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§1 Background of cone spherical metrics

Examples, definitions, open problems and some known results of

cone spherical metrics.

Bin Xu (USTC) Irreducible Metrics INdAM Workshop 3 / 35



Cone metric

A cone (conformal) metric ds2 on a compact Riemann surface X

consists of the following data:

• A finite subset {P1, · · · ,Pn} of X and 1 6= θ1, · · · , θn > 0

• A conformal metric ds2 on the punctured surface X\{P1, · · · ,Pn}

• ds2 = e2u |dz|2 near Pj such that

u − (θj − 1) log |z|

is continuous at z(Pj) = 0.

We say that the cone metric ds2 has cone angle 2πθj at the cone

singularity Pj . We call that ds2 represents the real divisor

D :=
∑n

j=1 (θj − 1)Pj on X .
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The Picard-Poincaré Problem

Let X be a compact Riemann surface of genus gX .

Describe all the real divisors D =
∑

j (θj − 1)Pj with 1 6= θj > 0 on

X such that there exists a cone metric ds2 representing D which has

constant Gauss curvature K ∈ {−1,0,+1}, called cone hyperbolic, flat

and spherical metric, respectively.

The Gauss-Bonnet formula gives a necessary condition that K

has the same sign as the singular Euler number

χ(X , D) :=
(
2− 2 gX + deg D

)
for the existence of such metrics.
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Cone hyperbolic and flat metrics

(Picard, Poincaré, Heins, McOwen, Troyanov) There exists a cone

hyperbolic (flat) metric representing D on X iff

χ(X , D)< (=) 0.

And the metric representing D is unique (up to scaling).
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Existence of cone spherical metrics is open

The natural necessary condition of

χ(X , D) =
(
2− 2 gX

)
+ deg D > 0

given by Gauss-Bonnet is not sufficient for the existence. The cone

spherical metrics rep. D are multiple in general if they exist.
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Liouville equations:I

Let ∆0, K0 and dA0 be the Laplacian, the Gaussian curvature and

the area element of a smooth background conformal metric g0 on X

with unit area.

Denote G(·, Q) by the normalized Green function wrt the point Q

in X , i.e. it satisfies

−∆0 G(·, Q) = δQ − 1,
∫

X
G(P, Q)dA0(P) = 0.

Recall that D =
∑

(θj − 1)Pj . Define

hD(P) := 4π
∑

(θj − 1) G(P, Pj).
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Liouville equations:II

Observation(Bartolucci-De Marchis-Malchiodi) Existence of a cone

spherical metric rep. D is equivalent to that of a classical solution u to

the Liouville equation

∆0 u − 2K0 − 4π
∑

(θj − 1) + 4πχ(X , D)
2eu−hD∫

X 2eu−hD dA0
= 0. (1)

We have the C0 a priori estimate for (1) if D satisfies the non-bubbling

condition, i.e.

χ(X , D) /∈
{
µ > 0 | µ = 2k + 2

∑
njθj , k ∈ Z≥0,nj ∈ {0,1}

}
.

We shall give an explicit class of divisors D for which (1) has no a

priori estimate.
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Relevant results of cone spherical metrics I:

A sufficient condition by Troyanov for the sub-critical case:

0 < χ(X , D)<min
{

2, 2 min
1≤j≤n

θj

}
.

A sufficient condition by Bartolucci-De Marchis-Malchiodi for the
super-critical case:

1 gX > 0 and θj > 1 for all 1 ≤ j ≤ n;
2 χ(X , D) is greater than 2 and satisfies the non-bubbling condition.

Note that (1) in the above two items have C0 a priori estimate.

Chen-Lin computed the Leray-Schauder degree of their solutions.
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Relevant results of cone spherical metrics:II

Mondello-Panov, Chen-Li-Song-X, Eremenko: Angle constraint for

cone spherical metrics on compact Riemann surfaces, consisting

of the two cases of gX = 0 and gX > 0.

Lin et al proved many deep and interesting results for n = 1 and

gX = 1. In particular on rectangular tori.

Mazzeo-Zhu and Karpukhin-Zhu: Deformation properties and

bounded 2-eigenfunctions

The authors above used also other techniques besides Analysis of

PDEs so that the non-bubbling condition was not an obstruction for

them.
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Some open questions

No general conjecture for the existence problem.

Finitely or infinitely many if the metrics exist?

Little known if gX ≥ 2 and D violates the non-bubbling condition.

· · · · · ·

Li-Song-X obtained some progresses on the latter two questions if

gX ≥ 2 and D is an effective divisor
∑

(θj − 1)Pj , θj ∈ Z>1, by using

stable bundles.
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Main results (Li-Song-X)

Let gX ≥ 2.

If odd = deg D > 2gX − 2, for almost every D ∈ Symd (X ), there

exists finitely many cone spherical metrics representing D. Note

that D satisfies the non-bubbling condition and is realizable by

Troyanov and Bartolucci-De Marchis-Malchiodi.

Let even = deg D > 2gX − 2. Then D violates the non-bubbling

condition. There exists an effective divisor D′ such that D′ is

linearly equivalent to D, i.e. D − D′ = (f ) for some meromorphic

function f on X , and D′ is realizable. Note that effective divisors

linearly equivalent to D form a projective space |D| of dimension

deg D − gX ≥ gX , called the complete linear system of D.
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§2 Developing maps of spherical metrics

Following Liouville, we introduce the developing maps of a cone

spherical metrics. These maps are locally univalent, multi-valued

meromorphic functions on X\supp D.

Bin Xu (USTC) Irreducible Metrics INdAM Workshop 14 / 35



Orientation-preserving isometries of S2(1)

Consider the unit 2-sphere S2(1) centered at 0 in R3.

Orientation-preserving isometries of S2(1) are exactly rotations around

lines through 0 ∈ R3. All of them form the Lie group SO(3).

As a Riemannian manifold, S2(1) is the same as the Riemann

sphere P1 := C ∪ {∞} endowed with the standard conformal metric

gst =
4|dw |2

(1 + |w |2)2 .

The orientation-preserving isometry group of gst coincides with

PSU(2) :=

{
z 7→ az + b

−bz + a
: |a|2 + |b|2 = 1

}
⊂ PGL(2, C).

Hence SO(3) ∼= PSU(2) and we do not distinguish them later on.
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Projective functions on Riemann surfaces

Let S be a Riemann surface. Call a multi-valued meromorphic

function f : S → P1 projective if the monodromy representation of f

forms a group homomorphism

Mf : π1(S, B)→ PGL(2, C).

Then the Schwarzian derivative of f

{f , z} =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

becomes a single valued meromorphic function on each complex

coordinate chart of S.
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Developing map (Liouville, Chen-Wu-X)

Let ds2 be a cone spherical metric rep. D =
∑n

j=1 (θj − 1)Pj on X .

Then there exists a projective function f : X\supp D → P1 such that

(Pull-back) ds2 = f ∗gst.

(Monodromy) The monodromy of f becomes a homo.

Mf : π1(X\supp D, B)→ PSU(2) ⊂ PGL(2, C). f extends to a

projective function on X if D is effective.

(Singularities) In each complex coordinate (U, z) centered at Pj ,

the Schwarzian derivative {f , z} of f has the principal singular

part of
1−θ2

j
2z2 .

Here f is called a developing map of ds2 which is unique up to a

pre-composition with a Möbius transformation in PSU(2).

And vice versa.
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Example: pull-back metric by branched cover

Let f : X → P1 be a branched cover. Then the pull-back cone

sphericl metric f ∗gst represents the ramification divisor Rf such

that

deg Rf = 2 deg f − 2 + 2gX = even.

(Lin-Wei-Ye, Chen-Wu-X, Eremenko-Gabrielov) A cone spherical

metric ds2 with integral cone angles on P1 must be such a

pull-back metric by some branched cover f : P1 → P1. Moreover,

an effective divisor D =
∑n

j=1 mjPj on P1 is realizable iff∑
j

mj = even = 2d − 2, mj < d .

Equation (1) for ramification divisors D of branched covers have no a

priori estimate since the space of solutions to (1) is non-compact.
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Associated Lie group of cone spherical metric

Let ds2 be a cone spherical metric rep. D on X and

f : X\supp D → P1 its developing map.

The image of the monodromy homomorphism of f

Mf : π1(X\supp D)→ PSU(2)

is not a Lie subgroup of PSU(2) in general. We call its closure the

associated Lie group of ds2, which is unique up to conjugacy in

PSU(2).
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Definition of irreducible metric

(Umehara-Yamada) A cone spherical metric ds2 is called

reducible=coaxial if its associated Lie group is contained in

U(1) =
{

z 7→ e
√
−1tz : t ∈ [0, 2π)

}
.

Otherwise, it is called irreducible=non-coaxial.

Note that the pull-back metrics by branched covers are all reducible.
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Stable vector bundles: definitions

§4 Viewpoint from vector bundles

Definition (Mumford)

The slope µ(E) of a holomorphic vector bundle E → X is defined

to be µ(E) =
deg det E

rk E
.

We call E stable iff µ(F ) < µ(E) for each proper sub-bundle F of

E .

We call an extension 0→ L→ E → M → 0 of a line bundle M by

another line bundle L stable iff E is a rank 2 stable vector bundle.

Then

deg L < deg M.
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Stable vector bundles: properties

Theorem (Narasimhan-Seshadri)

A rank 2 vector bundle E → X is stable iff the projective bundle

P1 → P(E)→ X comes from an irreducible representation

ρ : π1(X )→ PSU(2), i.e. Im ρ is not contained in U(1) ⊂ PSU(2).

A rank 2 stable bundle E with det E = OX comes from an

irreducible unitary representation π1(X )→ SU(2).
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Lange-type theorem

Theorem (Li-Song-X) Let L,M be two line bundles on X with gX ≥ 2

such that deg M > deg L. Then the stable extensions of M by L form a

Zariski open subset in Ext1X (M,L) ∼= H1(X ,L⊗M−1).

Denote this Zariski open subset by

{0→ L→ E → M → 0}stable .

Since there is a C∗-action on it, we have the projective version

P
(
{0→ L→ E → M → 0}stable

)
.

Remark We proved this theorem by using the algebraic method in the

1983 Math Ann paper by Lange-Narasimhan.
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Integral irreducible metrics and stable extensions

Let ds2 be an irr. metric rep. D on X . Then its dev. map

f : X → P1 is a projective function such that Rf = D and the

monodromy representationMf : π1(X )→ PSU(2) is irreducible.

f defines a flat bundle P1-bundle P → X corresponding to Mf such

that f is a section of P.

There exists a rank 2 stable bundle E such that P(E) = P since

the monodromy of f lies in PSU(2).

There exists a stable extension 0→ L→ E → M = E/L→ 0 such

that the embedding L→ E corresponds to the pre-image of the

section f : X → P = P(E) under E → P(E).

And vice versa.
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Surjective map between two moduli spaces

X=compact Riemann surface of genus gX ≥ 2

SE(X )=moduli space of stable extensions 0→ L→ E → M → 0 of two

line bundles over X moduli the process of tensoring line bundles

IM(X ,Z)=moduli space of integral irreducible metrics on X

Theorem (Li-Song-X) There exists a canonical surjective map

σ : SE(X )→ IM(X ,Z).

The metric given by stable extension 0→ L→ E → M → 0

represents an effective divisor lying in |L−1 ⊗M ⊗ KX |.

Each metric has at most 22gX preimages under σ.
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Specifying the divisor by a stable extension

A stable extension E : 0→ L→ E
p−→ M → 0 gives a metric rep.

D ∈ |L−1 ⊗M ⊗ KX |.

Write the Chern connection DE of the Hermitian-Einstein metric h

on E as DE = ∂E + ∂̄E , where ∂̄E is the complex structure of E

and ∂E : A0(E)→ A1,0(E) the (1,0)-part of DE .

(Li-Song-X) We could obtain an OX -linear map L θE−→ M ⊗ KX :

L ↪→ E
∂E−→ E ⊗ KX

p−→ M ⊗ KX . Then θE ∈ H0
(

Hom
(
L,M ⊗ KX

))
,

(θE) = D ∈ |KX ⊗ L−1 ⊗M|, and the ramification divisor map

(RDM) R : E 7→ Div(θE) = D,

P
(
Ext1(M,L)

)
⊃ P

(
{0→ L→ E → M → 0}stable

)
R−→ |KX⊗L−1⊗M|,

which is real analytic by the Kobayashi-Hitchin correspondence.

Bin Xu (USTC) Irreducible Metrics INdAM Workshop 26 / 35



Express RDM in terms of HE metric

The HE metric h on E induces Hermitian metrics on L and M such that

M ∼= L⊥ as complex vector bundles.

Write the Chern connection DE of the HE metric h on E as

DE =

(
DL −β
β∗h DM

)
,

where β is a harmonic (0,1)-form with value in Hom(M,L) and β∗h is a

holomorphic one-form with value in Hom(L,M).

RDM R before taking quotient /C∗ expressed by

β 7→ β∗h ,
(
H(0,1)
∂

(X , L⊗M−1)
)stable

→ H0(X , L−1 ⊗M ⊗ KX ).

RDM is well defined in the sense β∗h does not depend on the

representative of the extension class 0→ L→ E → M → 0.
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Even/odd spherical metrics

Definition Call an integral spherical metric even (odd) iff the degree of

its effective divisor is even (odd).

(Troyanov, Bartolucci et al) Let gX ≥ 1. Each odd effective divisor

D with degree > 2gX − 2 could be represented by a cone

spherical metric on X , which must be irreducible.

Each integral reducible metric is even.

(Li-Song-X) Let gX ≥ 2. Each even irreducible metric comes from

an stable extension with form 0→ L→ E → L−1 → 0, where E is

flat and comes from an irreducible representation π1(X )→ SU(2).
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Existence of even irreducible metrics

Theorem (Li-Song-X) Let D be an effective divisor of degree

even > 2gX − 2 on X with gX ≥ 2. There exists D′ ∈ |D| such that D′ is

realizable. As a consequence, we have

dimR

{
D ∈ Symd (X ) : D is realizable

}
≥ 2gX .

Proof. Choose line bundle L s.t. L−2 ⊗ KX = OX (D). Then each D′

lying in the image of the ramification divisor map

P
(
{0→ L→ E → L−1 → 0}stable

)
R−→ |KX ⊗ L−2| = |D|

could be represented by an irreducible metric.

Remark I speculate that there exists in Symd (X ) an Euclidean open

subset whose effective divisors are realizable.
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Finiteness of odd spherical metrics

Example (Li-Song-X) Let gX ≥ 2. For almost every D ∈ Sym2gX−1(X ), there

exists finitely many spherical metrics representing D.

Since deg D = 2gX − 1 = odd, each metric g rep. D is irreducible.

There exists stable extension 0→ OX → E → M → 0 defining g such

that deg M = 1 and |D| = |KX ⊗M|.

Since each non-trivial extension of M by OX is stable, the ramification

divisor map R : P
(
H1(X ,M−1)

) ∼= PgX−1 → |D| ∼= PgX−1 is surjective and

smooth. It holds true for a.e. divisors in |D| by the Sard theorem. RDM in

this case is both beautiful and mysterious to us!

It follows from Fubini and the fibration arising from Riemann-Roch

PgX−1 → Sym2gX−1(X )→ Pic2gX−1(X ).

I speculate that the metric representing such an effective divisor is unique.
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Unitary one-forms

Definition Call a meromorphic one-form ω on a Riemann surface S unitary

one-form iff ω has at most simple poles and all its periods lie in
√
−1R. In

particular, all the residues of ω are real. We call

Dω := (ω)0 +
∑

P∈{poles of ω}

(|ResP(ω)| − 1) P

the spherical divisor associated with ω.

Theorem (H. Weyl) Given (m + 2) ≥ 2 distinct points P1, · · · ,Pm+2 on a

compact Riemann surface X and (m + 2) nonzero real numbers a1, · · · ,am+2

which sum up to zero, there exists a unique unitary one-form ω which is

holomorphic on X\{P1, · · · ,Pm+2} and has residues a1, · · · ,am+2 at

P1, · · · ,Pm+2, resp.

Remark We know neither the positions nor the multiplicities of the zeros of ω.
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Degree of residue vector

Definition Call a vector α = (a1, · · · ,am+2) ∈ Rm+2 a residue vector iff
all its components are nonzero and sum up to zero. The degree of α is
defined to be

deg α =


∑
λaj>0 λaj if ∃ λ 6= 0 s.t. λa1, · · · , λam+2 are coprime integers

∞ Otherwise
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Existence theorem of unitary one-forms

Theorem
(
Chen-Li-Song-X(2016), Wei-Wu-X (2022)

)
Given a residue vector

α = (a1, · · · ,am+2) ∈ Rm+2, m ∈ Z>0 and a partition (m1, · · · ,m`) of m, there

exists on the Riemann sphere a unitary one-form ω with residue vector α and

` zeros of multiplicities m1, · · · ,m` iff

deg α > max(m1, · · · ,m`).

Corollary
(
Chen-Li-Song-X(2016), Eremenko(2017), Wei-Wu-X(2022)

)
We

found the angle constraint of reducible metrics on the Riemann sphere.

Proof (Chen-Li-Song-X) The 2015 Pacific paper of Chen-Wu-X established a

correspondence between reducible metrics and unitary one-forms on general

compact Riemann surfaces. In particular, they showed that the divisor

represented by a reducible metric coincides with the spherical divisor

associated with the unitary one-form corresponding to the metric. QED
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Liouville equation for a spherical divisor

Observation (X) Let D be the spherical divisor of a unitary one-form ω

on a compact Riemann surface X . Then D must violate the

non-bubbling condition. Moreover,

fλ(z) = λ exp
(∫ z

ω dz
)
, z ∈ X\{poles of ω}, λ ∈ (0, ∞)

form the one-parameter family of developing maps corresponding to a

one-parameter family {ds2
λ := f ∗λ gst} of reducible metrics, all of which

represent D. Conformal factors of reducible metrics in this a family

solves (1) associated with D, but they have no uniform C0 bound.

I speculate that (1) always has C0 a priori estimate except D is the

spherical divisor of a unitary one-form.
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Thank you for your attention!
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