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In [PM2],  Mondello-Panov studied the moduli space  of spherical metrics 

on surfaces of genus g with n conical singularities of angles . One of 

the main results there is the properness of the forgetful map if the following non-

bubbling criteria holds:

(1.1)

for any choice of . This result can also be proved by the analytic method of PDE.

Let   be Riemann surface, and  be smooth. Consider the MFE on S,

(1.2)

§1-1 Non-bubbling criteria
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Suppose                            are blow-up points of a sequence of solutions       . Near each 

the local mass at      is

Then we have

The identity (i) is due to D. Bartolucci and G. Tarantello [BT], and the (ii) follows from the 

so-called the phenomena of “blows-up implies concentration “. 

§1-1 Non-bubbling criteria
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§1-2 Blowing-up implies concentration
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By cancelling out singularities, we let
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§1-2 Blowing-up implies concentration
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In case 0 (for example if the PDE is a curvature equation), we have 
                                        8 ( (1))                                  (1.3)
for some .
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only one singularity, (1.3) provide useful information. We will discuss it in Part 2.
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§1-3 Topological degree

7

1

( )

Suppose (1.1) has finitely many solutions ,..., ,  and the linearized equation at 
any  is non-degenerate. Define the degree  by 

                                                    ( 1) ,i

l

i

u

i

u u
u d

d

ρ

ρ = − #

1

where ( ) is the number of negative eigenvalues. This notion can be defined 
very well if a priori bound exists even without non-degeneracy of linearized equations.
For (1.1), the degree  is wel

l

iu

dρ

=
∑

#

{ }

11(s) n
1

1

1 2

l-defined if  is non-critical and can be calculated

by the generating function g(t).

              ( ) (1 ... ...) (1 ) 1 ... ... ,

where , ,... . 

 

i k

n
nnj

k
i

g t t t t b t b t

n n

d

αχ

ρρ

+− +

=

= + + + + − = + + + +

Λ =

∏



8

( )

1

 ([CL2,4])  degree ,     - .

: If  then . Further, if (S) 0,  then

( ) (1 ...) (1 ... )  0,  .

However if ,  then the coefficient

<

−

=

=

∈ Λ ⊆ ≤

= + + + + + ⇒ > ∀ ∉

∉

∑

∏

Theorem 1.1

 





k

i

k
n

i
n

s

i

i

The d b if is non critical

Note

g t t t t d

ρ
ρ

αχ
ρ

ρ

α χ

ρ

α s  could be positive or negative. So there are 
cancellation for the summation. In general, the computation of  is not easy.

kb
dρ

§1-3 Topological degree



Let  (S,h) be a Riemann surface,                     and                                    . Find a conformal 

conical spherical metric                     with conic singularities       and the angle        . This is 

equivalent to solving

(1.4)    

where

Obviously, (1.4) is a special case of mean field equations. The parameter, denoted by    ,

can be computed by

i.e.,
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It is known that any metric h on S determines a complex structure. By the uniformation

theorem, we may further take the complex structure as a projective structure, i.e, there is an 

open covering        of S such that the transition function is a Mobius transformation. In 

each      , we consider a solution      of 

(1.5) 

We could see (1.4) and (1.5) are equivalent.

§ 1-5 Projective structure and Integrability 
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The advantage is the following integrable property:                              is meromorphic, 

and satisfies  

(1.5)

i.e.,              defines a globally quadratic differential on S . A pole of                can occur 

only at        and since we have                                            

(1.6)

Moreover, there is a developing map           such that  

(1.7)

By (1.7), the Schwarz derivative of           satisfies

(1.8)
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The Schwarz derivatives have a beautiful connection with second order ODEs of complex 

variable. Consider a second order ODE

(1.9)

and                       are linearly independent solutions of (1.9).  Take a ratio                        .

Then the Schwarz derivative of     satisfies
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This transformation laws allow us to define the monodromy representation  
from (S\ ,..., ) to SL(2, ), if a fundamental solution is fixed. Due to
the Liouville Theorem, the image of the representa
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there is a matrix  s.t. ( )  is unitary for all (S\ ,..., ).
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§1-5 Properness of the forgetful map
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§1-6 Calculation of the degree
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    This theorem is a deep result, because it gives examples of PDEs with degree 0, but the 
equation still has solutions. Recall degree of solutions of (1.10) can be counted by
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1 4 2 3

1 2

1 4 2 3

Subgroup 2: 
    This subgroup yields . The formulas of degree 
is more complicated than Group 1.
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u
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In this part, I will focus on the equation,
                                       u 8  on                                              (2.1)
The motivation for my study is not geometric but on

∆ + =e n Eτπ δ
ly purely analytic because (2.1)

is simplest among all the critical case. During the earlier period of studying (2.1),
to me the integrability means the Liouville theorem (and developing map).
The Liouville Theorem immediately allows us to recover the developing map by the 
solution u through the Schwarz derivative, and the (projective) monodromy of 
developing maps. This already provides a really usef

u
0

ul tool to study (2.1), or
                                      u 8  on                                              (2.2)
 : non-critical iff 
 degree 1  if 1.

[LW2].  

∆ + =
• ∉
• = + < < +
Theorem2.1 



e E

n n n

τπαδ
α α

α
 ,     u  (2.2)  ,  . .,  u( ) u( ).∉ − =If then any solution of is even i e z zα

§
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1

    The integrability is also very useful for  . Here we recall a result from mean field 
equations. Let u  be a sequence of blowing-up solutions of (2.2) with ,  and

,...,  be the blow up poin

=
→k k

n

n
n

q q

α
α

1

1

1
1

1

ts. Then n-th tuple ( ,..., ) is a critical point of the n-th
multiple Green function ( ,..., ),  where

  is the Green function i.e., 1 ,

 ( ,..., ) ( ) ( ).

 Let u be 
= <

• ∆ = −

• = − −

•

∑ ∑

n

n n

n

n n i i j
i j i

E

q q
G z z

G G

G z z n G z G z z

τ

22

2

a soiution of (2.1) and  ( ) be the developing map. 
Then [CLW] proves

(i) ( ) is single-valued, and  ( ) ( ),  ,  1, 2.
(ii) For any 0, 

8 ( )
                           u ( ) log

(1

+ = ∈ =

′
=

+



ji
j j

f z

f z f z e f z j

f z
z

θ

λ

ω θ

λ

λ

λ

>

2 2
  is also a solution.

( ) )f z
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{ } { }

1

1

1 1

As , u ( ) blows up at ,..., ,  the set of zeros of  ,
and 0, u ( ) blows up at ,..., ,  the set of poles of  . Further, 

 for any ,  and ,..., ,..., .

(iii) (0) 0,  and  (

n

n

i j n n

z q q f
z p p f

q q i j q q p p

f f z

λ

λ

λ
λ
→∞
→

≠ ± − − =

≠ ∞ −
0

2

0 (0)
(0)) . Choose . Then u ( ) is the unique 
( )

even solution among the one-parameter family u ( ) of solutions.
 Consider 1.

 (the only zero of  ( )) is a critical point of ,  and by (ii) 

f
f z
f z

z
n

q f z G q

λ

λ

λ=

• =

=

{ }
1 2

1 2

2
. Thus .

 ( ) ( ) ( ) ( ),  ,  , . Thus if   then  satisfies
                            ( ) ( ) ( )                                       (2.3)

i

z

q q

G z z r z s z z r s r s q r s q
q r s z

ω

ζ η η τ τ
ζ η τ η

≠ − ∉

• = − − = + ∈ = +
= +


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4
1 2 1

4
2

Conversely, if a non-half period point ,  , ,  is a critical point of ( ).
Then  we define

( )( ) ,  where 2( ( ) ( ) ),  satisfies ( ) ( )
( )

and ( ) ( ),  which−

= + ∈

−
= = + + =

+

+ =



cz si

ri

q r s r s G z

z qf z e c r s f z e f z
z q

f z e f z

π

π

τ

σ η τ η τ ω
σ
ω

1 2
2

2 2

 implies ( ) ( ) . Since (0) 0 and 
(0) (0)( 2 ( )) 2 (0)( ( )) 0 by (2.3).

8 ( )
Thus u( ) log  has a singularity at 0,  and it is easy to see that u( )

(1 ( ) )
is a solution of (2.

+ = ≠

′ = + − = + − =

′
= =

+

if z f z f
f f c q f r s q

f z
z z z

f z

ω
ζ η η ζ

22

22 2

1) with 1. By the above argument, for 0,

8 ( )
u ( ) log  is a one-parameter family of solutions and there is a unique

(1 ( ) )
even solutions among them. So we get 

=

′
=

+

=

n

f z
z

f z

        # of  even solutions

λ

λ

λ

λ

>

{ }
2

:± ∉ iof  q critical points of  G.ω
# 
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1

 

How to describe the geometry of a flat torus? One could use the Green function G( )
and the multiple Green function ( ,..., ) 

[LW1,2].
(a)         
Theorem 2.2 

n n

z
G z z

G has either three critical points or five cri
{ }1 2 32 2 2

  ;
(b)       , , ,       

 ,  and 2,  1, 2,3,   -     .
Theorem 2.2  the integrability  Theorem 2.3:

± ±
=

= +
T

i

tical points
If G has five critical point q then q are the minimum points

of G i are non degenerate saddle points of G
ω ω ω

ω

u
0

 [LW1].         
                                                u 8  on                                              (2.4)

 0 1,     
∆ + =

< ≤

heorem 2.3 Suppose u is an even solution of
e E

If then the linearized equ
τπαδ

α   (2.2)    - . ,
(2.2)       0 1       

  1.
    Theorem 2.3 is proved via the method of symmetrizati

< <
=

ation of at u is non degenerate Consequently
has exactly one solution provided that and has one even solution at

most if
α

α
on, and the classical Pol's 

inequality (for surface with curvature 1). 
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22
12

1 2

1
2

1
2

Theorem 2.2 (b) follow from the following calculation of the Hessian of  at :

1 2        det ( ; ) Im( ),  ( ).                  (2.5)
4

See [LW1,2]. The bubbling analysis 

i

i
i i i

i

G

iD G e e
e

ω

ωπω τ η τ
π η

= − + − =℘
+

has more applications. Consider a sequence of 
blowing-up solutions u  of (2.2) with 1,  which has only one blow-up point

 and 0. Then there is a constant ( ) such that

                       

k k

q E q D qτ

α α= →
∈ ≠

{ }2

                     8 ( 1) ( ( ) (1)) ,                               (2.6)
where  is the maximum of u  after cancelling out the singularity.

If ,  then the existence of one-parameter soluti

k
k

k k

i

D q o e

q

λπ α
λ

ω

−− = +

∉ ons implies ( ) 0.
If  is half period, the computations of ( ) is not trivial.

D q
q D q

=
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 

8 ( ) 8 ( ( , ) ( )) 8 ( )

4 40
2\ ( ) \ ( )

8 ( )

1

2

To describe the constant ( ) where  is a half period, we let

( , ) ( , ) log ,  ( ) ( , ). Then

( ) lim( ) .

In [LW2], we pr

G z G z q q G q

r
r rE B q B q

G q

D q q

G z q G z q z q q G q q

e e eD q
z q z q

π π φ π

τ

π

π
φ

− − −

→

+

= + − =

= −
− −∫ ∫



2

1

ove the following identity:

                  D(q)= a positive constant  ( det ( )).                      (2.7)

    The identity can be extended to the -  multiple Green function (z ,..., ).
We w

n n

D G q

n th G z

× −

ill discuss it later. The identity (2.6) can be used to study the behavior of 
solution u ( ; ) of (2.2) as 1,  and .k k k kz τ α τ τ→ →
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2

1 2

   The constant ( ) and the Hessian det ( ) are two quantities to control how many
sequence of blowing-up solutions as 1.
 Suppose u ( ; ) and u ( ; ) are two sequence of blowing-up solutions o

→

•
k

k k

D q D G q

z z
α

τ τ

2
1 2

f (2.2) with the 
same 1,  and assume  is the blow-up point. Lin-Yan proved.

.   ( )  det ( )   ,      .

 . 

→

• =

•

 Local uniqueness

Constructing blow - up solutions

k
k k

q
If both D q and D G q are not zero then u u for large k

If

α

{ }5

        ( )    
    ,        -    (2.2)   

1.

We denote ( ; ) has five critical points ,  a

→

Ω = ∈

k

q is a critical point and both D q and the Hessian
at q are not zero then there exists a sequence of blowing up solutions of with some

H G z

α

τ τ∣

{ }3

5 3

nd 

                  ( ; ) has three critical points only . 
Clearly,  is open and  is closed.

Ω = ∈

Ω Ω

H G zτ τ∣
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3

int
3 3

[LW2].
(a) Suppose 1. Then u ( ; ) blows up iff .
      ,   -    (   )     .  

( ) 0  ,   ( ) 0  .  

k k z
In this case the blow up point q a half period is the minimum point The constant

D q iff and D q if The

α τ τ

τ τ

∈Ω

< ∈Ω = ∈∂Ω

Theorem 2.4 
<

      
    0.

     ,      0   (2.2)     1 1 .
         1

other two half periods are non
degenerate saddle points with D

Consequently there is a small such that has two solutions if
The two sequences of solutions must blow up as

ε α ε
α

>
> < < +

→

2

3

.
 Let  be the blow-up point of  u ( ; ). Then

  is a half period because u ( ; ) is even.
 ( ) 0 because 1 and det ( ; ) 1. Thus  is the minimum point, which implies

. This proves t

k

k

k

q z
q z
D q D G q q

τ
τ

α τ
τ

•

• ≤ < ≥
∈Ω

Proof :

3

he sufficient part.
Conversely, if  then (2.1) has no solutions. This implies u ( ; ) blows up. Together 
we prove the 

k zτ τ∈Ω

1 2
2

first part.
    For the second part, we note that ( ; ) has the other two half periods  and . 
By Theorem 2.2 (b) and (2.6), det ( ) 0 and ( ) 0. By the local uniqueness 
and the constructing o

i i

G z q q
D G q D q

τ

><

f blowing-up solution, the second part is proved. □
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5

0

(b)  ,       0   (2.2)     
 1 1 .  ,          

      .

If then there is a small such that has exactly four solutions
if Among them there are three sequences of solutions blows up at
one of the three half periods respectively

τ ε
α ε
∈Ω >

< < +
       

 (2.1)  1.
 By the same arguement as (a), there are three blow-up solutions of (2.2) with

1,  which blows up at half period (all are saddle). Thk

The remainder converges to an even solution
of as α

α

→
proof :

>

5

ere is another solution of (2.2)
which does not blow up as 1, because of Theorem 2.1 and Theorem 2.3.               

(c) If  and the unique even solution u( ; ) of (2.1) blows up as , then k k kz

α

τ τ τ τ

→

∈Ω →

□

3 belongs to ,  and the blow-up point is the unique minimum point of ( ; ).
 Suppose  is the blow-up point. Then  is a half period and ( ) 0 by (2.6)

because 1 for all . This implies k

G z
q q D q

k

τ τ

α τ

∂Ω
=

= ∈Ω
proof :

3

3

. Since  is the limiting point of ,  
we have .                                                                                                             

kτ τ
τ ∈∂Ω □
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2

    Next we discuss equation (2.1) with 1 and the multiple Green function. Recall that
(i) the developing map ( ) :  there are one-parameter solutions,

8 (
                                  u ( ) log

n
f z

f
zλ

λ

≥

′
=

2

22 2

1 1

)
,   0.

(1 ( ) )

(ii)  ( ) ( ),  . 
1(iii)  (0) 0. Wlog,   can be normalized by (0) 1. Then ( ) .  
( )

(iv)  has zeros ,..,  and all are simple zeros. Also   has poles p ,...

ji
j j

n

z
f z

f z e f z

f f f f z
f z

f q q f

θ

λ
λ

ω θ

+

+ = ∈

≠ = − =



>

{ } { }1 1

,  
and all are simple poles. Further ,   and ,..., ,..., .

Part (i) follows from (ii) and (iv) follows from (iii). It is not difficult to prove (ii) and (iii).
See [CLW].
    How to 

n

i i i j n n

p
q q q q q q p p≠ − ≠ ± = − −

find the relations between ?  These are two mthods:jq
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1 1

(1) Consider the logarithmic derivative ( ) ( ) ( ). Then g(z) is an even elliptic
function with (simple) poles at ,...,  (residue 1) and ,...,  (residue 1). This implies 
0 is a zero of order 

′=
−n n

g z f z f z
q q p p

1

1
( ) (2n)

1

2 . Therefore, g(z) satisfies
( )( ) ( ) .... .

( ) ( ) ( ) ( )
 (0) 0,  0,1, 2,..., 2 1,  (0) 0.

Near 0,  the expansion:
( )

          ( ) ( ( ) ( )
( )(1 ( ) ( ))= =

′′ ℘℘
• = + +

℘ −℘ ℘ −℘

• = = − ≠
=

′℘
′= = ℘ ℘

℘ −℘ ℘∑

n

n
r

n
j m

j j
j jj

n
qqg z

z q z q
g r n g

z
q

g z q q
z q z

{ }

1

0 1

1

1 0

) ( )

                          ( ) ( ) 0,   0,1, 2,..., 2.                                     (2.8)

The set ,...,  uniquely determines g and  ( ) ( exp ( ) ). 

However, 

∞
− −

=

=

℘ ⇒

′℘ ℘ = = −

=

∑ ∑

∑

∫

n
m

m

n
m

j j
j

z

n

z

q q m n

q q f z g s ds

1

1

conditions (ii) and (iii) require  ,...,  to satisfy

                                               ( ) 0.                                                           (2.9)

 [CLW].  
=

=∑
Theorem 2.5

n
n

z i
i

q q

G q

1

The curvature equation has an even function if and only if there are 
a n-tuple ( ,..., ) satisfying (2.7) and (2.8) such that  and  .≠ − ≠ ± ∀ ≠n i i i jq q q q q q i j
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1 1As , u ( ) blows up at ,..., . Then the n-tuple is a critical point of ( ,..., ) i.e.,
                                    ( ) ( ) 0,  1 ,

which is equivalent
≠

→∞

− − = ≤ ≤∑

The second method :

n n n

z i z i j
j i

z q q G z z
nG q G q q i n

λλ

 to the following system:
                               ( ) ( ) ( ) 0,   1 .                                   (2.10)

if we apply the following identity:
                                 

≠

− − − = ≤ ≤∑ i j i j
j i

q q q q i nζ ζ ζ

1 2

1

  ( ) ( ) ,   , .

[CLW]    (2.1)         
 ( ,..., )   (i.e., (2.10))  (2.9),  ,  .

+ = + − − ∈

≠ − ≠ ±
Theorem 2.6 

proo

z

n i i i j

G r s r s r s r s

The curvature equation has a even solution iff there is a critical
point q q of G satisfying q q q q

τ ζ τ η η

21

2 ( ) ( )
. 

( )

: Write , , .  (2.10) yields: ( ) ,

Define ( ) The transformation law for  yields ( ) ( ),  

2    if 
where by (2.9) ( )

−

+

= + ∈ = +

∑
= + =

− =
= − =

∑ ∑
∏

∏

∑

f  

i

j

j
j i

j j

z q
zdi

i

j

i j i i j
j

z q

z q

q r s r s q r s

f z e f z w e f z

is i
d q q

ζ σ

σ

τ ζ η η

σ

π
ζ ω η

2

2 2

1,
 

2  if 2,

8 ( )
Thus u( ) log  yields a solution. The converse part be already done.          

(1 ( ) )


 =

′
=

+

∑ ir i

f z
z

f z

π

□
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1

So, (2.8) and (2.9) together are equivalent to (2.9) and (2.10). Naturally, we guess that (2.8)
and (2.10) should be equivalent. [CLW] confirmed it. 

 ( ... ) .  -  −    nSuppose q q is non trivial Then the n tuple 1

1

( ,..., ),  0  ,     

    ( ) ( ) 0,   0 2.                               (2.11)

Applying the equivalence, both Theorem 2.5 and Theorem 2.6 are identical.
=

≠ ≠

′℘ ℘ = ≤ ≤ −∑

D

n i i j

n
m

n i i
i

q q q and q q is a critical

point of G iff q q m n

{ } { }

{ }

1 1 1

1

1 1

    ( ,..., )       ,..., ,..., .
,     - . 

    If ( ,..., ) is a non-trivial critical point then
,..., ,..∩

= − −

=

−

efinition. n n n n

n

n

A critical point q q of G is called trivial if q q q q
Otherwise it is called non trivial

q q q
q q q{ }

1

., .

    We summarize:
     ( )      

 ( ,..., )     (2.9) .

− =n

n n

q

The curvature equation has an even solution iff there is a critical
point q q of G such that holds

φ

 non - trivial 
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The set of trivial critical points is finite. Indeed we have

 [CLW].     2 1   ,    .
In subsection 2.3, we will introduce the Lame equ

+Theorem 2.7 nG has exactly n trivial critical points counted with multiplicity

1
1

ation and its spectral polynomial ( ).
The spectral polynomial ( ) is a monic polynomial of degree 2 1. For any critical point

( ,..., ) of , set (2 1) ( ). Then in subsection 2.3,  w
=

+

= = − ℘∑





n

n
n

n n i
i

B
B n

q q q G B n q e prove 

                  iff      ( ).

Theorem 2.7 follows from this claim.
 [CLW].            -   

    .

I

Theorem 2.8

 n

n

q is trivial B is a zero of B

The set of critical points of G forms a hyper elliptic curve
and the genus is n

{ }

1
1

ndeed, the map ( ,..., ) (2 1) ( ) defines a covering map from the set of critical 

points onto  of degree 2. The branch points of this covering map are exactly those 
trivial critical point

=

∪

→ − ℘

∞

∑


n

n i
i

q q n q

s and the point ( (0,...,0)). Since the degree is two and each ramified
index 2,  the Riemann-Hurwitz formula: 2 2 2 ( 2) 2 2 .

A.Eremenko [E] proved that the number of even solutions of (2.

∞ =
= − = ⋅ − + + ⇒ =

Remark 

g n g n

1) is finite. 
By Theorem 2.5, this number is equal to the number of non-trivial critical points of  
such that (2.9) holds. 

nG
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    For a sequence of blowing-up solutions of (2.2) with ,  the asymptotic 
formulas (2.5) also holds:
                           8 ( ) ( ( ) (1)) ,                                             −

→

− = + k

k

k

n

n D q o e λ

α

π α

1 1

               (2.12)
where ( ,..., ) and ,...,  are blow-up point. Although ( ) is a sum of
integrations with non-trivial expressions, the identity similar to (2.6) still holds if 

 is a trivia

= n nq q q q q D q

q
2

2

l critical point.
                             Det ( ) ( 1) ( )                                                               (2.13)

where Det ( ) is the Hessian of  (as a function of 2  re

= − n
n q

n n

D G q c D q

D G q G n

1

al variables) and

0. Further, 0 iff : (2 1) ( ) is not a multiple zero of  ( ).
=

≥ = = − ℘∑ 

n

q q q i n
i

c c B n q B
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2

    The computation of the Hessian of  is not easy, since it is the determinant of
 2 2  matrix. If  is small, the computation is possible.
    For example 2,  it is not difficult to find that  h

nG
n n n

n G
×

=

{ } { }    

1 2

2 3
2 2 3

22
2 2

2
2

2 4

1 1
12 ,  where 

2 2

( ) ( ) 12 Im

1 1
Im

2 2

ave five critical point

( , ) and ( , ) ( ) 4 .

3 ( )
Then we have det ( , ) ( ),

4 Im
4 ( )

det ( , ) ( ),  , ,
(2 ) Im

i j

k
i j k

z g

i j q q q g g g

g
D G q q

G
D G i j

η τ φ

φ

ω ω

τ
τ

π τ
τ

ω ω τ
π τ

± ± ±

± ± ±

′℘

± ⋅

≠ − ℘ = ± = ℘ − ℘−

− =

= ⋅

∣ ∣

{ } { }

2
2 1

1 2

22
1

1, 2,3 ,

where ( ),
2

2 1    ( ) ;   ( ) 3 ( ) 3
2( ) 12

6 ( )    ( ) .( ) 3 3
2

k
k

k k k

k
k

k k

k

e

i G g e e
g

ie
g e e

ω

πφ τ τ τ η τ
η τ

π τφ τ τ τ η

±

=

=℘

= − = + −
±

= −
+ −
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{ } { }
{ } { } { }

2
2

2
2

2

When ,  we can further obtain
   det ( , ) 0 ;

0  if , 1, 2               1 1   det ( , ) .
0  if , 1,3  or 2,32 2

So, ( ; ) has two trivial critical point with negative Hessian and 

i j

ib
D G q q

i j
D G

i j

G z

τ

ω ω

τ

± ±

=

− >

==  =

>

<

three trivial 
critical point with positive Hessian. For 3, this result still holds, however we 
need another new ideas.

n ≥
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1

1

 Suppose there is a sequence of blowing-up even solutions u  of (2.1) on , .

    ( ,..., ; )      .
: Suppose ,...,  are the blow-up points.

• →

proof 

kk k

n n

n

E

We claim G z z has a degenerate trivial critical point
q q

τ τ τ

τ

1 Since u  is even, ( ,..., ) is a trivial 
critical point of ( ; ). Since ,  the identity (2.12), 

                                          0 8 ( ) ( ( ) (1)) ,
yields ( ) 0. By (2.13), 

−

=
=

= − = +

=

k

k n

n k

k

q q q
G q n

n D q o
D q

λ

τ α

π α

{ }

2

n

1

n

det ( ) ( 1) ( ) 0. This prove the claim.          
Following [EGMP], we set  LW the quotient space of 

( ,...; ) has a degenerate trivial critical point  by SL(2, ).

[EGMP]. LW

= − =

=

Theorem 2.10 



n
n q

n

D G q c D q

G zτ τ

□

∣

( 1)      .
2

    This result is proved recently by Chen and I, by using analytic methods.

+n nconsists of real analytic curves
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n

1 3 2

0

 LW  plays an important role to determine the number of even solutions, which is the
main purposes for studying (2.1). For 1,  LW . For 2,  LW  is the curve

(see next page) quotiented by (2)

= = ∂Ω =

Γ =
a b

c

n n

( ){ }(2, ) is even .

   

∈ 

d
SL c∣  

§2-1 Multiple Green functions
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{ }0

0 2

1 1
2 2

2

   Let 0 Re 1,   is the closure of a fundamental domain

of  ( ). The figure shows F\LW  is decomposed into a union of disjoint regions. 
The number of even solutions of 

= ∈ ≤ ≤ − ≥

Γ

 

Theorem A.   

F Hτ τ τ∣ ∣ ∣ 

(2,1) with n=2 is shown as in the Figure 
                      of p.46

Theorem A is recently proved in a joint work with Z. J. Chen. The conjecture is to 
extend Theorem A to n 3. In particular, the≥
    

0 2

 number of even solutions of (2,1) is 
bounded by n.
    We remark those curves are also related to other problem. For example, the curves 

,   are related to the distribution of critical points of ±C C E 2

2
     

0 if 0

( ) (see [CL1]),  where ( ) 
is the classical Eisenstein series of weight 2 :

1                  ( ) .
∈ ∈

≠ =

=
+∑ ∑

m n
n m

E

E
m nτ

τ τ

τ
τ
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{

    In general, it is difficult to find the location of LW  curves. However, [CL4] showed
[CL4].

(a) For any ,  LW
: The proof of (a) depends on another identity which 

∩

Theorem 2.11 

proof 

n

nn          > 0 } =   .φ∣τ  τ = ib, b

2
2

relates the Hessan and the 
monodromy data  (see the subsection   2-4) of the Lame equation: If  is a trivial 
critical point,

det  ( ; ) ( 1) ( ) Im ,            = − n
n q

C q

D G q c P q Cτ

2
2

(2.14)
where ( ) 0 if and only if the monodromy data . If this happen, then 
det ( ; ) 0.

= = ∞

=n

P q C
D G q τ
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Thus, (a) follows (2.14) and the following claim : 
 : (a) is equivalent to :      - . 

Thus ( ; ) 0 by (2.13). Indeed a stronger result was obtained in [CL≠
Remark All trivial critical points are non degenerate

D q τ

2

4].
(b)    (  1)      (  ) ( ).
     Applying the local uniqueness and constructing blowing-up solution when both 
det ( ) and ( ) are non-zero,

+

n

There are n or n trivial critical points with negative or positive D q

D G q D q  (b) implies 
 [LW4].   .     0   (2.2)   

    1    .

:    1( ) 

= >
− < < + < < +

+

Theorem 2.12

Conjecture  

Suppose ib There is a small such that has n even
solutions with n n and n even solutions for n n

There are exactly n even solut

τ ε
ε α α ε

  (2.2)    1.

The conjecture is proved only when 0.

= < < +

=

ions of if ib and n n

n

τ α
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1

u
0

    We present an application of our theory. Suppose ( ,..., ) is a critical point
of  and consider

                      u 8 ( 1) 8 ( ).                                              (2.1

=

∆ + = − +
j

n

n

q

q q q
G

e nπ δ π δ
1

5)

The following result seems very surprising.
 [CL5].   (2.1)   .  (2.15)    .

   The ODE associated with a solution u of  (2.1) is the integral L

=
∑

Theorem 2.13

n

j

Suppose has a solution Then also has a solution
ame equation

                                             ( ) ( ( 1) ( ) ) .
The potential ( ) ( 1) ( ) is well-known as KdV potential. An elliptic function ( )

is called an  KdV 

′′ = + ℘ +
= + ℘

y z n n z B y
Q z n n z Q z

elliptic potenti

2

2

 if there is a (2 1)-th order ODE ( ) such that 

                                             [ ( ),  ( )] 0

In [CL5], we find a connection of elliptic KdV potential and the curvature equa

+

− =

dal m P
dz

d dP Q z
dz dz

tion.
The proof of Theorem 2.13 is based on this connection.
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{ }2

    Suppose u is a solution of (2.1), and ( ) is the developing map.
Then we have 

1                   , 2[ ( 1) ( ) ],  .
2

The complex ODE
                                     [ ( 1)

zz z

f z

u u f z n n z B B

y n n

− = = − + ℘ + ∈

′′ = +



( ) ]                                       (2.14)
is called the Lame equatim, and the potential ( ) ( 1) ( ) is called a
Lame equation.
 Let ,  1, 2,  are two linearly independent solutions of (2i

z B y
Q z n n z

y i

℘ +
= + ℘

• =

{ }
2 1

.14) and set 
( ) ( ) ( ). Then 

                              ( ), 2[ ( 1) ( ) ].
: We note that any solution ( ) is single-valued and 

moromorphic in . Choose any syste

f z y z y z
f z z n n z B

y z
z

=

= − + ℘ +

•
∈

 Monodromy matrices 


( ) ( )    

1 1

2 2

m of fundamental solution , 1, 2,
( ) ( )

                        ,  (2, ),  1, 2.
( ) ( )

i

i
i i

i

y i
y z y z

S S SL i
y z y z

ω
ω

=
+

= ∈ =
+


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1 2

1 2

1 2

Obviously  and  commutes. So, there are two cases :
(i) Both  and  can be diagonalized ( The case is called completely reducible).
We might choose  as a base such that both  and  are diago±

S S
S S

y S S

1

nal matrics with

eigenvalues exp 2  and exp 2 , 1, respectively. In this case, we can prove 

that ( ) , where ,  1, 2,..., ,  satisfy the system

(a) ( ( ) ( ) (

( ) ( )±
±

=

≠

± = −

= =

− + −

±∏

∑



n
cz

i
i

i j j
j i

n
i

si ri i

y z e q i n

q q q q

z q z

π π

ζ ζ ζ

σ σ

1

1 1

1 2
1

)) 0,  ,  that is, 

( ,..., ) is a non-trivial critical point of .

(b) (2 1) ( ),  c = ( )

(c) The monodromy data (r,s) satisfies ,  and .

= =

=

∀=

=

= − ℘

= + = +

∑ ∑

∑

 

i

n n
n n

i i
i i

n

j
j

i

q q q G

B n q and q

q r s c r s

ζ

τ η η
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2 2 21

2
( \ )(d) The pair ( , ) . Moreover, the pair ( , ) \ (1 2 )  iff the Lame 

equation is derived from a solution of (2.1).
: In literature, ( ) are also called Baker-Akhiezer function after n

r s r s

y z±

∈ ∈ ⋅

Remark 

   

1 2

1

ormalization.  

(ii) Both  and  can not diagonalized simultaneously (called not completely reducible). 
In this case ( ,..., ) is a trivial critical point, we can choose ( ) ( ) ( )
as

cz n
n i

S S
q q q y z e z q zσ σ+= = −∏

( ) ( ) { }

( )

2 1

1 1 2 2

1 2

1 1 2

 ( ),  and the other solution ( ) can be chosen so that 
1 1 1

                         and   ,   1 . 
0 1 0 1

If ,  then  and  are understood as
1 0

                         and   
0 1

i

y z y z
C

S S

C S S

S S

ε ε ε

ε

= = ∈ ±

= ∞

= ( )2

1 1
.

0 1
See [CLW] and [LW3].

ε=
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2
2

 in case (ii) is called   . Case (ii) could happen iff the acessary
parameter  of (b) is a zero of the  . The sequence ( ) is elliptic,
which is known as the  

C the monodromy data
B spectral polynomial y z

Lame
1

2 2
1 1

.

ˆ ˆ ˆ  . Let ( ) ( ( )) ( ) and ( ; ) ( ; ) ( ; ). Then

( ; ) is an even elliptic function.
( ) ( )         ( ; ) ( ( ) ( )) ( 1)

( ) ( )

−
± ± + −

= =

• = ⋅ =∏

− +
= = ℘ −℘ = −∏ ∏

j
j

n n
ji i

i
i ii

equation

Spectral polynomial y z q y z w z B y z B y z B

w z B
z q z qw z B z q

z q

σ

σ σ
σ σ 0

                                                                                      

                                                           the addition theorem

( ) (z) .

Classically, it 

−

=

↑

℘∑
n

n j
j

j
s B

is known that  satisfies the    of the Lame:

(*)                  4( ( 1) ( ) ) 2 ( 1) 0.

From the third order ODE, we could derive that ( ) is a polynomial of degree

′′′ ′ ′− + ℘ + − + ℘ =

j

w second symmetric power

w n n z B w n n w

s B   .
Thus, ( ; ) is also a polynomial in .

j
w z B B
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( )
2

2 2
n

ˆ ˆ ˆ ˆ ˆ    Let  be half of the Wronskian of . Then we claim
2

( )                ( ( 1) ( ) ) ( ).
2 2

We note that the RHS of (**) is independent of z because of (*). There

− + + −
±

′ −
=

′ ′′
∗∗ = − + + ℘ + 

y y y yC y

w w wC n n z B w B

2

n

ˆ ˆ
ˆ ˆ

ˆ ˆ1
( )

ˆ ˆ2

fore ( ) is a monic
polynomial of degree 2 1. This polynomial is called the spectral polynomial of the Lame.

    The identity ( ) can be proved. From  and 

,

+ −

+ −

+ −

+ −

′ ′′
= +

′ ′
= −

+

∗∗



y yw
w y y

y y
C w

y y

B
n

( ) ( ) ( ) ( )        

2

ˆ 2
ˆ 2

ˆ
ˆ

 we have . Thus 

ˆ ˆ2 2        ( 1) ( ) ( )
ˆ ˆ2 2

+

+

+

+

+ +

+ +

′ ′ +
=

′′′′ ′′ ′′ ′+ +
= = − = + ℘ + − ⇒ ∗∗

y w C
y w

y
y

y yw C w Cn n z B
w y y w
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{ } { }

1

n

2
n

This computation implies
0          ( ,..., )  .

 -  . The polynomial ( ) defines a hyper-elliptic curve 

( , ) ( ) , . Let Y  be

+ −

∪

= =

•

= ∞ ∞





n

n

C iff y and y are linearly dependent iff q q q is trivial

hyper elliptic curve B

B C C B∣

{ } { }

   

2
n 1

 the union of (0,0,...,0) and the set of critical point 

of . Then ( , ) ( )  by the mapping ,..., ( , ),

ˆ ˆ ˆ ˆ
where (2 1) ( ) and .

2

 . Following [L

− + + −

≈ = = ∈ →

′ ′−
= − ℘ =

∗

∑

n n n n

j
j

G Y B C C B q q q Y B C

y y y yB n q C

Premodular form

∣

, 1 2

1

W3], we define
        Z ( ) ( ; ) ( ) s ( )  (Hecke form), and we start with the 

following result. ( ) :       .
=

+ − −

= ∑

r s

n

n j n
j

r s r

q q a map from Y to Eτ

τ ζ τ τ η τ η τ

σ





58

§2-3 Lame equation

2 3

1
2

1
2

[LW3].       ( 1).

    By Theorem 2.13,  induces an embedding of ( ) into ( ) such that 

[ ( ) : ( )] ( 1). This means there is a polynomial ( ) in

 [g ,

+

= +

Theorem 2.13 n

n n

n n

The map has degree n n

K E K Y

K Y K E n n W T

Q g

τ

τ

σ

σ

1 1

1
2

, ( ), ( )][ ]  of degree ( 1) to define the field extension of 

( ) over ( ).

    Define : ( ) ( ) ( ). It is not difficult to see ( ) is a meromorphic

function on ,  i.e., 
= =

′℘ ℘ +

−∑ ∑
n

n n

n j j n
j j

n

T n n

K Y K E

z q q q z q

Y z

τ

σ σ

ζ ζ

( ).

 [LW3]            
 ( )  ( ).

∈

Theorem 2.14

n n

n

n

K Y

The meromorphic function z is a primitive generator for the field
extension K Y over K Eτ
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( )

( )
,

( ) 2 2
, .

1 2

1
2

This means that ( ) 0. Then we define the premodular form Z ( ) :

                                ( ) ( ( )), ( , ) \ ( ) .

: If ( , ) is a N-torsion, i.e., ( , ) ,  wit

n
n n r s

n
r s n r s

W z

Z W Z r s

k kr s r s
N N

τ

τ τ

=

∈

=Remark 

 

( ) ( ) ( )

( )
1 2 ,

1 0

0 1

1
2

h ( , , ) 1,  then ( )

is a modular form of weight ( 1) w.r.t. ( ), where 

( ) SL(2, )  mod N .

    The reason we introduced the Heck form is that if (2.9) holds,
0 (

n
r s

j

a b a b

c d c d

k k N Z

n n

N

r

τ

ζ

≡

=

+ Γ

 
Γ = ∈ 

 

= +



 ∣ 

2
1 2 ,) ( )  ( ) z ( ),  where ,  ( , ) .

Due to the above identity, we have 
j j j r s n j j j j js r s Z q q r s r sτ η η τ τ− + = − = + ∈∑ ∑ 
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2 2 ( )
,

( )
,

2 2

1

2

1

2

   (2.1)       

     ( , ) \ ( )    ( ) 0.

    The most important property Z ( ) has is

 [CKL].   ( , ) \ ( ) . 

•

∈ =

∈Theorem 2.14

 

 

n
r s

n
r s

Curvature equation has a solution on E iff

there is r s such that Z

Suppose r s Th

τ

τ

τ

( )
,     Z ( )  .

    This non-trivial result is proved by applying Painlev'eVI equation, an unexpected
connection. Theorem 2.14 yields that a local function ( , )  can be defined.→

n
r sen any zero of is simple

r s

τ τ

τ  There 
are some of my recent works, jointly with Z.J.Chen, to discuss the map and related problems.
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    The classical Floquet theory can be applied to prove
 [CL3].   ,  0,   (2.1)      1.

    The Floquet theory is applied for a periodic (say1) potential
    

= > ≥Theorem 2.15 If ib b then has no solutions for any nτ

 

1 2 1 2

              ( ) ( ) ( ) ( ),  .
In this theory, there is the Hill descriminant ( ) by
                            ( ) tr ( ),
where ( ( 1), ( 1)) ( ( ), ( )) ( ),  and the curve 
      

′′ + = ∈
∆

∆
+ + =

y x q x y x E y x x
E

E M E
y x y x y x y x M E S



{ }1

0 0
( )

0 1

      ([ 2, 2]) 2 ( ) 2 .
    When the potential ( ) ( 1) ( ) along ,  0,  is a smooth periodic 
function. It is easy to see ( ) is independent of ,  and then we have ( ). 

−∆ − = ∈ − ≤ ∆ ≤

= − + ℘ = + ≠

∆



n

S E E
q z n n z z x iy x

E x S τ

 ∣ 

( )
0 2

Similarly,
along  we have the second Hill discriminant and ( ).= + nz x t Sτ τ
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( ) ( )
1 2 1 2

( )
1

Obviously if ( ) ( ) with [ ( ), ( )] ( 2, 2),  then (2.1) has a 
solution on .
    It is very interesting to study ( ),  1, 2,  when  is deformed in     .

: Suppose (

∩∈ ∆ ∆ ≠ ± ±

=

∈Conjecture 

n n

i
n

E S S E E
E

S i
E S

τ

τ τ

τ τ

τ ( )
2 1 2

( ) ( )
1 2

) ( ) with [ ( ), ( )] ( 2, 2). Then the 
intersection of ( )  ( ) at E.

If 1,  conjecture is proved.

∩ ∆ ∆ ≠ ± ±

=

 

n

n n

S E E
S and S

n

τ

τ τ
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