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Abstract

Let X be a Markov process characterized as the solution of a martingale problem
with generator A, and let Y be a related observation process. The conditional dis-
tribution πt of X(t) given observations of Y up to time t satisfies certain martingale
properties, and it is shown that any probability-measure-valued process with the ap-
propriate martingale properties can be interpreted as the conditional distribution of
X for some observation process. In particular, if Y (t) = γ(X(t)) for some measur-
able mapping γ, the conditional distribution of X(t) given observations of Y up to
time t is characterized as the solution of a filtered martingale problem. Uniqueness for
the original martingale problem implies uniqueness for the filtered martingale problem
which in turn implies the Markov property for the conditional distribution considered
as a probability-measure-valued process. Other applications include a Markov mapping
theorem and uniqueness for filtering equations.
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1 Introduction

The notion of a filtered martingale problem was introduced in Kurtz and Ocone (1988) and
extended to a more general setting in Kurtz (1998). The basic idea is that the conditional
distribution of the state of a Markov process given the information from related observations
satisfies a kind of martingale problem. The fundamental results give conditions under which
every solution of the filtered martingale problem arises from a solution of the original martin-
gale problem, and hence, uniqueness for the original martingale problem implies uniqueness
for the filtered martingale problem. These results have a variety of consequences, most no-
tably, the uniqueness for filtering equations and general results on Markov mappings, that
is, conditions under which a transformation of a Markov process is still Markov.

The current paper is concerned with extension of these ideas to further settings. The fil-
tering literature contains a number of results (for example, Bhatt, Budhiraja, and Karandikar
(2000); Budhiraja (2003); Kunita (1971)) showing that the conditional distribution for the
classical filtering problem is itself a Markov process. In order to address this question for
general solutions of filtered martingale problems, we need to generalize the earlier definition
to include information available at time zero. We are then able to show the Markov property
for the conditional distributions for a large class of partially observed Markov processes.

We also extend the earlier results to local martingale problems which in turn allows us
to generalize previous uniqueness results for filtering equations. The basic results can also
be extended to constrained martingale problems, that is, martingale problems for processes
in which the behavior of the process on the boundary of the state space is determined by a
second operator (see Anderson (1976); Kurtz (1990, 1991); Kurtz and Stockbridge (2001);
Stroock and Varadhan (1971)). Reflecting diffusion processes provide one example.

We also relax some technical conditions present in the earlier work.
Throughout this paper, all filtrations are assumed complete, all processes are assumed

to be progressively measurable, {FY
t } denotes the completion of the filtration generated by

the observed process Y , and assuming Y takes values in S0, F̂Y
t denotes the completion of

σ(
∫ r

0
h(Y (s))ds : r ≤ t, h ∈ B(S0)) ∨ σ(Y (0)).

2 Martingale properties of conditional distributions

Let S be a complete, separable metric space. C(S) will denote the space of R-valued, contin-
uous functions on S, M(S) the Borel measurable functions, Cb(S) the bounded continuous
functions, B(S) the bounded measurable functions, and P(S) the space of probability mea-
sures on S. MS[0,∞) will denote the space of measurable functions x : [0,∞) → S topol-
ogized by convergence in Lebesgue measure, DS[0,∞) ⊂ MS[0,∞) the space of S-valued,
cadlag functions with the Skorohod topology, and CS[0,∞) ⊂ DS[0,∞) the subspace of con-
tinuous functions. We consider martingale problems for operators satisfying the following
condition:

Condition 2.1 i) A : D(A) ⊂ Cb(S) →M(S) with 1 ∈ D(A) and A1 = 0.

ii) Either R(A) ⊂ C(S) or there exists a complete separable metric space U, a transition
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function η from S to U, and an operator A1 : D(A) ⊂ Cb(S) → C(S× U) such that

Af(x) =

∫
U
A1f(x, z)η(x, dz), f ∈ D(A). (2.1)

iii) There exist ψ ∈ C(S), ψ ≥ 1, and constants af such that f ∈ D(A) implies

|Af(x)| ≤ afψ(x),

or if A is of the form (2.1), there exist ψ1 ∈ C(S×U), ψ1 ≥ 1, and constants af such
that, for all (x, z) ∈ S× U

|A1f(x, z)| ≤ afψ1(x, z).

(If A is of the form (2.1), then define ψ(x) ≡
∫

U ψ1(x, z)η(x, dz).)

iv) Defining A0 = {(f, ψ−1Af) : f ∈ D(A)} (or {(f, ψ−1
1 A1f), f ∈ D(A)}), A0 is sep-

arable in the sense that there exists a countable collection {gk} ⊂ D(A) such that
A0 is contained in the bounded, pointwise closure of the linear span of {(gk, A0gk) =
(gk, ψ

−1Agk)} in B(S)×B(S) (or in B(S)×B(S× U)).

v) A0 is a pre-generator (for each fixed z, if A is of the form (2.1)), that is, A0 is dissi-
pative and there are sequences of functions µn : S → P(S) and λn : S → [0,∞) such
that for each (f, g) ∈ A

g(x) = lim
n→∞

λn(x)

∫
S
(f(y)− f(x))µn(x, dy) (2.2)

for each x ∈ S.

vi) D(A) is closed under multiplication and separates points.

Remark 2.2 Suppose that we are interested in a diffusion X in a closed set S ⊂ Rd with
absorbing boundary conditions, that is,

X(t) = X(0) +

∫ t∧τ

0

σ(X(s))dW (s) +

∫ t∧τ

0

b(X(s))ds, (2.3)

where τ = inf{t : X(t) ∈ ∂S} = inf{t : X(t) /∈ So}, where ∂S is the topological boundary of
S and So is the interior of S. Setting a(x) = σ(x)σ(x)> and Lf(x) =

∑
1
2
aij(x)∂i∂jf(x) +∑

bi(x)∂if(x) for f ∈ C2(Rd), assuming sufficient smoothness, the natural generator would
be Lf with domain being the C2-functions satisfying Lf(x) = 0, x ∈ ∂S. This domain does
not satisfy Condition 2.1(vi). However, if we take D(A) = C2

b (S), U = {0, 1}, A1f(x, u) =
uLf(x) and η(x, du) = 1So(x)δ1(du) + 1∂S(x)δ0(du), where δ0 and δ1 are the Dirac measures
at 0 and 1 respectively, we have Af(x) = 1So(x)Lf(x) with domain satisfying Condition
2.1(vi). Any solution of (2.3) will be a solution of the martingale problem for A, and any
solution of the martingale problem for A will be a solution of the martingale problem for the
natural generator.
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Definition 2.3 Let A satisfy Condition 2.1. A measurable, S-valued process X is a solution
of the martingale problem for A, if there exists a filtration {Ft} such that X is {Ft}-adapted,

E[

∫ t

0

ψ(X(s))ds] <∞, t ≥ 0, (2.4)

and for each f ∈ D(A),

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds (2.5)

is an {Ft}-martingale. For ν0 ∈ P(S), X is a solution of the martingale problem for (A, ν0),
if X is a solution of the martingale problems for A and X(0) has distribution ν0.

A measurable, S-valued process X and a nonnegative random variable τ are a solution
of the stopped martingale problem for A, if there exists a filtration {Ft} such that X is
{Ft}-adapted, τ is a {Ft}-stopping time,

E[

∫ t∧τ

0

ψ(X(s))ds] <∞, t ≥ 0, (2.6)

and for each f ∈ D(A),

f(X(t ∧ τ))− f(X(0))−
∫ t∧τ

0

Af(X(s))ds (2.7)

is an {Ft}-martingale.
A measurable, S-valued process X is a solution of the local-martingale problem for A,

if there exists a filtration {Ft} such that X is {Ft}-adapted and a sequence {τn} of {Ft}-
stopping times such that τn → ∞ a.s. and for each n, (X, τn) is a solution of the stopped
martingale problem for A using the filtration {Ft}.

Remark 2.4 Note that (2.4) ensures the integrability of (2.5) and similarly for the forward
equation (2.8). Furthermore, if M f (t) denotes the process in (2.5), then (2.4) together with
Condition 2.1(iii) imply that M f is a martingale if and only if it is a local martingale, since

sup
s∈[0,t]

|M f (s)| ≤ 2‖f‖+

∫ t

0

ψ(X(s))ds

has finite expectation for all t ≥ 0.
If X is a solution of the local martingale problem for A, then the localizing sequence {τn}

can be taken to be predictable. In particular, we can take

τn = inf{t :

∫ t

0

ψ(X(s))ds ≥ n}.

Definition 2.5 Uniqueness holds for the (local) martingale problem for (A, ν0) if and only
if all solutions have the same finite-dimensional distributions. Stopped uniqueness holds if
for any two solutions, (X1, τ1), (X2, τ2), of the stopped martingale problem for (A, ν0), there

exists a stochastic process X̃ and nonnegative random variables τ̃1, τ̃2 such that (X̃, τ̃1∨τ̃2) is a

solution of the stopped martingale problem for (A, ν0), (X̃(·∧τ̃1), τ̃1) has the same distribution

as (X1(· ∧ τ1), τ1), and (X̃(· ∧ τ̃2), τ̃2) has the same distribution as (X2(· ∧ τ2), τ2).
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Remark 2.6 Note that stopped uniqueness implies uniqueness. Stopped uniqueness holds
if uniqueness holds and every solution of the stopped martingale problem can be extended
(beyond the stopping time) to a solution of the (local) martingale problem. (See Lemma
4.5.16 of Ethier and Kurtz (1986) for conditions under which this extension can be done.)

Definition 2.7 A P(S)-valued function {νt, t ≥ 0} is a solution of the forward equation
for A if for each t > 0,

∫ t

0
νsψds <∞ and for each f ∈ D(A),

νtf = ν0f +

∫ t

0

νsAfds. (2.8)

A pair of measure-valued functions {(ν0
t , ν

1
t ), t ≥ 0} is a solution of the stopped forward

equation for A if for each t ≥ 0, νt ≡ ν0
t + ν1

t ∈ P(S) and
∫ t

0
ν1

sψds < ∞, t → ν0
t (C) is

nondecreasing for all C ∈ B(S), and for each f ∈ D(A),

νtf = ν0f +

∫ t

0

ν1
sAfds. (2.9)

A P(S)-valued function {νt, t ≥ 0} is a solution of the local forward equation for A if
there exists a sequence {(ν0,n, ν1,n)} of solutions of the stopped forward equation for A such
that for each C ∈ B(S) and t ≥ 0, {ν1,n

t (C)} is nondecreasing and limn→∞ ν1,n
t (C) = νt(C).

Clearly, any solution X of the martingale problem for A gives a solution of the for-
ward equation for A, that is νtf = E[f(X(t)], and any solution of the stopped mar-
tingale problem for A gives a solution of the stopped forward equation for A, that is,
ν0

t f = E[1[τ,∞)(t)f(X(τ))] and ν1
t f = E[1[0,τ)(t)f(X(t))]. The primary consequence of Con-

dition 2.1 is the converse.

Lemma 2.8 If A satisfies Condition 2.1 and {νt, t ≥ 0} is a solution of the forward equation
for A, then there exists a solution X of the martingale problem for A satisfying νtf =
E[f(X(t))].

If A satisfies Condition 2.1 and {(ν0
t , ν

1
t ), t ≥ 0} is a solution of the stopped forward

equation for A, then there exists a solution (X, τ) of the stopped martingale problem for A
such that ν0

t f = E[1[τ,∞)(t)f(X(τ))] and ν1
t f = E[1[0,τ)(t)f(X(t))].

If A satisfies Condition 2.1 and {νt, t ≥ 0} is a solution of the local forward equation
for A, then there exists a solution X of the local martingale problem for A satisfying νtf =
E[f(X(t)].

Proof. Various forms of the first part of this result exist in the literature beginning with
the result of Echeverŕıa (1982) for the stationary case, that is, νt ≡ ν0 and ν0Af = 0.
Extension of Echeverria’s result to the forward equation is given in Theorem 4.9.19 of Ethier
and Kurtz (1986) for locally compact spaces and in Theorem 3.1 of Bhatt and Karandikar
(1993) for general complete separable metric spaces. The version given here is a special case
of Corollary 1.12 of Kurtz and Stockbridge (2001).

The the result for stopped forward equations also follows by the same corollary. First
enlarge the state space S̃ = S×{0, 1} and define ν̃th = ν0

t h(·, 0) + ν1
t h(·, 1). Setting D(Ã) =
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{f(x)g(y) : f ∈ D(A), g ∈ B({0, 1})}, for h = fg ∈ D(Ã), define Ãh(x, y) = yAh(x, y) =
yg(y)Af(x) and Bh(x, y) = y(h(x, 0)− h(x, y)). Then

0 = ν0
t h(·, 1) + ν1

t h(·, 1)− ν0
0h(·, 1)− ν1

0h(·, 1)−
∫ t

0

ν̃sÃhds

= ν̃th− ν̃0h−
∫ t

0

ν̃sÃhds+ ν0
t h(·, 1)− ν0

t h(·, 0) + ν0
0h(·, 1)− ν0

0h(·, 0)

= ν̃th− ν̃0h−
∫ t

0

ν̃sÃhds−
∫

S×{0,1}×[0,t]

Bh(x, y)µ(dx× dy × ds),

where, noting that ν0
t (C) is an increasing function of t, µ is the measure determined by

µ(C × {1} × [0, t2]) = ν0
t2

(C)− ν0
0(C), µ(C × {0} × [t1, t2]) = 0.

Corollary 1.12 of Kurtz and Stockbridge (2001) then implies the existence of a process (X̃, Y )

in (S× {0, 1}) such that ν0
t f = E[(1− Y (t))f(X̃(t))], ν1

t f = E[Y (t)f(X̃(t))], and

f(X̃(t))− f(X̃(0))−
∫ t

0

Y (s)Af(X̃(s))ds

is a martingale for each f ∈ D(A). Following the arguments in Section 2 of Kurtz and
Stockbridge (2001), the process can be constructed in such a way that Y (s) = 0 implies

Y (t) = 0 for t > s, and hence τ = inf{t : Y (t) = 0}. Note that X̃(t) = X̃(τ) for t ≥ τ .
Similarly, suppose {(ν0,n, ν1,n)} is the sequence of solutions of the stopped forward equa-

tion associated with a solution of the local forward equation and take (ν0,0
t , ν1,0

t ) ≡ (ν0, 0).
For f ∈ B(S× Z+), define

ν̂tf =
∞∑

n=1

(ν1,n
t f(·, n)− ν1,n−1

t f(·, n))

and ∫
S×Z+×[0,t]

f(x, n)µ̂(dx× dn× ds) =
∞∑

n=1

ν0,n
t f(·, n).

Note that ν̂t is a probability measure with S-marginal νt = limn→∞ ν1,n
t .

Setting
D(Ã) = D(B) = {gf : g ∈ Cc(Z+), f ∈ D(A)}

(where, of course, Cc(Z+) is the collection of functions with finite support) and defining

Ãgf(x, n) = g(n)Af(x) and Bgf(x, n) = f(x)(g(n+ 1)− g(n)),

ν̂tgf = ν̂0gf +

∫ t

0

ν̂sÃgfds+

∫
S×Z+×[0,t]

Bgfdµ̂.

Let 0 < ψ0(n) < 1 satisfy ∑
n

ψ0(n)

∫ n

0

ν1,n
s ψds <∞.
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Then Ã satisfies Condition (2.1) with ψ replaced by ψ̃(x, n) = ψ(x)ψ0(n), and∫ t

0

ν̂sψ̃ds <∞, t > 0.

Corollary 1.12 of Kurtz and Stockbridge (2001) then implies the existence of a process (X,N)
such that (X(t), N(t)) has distribution ν̂t and a random measure Γ on S × Z+ × [0,∞)
satisfying

E[

∫
S×Z+×[0,t]

f(x, n)Γ(dx× dn× ds)] =

∫
S×Z+×[0,t]

f(x, n)µ̂(dx× dn× ds)

such that for each gf ∈ D(Ã),

g(N(t))f(X(t))−
∫ t

0

g(N(s))Af(X(s))ds−
∫

S×Z+×[0,t]

f(x)Bg(n)Γ(dx× dn× ds) (2.10)

is a {FX,N
t }-martingale.

Let τk = inf{t :
∫ t

0
ψ(X(s))ds ≥ k}. Let gm(n) = 1[0,m](n), and consider the limit of the

sequence of martingales

gm(N(t ∧ τk))f(X(t ∧ τk))−
∫ t∧τk

0

gm(N(s))Af(X(s))ds (2.11)

−
∫

S×Z+×[0,t∧τk]

f(x)Bgm(n)Γ(dx× dn× ds)

as m→∞. The first two terms converge in L1 by the dominated convergence theorem, and
the third term satisfies

E[|
∫

S×Z+×[0,t∧τk]

f(x)Bgm(n)Γ(dx× dn× ds)|] ≤ ‖f‖µ̂(S× {m} × [0, t])

= ‖f‖ν0,m
t (S)

and hence converges to zero in L1. It follows that

f(X(t ∧ τk))−
∫ t∧τk

0

Af(X(s))ds

is a martingale, and consequently, X is a solution of the local martingale problem for A such
that X(t) has distribution νt. �

Let X be a solution of the martingale problem for A with respect to a filtration {Ft},
and let {Gt} be a filtration with Gt ⊂ Ft. Then letting πt denote the conditional distribution
of X(t) given Gt, Lemma A.1 implies that for each f ∈ D(A),

πtf − π0f −
∫ t

0

πsAfds (2.12)
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is a {Gt}-martingale.
Let S0 and S0 be complete, separable metric spaces, and let γ : S → S0 be Borel measur-

able. Let X be a solution of the martingale problem for A, and let Z be a S0-valued random
variable. Assume that Ft ⊃ σ(Z) for all t ≥ 0. Define Y (t) = γ(X(t)),

F̂Y
t = completion of σ(

∫ r

0

g(Y (s))ds : r ≤ t, g ∈ B(S0)) ∨ σ(Y (0), (2.13)

F̂Y,Z
t = F̂Y

t ∨ σ(Z), πt(C) = P{X(t) ∈ C|F̂Y,Z
t }, where by Theorem A.3 of Kurtz (1998),

we can assume that π is a progressively measurable, P(S)-valued process and πt∧τ (C) =

P{X(t ∧ τ) ∈ C|F̂Y,Z
t∧τ } for every {F̂Y,Z

t }-stopping time τ .

Remark 2.9 If Y is cadlag with no fixed points of discontinuity, then by Lemma A.5, FY
t =

F̂Y
t .

Note that ∫ t

0

πs(g ◦ γ)ds =

∫ t

0

g(Y (s))ds, for each g ∈ B(S0), (2.14)

and if (2.4) holds,

πtf −
∫ t

0

πsAfds

is a {F̂Y,Z
t }-martingale for each f ∈ D(A). With these properties in mind, we work with a

definition of the filtered martingale problem slightly more general than that of Kurtz (1998).

Definition 2.10 Let µ̂0 ∈ P(S× S0). (Ỹ , π̃, Z̃, τ̃) ∈MS0 [0,∞)×MP(S)[0,∞)× S0 × [0,∞]
is a solution of the stopped, filtered martingale problem for (A, γ, µ̂0), if

E[π̃0(C)1D(Z̃)] = µ̂0(C ×D), (2.15)

π̃ is {F̂ eY eZ
t }-adapted, τ̃ is a {F̂ eY , eZ

t }-stopping time, for each g ∈ B(S0) and t ≥ 0,∫ t

0

π̃s(g ◦ γ)ds =

∫ t

0

g(Ỹ (s))ds , (2.16)

E[

∫ t∧eτ
0

π̃sψds] <∞, t > 0, (2.17)

and for each f ∈ D(A),

M̃f (t ∧ τ̃) ≡ π̃t∧eτf −
∫ t∧eτ

0

π̃sAfds (2.18)

is a {F̂ eY eZ
t }-martingale.

If (Ỹ , π̃, Z̃, τ̃) satisfies all the conditions except (2.15), we will refer to it as a solution of
the stopped, filtered martingale problem for (A, γ).

If τ̃ = ∞ a.s., then (Ỹ , π̃, Z̃) is a solution of the filtered martingale problem for (A, γ).

(Ỹ , π̃, Z̃) ∈ MS0 [0,∞) ×MP(S)[0,∞) × S0 is a solution of the filtered local-martingale

problem for (A, γ) if there exists a sequence {τ̃n} of {F̂ eY , eZ
t }-stopping times such that τ̃n →∞

a.s. and for each n, (Ỹ , π̃, Z̃, τ̃n) is a solution of the stopped, filtered martingale problem for
(A, γ).
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Remark 2.11 By the optional projection theorem (see Theorem A.3 of Kurtz (1998)), there

exists a modification of π̃ such that for all t ≥ 0 and all {F̂ eY , eZ
t }-stopping times τ , π̃t∧τ is

F̂ eY , eZ
t∧τ -measurable. Consequently, we will assume that π̃ has this property.

Remark 2.12 Kurtz and Ocone (1988) consider the filtered martingale problem with S =
S1 × S0 and γ the projection onto S0.

The following lemma is an immediate consequence of (2.16).

Lemma 2.13 If (Ỹ , π̃, Z̃, τ̃) is a solution of the stopped, filtered martingale problem for

(A, γ, µ̂0), then F̂ eY
t is contained in the completion of σ(π̃s, s ≤ t) ∨ σ(Ỹ (0)).

If X is a solution of the martingale problem for A, then X(r) given by X(r)(t) = X(r+ t)
is also a solution of the martingale problem for A. The following lemma gives the analogous
result for filtered martingale problems. Let Ỹr denote the restriction of Ỹ to [0, r].

Lemma 2.14 Suppose (Ỹ , π̃, Z̃, τ̃) ∈ MS0 [0,∞) ×MP(S)[0,∞) × S0 × [0,∞] is a solution

of the stopped, filtered martingale problem for (A, γ). For r ≥ 0 such that Ỹ (r) is F̂ eY , eZ
r -

measurable, let Ŷ (t) = Ỹ (r + t), Ẑ = (Z̃, Ỹr) ∈ S0 ×M [0, r], and π̂t = π̃r+t. Then

(Ŷ , π̂, Ẑ, (τ̃ − r) ∨ 0) ∈MS0 [0,∞)×MP(S)[0,∞)× S0 ×M [0, r]× [0,∞]

is a solution of the stopped, filtered martingale problem for (A, γ).

Suppose τ̃ = ∞, a.s. (that is, (Ỹ , π̃, Z̃) is a solution of the filtered martingale problem

for (A, γ)). For r ≥ 0 such that Ỹ (r) is F̂ eY , eZ
r -measurable, let Ŷ (t) = Y (r+ t), Ẑ = π̃r = π̂0,

and
π̂t = E[π̃r+t|F̂

bY
t ∨ σ(Y (r)) ∨ σ(π̃r)].

Then (Ŷ , π̂, Ẑ) ∈ MS0 [0,∞) × MP(S)[0,∞) × P(S) is a solution of the filtered martingale
problem for (A, γ).

Proof. In the second part of the lemma, the existence of π̂ as an adapted, P(S)-valued
process follows by Theorem A.3 of Kurtz (1998) and

E[

∫ t

0

π̂sψds] = E[

∫ r+t

r

π̃sψds] <∞.

In both parts, the required martingale properties follow by Lemma A.1. �

3 Conditional distributions and solutions of martingale

problems

Of course, the forward equation is a special case of (2.12) in which the “martingale” is
identically zero. Consequently, the following proposition can be viewed as an extension of
Lemma 2.8.
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Proposition 3.1 Let A satisfy Condition 2.1. Suppose that Ỹ is a cadlag, S0-valued process
with no fixed points of discontinuity, {π̃t, t ≥ 0} is a P(S)-valued process, adapted to {F eY

t },∫ t

0
π̃sψds <∞ a.s., t ≥ 0, and

π̃tf − π̃0f −
∫ t

0

π̃sAfds (3.1)

is a {F eY
t }-local-martingale for each f ∈ D(A). Then there exist a solution X of the local

martingale problem for A, a cadlag, S0-valued process Y , and a P(S)-valued process {πt, t ≥
0} such that (Y, π) has the same finite-dimensional distributions as (Ỹ , π̃) and πt is the
conditional distribution of X(t) given FY

t .
For each t ≥ 0, there exists a Borel measurable mapping Ht : DS0 [0,∞) → P(S) such

that πt = Ht(Y ) and π̃t = Ht(Ỹ ) almost surely.

Proof. As in Kurtz (1998), we begin by enlarging the state space so that the current

state of the process contains all information about the past of the observation Ỹ . Let
{bk}, {ck} ⊂ Cb(S0) satisfy 0 ≤ bk, ck ≤ 1, and suppose that the spans of {bk} and {ck} are
bounded, pointwise dense in B(S0). (Existence of {bk} and {ck} follows from the separability
of S0.) Let a1, a2, . . . be an ordering of the rationals with ai ≥ 1. For k, i ≥ 1, let

Ũki(t) = ck(Ỹ (0))− ai

∫ t

0

Ũki(s)ds+

∫ t

0

bk(Ỹ (s))ds (3.2)

= ck(Ỹ (0))e−ait +

∫ t

0

e−ai(t−s)bk(Ỹ (s))ds.

If we assume c1 = 1 and b1 = 0, Ũ1i(t) = e−ait and Ũ1i(t) determines the value of t. Let

Ũ(t) = (Ũki(t) : k, i ≥ 1) ∈ [0, 1]∞.
Define F : (r, y) ∈ [0,∞)×DS0 [0,∞) → u ∈ [0, 1]∞ by

uki(r, y) = ck(y(0))e−air +

∫ r

0

e−ai(r−s)bk(y(s))ds,

so Ũ(t) = F (t, Ỹ ). Properties of Laplace transforms and the assumption that Ỹ has no fixed
points of discontinuity imply that there are measurable mappings Λ : [0, 1]∞ → DS0 [0,∞)

and Λ0 : [0, 1]∞ → S0 such that Λ(Ũ(t)) = Ỹ (· ∧ t) and Λ0(Ũ(t)) = Ỹ (t) almost surely. We
can define Λ so that if u1,i = e−ait, then y = Λ(u) satisfies y(s) = y(t−) for s ≥ t. Note that
these observations imply that

the completion of σ(Ũ(t)) = F̂ eY
t = F eY

t ,

where the second equality follows by Lemma A.5.
Let Ŝ = S× [0, 1]∞, and let D(Â) be the collection of functions on Ŝ given by

{f(x)
m∏

k,i=1

gki(uki) : f ∈ D(A), gki ∈ C1[0, 1],m = 1, 2, . . .}.
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Writing g(u) instead of
∏

ki gki(uki) and denoting the partial derivative with respect to uki

by ∂kig, for fg ∈ D(Â),

π̃tfg(Ũ(t))− π̃0fg(Ũ(0))

−
∫ t

0

(
g(Ũ(s))π̃sAf + π̃sf

∑
(−aiŨki(s) + bk(Ỹ (s)))∂kig(Ũ(s))

)
ds

is a {F eY
t }-local-martingale. Note that without loss of generality, we can take the localizing

sequence to be τ̃n = inf{t :
∫ t

0
π̃sψds ≥ n}.

Define
Â1(fg)(x, u, z) = g(u)Af(x) + f(x)

∑
(−aiu+ bk(z))∂kig(u),

and

Â(fg)(x, u) =

∫
Â1(fg)(x, u, z)η(x, u, dz), (3.3)

where, with reference to (2.1) and the definition of Λ0, we define η(x, u, dz) = δΛ0(u)(dz).

Define ν̃0,n
t , ν̃1,n

t ∈M(S× [0, 1]∞) by

ν̃0,n
t h = E[1[eτn,∞)(t)

∫
S
h(z, Ũ(τ̃n))π̃eτn(dz)]

ν̃1,n
t h = E[1[0,eτn)(t)

∫
S
h(z, Ũ(t))π̃t(dz)] .

Setting ν̃n
t = ν̃0,n

t + ν̃1,n
t , for fg ∈ D(Â),

ν̃n
t (fg) = E[π̃t∧eτnfg(Ũ(t ∧ τ̃n))]

= E[π̃0fg(Ũ(0))]

+E[
∫ t∧eτn

0

(
g(Ũ(s))π̃sAf + π̃sf

∑
(−aiŨki(s) + bk(Ỹ (s)))∂kig(Ũ(s))

)
ds]

= ν̃0(fg) +
∫ t

0
ν̃1,n

s Â(fg)ds.

Consequently, (ν̃0,n, ν̃1,n) is a solution of the stopped forward equation for Â, and ν̃ =
limn→∞ ν̃1,n is a solution of the local forward equation. By Lemma 2.8, there exists a solution
(X,U) of the local martingale problem for Â, such that

E[f(X(t))
m∏

k,i=1

gki(Uki(t))] = ν̃t(f
m∏

k,i=1

gki) (3.4)

= E[π̃tf

m∏
k,i=1

gki(Ũki(t))] .

It follows that for each t, U(t) and Ũ(t) have the same distribution. If we define Y (· ∧ t) =

Λ(U(t)), Y (· ∧ t) and Ỹ (· ∧ t) have the same distribution on DS0 [0,∞).
Define πt as the conditional distribution of X(t) given FY

t . Then, for any bounded
measurable function g on [0, 1]∞

E[f(X(t))g(U(t)] = E[πtfg(U(t))] (3.5)

= E[π̃tfg(Ũ(t))] .
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Since FY
t is the completion of σ(U(t)) and F eY

t is the completion of σ(Ũ(t)), for every t,

there exist mappings Gt, G̃t : [0, 1]∞ → P(S) such that πt = Gt(U(t)) a.s. and π̃t = G̃t(Ũ(t))
a.s. By (3.4),

E[Gt(U(t))fh(U(t))] = E[G̃t(Ũ(t))fh(Ũ(t))] (3.6)

= E[G̃t(U(t))fh(U(t))]

for all h ∈ B(S0 × [0, 1]∞), where the last equality follows from the fact that U(t) and Ũ(t)

have the same distribution. Applying (3.6) with h = Gt(·)f and with h = G̃t(·)f , we have

E[Gt(U(t))fG̃t(U(t))f ] = E[
(
G̃t(U(t))f)

)2

] = E[(Gt(U(t))f))2],

and it follows that

E[
(
Gt(U(t))f − G̃t(U(t))f

)2

] = 0 .

Consequently, π̃tf = Gt(Ũ(t))f a.s., and hence (πt, U(t)) has the same distribution as

(π̃t, Ũ(t)).

Since U(t) (Ũ(t)) determines U(s) (Ũ(s)) for s < t, U and Ũ have the same distribution on

C[0,1]∞ [0,∞). Consequently, (π, Y ) and (π̃, Ỹ ) have the same finite-dimensional distributions.
The mapping Ht is given by Ht(y) ≡ Gt(F (t, y)). �

Corollary 3.2 Let A satisfy Condition 2.1. Suppose that {π̃t, t ≥ 0} is a cadlag, P(S)-

valued process with no fixed points of discontinuity adapted to a complete filtration {G̃t} such
that

∫ t

0
π̃sψds <∞ a.s., t ≥ 0, and

π̃tf − π̃0f −
∫ t

0

π̃sAfds

is a {G̃t}-local martingale for each f ∈ D(A). Then there exists a solution X of the local
martingale problem for A, a P(S)-valued process {πt, t ≥ 0} such that {πt, t ≥ 0} has
the same distribution as {π̃t, t ≥ 0}, and a filtration {Gt} such that πt is the conditional
distribution of X(t) given Gt.

Proof. The corollary follows by taking Ỹ (t) = π̃t and applying Proposition 3.1. �

The next corollary extends Corollary 3.5 of Kurtz (1998).

Corollary 3.3 Let A satisfy Condition 2.1. Let γ : S → S0 be Borel measurable, and let
α be a transition function from S0 into S (y ∈ S0 → α(y, ·) ∈ P(S) is Borel measurable)

satisfying α(y, γ−1(y)) = 1. Assume that ψ̃(y) ≡
∫

S ψ(z)α(y, dz) < ∞ for each y ∈ S0 and
define

C = {(
∫

S
f(z)α(·, dz),

∫
S
Af(z)α(·, dz)) : f ∈ D(A)} .

Let µ0 ∈ P(S0), and define ν0 =
∫
α(y, ·)µ0(dy).
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a) If Ỹ is a solution of the local-martingale problem for (C, µ0) satisfying
∫ t

0
ψ̃(Ỹ (s))ds <

∞ a.s., then there exists a solution X of the local-martingale problem for (A, ν0) such

that Ỹ has the same distribution on MS0 [0,∞) as Y = γ ◦X. If Y and Ỹ are cadlag,

then Y and Ỹ have the same distribution on DS0 [0,∞).

b) If Y (t) is F̂Y
t -measurable (which by Lemma A.4 holds for almost every t), then α(Y (t), ·)

is the conditional distribution of X(t) given F̂Y
t .

c) If, in addition, uniqueness holds for the martingale problem for (A, ν0), then uniqueness

holds for the MS0 [0,∞)-martingale problem for (C, µ0). If Ỹ has sample paths in
DS0 [0,∞), then uniqueness holds for the DS0 [0,∞)-martingale problem for (C, µ0).

d) If uniqueness holds for the martingale problem for (A, ν0), then Y restricted to TY =

{t : Y (t) is F̂Y
t -measurable} is a Markov process.

Proof. We are not assuming that Ỹ is cadlag, so to apply Proposition 3.1, replace Ỹ by the
continuous process Ũ given by (3.2). Observing that F eU

t = F̂ eY
t , define

π̃t = E[α(Ỹ (t), ·)|F eU
t ] = E[α(Ỹ (t), ·)|F̂ eY

t ],

and note that π̃t = α(Y (t), ·) for t ∈ T
eY . Then

π̃tf − π̃0f −
∫ t

0

π̃sAfds = π̃tf − αf(Ỹ (0))−
∫ t

0

αAf(Ỹ (s))ds

is a {F eU
t }-local martingale for each f ∈ D(A) and Proposition 3.1 gives the existence of the

processes X and U such that X is a solution of the local-martingale problem for A and πt,
the conditional distribution of X(t) given FU

t has the distribution as π̃t. Consequently, for
almost every t, πt = α(γ(X(t)), ·) and it follows that Y = γ ◦X has the same distribution

on MS0 [0,∞) as Ỹ .
Since the finite-dimensional distributions of X are uniquely determined, the distribution

of γ ◦ X (and hence of Ỹ ) on MS0 [0,∞) is uniquely determined. If Ỹ has sample paths in
DS0 [0,∞), then its distribution on DS0 [0,∞) is determined by its distribution on MS0 [0,∞).

Since X is the unique solution of a martingale problem, by Lemma A.13, it is Markov.
The Markov property for Y for t ∈ TY follows from the Markov property for X by

E[f(Y (t+ s))|F̂Y
t ] = E[E[f(γ(X(t+ s)))|FX

t ]|F̂Y
t ]

= E[hf,t,s(X(t))|F̂Y
t ]

=

∫
S
hf,t,s(x)α(Y (t), dx).

�

We will also need a stopped version of Proposition 3.1.
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Proposition 3.4 Let A satisfy Condition 2.1. Suppose that Ỹ is a cadlag, S0-valued process
with no fixed points of discontinuity, τ̃ is a {F eY

t }-stopping time, {π̃t, t ≥ 0} is a P(S)-valued

process, adapted to {F eY
t },

∫ t∧τ

0
π̃sψds <∞ a.s., t ≥ 0, and

π̃t∧eτf − π̃0f −
∫ t∧eτ

0

π̃sAfds (3.7)

is a {F eY
t }-martingale for each f ∈ D(A). Then there exist a solution (X, τ) of the stopped

martingale problem for A, a cadlag, S0-valued process Y , and a P(S)-valued process {πt, t ≥
0} such that {(Y (t ∧ τ), πt1{τ≥t}), t ≥ 0} has the same distribution as {(Ỹ (· ∧ τ̃), π̃t1{eτ≥t})
and πt∧τ is the conditional distribution of X(t) given FY

t∧τ .

Proof. With Â and Ũ defined as in the proof or Proposition 3.1,

ν̃0
t h = E[1[eτ,∞)(t)

∫
S
h(z, Ũ(τ̃))π̃eτ (dz)]

ν̃1
t h = E[1[0,eτ)(t)

∫
S
h(z, Ũ(t))π̃t(dz)]

defines a solution of the stopped martingale problem for Â. Lemma 2.8 ensures the existence
of a solution (X,U, τ) of the stopped martingale problem for Â such that

E[f(X(t ∧ τ))g(U(t ∧ τ))] = E[π̃t∧eτfg(Ũ(t ∧ τ̃))].

Then for t ≥ 0, U(t ∧ τ) has the same distribution as Ũ(t ∧ τ̃) and hence

Y (· ∧ τ) = lim
t→∞

Y (· ∧ t ∧ τ) ≡ lim
t→∞

Λ(U(t ∧ τ))

has the same distribution as Ỹ (· ∧ τ̃). With reference to Section A.3,

E[f(X(t ∧ τ))|σ(U(t ∧ τ))] = E[f(X(t ∧ τ))|GY
t∧τ ]

has the same distribution as

E[π̃t∧eτf |σ(Ũ(t ∧ τ̃))] = E[π̃t∧eτf |G eY
t∧eτ ],

and by Lemma A.10, π̃t1{eτ≥t} has the same distribution as πt1{τ≥t}, where πt is the condi-
tional distribution of X(t ∧ τ) given FY

t∧τ . �

The only place that Condition 2.1 is used in the proof of Proposition 3.1 is to conclude
that every solution of the local forward equation for Â defined in (3.3) corresponds to a

solution of the local martingale problem. For the filtered martingale problem, Â can be
given explicitly by

Â(fg)(x, u) = g(u)Af(x) + f(x)
∑

(−aiu+ bk ◦ γ(x))∂kig(u), (3.8)

Consequently, we state the next result under the following hypothesis.
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Condition 3.5 For Â defined by (3.8), each solution of the local forward equation for Â

corresponds to a solution of the local martingale problem for Â.

We have the following generalization of Theorem 3.2 of Kurtz (1998).

Theorem 3.6 Let A ⊂ B(S)×M(S), µ̂0 ∈ P(S× S0), and γ : S → S0 be Borel measurable,

and assume Condition 3.5. Let (Ỹ , π̃, Z̃) be a solution of the local filtered martingale problem
for (A, γ, µ̂0). Then the following hold:

a) There exists a solution X of the local-martingale problem for A and an S0-valued ran-
dom variable Z such that (X(0), Z) has distribution µ̂0 and Y = γ ◦ X has the same

distribution on MS0 [0,∞) as Ỹ .

b) Let πt be the conditional distribution of X(t) given F̂Y,Z
t . For each t ≥ 0, there exists

a Borel measurable mapping Ht : MS0 [0,∞)× S0 → P(S) such that πt = Ht(Y, Z) and

π̃t = Ht(Ỹ , Z̃).

c) If Y and Ỹ have sample paths in DS0 [0,∞), then Y and Ỹ have the same distribution
on DS0 [0,∞) and Ht is a Borel measurable mapping from DS0 [0,∞)× S0 to P(S).

d) If uniqueness holds for the local martingale problem for (A, ν0), then uniqueness holds
for the filtered local-martingale problem for (A, γ, µ̂0) in the sense that if (Y, π, Z) and

(Ỹ , π̃, Z̃) are solutions, then for each 0 ≤ t1 < · · · < tm, (πt1 , . . . , πtm , Y, Z) and

(π̃t1 , . . . , π̃tm , Ỹ , Z̃) have the same distribution on P(S)m ×MS0 [0,∞)× S0.

Remark 3.7 Note that the theorem does not assume that γ is continuous.

Proof. In the definition of Ũ in (3.2), replace ck(Ỹ (0)) by ck(Ỹ (0), Z̃). Note that for a.e. t,

f1(Ỹ (t ∧ τ̃))π̃t∧eτf2 = π̃t∧eτ (f2f1 ◦ γ) a.s. (3.9)

(First consider f1 = 1C , C ∈ B(S0).)
With ν̃n,0

t and ν̃n,1
t defined as before,

ν̃n
t (fg) = E[π̃t∧eτnfg(Ũ(t ∧ τ̃n))]

= E[π̃0fg(Ũ(0))]

+E[
∫ t∧eτn

0

(
g(Ũ(s))π̃sAf + π̃sf

∑
(−aiŨki(s) + bk(Ỹ (s)))∂kig(Ũ(s))

)
ds]

= E[π̃0fg(Ũ(0))]

+E[
∫ t∧eτn

0

(
g(Ũ(s))π̃sAf +

∑
(−aiŨki(s) + π̃s(fbk ◦ γ))∂kig(Ũ(s))

)
ds]

= ν̃0(fg) +
∫ t

0
ν̃1,n

s Â(fg)ds,

where the third equality follows from (3.9) and Â is defined in (3.8).

We are not assuming that Ỹ is cadlag, but we still conclude that the completion of

σ(Ũ(t)) is F̂ eY , eZ
t and there exist Λ : [0, 1]∞ →MS0 [0,∞)×S0 and Λ1 : [0, 1]∞ → S0 such that
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Λ(Ũ(t)) = (Ỹ (· ∧ t), Z̃) and Λ1(Ũ(0)) = Z̃. Condition 3.5 ensures the existence of a solution

(X,U) of the local martingale problem for Â such that U and Ũ have the same distribution,

Uki(t) = Uki(0)− ai

∫ t

0

Uki(s)ds+

∫ t

0

bk(Y (s))ds (3.10)

= Uki(0)e−ait +

∫ t

0

e−ai(t−s)bk(Y (s))ds,

and defining Z = Λ1(U(0)), Parts (a) and (b) hold.
Part (c) follows from the fact that the distribution of a cadlag process is determined by

its distribution on MS0 [0,∞).
Finally, for Part (d), uniqueness for the local martingale problem for (A, ν0) implies

uniqueness for the local martingale problem for (Â, ν̂0), where ν̂0h = E[π̃0h(·, Ũ(0))]. Unique-
ness of the distribution of (X,U) in Part (b) implies uniqueness of the distribution of

(Ỹ , π̃, Z̃). �

3.1 The Markov property

Uniqueness for martingale problems usually implies the Markov property for solutions, and
a similar result holds for filtered martingale problems.

Theorem 3.8 Let A ⊂ B(S)×M(S), µ̂0 ∈ P(S× S0), and γ : S → S0 be Borel measurable,

and assume Condition 3.5. Let (Ỹ , π̃, Z̃) be a solution of the filtered martingale problem for
(A, γ, µ̂0). (τ̃ = ∞.) If uniqueness holds for the martingale problem for (A, ν0), then π̃ is a
P(S)-valued Markov process.

Proof. Fix r ≥ 0, and let (Ŷ , π̂) be as in the second part of Lemma 2.14. Since π̂0 = π̃r,
they have the same distribution. By Lemma A.12, a process (Y ∗, π∗, Z∗) can be constructed

so that (Y ∗(r+ ·), π∗r+·, π∗r) has the same distribution on MS0×P(S)[0,∞)×P(S) as (Ŷ , π̂, π̂0),

(Y ∗(· ∧ r), π∗·∧r, Z
∗, π∗r) has the same distribution on MS0×P(S)[0, r] × S0 × P(S) as (Ỹ (· ∧

r), π̃·∧r, Z̃, π̃r), and

E[g(Y ∗(r + ·), π∗r+·)|Y ∗(· ∧ r), π∗·∧r, Z
∗, π∗r ] = E[g(Y ∗(r + ·), π∗r+·)|π∗r ]. (3.11)

We claim that (Y ∗, π∗, Z∗) is a solution of the filtered martingale problem for (A, γ, µ̂0).

(π∗0, Z
∗) has the same distribution as (π̃0, Z̃), so (2.15) holds. Since (Y ∗(· ∧ r), π∗·∧r) has

the same distribution as (Ỹ (· ∧ r), π̃·∧r), for g ∈ B(S0) and t ≤ r,∫ t

0

π∗s(g ◦ γ)ds =

∫ t

0

g(Y ∗(s))ds a.s.

For t > r, (
∫ t

r
π∗s(g◦γ)ds,

∫ t

r
g(Y ∗(s))ds) has the same distribution as (

∫ t−r

0
π̂s(g◦γ)ds,

∫ t−r

0
g(Ŷ (s))ds),

so
∫ t

r
π∗s(g ◦ γ)ds =

∫ t

r
g(Y ∗(s))ds a.s. Consequently, (2.16) follows.
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For f ∈ D(A), let M∗
f (t) = π∗t f −

∫ t

0
π∗sAfds. For r ≤ t < t + h, let H1 be a bounded

random variable measurable with respect to the completion of

σ(

∫ u

r

h(Y ∗(s))ds : r ≤ u ≤ t, h ∈ B(S0)) ∨ σ(π∗r)

and H2 a bounded random variable measurable with respect to F̂Y ∗,Z∗
r = F̂Y ∗

r ∨σ(Z∗). Then
by (3.11),

E[(M∗
f (t+ h)−M∗

f (t))H1H2] = E[(M∗
f (t+ h)−M∗

f (t))H1E[H2|π∗r ]],

and the right side is zero by the fact that (Y ∗(r+ ·), π∗r+·) has the same distribution as (Ŷ , π̂).
It follows that

E[M∗
f (t+ h)−M∗

f (t)|F̂Y ∗,Z∗

t ] = 0. (3.12)

If t < t+ h ≤ r, then (3.12) follows from the fact that (Y ∗(· ∧ r), π∗·∧r, Z
∗, π∗r) has the same

distribution as (Ỹ (· ∧ r), π̃·∧r, Z̃, π̃r), and for t < r < t+ h,

E[M∗
f (t+ h)−M∗

f (t)|F̂Y ∗,Z∗

t ] = E[M∗
f (t+ h)−M∗

f (r) +M∗
f (r)−M∗

f (t)|F̂Y ∗,Z∗

t ] = 0

verifying (2.18).

By uniqueness, (π∗, Y ∗, Z∗) and (π̃, Ỹ , Z̃) have the same distribution. Consequently,
(3.11) implies

E[g(Ỹ (r + ·), π̃r+·)|Ỹ (· ∧ r), π̃·∧r, Z̃, π̃r] = E[g(Ỹ (r + ·), π̃r+·)|π̃r],

giving the Markov property. �

In the classical setting, X = (X1, Y ) ∈ S1 × S0 and γ(X) = Y , πt = π1
t × δY (t), where

π1
t is the conditional distribution of X1(t) given FY

t . In the observations in additive white
noise setting, a number of authors (Kunita (1971); Bhatt, Budhiraja, and Karandikar (2000);
Stettner (1989)) have given conditions under which π1 is Markov. The following example
shows that the conclusion does not hold in general, and hence the Markov property for π1

does not immediately follow from Theorem 3.8.

Example 3.9 Let (X1, Y ) be the Markov process with values in {−1,+1}×N and generator

Af(x, y) = λ y[f(−x, y + 1)− f(x, y)] + µ[f(−x, y)− f(x, y)].

Given a pure jump Markov counting process (a Yule process) Y with intensity λY and an
independent Poisson process Z with intensity µ, the process (X1, Y ) can be represented by

X1(t) = (−1)Y (t)−Y (0)+Z(t)X1(0).

Then the conditional distribution of X1(t) given FY
t is

π1
t (dx) = 1E(Y (t)− Y (0))

(
αtδ+1(dx) + (1− αt)δ−1(dx)

)
+1O(Y (t)− Y (0))

(
(1− αt)δ+1(dx) + αtδ−1(dx)

)
,
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where E is the set of even integers, O the set of odd integers, and

αt =
1 + (2α0 − 1)e−2µt

2
,

where α0 = P{X1(0) = 1|Y (0)}.
If α0 = 1

2
, then αt = 1

2
and π1

t (dx) = 1
2
δ+1(dx) + 1

2
δ−1(dx), for all t ≥ 0, and π1 is

trivially Markov; however, if P{α0 6= 1
2
} > 0, in general π1 is not Markov. Assuming,

for example, that Y (0) = 1 and α0 = P{X1(0) = 1|Y (0)} = P{X1(0) = 1} 6= 1
2
, then

Fπ1

t ≡ σ(π1
s : s ≤ t) = FY

t (= F̂Y
t by Lemma A.5). Consequently, αt is deterministic and

π1
t f = g(t, Y (t)), with

g(t, y) = 1E(y − 1)
(
αtf(1) + (1− αt)f(−1)

)
+ 1O(y − 1)

(
(1− αt)f(1) + αtf(−1)

)
.

Taking into account that α′t = µ(1− 2αt) and that 1E(y − 1) = 1O(y), we have

∂

∂t
g(t, y) + λ y [g(t, y + 1)− g(t, y)] = (λ y + µ) (1− 2αt) [f(−1)− f(1)]

[
1E(y)− 1O(y)

]
,

and therefore

lim
h→0

h−1E[π1
t+hf − π1

t f |Fπ1

t ] = (λY (t) + µ)
(
1E(Y (t))− 1O(Y (t))

)
(1− 2αt)

[
f(−1)− f(1)

]
.

The right side is not just a function of π1
t , and it follows that π1 is not a Markov process.

Of course, there is additional structure in the classical example with

Y (t) = σW (t) +

∫ t

0

h(X1(s))ds, (3.13)

W a standard Brownian motion. With this example in mind, we have the following definition.

Definition 3.10 For S = S1×S0 with S0 = Rd and γ the projection of S onto S0, the filtered
martingale problem for (A, γ) has additive observations, if for each solution (Ỹ , π̃, Z̃), each
r ≥ 0, and each y ∈ Rd,

Ŷ (t) = Ỹ (r + t)− Ỹ (r) + y (3.14)

π̂1
t = E[π̃1

r+t|F̂
bY
t ∨ σ(π̃1

r)]

determines a solution (Ŷ , π̂1 × δbY , π̂1
0 × δy) of the filtered martingale problem for (A, γ).

Lemma 3.11 Let S = S1×S0 with S0 = Rd and γ be the projection of S onto S0, and suppose
that A satisfies Condition 2.1. Assume that every solution X = (X1, Y ) of the martingale
problem for A has a version such that Y is cadlag with no fixed points of discontinuity and
for each r ≥ 0 and y ∈ Rd, (X1(· + r), Y (· + r) − Y (r) + y) is a solution of the martingale
problem for A. Then the filtered martingale problem for (A, γ) has additive observations.
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Remark 3.12 If X1 is the solution of the martingale problem for a generator L satisfying
Condition 2.1 with S replaced by S1, ((aij)) = σσ> and

A[f1f2] = f2Lf1 + f1(
1

2

∑
i,j

aij∂i∂jf2 + h · ∇f2)

for f1 ∈ D(L) and f2 ∈ C2
c (Rd), that is, the S0 = Rd component satisfies (3.13) with W

independent of X1, then the hypotheses of the lemma are satisfied.

Proof. Suppose that (Ỹ , π̃, Z̃) is a solution of the filtered martingale problem for (A, γ, µ̂0).
Then there exists a solution X = (X1, Y ) of the martingale problem for A and a random
variable Z such that (X1(0), Y (0), Z) has distribution µ̂0, Y has the same distribution as

Ỹ , and for t ≥ 0, there exist Ht : MS0 [0,∞) × S0 → P(S) such that π̃t = Ht(Ỹ , Z̃) and

πt = π1
t × δY (t) = Ht(Y, Z) is the conditional distribution of X(t) given F̂Y,Z

t .

By assumption, (X̂1, Ŷ ) = (X1(·+ r), Y (·+ r)− Y (r) + y) is a solution of the martingale
problems for A. Consequently, defining π̂1 by

π̂1
t g = E[g(X1(r + t))|F bY

t ∨ σ(πr)] = E[π1
r+tg|F

bY
t ∨ σ(πr)],

(Ŷ , π̂1× δbY (·), πr) is a solution of the filtered martingale problem for (A, γ). Since (Ŷ , π) has

the same distribution as (Ỹ (·+ r)− Ỹ (r) + y, π̃), the filtered martingale problem for (A, γ)
has additive observations. �

Theorem 3.13 Let A ⊂ B(S) ×M(S) and γ : (x, y) ∈ S1 × Rd → y ∈ Rd, and assume
Condition 3.5. Suppose that the filtered martingale problem for (A, γ) has additive observa-

tions. Let (Ỹ , π̃1 × δeY , Z̃) be a solution of the filtered martingale problem for (A, γ, µ̂0). If
uniqueness holds for the martingale problem for (A, ν0), then π̃1 is a P(S1)-valued Markov
process.

Proof. As in the proof of Theorem 3.8, fix r ≥ 0, and let (Ŷ , π̂) be as in (3.14) with
y = 0. Since π̂1

0 = π̃r
1, they have the same distribution. By Lemma A.12, a process

(Y ∗, π1∗, Z∗) can be constructed so that (Y ∗(r+·)−Y ∗(r), π1∗
r+·, π

1∗
r ) has the same distribution

on MRd×P(S1)[0,∞)×P(S1) as (Ŷ , π̂1, π̂1
0), (Y ∗(· ∧ r), π1∗

·∧r, Z
∗, π1∗

r ) has the same distribution

on MRd×P(S1)[0, r]× S0 × P(S1) as (Ỹ (· ∧ r), π̃1
·∧r, Z̃, π̃

1
r), and

E[g(Y ∗(r + ·)− Y ∗(r), π1∗
r+·)|Y ∗(· ∧ r), π1∗

·∧r, Z
∗, π1∗

r ]

= E[g(Y ∗(r + ·)− Y ∗(r), π1∗
r+·)|π1∗

r ].

Employing the assumption of additive observations, the proof that (Y ∗, π∗, Z∗) is a solution
of the filtered martingale problem for (A, γ, µ̂0) and the proof of the Markov property are
essentially the same as before. �

Remark 3.14 Theorem 3.13 can be extended to processes in which S0 is a group and the
definition of Ŷ in (3.14) is replaced by Ŷ (t) = yỸ (r)−1Ỹ (r + t).
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4 Filtering equations

In the nonlinear filtering literature, a filtering equation is a collection of identities satisfied by
{πtf, f ∈ D} and the observation process Y for a set of test functions D. The set D should
be small enough to handle easily, but large enough to insure that the identities uniquely
determine π as a function of Y . Uniqueness means that if π̃ is another P(S)-valued process
adapted to {FY

t } and {π̃f, f ∈ D} and Y satisfy the identities, then π̃ = π.
The results of Section 3 can be exploited to prove uniqueness for a filtering equation

provided each solution of the filtering equation has the appropriate martingale properties.
Then, Proposition 3.1 ensures that

π̃t = Ht(Y ) = πt a.s. (4.1)

In practice, it frequently turns out that verifying that π̃ “has the appropriate martingale
properties” requires a change of measure, but since the new measure is equivalent to the
original measure, (4.1) still holds. In the next section, we illustrate this argument in the
classical setting of a signal in additive white noise.

4.1 Filtering equations for a signal in additive white noise

We consider the classical Markov model with additive white noise, in which

Y (t) = Y (0) +W (t) +

∫ t

0

h(X(s))ds, (4.2)

where W is a standard d-dimensional Brownian motion and h = (h1, · · · , hd)> is a Borel
function. Note that we are assuming S0 = Rd.

Condition 4.1 The process X is a cadlag process with values in S and is a solution of the
martingale problem for (A, ν0), where the operator A satisfies Condition 2.1 and uniqueness
holds for the stopped martingale problem for (A, ν0).

Note that we are not assuming the independence of X and W .
Define

Mf (t) := f(X(t))−
∫ t

0

Af(X(s)) ds, f ∈ D(A),

and assume that, for i = 1, · · · , d,

〈Mf ,Wi〉t =

∫ t

0

Cif(X(s), Y (s)) ds,

where Ci is an operator mapping D(A) into M(S0×Rd). We assume the following condition
on the Ci.

Condition 4.2 There exist a function ψ0(x, y) ≥ 1 and constants cf such that for each
i = 1, · · · , d and f ∈ D(A),

|Cif(x, y)| ≤ cfψ0(x, y). (4.3)
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Remark 4.3 Note that if f = 1, then Mf (t) = 1 and therefore

〈Mf ,Wi〉t = 0, t ≥ 0,

that is, Ci1 = 0.
In the uncorrelated case, that is, when X and W are independent, Cif = 0, for all

f ∈D(A).

Example 4.4 Let X be a diffusion process with values in Rm solving

dX(t) = b(X(t)) dt+ σ(X(t)) dW (t) + σ(X(t)) dW (t),

with W a Wiener process, independent of W . Then

Cif(x, y) =
m∑

j=1

∂jf(x)σj,i(x), f ∈ C2
c (Rm),

where ∂jf denotes the partial derivative of f with respect to the j-th component of x.

We assume the following integrability conditions.

Condition 4.5 For each t > 0,

E
[∫ t

0

(ψ(X(s)) + ψ0(X(s), Y (s)) + |h(X(s))|) ds
]
<∞, t ≥ 0, (4.4)

and ∫ t

0

(πsψ + (πsψ0(·, Y (s)))2 + (πs|h|)2)ds <∞ a.s. (4.5)

Under Condition 4.5, the innovation process Iπ(t) = Y (t)−Y (0)−
∫ t

0
πsh ds is a Brownian

motion. (Note that we are not assuming that E
[∫ t

0
|h(X(s))|2 ds

]
<∞. E

[∫
|h(X(s)|ds

]
<

∞ is sufficient to ensure that Iπ is a martingale.) For all f ∈ D(A), π satisfies

πtf = π0f +

∫ t

0

πsAf ds

+

∫ t

0

[πs(hf + Cf(·, Y (s))− πshπsf ] [dY (s)− πsh ds] ,

where Cf(x1, y) = (C1f(x1, y), · · · , Cpf(x1, y)), or equivalently,

πtf = π0f +

∫ t

0

πsAf ds+

∫ t

0

[πs(hf + Cf(·, Y (s))− πshπsf ] dIπ(s). (4.6)

Define the unnormalized filter for X as the M(S)-valued process

ρt(dx) := Zπ
t πt(dx), (4.7)
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where

Zπ
t := exp

{∫ t

0

πs(h) dY (s)− 1

2

∫ t

0

|πs(h)|2 ds
}
. (4.8)

By Itô’s formula, one can show that ρ satisfies the Duncan-Mortensen-Zakai unnormalized
filtering equation,

ρtf = π0f +

∫ t

0

ρsAf ds+

∫ t

0

ρs

(
hf + Cf(·, Y (s))

)
dY (s), ∀f ∈ D(A).

The following result, essentially Theorem 9.1 of Bhatt, Kallianpur, and Karandikar
(1995), extends Theorems 4.1 and 4.5 of Kurtz and Ocone (1988) and gives uniqueness
of the Kushner-Stratonovich and Fujisaki-Kallianpur-Kunita equations.

Theorem 4.6 Assume that Conditions 4.1, 4.2, and 4.5, are satisfied. Let {µt} be a {FY
t }-

adapted, cadlag P(S)-valued process satisfying∫ t

0

(µsψ + (µsψ0(·, Y (s)))2 + (µs|h|)2)ds <∞, a.s., (4.9)

and for f ∈ D(A),

µtf = π0f +

∫ t

0

µsAf ds

+

∫ t

0

[
µs

(
hf + Cf(·, Y (s))

)
− µshµsf

]
dIµ(s), (4.10)

where Iµ(t) = Y (t)−
∫ t

0
µsh ds. Then µt = πt, t ≥ 0, a.s.

Remark 4.7 There is a large literature on uniqueness for the filtering equations with varying
assumptions depending on the techniques used by the authors. Kurtz and Ocone (1988),
Bhatt, Kallianpur, and Karandikar (1995), Lucic and Heunis (2001), and Rozovskĭı (1991)
provide a reasonable sampling of results and methods. Our introduction and exploitation of
the filtered local-martingale problem allows us to avoid a number of assumptions that appear
in many of the earlier results. In particular, we do not assume that h is continuous. We only
require the first moment assumption E[

∫ t

0
|h(X1(s))|ds] < ∞ rather than a second moment

assumption. (Note that there is no expectation in (4.5) and (4.9).) There are no a priori
moment assumptions on the solution µ (only on the true conditional distribution).

Proof. If Iµ is a {FY
t }-local martingale, then

µtf − π0f −
∫ t

0

µsAf ds

is a {FY
t }-local martingale, and Proposition 3.1 implies that there exist a solution X∗ of the

local martingale problem for (A, ν0), a S0-valued process Y ∗, and a P(S)-valued process π∗

such that (π∗, Y ∗) and (µ, Y ) have the same distribution and π∗t is the conditional distribution
of X∗(t) given FY ∗

t . In addition, there exists Ht such that π∗t = Ht(Y
∗) and µt = Ht(Y ),
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and the assumption of uniqueness for the martingale problem for (A, ν0) ensures that µt =
Ht(Y ) = πt.

Unfortunately, it is not immediately clear that Iµ is a local martingale. However, since
Iπ(t) = Y (t)− Y (0)−

∫ t

0
πshds is a Brownian motion, if we define

ξ(t) = µth− πth,

τn = inf{t :

∫ t

0

(|ξ(s)|2 + |µsh|2)ds ≥ n},

and let Qn be the probability measure on Yn∧τn given by

dQn

dP
= exp{

∫ n∧τn

0

ξ(s)TdIπ(s)− 1

2

∫ n∧τn

0

|ξ(s)|2ds},

then under Qn,

Iµ(t ∧ τn) = Iπ(t ∧ τn)−
∫ t∧τn

0

ξ(s)ds,

is a martingale for 0 ≤ t ≤ n. Consequently, under Qn,

µt∧τnf − π0f −
∫ t∧τn

0

µsAf ds (4.11)

is a {FY
t }-martingale, and by Proposition 3.4 and uniqueness of the stopped martingale

problem for A,
µt1{n∧τn≥t} = Ht(Y )1{n∧τn≥t} = πt1{n∧τn≥t}.

It follows that Qn = P on FY
n∧τn

, n = 1, 2, . . . and hence by (4.9), τn →∞ a.s. and µt = πt

a.s. �

Corollary 4.8 Assume that Conditions 4.1, 4.2, and 4.5 are satisfied. Let {θt} be a {FY
t }-

adapted, cadlag M(S)-valued process satisfying∫ t

0

(θsψ + (θsψ0(·, Y (s)))2 + (θs|h|)2)ds <∞, a.s.,

such that for every f ∈ D(A),

θtf = π0f +

∫ t

0

θsAf ds+

∫ t

0

θs

(
hf + Cf(·, Y (s))

)
dY (s). (4.12)

Then θt = ρt a.s. for all t ≥ 0.

Proof. For ε > 0, define βε = inf{t > 0 : θt1 ≤ ε} and set

µt =
θt

θt1
and 0 ≤ t < β0 ≡ lim

ε→0
βε.

Then, by Itô’s formula, µ satisfies (4.10) on [0, β0). Defining τn and the appropriate change
of measure as in the proof of the previous theorem, it follows that under the new measure,
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(4.11), with τn replaced by τn∧βε is a martingale, and as before, µt1{τn∧βε≥t} = πt1{τn∧βε≥t}.
Letting n→∞, µt∧βε = πt∧βε .

Observe that, for t ≤ βε,

θt1 = 1 +

∫ t

0

θs1πshdY (s),

so

θt1 = Zπ
t = exp{

∫ t

0

πshdY (s)− 1

2

∫ t

0

|πsh|2ds}, t < β0.

Since for T > 0, inft≤T Zπ
t > 0, it follows that β0 = ∞ and hence

µt = πt and θt = θt1πt = ρt.

�

4.2 Related results on filtering equations

The filtered martingale problem was first introduced in Kurtz and Ocone (1988) in the
special case considered here, following a question raised by Giorgio Koch: For all f in the
domain of A, the process πtf −

∫ t

0
πsAf ds is a {FY

t }-martingale; can this observation be
used to study nonlinear filtering problems? Under the condition that the state space S is
locally compact, the results on the filtered martingale problem in Kurtz and Ocone (1988)
give uniqueness of Zakai and Kushner-Stratonovich equations in the natural class of {FY

t }-
adapted measure-valued processes. Stochastic equations relate known random inputs (in
our case Y ) to unknown random outputs (in our case, the conditional distribution π). Weak
uniqueness (or more precisely, joint uniqueness in law) says that the joint distribution of
the input and the output is uniquely determined by the distribution of the input. Strong or
pathwise uniqueness says that there is a unique, appropriately measurable transformation
that maps the input into the output. In our case, since the equations are derived to be
satisfied by the conditional distribution, existence of a transformation (Ht of Proposition 3.1
and Theorem 3.6) is immediate. Consequently, it follows by a generalization of a theorem
of Engelbert (1991) (see Kurtz (2007), Theorem 3.14) that weak and strong uniqueness are
equivalent.

The uniqueness results derived using the filtered martingale problem in Kurtz and Ocone
(1988) were extended in Bhatt, Kallianpur, and Karandikar (1995), in particular, eliminating
the local compactness assumption on the state space of the signal. Still in the framework
of signals observed in Gaussian white noise, Bhatt and Karandikar (1999) goes beyond the
classical Markov model with additive white noise and considers diffusive, non-Markovian
signal/observation systems. The systems solve stochastic differential equations with coeffi-
cients that may depend on the signal and on the whole past trajectory of the observation
process. Therefore, in particular, the signal need not be a Markov process. By enlarging the
observation space to a suitable space of continuous functions, such a system can be seen as
the solution of a martingale problem, and the filtered martingale problem approach can be
used.
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In Kallianpur and Mandal (2002) the signal is the solution of a stochastic delay-differential
equation, and the Wiener processes driving the signal and the observations are independent.
In this case the signal state space is enlarged to a suitable space of continuous functions, and
the system is seen as the solution of a martingale problem, and again the filtered martingale
problem approach can be used.

Filtering models with point process observations can also be analyzed using the fil-
tered martingale problem approach. In Kliemann, Koch, and Marchetti (1990), the sig-
nal/observation system is a Markov process, and the signal is a jump-diffusion process (not
necessarily Markovian by itself), while the observation process is a counting process, with
unbounded intensity. Strong uniqueness for the filtering equation is obtained in a class
of probability-valued processes characterized by a suitable second moment growth condi-
tion. In Ceci and Gerardi (2001a), the observation is still a counting process, while the
signal/observation system is a Markov jump process with values in S = Rd × N (see also
Ceci and Gerardi (2000), where the signal process itself is a jump Markov process); the weak
uniqueness of the Kushner-Stratonovich equation is obtained by the filtered martingale prob-
lem approach, while the pathwise uniqueness is obtained by a direct method. (Note that
the notion of weak solution considered in this paper places additional restrictions on the
solution beyond adaptedness and satisfying the identity. Consequently, the equivalence of
weak and strong solutions mentioned above does not hold in this context.) Uniqueness of
the filtered martingale problem has also been used for a partially observable control problem
of a jump Markov system with counting observations in Ceci, Gerardi, and Tardelli (2002)
(see also Ceci and Gerardi (1998) and Ceci and Gerardi (2001b)). The case of a marked
point observation process has been considered in various papers. In Fan (1996), the sig-
nal/observation system is a continuous-time Markov chain, with S a finite set. In Ceci and
Gerardi (2005) and Ceci and Gerardi (2006a), partially observed branching processes are
discussed, while Ceci and Gerardi (2006b) focuses on the financial applications of filtering.
In all these examples, the observation state space S0 is discrete but not necessarily finite.

5 Constrained Markov processes

In this section, M(S× [0,∞)) will denote the space of Borel measures µ on S× [0,∞) such
that µ(S× [0, t]) <∞ for each t > 0.

Let A and B be operators satisfying Condition 2.1 with ψ replaced by ψA and ψB,
respectively, and D(A) = D(B) = D, and let D and ∂D be closed subsets of S. In many
situations, ∂D will be the topological boundary of D, but that is not necessary.

Definition 5.1 A measurable, D-valued process X and a random measure Γ in M(∂D ×
[0,∞)) give a solution of the constrained martingale problem for (A,B,D, ∂D) if there exists
a filtration {Ft} such that X and Γ are {Ft}-adapted,

E[

∫ t

0

ψA(X(s))ds+

∫
∂D×[0,t]

ψB(x)Γ(dx× ds)] <∞, t ≥ 0,

and for each f ∈ D,

f(X(t))−
∫ t

0

Af(X(s))ds−
∫

∂D×[0,t]

Bf(x)Γ(dx× ds)
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is an {Ft}-martingale. For ν0 ∈ P(D), (X,Γ) is a solution of the constrained martingale
problem for (A,B,D, ∂D, ν0) if (X,Γ) is a solution of the constrained martingale problem
for (A,B,D, ∂D) and X(0) has distribution ν0.

A P(D)-valued function {νt} is a solution of the forward equation for (A,B,D, ∂D) if for
each t > 0,

∫ t

0
νsψAds <∞ and there exists µ ∈ M(∂D× [0,∞)) such that

∫
∂D×[0,t]

ψBdµ <

∞, t > 0, and for each f ∈ D,

νtf = ν0f +

∫ t

0

νsAfds+

∫
∂D×[0,t]

Bf(x)µ(dx× ds), t ≥ 0.

Remark 5.2 By uniqueness for a constrained martingale problem, we mean uniqueness of
the finite-dimensional distributions of X. We do not expect Γ to be unique. For example,
there may be a measure µ̂ such that

∫
∂DBfdµ̂ ≡ 0. Then, if (X,Γ) is a solution of the

constrained martingale problem and

Γ̂(dx× ds) = Γ(dx× ds) + µ̂(dx)ds,

then (X, Γ̂) is also a solution.

The most familiar examples of constrained Markov processes are reflecting diffusion pro-
cesses satisfying equations of the form

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds+

∫ t

0

m(X(s))dξ(s),

where X is required to remain in the closure of a domain D ⊂ Rd and ξ is a nondecreasing
process that increases only when X is on the topological boundary ∂D of D. Then

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj

f(x) + b(x) · ∇f(x),

where a(x) = ((aij(x))) = σ(x)σ(x)T ,

Bf(x) = m(x) · ∇f(x),

and

Γ(C × [0, t]) =

∫ t

0

1C(X(s))dξ(s).

As before, let γ : S → S0, Y (t) = γ(X(t)), and

πt(Γ) = P{X(t) ∈ Γ|F̂Y,Z
t }.

Then

πtf −
∫ t

0

πsAfds−
∫

∂D×[0,t]

Bf(x)Γ̂(dx× ds)

is a {F̂Y,Z
t }-martingale, where Γ̂ is the dual predictable projection of Γ with respect to

{F̂Y,Z
t }. (See Kurtz and Stockbridge (2001), Lemma 6.1.)
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Definition 5.3 Let µ̂0 ∈ P(D× S0).

(Ỹ , Γ̃, π̃, Z̃) ∈MS0 [0,∞)×M(∂D× [0,∞))×MP(D)[0,∞)× S0

is a solution of the filtered martingale problem for (A,B,D, ∂D, γ, µ̂0), if

E[π̃0(C)1D(Z̃)] = µ̂0(C ×D), C ∈ B(D), D ∈ B(S0), (5.1)

π̃0 is σ(Z̃)-measurable, π̃ and Γ̃ are {F̂ eY , eZ
t }-adapted, for each g ∈ B(D) and t ≥ 0,∫ t

0

π̃s(g ◦ γ)ds =

∫ t

0

g(Ỹ (s))ds ,

E[

∫ t

0

π̃sψAds+

∫
∂D×[0,t]

ψB(x)Γ̃(dx× ds)] <∞, t ≥ 0,

and for each f ∈ D,

π̃tf −
∫ t

0

π̃sAfds−
∫

∂D×[0,t]

Bf(x)Γ̃(dx× ds)

is an {F̂ eY , eZ
t }-martingale.

If (Ỹ , Γ̃, π̃, Z̃) satisfies all the conditions except (5.1), we will refer to it as a solution of
the filtered martingale problems for (A,B,D, ∂D, γ).

The following extension of Lemma 2.8 follows from Corollary 1.12 of Kurtz and Stock-
bridge (2001).

Lemma 5.4 Let A and B satisfy Condition 2.1 with ψ replaced by ψA and ψB respectively.
If {νt} is a solution of the forward equation for (A,B,D, ∂D), then there exists a solution
(X,Γ) of the constrained martingale problem for (A,B,D, ∂D) such that νtf = E[f(X(t))].

Define Â as in Section 3, and define B̂ by

B̂[ff0

m∏
k,i=1

gki](x, z, u) =

(
f0(z)

m∏
k,i=1

gki(uki)

)
Bf(x) .

As before, if A and B satisfy Condition 2.1, then so do Â and B̂. Any solution (Ỹ , Γ̃, π̃, Z̃) of
the filtered martingale problem for (A,B,D, ∂D, γ, µ̂0) determines a solution of the forward

equation for (Â, B̂,D×S0× [0, 1]∞, ∂D× [0, 1]∞, ν̂0), which, by Lemma 5.4 corresponds to a
solution of the constrained martingale problem satisfying (3.4). This observation then gives
the following analog of Theorem 3.6.

Theorem 5.5 Let A and B satisfy Condition 2.1, µ̂0 ∈ P(S × S0), and γ : S → S0

be Borel measurable. Let (Ỹ , Γ̃, π̃, Z̃) be a solution of the filtered martingale problem for
(A,B,D, ∂D, γ, µ̂0). Then the following hold:
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a) There exists a solution (X,Γ) of the constrained martingale problem for (A,B,D, ∂D)

and an S0-valued random variable Z such that (X(0), Z) has distribution µ̂0 and Ỹ has
the same distribution on MS0 [0,∞) as Y = γ ◦X.

b) For each t ≥ 0, there exists a Borel measurable mapping Ht : MS0 [0,∞)× S0 → P(S)

such that πt = Ht(Y, Z) is the conditional distribution of X(t) given F̂Y,Z
t , and π̃t =

Ht(Ỹ , Z̃) a.s. In particular, π̃ has the same finite-dimensional distributions as π.

c) If Y and Ỹ have sample paths in DS0 [0,∞), then Y and Ỹ have the same distribution
on DS0 [0,∞) and Ht is Borel measurable mapping from DS0 [0,∞)× S0 to P(S).

d) If uniqueness holds for the constrained martingale problem for (A,B,D, ∂D, ν0), then
uniqueness holds for the filtered martingale problem for (A,B,D, ∂D, γ, µ̂0) in the sense

that if (Y,Γ, π, Z) and (Ỹ , Γ̃, π̃, Z̃) are solutions, then for each 0 ≤ t1 < · · · < tm,

(πt1 , . . . , πtm , Y, Z) and (π̃t1 , . . . , π̃tm , Ỹ , Z̃) have the same distribution on P(S)m ×
MS0 [0,∞)× S0.

The analogs of Theorems 3.8 and 3.13 hold by essentially the same arguments as before.

A Appendix

A.1 A martingale lemma

Let {Ft} and {Gt} be filtrations with Gt ⊂ Ft.

Lemma A.1 Suppose U and V are measurable and {Ft}-adapted, E[|U(t)|+
∫ t

0
|V (s)|ds] <

∞, t ≥ 0, and

U(t)−
∫ t

0

V (s)ds

is an {Ft}-martingale. Then

E[U(t)|Gt]−
∫ t

0

E[V (s)|Gs]ds

is a {Gt}-martingale, where we take E[V (s)|Gs] to be the optional projection of V .

Proof. The lemma follows by the definition and properties of conditional expectations. �

Example A.2 If X is a solution (wrt {Ft}) of the martingale problem for A and

πt(Γ) = P{X(t) ∈ Γ|Gt},

then

πtf −
∫ t

0

πsAfds

is a {Gt}-martingale.
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A.2 Filtrations generated by processes

Let Y be a measurable stochastic process. FY
t will denote the completion of σ(Y (s), s ≤ t)

and F̂Y
t will denote the completion of

σ(

∫ s

0

h(Y (r))dr, s ≤ t, h ∈ B(S)) ∨ σ(Y (0)).

Lemma A.3 If Y is {FY
t }−progressively measurable, then F̂Y

t ⊂ FY
t .

Lemma A.4 For almost every t, Y (t) is F̂Y
t .

Proof. For g ∈ B(S0),

Mg(t) =

∫ t

0

g(Y (s))ds−
∫ t

0

E[g(Y (s))|F̂Y
s ]ds

is a continuous {F̂Y
t }-martingale. (Take E[g(Y (s))|F̂Y

s ] to be the optional projection of
g ◦ Y .) Since Mg is a finite variation process, it must be zero with probability one, and
hence, with probability one

g(Y (t)) = E[g(Y (t))|F̂Y
t ] for almost every t,

which in turn implies that for almost every t, g(Y (t)) = E[g(Y (t))|F̂Y
t ] a.s. and g(Y (t))

is F̂Y
t -measurable. Since S0 is separable, there exists a countable separating set {gk} such

that for almost every t, g1(Y (t)), g2(Y (t)), . . . are F̂Y
t -measurable and hence Y (t) is F̂Y

t -
measurable. �

Lemma A.5 If Y is cadlag with no fixed points of discontinuity (that is, P{Y (t) = Y (t−)} =

1 for all t), then FY
t = F̂Y

t , t ≥ 0.

Proof. If Y is cadlag, it is {FY
t }-progressively measurable so F̂Y

t ⊂ FY
t . Y (0) is F̂Y

0

measurable by definition. For t > 0, since P{Y (t) = Y (t−)} = 1, for g ∈ Cb(S),

g(Y (t)) = lim
ε→

1

ε

∫ t

t−ε

g(Y (r))dr a.s.,

and hence Y (t) is F̂Y
t -measurable. Consequently, FY

t ⊂ F̂Y
t . �

The following lemma implies that most cadlag processes of interest will have no fixed
points of discontinuity.

Lemma A.6 Let U and V be S-valued random variables and let G be a σ-algebra of events.
Suppose that M ⊂ Cb(S) is separating and

E[f(U)|G] = f(V ) (A.1)
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for all f ∈M . Then U = V a.s.
In particular, if Y is cadlag and adapted to {Gt} and

lim
s→t−

E[f(Y (t))|Gs] = E[f(Y (t))| ∨s<t Gs] = f(Y (t−)), (A.2)

for f ∈M , then Y (t) = Y (t−) a.s.

Remark A.7 Note that if

f(Y (t))−
∫ t

0

Zf (s)ds

is a martingale for Zf satisfying E[
∫ t

0
|Zf (s)|ds] <∞, then (A.2) holds.

Proof. Let Z be a nonnegative G-measurable random variable. Then E[f(U)Z] = E[f(V )Z]
for f ∈M and since M is separating, this identity must hold for all f ∈ B(S). Consequently,
(A.1) holds for all f ∈ B(S), and replacing f by f 2,

E[f 2(U)] = E[f 2(V )] = E[E[f(U)|G]f(V )] = E[f(U)f(V )]

and hence that E[(f(U)− f(V ))2] = 0 for all f ∈ B(S). �

A.3 Stopped filtrations and filtrations generated by stopped pro-
cesses

Let V be a cadlag process, FV
t be the completion of σ(V (s), s ≤ t), and S be the collection

of finite, {FV
t }-stopping times. For τ ∈ S, define GV

τ to be the completion of σ(V (t ∧ τ) :
t ≥ 0) ∨ σ(τ). Of course, GV

t = FV
t , and more generally GV

τ = FV
τ for all discrete stopping

times in S and GV
τ ⊂ FV

τ for all τ ∈ S, but we do not know whether or not GV
τ = FV

τ for all
τ ∈ S.

Lemma A.8 If τ1, τ2 ∈ S, then

FV
τ1∧τ2

= {(A1 ∩ {τ1 < τ2}) ∪ (A2 ∩ {τ1 ≥ τ2}) : A1 ∈ FV
τ1
, A2 ∈ FV

τ2
} (A.3)

and for τ ∈ S and t ≥ 0,

GV
τ∧t = {(A1 ∩ {τ < t}) ∪ (A2 ∩ {τ ≥ t}) : A1 ∈ GV

τ , A2 ∈ GV
t = FV

t }. (A.4)

Remark A.9 The first assertion holds for arbitrary filtrations.

Proof. Since FV
τ1∧τ2

⊂ FV
τ1
∩FV

τ2
, is follows that FV

τ1∧τ2
is contained in the right side of (A.3).

(Take A1 = A2 ∈ FV
τ1∧τ2

.)
Observe that {τ1 < τ2} ∈ FV

τ1∧τ2
since

{τ1 < τ2} ∩ {τ1 ∧ τ2 ≤ t} = {τ1 ≤ t < τ2} ∪ ∪r∈Q,r≤t{τ1 ≤ r < τ2} ∈ FV
t .

Now let A1 ∈ FV
τ1

. Then

A1 ∩ {τ1 < τ2} ∩ {τ1 ∧ τ2 ≤ t} = A1 ∩ {τ1 < τ2} ∩ {τ1 ≤ t} ∈ FV
t ,
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so A1 ∩ {τ1 < τ2} ∈ FV
τ1∧τ2

, and for A2 ∈ FV
τ2

,

A2 ∩ {τ1 ≥ τ2} ∩ {τ1 ∧ τ2 ≤ t} = A2 ∩ {τ1 ≥ τ2} ∩ {τ2 ≤ t} ∈ FV
t ,

so A2 ∩ {τ1 ≥ τ2} ∈ FV
τ1∧τ2

.
If A1 ∈ GV

τ , then A1 differs from a set of the form {(V (·∧τ), τ) ∈ C}, C ∈ B(DE[0,∞))×
B([0,∞)), by an event of probability zero, and, noting that {τ ∧ t < t} = {τ < t},

{(V (· ∧ τ), τ) ∈ C} ∩ {τ < t} = {(V (· ∧ τ ∧ t), τ ∧ t) ∈ C} ∩ {τ < t} ∈ GV
τ∧t.

Similarly,

{V (· ∧ t) ∈ C} ∩ {τ ≥ t} = {V (· ∧ τ ∧ t) ∈ C} ∩ {τ ≥ t} ∈ GV
τ∧t,

and the right side of (A.4) is contained in the left.
Finally,

{(V (· ∧ τ ∧ t), τ ∧ t) ∈ C} ∩ {τ < t} = {(V (· ∧ τ), τ) ∈ C} ∩ {τ < t} ∈ GV
τ

and
{(V (· ∧ τ ∧ t), τ ∧ t) ∈ C} ∩ {τ ≥ t} = {(V (· ∧ t), t) ∈ C} ∩ {τ ≥ t} ∈ GV

t ,

so the left side of (A.4) is contained in the right. �

We have the following consequence of the previous lemma.

Lemma A.10 Let E[|Z|] <∞ and τ ∈ S. Then

E[Z|FV
τ∧t] = E[Z|FV

τ ]1{τ<t} + E[Z|FV
t ]1{τ≥t}

and
E[Z|GV

τ∧t] = E[Z|GV
τ ]1{τ<t} + E[Z|GV

t ]1{τ≥t},

and since GV
t = FV

t ,
E[Z|FV

τ∧t]1{τ≥t} = E[Z|GV
τ∧t]1{τ≥t}.

A.4 Random probability measures as conditional distributions

Lemma A.11 Let π̃ be a P(S)-valued random variable and Z̃ a S0-valued random variable

on a probability space (Ω̃, F̃ , P̃ ). Then there exists a probability space with random variables
(X,Z, π) in S×S0×P(S), and a sub-σ-algebra D such that (Z, π) has the same distribution

as (Z̃, π̃), Z is D-measurable, and π is the conditional distribution of X given D.

Proof. For C ∈ B(S) and D ∈ B(S0 × P(S)),

ν(C,D) = E[π̃(C)1D(Z̃, π̃)]

defines a bimeasure on S × (S0 × P(S)). By Morando’s theorem (see, for example, Ethier
and Kurtz (1986), Appendix 8), ν extends to a probability measure on S × S0 × P(S). Let
(X,Z, π) be the coordinate random variables on (S× S0×P(S),B(S× S0×P(S)), ν). Then

by definition, (Z, π) has the same distribution as (Z̃, π̃), and defining D = σ(Z, π), the fact
that

E[1C(X)1D(Z, π)] = E[π̃(C)1D(Z̃, π̃)] = E[π(C)1D(Z, π)]

implies that π is the conditional distribution of X given D. �
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A.5 A coupling lemma

Lemma A.12 Let S0, S1, and S2 be complete, separable metric spaces, and let µ ∈ P(S0, S1)
and ν ∈ P(S0, S2) satisfy µ(· × S1) = ν(· × S2). Then there exists a probability space and
random variables X0, X1, X2 such that (X0, X1) has distribution µ, (X0, X2) has distribution
ν, and

E[g(X2)|X0, X1] = E[g(X2)|X0], g ∈ B(S2),

which is equivalent to

E[g1(X1)g2(X2)|X0] = E[g1(X1)|X0]E[g2(X2)|X0], g1 ∈ B(S1), g2 ∈ B(S2).

Proof. The lemma is a consequence of Ethier and Kurtz (1986), Lemma 4.5.15 �

A.6 The Markov property

Lemma A.13 Let A ⊂ B(S)×M(S) and ν0 ∈ P(S). Suppose that there exists ψ ≥ 1 such
that for each f ∈ D(A), there exists a constant af such that |Af(x)| ≤ afψ(x). Assume
that uniqueness holds for the local-martingale problem for (A, ν0). If X is a solution of the
local-martingale problem for (A, ν0) with respect to the filtration

Ft = σ(X(s) : s ≤ t) ∨ σ(

∫ s

0

h(X(r))dr : s ≤ t, h ∈ B(S)),

then X is an {Ft}-Markov process.

Proof. Let Y (t) =
∫ t

0
ψ(X(s))ds, and for f ∈ D(A) and g ∈ C1

c [0,∞), define

Â(fg)(x, y) = g(y)Af(x) + ψ(x)f(x)g′(y).

Note that since g has compact support, there exists a constant af,g such that |Â(fg)(x, y)| ≤
af,g(1 + y)−2ψ(x), and ∫ t

0

(1 + Y (s))−2ψ(X(s))ds ≤ 1.

Consequently, if X is the unique solution of the local-martingale problem for (A, ν0), then

(X, Y ) is the unique solution of the martingale problem for (Â, ν0×δ0). The proof of Theorem
A.5 in Kurtz (1998) remains valid after replacing the assumption A ⊂ B(S) × B(S) with
A ⊂ B(S)×M(S), �
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