the locus of metrized ribbon graphs G
in which y = z marks a (2r+2s+3)-valent vertex, with coefficient b(r, s)c(r, s).

Hence, ψr+1
y ψs+1

z is Poincaré dual to a linear combination of generalized
combinatorial cycles. As before, using the forgetful map, the same holds for
the Witten cycles obtained by deleting the y and the z markings.

One can easily see that the transformation laws from ψ classes to combina-
torial classes are invertible (because they are “upper triangular” in a suitable
sense).

Clearly, in order to deal with many ψ classes (that is, with many non-
trivalent marked vertices), one must compute more and more complicated
combinatorial factors like b(r, s).

We refer to [33] and [51] for two (complementary) methods to calculate
these factors.

5.3 Stability of Witten cycles

5.3.1 Harer’s stability theorem. The (co)homologies of the mapping class
groups have the remarkable property that they stabilize when the genus of the
surface increases. This was proven by Harer [26], and the stability bound was
then improved by Ivanov [34] (and successively again by Harer for homology
with rational coefficients, in an unpublished paper). We now want to recall
some of Harer’s results.
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Let Sg,n,b be a compact oriented surface of genus g with n marked points
and b boundary components C1, . . . , Cb. Call Γ(Sg,n,b) the group of isotopy
classes of diffeomorphisms of S that fix the marked points and ∂S pointwise.

Call also P = S0,0,3 a fixed pair of pants and denote by B1, B2, B3 its
boundary components.

Consider the following two operations:

(y) gluing Sg,n,b and P by identifying Cb with B1, thus producing an oriented
surface of genus g with n marked points and b+1 boundary components

(v) identify Cb−1 with Cb of Sg,n,b, thus producing an oriented surface of
genus g + 1 with n marked points and b− 2 boundary components.

Clearly, they induce homomorphism at the level of mapping class groups

Y : Γ(Sg,n,b) −→ Γ(Sg,n,b+1)

when b ≥ 1 (by extending the diffeomorphism as the identity on P ) and

V : Γ(Sg,n,b) −→ Γ(Sg+1,n,b−2)

when b ≥ 2.

Theorem 5.8 (Harer [26]). The induced maps in homology

Y∗ : Hk(Γ(Sg,n,b)) −→ Hk(Γ(Sg,n,b+1))

V∗ : Hk(Γ(Sg,n,b)) −→ Hk(Γ(Sg+1,n,b−2))

are isomorphisms for g ≥ 3k.

The exact bound is not important for our purposes. We only want to
stress that the theorem implies that Hk(Γ(Sg,n,b)) stabilizes for large g. In
particular, fixed n ≥ 0, the rational homology ofMg,n stabilizes for large g.

Remark 5.9. We have BΓ(Sg,n,b) ≃ Mg,X,T , where Mg,X,T is the mod-
uli space of Riemann surfaces of genus g with X ∪ T marked points (X =
{x1, . . . , xn} and T = {t1, . . . , tb}) and a nonzero tangent vector at each point
of T . If b ≥ 1, then Mg,X,T is a smooth variety: in fact, an automorphism of
a Riemann surface that fixes a point and a tangent direction at that point is
the identity (this follows from uniformization and Schwarz lemma).

5.3.2 Mumford’s conjecture. Call Γ∞,n = lim
g→∞

Γ(Sg,n,1), where the map

Γ(Sg,n,1) → Γ(Sg+1,n,1) corresponds to gluing a torus with two holes at the
boundary component of Sg,n,1.

Then, Hk(Γ∞,n) coincides with Hk(Γg,n) for g ≫ k.
Mumford conjectured that H∗(Γ∞; Q) is the polynomial algebra on the κ

classes. Miller [49] showed that H∗(Γ∞; Q) is a Hopf algebra that contains
Q[κ1, κ2, . . . ].
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Recently, after works of Tillmann (for instance, [69]) and Madsen-Tillmann
[46], Madsen and Weiss [47] proved a much stronger statement of homotopy
theory, which in particular implies Mumford’s conjecture.

Thanks to a result of Bödigheimer-Tillmann [11], it follows thatH∗(Γ∞,n; Q)
is a polynomial algebra on ψ1, . . . , ψn and the κ classes.

Thus, generalized Witten classes, being polynomials in ψ and κ, are also
stable. In what follows, we would like to prove this stability in a direct way.

5.3.3 Ribbon graphs with tails. One way to cellularize the moduli space
of curves with marked points and tangent vectors at the marked points is to
use ribbon graphs with tails (see, for instance, [22]).

Consider Σ a compact Riemann surface of genus g with marked points
X ∪ T = {x1, . . . , xn} ∪ {t1, . . . , tb} and nonzero tangent vectors v1, . . . , vb at
t1, . . . , tb.

Given p1, . . . , pn ≥ 0 and q1, . . . , qb > 0, we can construct the ribbon graph
G associated to (Σ, p, q), say using the Jenkins-Strebel differential ϕ.

For every j = 1, . . . , b, move from the center tj along a vertical trajectory
γj of ϕ determined by the tangent vector vj , until we hit the critical graph.
Parametrize the opposite path γ∗j by arc-length, so that γ∗j : [0,∞]→ Σ, γ∗j (0)
lies on the critical graph and γ∗j (∞) = tj. Then, construct a new ribbon graph
out of G by “adding” a new vertex (which we will call ṽj) and a new edge evj

of length |vj | (a tail), whose realization is γ∗j ([0, |vj |]) (see Figure 17).

tj

ṽj

evj

Figure 17. Correspondence between a tail and a nonzero tangent vector.



Riemann surfaces, ribbon graphs and combinatorial classes 63

Thus, we have realized an embedding ofMg,X,T×RX
≥0×RT

+ insideMcomb
g,X∪T∪V ,

where V = {ṽ1, . . . , ṽb}. If we call Mcomb
g,X,T its image, we have obtained the

following.

Lemma 5.10. Mcomb
g,X,T ≃ BΓ(Sg,n,b).

Notice that the embeddingMcomb
g,X,T →֒ Mcomb

g,X∪T∪V allows us to define (gen-

eralized) Witten cycles Wm∗,X,T onMcomb
g,X,T simply by restriction.

5.3.4 Gluing ribbon graphs with tails. Let G′ and G′′ be two ribbon

graphs with tails
−→
e′ and

−→
e′′, i.e.

−→
e′ ∈ E(G′) and

−→
e′′ ∈ E(G′′) with the property

that σ′
0(
−→
e′ ) =

−→
e′ and σ′′

0 (
−→
e′′) =

−→
e′′.

We produce a third ribbon graph G by gluing G′ and G′′ in the following
way.

We set E(G) = (E(G′) ∪ E(G′′)) / ∼, where we declare that
−→
e′ ∼ ←−e′′ and←−

e′ ∼ −→e′′. Thus, we have a natural σ1 induced on E(G). Moreover, we define
σ0 acting on E(G) as

σ0([
−→e ]) =

{
[σ′

0(
−→e )] if −→e ∈ E(G′) and −→e 6= −→e′

[σ′′
0 (−→e )] if −→e ∈ E(G′′) and −→e 6= −→e′′

If G′ and G′′ are metrized, then we induce a metric on G in a canonical way,
declaring the length of the new edge of G to be ℓ(e′) + ℓ(e′′).

Suppose that G′ is marked by {x1, . . . , xn, t
′} and e′ is a tail contained in

the hole t′ and that G′′ is marked by {y1, . . . , ym, t
′′} and if e′′ is a tail contained

in the hole t′′, then G is marked by {x1, . . . , xn, y1, . . . , ym, t}, where t is a new
hole obtained merging the holes centered at t′ and t′′.

Thus, we have constructed a combinatorial gluing map

Mcomb
g′,X′,T ′∪{t′} ×Mcomb

g′′,X′′,T ′′∪{t′′} −→Mcomb
g′+g′′,X′∪X′′∪{t},T ′∪T ′′

5.3.5 The combinatorial stabilization maps. Consider the gluing maps
in two special cases which are slightly different from what we have seen before.

Call Sg,X,T a compact oriented surface of genus g with boundary compo-
nents labelled by T and marked points labeled by X .

Fix a trivalent ribbon graph Gj , with genus 1, one hole and j tails for
j = 1, 2 (for instance, j = 2 in Figure 18).
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G2

y

v
w

Figure 18. Example of a fixed torus.

Consider the combinatorial gluing maps

Scomb
1 :Mcomb

g,X,{t} −→Mcomb
g+1,X∪{t}

Scomb
2 :Mcomb

g,X,{t} −→Mcomb
g+1,X,{t}

where Scomb
j is obtained by simply gluing a graph G in Mcomb

g,X,{t} with the

fixed graph Gj, identifying the unique tail of Mcomb
g,X,{t} with the v-tail of Gj

and renaming the new hole by t.
It is easy to see that Scomb

2 incarnates a stabilization map (obtained by
composing twice Y and once V).

On the other hand, consider the map S1 : BΓ(Sg,X,{t})→ BΓ(Sg+1,X∪{t}),
that glues a torus S1,{y},{t′} with one puncture and one boundary component
to the unique boundary component of Sg,X,{t}, by identifying t and t′, and
relabels the y-puncture by t.

The composition of S1 followed by the map πt that forgets the t-marking

BΓ(Sg,X,{t})
S1−→ BΓ(Sg+1,X∪{t})

πt−→ BΓ(Sg+1,X)

induces an isomorphism on Hk for k ≫ g, because it can also be obtained
composing Y and V .

Notice that πt : BΓ(Sg+1,X∪{t})→ BΓ(Sg+1,X) can be realized as a combi-

natorial forgetful map πcomb
t :Mcomb

g+1,X∪{t}(R
X
+ × {0})→Mcomb

g+1,X(RX
+ ) in the

following way.
Let G be a metrized ribbon graph inMcomb

g+1,X∪{t}(R
X
+×{0}). If t is marking

a vertex of valence 3 or more, then just forget the t-marking. If t is marking
a vertex of valence 2, then forget the t marking and merge the two edges
outgoing from t in one new edge. Finally, if t is marking a univalent vertex of
G lying on an edge e, then replace G by G/e and forget the t-marking.
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5.3.6 Behavior of Witten cycles. The induced homomorphism on Borel-
Moore homology

(πcomb
t )∗ : HBM

∗ (Mcomb
g+1,X(RX

+ )) −→ HBM
∗ (Mcomb

g+1,X∪{t}(R
X
+ × {0}))

pulls Wm∗,X back to the combinatorial class W t
m∗+δ0,X , corresponding to (the

closure of the locus of) ribbon graphs with one univalent vertex marked by t
and mi + δ0,i vertices of valence (2i+ 3) for all i ≥ 0.

We now use the fact that, for X nonempty, there is a homotopy equivalence

E :Mcomb
g+1,X∪{t}(R

X
+ × R+)

∼−→Mcomb
g+1,X∪{t}(R

X
+ × {0})

and that E∗(W t
m∗+δ0,X) = Wm∗+2δ0,X∪{t}.

This last phenomenon can be understood by simply observing that E−1

corresponds to opening the (generically univalent) t-marked vertex to a small
t-marked hole, thus producing an extra trivalent vertex.

Finally, (Scomb
1 )∗(Wm∗+2δ0,X∪{t}) = Wm∗−δ0,X,{t}, because G1 has exactly

3 trivalent vertices.
As a consequence, we have obtained that

(πcomb
t ◦ E ◦ Scomb

1 )∗ : HBM
∗ (Mcomb

g+1,X(RX
+ )) −→ HBM

∗ (Mcomb
g,X,{t}(R

X
+ × R+))

is an isomorphism for g ≫ ∗ and pulls Wm∗,X back to Wm∗−δ0,X,{t}.

The other gluing map is much simpler: the induced

(Scomb
2 )∗ : HBM

∗ (Mcomb
g+1,X,{t}(R

X
+ × R+)) −→ HBM

∗ (Mcomb
g,X,{t}(R

X
+ × R+))

carries Wm∗,X,{t} to Wm∗−4δ0,X,{t}, because G2 has 4 trivalent vertices.

We recall that a class in Hk(Γ∞,X) (i.e. a stable class) is a sequence of
classes {βg ∈ Hk(Mg,X) | g ≥ g0}, which are compatible with the stabilization
maps, and that two sequences are equivalent (i.e. they represent the same
stable class) if they are equal for large g.

Proposition 5.11. Let m∗ = (m0,m1, . . . ) be a sequence of nonnegative in-
tegers such that mN = 0 for large N and let |X | = n > 0. Define

c(g) = 4g − 4 + 2n−
∑

j≥1

(2j + 1)mj

and call g0 = inf{g ∈ N | c(g) ≥ 0}. Then, the collection
{Wm∗+c(g)δ0,X ∈ H2k(Mg,X) | g ≥ g0} is a stable class, where k =

∑
j>0 j mj.

It is clear that an analogous statement can be proven for generalized Witten
cycles. Notice that Proposition 5.11 implies Miller’s result [49] that ψ and κ
classes are stable.
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