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Abstract

We study some approximation schemes for a nonlinear filtering problem when the
state process X is the solution of a stochastic delay diffusion equation, and the
observation process is a noisy function of Xs for s ∈ [t− τ, t], where τ is a constant.
The approximating state is given by means of an Euler discretization scheme, and
the observation process is a noisy function of the approximating state.
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1 Introduction

Let (X,Y ) = (Xt, Yt)t≥0 be a stochastic system. Assume that the state process X =
(Xt)t≥0 of the system cannot be directly observed, while the other component Y = (Yt)t≥0

is completely observable, and therefore is referred to as the observation process. The aim
of stochastic nonlinear filtering is to compute the conditional law πt of the state process
at time t, given the observation process up to time t, i.e. the computation of

πt(ϕ) = E
[
ϕ(Xt)/FY

t

]
,

for all functions ϕ belonging to a determining class, i.e. the best estimate of ϕ(Xt) given
the σ−algebra of the observations up to time t, FY

t = σ{Ys, s ≤ t}.

A classical model of partially observed system extensively studied in the last past years
arises when both the state and the observation processes are diffusion processes.

For this model, under suitable hypotheses on the coefficients, the filtering equations
are well known (see for example Pardoux [15] or Kallianpur [6] and the references therein)
and different approximation schemes have been studied (see for example Kushner [10] or
Le Gland [12] and the references therein).

In this paper we are interested in nonlinear filtering of partially observed delay systems
and in computable approximations of the filter.

To our knowledge there are only three papers dealing with nonlinear filtering for delay
systems: Kwong and Willsky (1978) [11], Chang (1987) [4], and Kallianpur and Mandal
(2002) [7].

In [11] Kwong and Willsky give a characterization of the optimal filter when dealing
with nonlinear delay systems with gaussian noises. A Fujisaki-Kallianpur-Kunita equa-
tion for the filter is deduced from a representation result which characterizes conditional
moment functionals of nonlinear delay systems. However the uniqueness of the solution
of this equation is not guaranteed.

In [4] Chang gives a computable approximation for the optimal filter when dealing with
one dimensional nonlinear delay filtering systems with gaussian noises. The original model
is approximated by a discrete-time model obtained by applying an Euler discretization
scheme. An optimal filter for the approximate system is obtained by an explicit procedure
and the weak convergence of the approximating process and the approximating filter to
the original ones are verified.

In [7] Kallianpur and Mandal study a nonlinear filtering problem where the state pro-
cess is given as the solution of a stochastic delay differential equation and the observation
depends not only on a function of the instantaneous value of the signal but also on the
values of the signal from the past. By using some extensions of results obtained by Mo-
hammed [14] for stochastic delay differential equations they prove that the signal process
is the unique solution to an appropriate martingale problem. By taking this fact into
account the authors prove that the optimal filter corresponding to the nonlinear filtering
problem is the unique solution of a Zakai-type equation. A Fujisaki-Kallianpur-Kunita
equation for the filter is also deduced from the Zakai-type equation.
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The main results of these papers will be presented in a more extensive way in Section 3.

The main result of this paper concerning the convergence of the approximation scheme
introduced in Section 2.2 to the system introduced in Section 2.1 is stated and proved
in Section 4.2. The proof is based on the convergence results of Bhatt, Kallianpur and
Karandikar (1999) [2] and Bhatt and Karandikar (2002) [3], which are recalled in Section
4.1.

2 The model and its approximation

2.1 The model

The state satisfies the following kind of delay differential equation on the probability space
(Ω,F , (Ft)t∈[0,T ], P )





X(t) = η(t), −τ ≤ t ≤ 0,

X(t) = η(0) +
∫ t

0
a(u, ΠuX)du +

∫ t

0
b(u, ΠuX)dW̃u, 0 ≤ t ≤ T,

(1)

where

(H1) τ > 0, and ΠtX is a C([−τ, 0],R) random valued process defined by

ΠtX(s) = X(t + s) − τ ≤ s ≤ 0,

(H2) {W̃ (t); t ≥ 0} is a standard Brownian motion,

(H3) η is a F0 square integrable C([−τ, 0],R) valued random variable, that is

E
(‖Π0X‖2

)
= E

(
sup

s∈[−τ,0]

|η(s)|2
)

< ∞,

(H4) a and b are two Borel measurable functionals on [0, T ]×C([−τ, 0],R) satisfying the
Lipschitz condition

|a(t, θ)− a(t, θ̄)|2 + |b(t, θ)− b(t, θ̄)|2 ≤ K‖θ − θ̄‖2, (2)

and the growth condition

|a(t, θ)|2 + |b(t, θ)|2 ≤ K
(
1 + ‖θ‖2

)
, (3)

for some constant K > 0.
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The observation process is given by

Y (t) =

∫ t

0

h(u, ΠuX)du + W (t), 0 ≤ t ≤ T, (4)

where

(H5) {W (t); t ≥ 0} is a standard Brownian motion, independent of {W̃ (t); t ≥ 0},
(H6) h : [0, T ]× C([−τ, 0],R) → R is a Borel measurable function such that

∫ T

0

E[|h(u, ΠuX)|2]du < ∞.

In this paper we consider the filtering problem of the delay system (ΠtX, Y (t))t≥0, i.e.
we want to compute

πt(φ) = E[φ(ΠtX)|FY
t ],

for measurable and bounded functions φ mapping C([−τ, 0],R) into R.

Conditions (H1) to (H4) imply the existence and uniqueness of the solution of the
stochastic delay differential equation (1) (see Mohammed [14]), though the square in-
tegrability condition (H3) is not necessary (see Kallianpur and Mandal [7]). However
condition (H3), together with the growth condition (3) in (H4), implies that

E
[

sup
u∈[0,T ]

‖ΠuX‖2
]

< ∞, (5)

(see [14], Theorem II.2.1 and Lemma III.1.2).

Note that in the homogeneous case, i.e. a(t, θ) = a(θ) and b(t, θ) = b(θ), the Lipschitz
assumption (2) in (H4) implies the growth condition (3). Moreover in the homogeneous
case Kallianpur and Mandal prove in [7] that the process (ΠtX)t≥0 is Markov. This result
extends a previous result by Mohammed [14] for the case a and b bounded.

Conditions (H5) and (H6) are classical assumptions in nonlinear filtering theory which
guarantee that the filter πt can be represented via a Kallianpur–Striebel formula

πt(φ) =
σt(φ)

σt(1)
,

with

σt(φ) = E0

[
φ(ΠtX) exp

{∫ t

0

h(s, ΠsX)dYs − 1

2

∫ t

0

|h(s, ΠsX)|2 ds

} ∣∣∣FY
t

]
,

where E0 denotes the expectation w.r.t. the reference measure P 0, defined by the Radon-
Nikodym derivative

dP 0

dP
= exp

{
−

∫ T

0

h(s, ΠsX)dYs +
1

2

∫ T

0

|h(s, ΠsX)|2 ds

}
. (6)
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This fact will play a fundamental role in the proof of our approximation results.

Furthermore, the following conditions on the observation function h will also be used
in our analysis.

(H7) h is sublinear, i.e. |h(t, θ)|2 ≤ K(1 + ‖θ‖2),

(H8) h is jointly continuous.

Note that condition (H7) together with the integrability condition (5) on the state
process implies that (H6) is also satisfied.

Condition (H8) will be used in the proof of our approximation results, together with
the following condition.

(H9) The functions a(t, θ) and b(t, θ) are jointly globally Lipschitz, i.e.

|a(t, θ)− a(t′, θ̄)|2 + |b(t, θ)− b(t′, θ̄)|2 ≤ K
(‖t− t′‖2 + ‖θ − θ̄‖2

)
.

Note that the above joint global Lipschitz condition is stronger than condition (H4),
but in the homogeneous case, i.e. when a(t, θ) = a(θ) and b(t, θ) = b(θ), both conditions
are clearly equivalent to (2).

In addition, to prove our approximation results, condition (H3) is not strong enough
and we will assume that the initial condition of the stochastic delay differential equation
(1) is such that

(H10) E
(‖Π0X‖4

)
= E

(
sup

s∈[−τ,0]

|η(s)|4
)

< ∞.

Note that under this condition it is easy to prove that E
[
supt∈[0,T ] ‖ΠtX‖4

]
is finite.

To conclude this section, note that conditions (H7) to (H9) are clearly satisfied if, for
example, the functions a, b and h are given by

a(t, θ) = ϕa

(
t,

∫ 0

−τ

ψa(u, θ(u))du
)
, b(t, θ) = ϕb

(
t,

∫ 0

−τ

ψb(u, θ(u))du
)
,

h(t, θ) = ϕ
(
t,

∫ 0

−τ

ψ(u, θ(u))du
)
,

where ϕa, ϕb, ϕ, ψa, ψb and ψ are joint Lipschitz functions.
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2.2 Approximation schemes

In this paper we will consider some approximation models for both the delay system and
the filter, but the main results concern the following approximation scheme:

The approximation Xn of the state process is the linear interpolation of the Euler
discretization scheme with step δ = δn = T/n, with τ = mδ (as in Chang [4], for the sake
of simplicity, we assume that T/τ is rational)1:





Xn(`δ) = η(`δ), −m ≤ ` ≤ 0,

Xn((` + 1)δ) = Xn(`δ) + a(`δ, Π`δX
n)δ

+b(`δ, Π`δX
n)

[
W̃ ((` + 1)δ)− W̃ (`δ)

]
, 0 ≤ ` ≤ n.

(7)

For the approximation of the observation process, we define Y n(t) by

Y n(t) =

∫ t

0

h(bs/δc · δ, Πbs/δc·δX
n)ds + W (t), 0 ≤ t ≤ T, (8)

where bxc is the integer part of x.

Remark 2.1. It is clear that

{(
Xn(`δ), Xn((`− 1)δ), · · · , Xn((`−m)δ)

)}
`≥0

is an (m + 1)-dimensional Markov chain, and for t ∈ [`δ, (` + 1)δ], 0 ≤ ` ≤ n

Xn(t) = Xn(`δ) + a(`δ, Π`δX
n)(t− `δ) (9)

+ b(`δ, Π`δX
n)

[
W̃ ((` + 1)δ)− W̃ (`δ)

]
(t− `δ)/δ,

with Xn(0) = η(0), and

Y n(t) = Y n(`δ) + h(`δ, Π`δX
n)(t− `δ) +

[
W (t)−W (`δ)

]
, (10)

with Y n(0) = 0.
It is also interesting to note that therefore the approximation (Ȳ n(t))t≥0 for the observation
process proposed by Chang [4] (see also (17) in Section 3), is the linear interpolation of
Y n(`δ).
Furthermore, we would also emphasize the fact that when using (8) we do not make use,
as in [4], of a discrete time observation process but still of a continuous time diffusion
process, such that Y n(lδ) = Ȳ n(lδ).

1It is clear that, assuming T = p
q τ , we first fix m = kq a multiple of q and then set δ = τ/m, so that

T = kpδ and n = kp.
Or better, we first fix m, then set δ = τ/m, and finally take the interval [−τ, bT/δcδ], instead of [−τ, T ],
so that n = n(m).
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With these approximations for the state process and the observation process we define
the approximating filter πn

t by :

πn
t (φ) =

σn
t (φ)

σn
t (1)

=
E0,n

[
φ(ΠtX

n)Ln
t |FY n

t

]

E0,n [Ln
t |FY n

t ]
, (11)

where E0,n denotes the expectation w.r.t. the reference measure P 0,n, defined by the
Radon-Nikodym derivative

dP 0,n

dP
=

(Ln
t

)−1
,

with

Ln
t = exp

{∫ t

0

h(bs/δc · δ, Πbs/δc·δX
n)dY n

s −
1

2

∫ t

0

|h(bs/δc · δ, Πbs/δc·δX
n)|2 ds

}
.

Taking into account that s 7→ h(bs/δc · δ, Πbs/δc·δXn) is piecewise constant, we have that

Ln
t = Ln

t (Xn(·), Y0, Yδ, · · · , Ybt/δc, Yt),

where,

log Ln
`δ(x(·), y0, yδ, · · · , y`δ) =

`δ−1∑

k=0

h(kδ, Πkδx(·))(yk+1 − yk)− 1

2

`δ−1∑

k=0

|h(kδ, Πkδx(·))|2δ,

and, for t ∈ (`δ, (` + 1)δ), 0 ≤ ` ≤ n,

log Ln
t (x(·), y0, yδ, · · · , y`δ, y) = log Ln

`δ(x(·), y0, yδ, · · · , y`δ)

+ h(bt/δc · δ, Πbt/δc·δx(·))(y − y`δ)− 1

2
|h(bt/δc · δ, Πbt/δc·δx(·))|2(t− `δ).

Moreover, under P 0,n, the processes Xn and Y n are independent and the law of the
approximated state process is invariant under P and P 0,n, hence, for t ∈ [`δ, (` + 1)δ),
0 ≤ ` ≤ n,

σn
t (φ) = E [φ(ΠtX

n)Ln
t (Xn(·), y0, yδ, · · · , y`δ, y)]

∣∣∣∣
y0=Y n

0 ,y1=Y n
δ ,··· ,y`=Y n

`δ,y=Y n
t

.

Note that the filter πn
t defined above depends on the approximated observation process

Y n, which is not directly observable. To overcome this difficulty we also consider the
following approximation π̃n

t for the filter

π̃n
t (φ) =

σ̃n
t (φ)

σ̃n
t (1)

, (12)

where

σ̃n
t (φ) = E [φ(ΠtX

n)Ln
t (Xn(·), y0, yδ, · · · , y`δ, y)]

∣∣∣∣
y0=Y0,y1=Yδ,··· ,y`=Y`δ,y=Yt

.
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Furthermore, as an approximation for the state we will also consider the following
diffusion





Zn(t) := η(t) −τ ≤ t ≤ 0,

Zn(t) := η(0) +

∫ t

0

a(δ · bs/δc , Πδ·bs/δcX
n)ds

+

∫ t

0

b(δ · bs/δc , Πδ·bs/δcX
n)dW̃s, 0 ≤ t ≤ T,

(13)

which will be used in the proof of our main result, since this diffusion has the property
that

Zn(`δ) = Xn(`δ), for all ` ≥ −m.

Indeed Zn(`δ) = Xn(`δ) = η(`δ), for −m ≤ ` ≤ 0. The case ` ≥ 0 follows by observing
that for t ∈ [`δ, (` + 1)δ]

Zn(t) = Zn(`δ) +

∫ t

`δ

a(`δ, Π`δX
n)ds +

∫ t

`δ

b(`δ, Π`δX
n)dW̃s

= Zn(`δ) + a(`δ, Π`δX
n)(t− `δ) + b(`δ, Π`δX

n)[W̃ (t)− W̃ (`δ)],

so that

Zn((` + 1)δ) = Zn(`δ) + a(`δ, Π`δX
n)δ + b(`δ, Π`δX

n)[W̃ ((` + 1)δ)− W̃ (`δ)],

and finally comparing the above recursive formula with (7).

Other possible choices for the approximation for the observation process are either

Y n(t) =

∫ t

0

h(s, ΠsX
n)ds + W (t), (14)

or

Y n(t) =

∫ t

0

h(s, Πbs/δc·δX
n) ds + W (t). (15)

These choices are motivated by the fact that we want to use the results of Bhatt, Kallian-
pur and Karandikar [2] (see also Section 4.1), on the approximation of the filter, when
the observation is a diffusion, in both the limit model and the approximation model.

Assuming that conditions (H1) to (H10) are satisfied, we prove the weak convergence
of the filter πn

t for the approximation model to the filter πt of the original delay system
and the convergence in probability of π̃n

t to πt (see Theorem 4.2 in Section 4.2).

To conclude this section, note that in order to compute πn
t and π̃n

t we need to compute

(a) the transition probability of the (m + 1)-dimensional Markov chain
(
Xn(`δ), Xn((`− 1)δ), · · · , Xn((`−m)δ)

)
,

and therefore we need the explicit expression of a(`δ, Π`δX
n) and of b(`δ, Π`δX

n),
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(b) the explicit expression of Ln
t , and therefore we need the explicit expression of

h(`δ, Π`δX
n).

With the example given at the end of Section 2.1 we get

a(`δ, Π`δX
n) = ϕa

(
t,

∫ 0

−τ

ψa(u, Π`δX
n(u))du

)
,

where
∫ 0

−τ

ψa(u, Π`δX
n(u))du =

∫ 0

−τ

ψa(u,Xn(`δ + u))du

=
−1∑

k=−m

∫ (k+1)δ

kδ

ψa

(
u,Xn((` + k)δ) +

u− kδ

δ

[
Xn((` + k + 1)δ)−Xn((` + k)δ)

])
du.

Similar expressions hold for b(`δ, Π`δX
n) and h(`δ, Π`δX

n).

3 Some related results

In [7], Kallianpur and Mandal deal with a nonlinear filtering problem described by a state
process solution of the stochastic delay differential equation (1), in the homogeneous case,
and an observation process given by (4). The authors consider the probability space
(Ω,F , Q), where

dQ

dP
= exp

{
−

∫ T

0

h(u, ΠuX) dYu +
1

2

∫ T

0

|h(u, ΠuX)|2 du

}

and the product space (Ω×Ω,F ⊗F , P ⊗Q). Denoting by (X ′(t))t≥0 and (Y †(t))t≥0 the
stochastic processes defined on Ω× Ω by

X ′(t, ω, ω′) = X(t, ω′) Y †(t, ω, ω′) = Y (t, ω),

and by (R(t))t≥0 the stochastic process given by

R(t) = exp

{∫ T

0

h(u, ΠuX
′) dY †

u −
1

2

∫ T

0

|h(u, ΠuX
′)|2 du

}
,

they prove the Kallianpur-Striebel formula: for any φ in the space of bounded continuous
functions from C([−τ, 0],R) into R it holds

EP

[
φ(ΠtX)/FY

t

]
=

σt(φ, Y )

σt(1, Y )
,

where

σt(φ, Y ) =

∫

Ω

φ
(
ΠtX(ω′)

)
R(t; ω, ω′)P (dω′)

is the unnormalized conditional expectation of φ(ΠtX) given FY
t .
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Then, assuming (H1) to (H6), that φ is a quasi-tame function as defined in Mo-
hammed [14], and that

EP

[(∫ T

0

{|a(ΠuX)|+ |b(ΠuX)|2} du

)2 ∫ T

0

|h(u, ΠuX)|2du

]
< ∞, (16)

they prove that the unnormalized conditional expectation of φ(ΠtX) given FY
t solves the

Zakai equation

σt(φ, Y ) = EP [φ(η)] +

∫ t

0

σs(A
0φ, Y ) ds +

∫ t

0

σs(φh(s, ·), Y ) dYs

where A0 is the infinitesimal generator of the process {ΠtX, t ≥ 0}, as given in [14].
Before giving some examples of quasi-tame functions φ, and of A0φ, we note that if

furthermore the diffusion coefficient b in the definition of the signal process is bounded,
and assumption (H10) on the forth moment of the initial condition is satisfied, then (16)
holds.

Example 1 If φ(θ) = ϕ(θ(0)), where ϕ is a C∞ bounded function, then

A0φ(θ) = Lϕ(θ(0)) = a(θ) · ϕx(θ(0)) +
1

2
b2(θ)ϕxx(θ(0)).

Example 2 If φ(θ) =
∫ 0

−τ
ψ(u)g(θ(u), θ(0))du, where ψ is piecewise C1, with ψ̇ absolutely

integrable, and g(x1, x2) a bounded C∞ function, then

A0φ(θ) =ψ(0)g(θ(0), θ(0))− ψ(−τ)g(θ(−τ), θ(0))

−
∫ 0

−τ

ψ̇(u)g(θ(u), θ(0))du +

∫ 0

−τ

ψ(u)Lg(y, ·)(θ(0))|y=θ(u)du

where L is the operator defined in example 1.

Example 3 If φ(θ) = ϕ
( ∫ 0

−τ
ψ(u)g(θ(u), θ(0))du

)
, where ϕ is a bounded C∞ function,

with ψ and g(x1, x2) as in example 2, then

A0φ(θ) =ϕx(Φ(θ))A0Φ(θ) +
1

2
ϕxx(Φ(θ)) G(θ)

where Φ(θ) =
∫ 0

−τ
ψ(u)g(θ(u), θ(0))du, A0Φ(θ) is computed as in example 2, and

finally

G(θ) =

∫ 0

−τ

∫ 0

−τ

ψ(u)ψ(v)gx2(θ(u), θ(0))gx2(θ(v), θ(0))dv du

(here gx2 denotes partial differentiation of g with respect to its second argument).
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The uniqueness for the solution of the Zakai equation is deduced from the results of
Bhatt, Kallianpur and Karandikar [1], and a Fujisaki-Kallianpur-Kunita equation for the
filter is deduced from the Zakai equation and the Kallianpur-Striebel formula by a usual
method in nonlinear filtering theory.

In [11] Kwong and Willsky consider the delay differential equations for the n−dimensional
state process

dX(t) = a(t, ΠtX) dt + F (t)dW̃t, Π0X = η,

and for the p−dimensional observation process

dY (t) = h(t, ΠtX) dt + N(t)dWt, Y (0) = 0,

where N(t) is nonsingular, and a satisfies a Lipschitz condition and a growth condition.
Under additional conditions on the initial trajectory η ∈ C([−τ, 0],Rn) and integrabil-

ity conditions for
∫ T

0
|h(t, ΠtX)|2dt, |φ(ΠtX)|2 and

∫ T

0
|φ(ΠtX)h(t, ΠtX)|2dt, the authors

derive an evolution equation for functionals of the form Et[φ(ΠtX)] ≡ E[φ(ΠtX)|FY
t ],

extending to their framework the result of Kunita [8]. In particular, they prove that the
filter solves a Fujisaki-Kallianpur-Kunita equation, namely

dEt[φ(ΠtX)] = Et[Atφ(ΠtX)]dt+Et[φ(ΠtX)
(
h(t, ΠtX)−Et[h(t, ΠtX)]

)
](N(t)N?(t))−1dνt

where νt = Y (t) − ∫ t

0
Es[h(s, ΠsX)]ds, for functions φ in the extended generator of the

state process:

E[φ(ΠtX)/ΠsX] = φ(ΠtX) +

∫ t

0

E[Auφ(ΠuX)/ΠsX]du.

The expression of Atφ(ΠtX) is similar to that of A0φ(ΠtX), but taking into account
the fact that the state is multidimensional and given as the solution of a nonhomogeneous
stochastic delay equation. For instance in example 1 the operator L has to be replaced
by

Ltϕ(θ(0)) = a(t, θ) · ϕx(θ(0)) +
1

2
tr{F (t)F ∗(t)ϕxx(θ(0))}.

In [4], Chang considers the optimal filtering problem for a partially observable model,
when the state process and the observation process are real valued and satisfy the stochas-
tic nonlinear differential equations

dX(t) = a(t, ΠtX)dt + dW̃t, Π0X = η

dY (t) = h(t, ΠtX)dt + dWt, Y (0) = 0

where W̃ and W are two independent Brownian motions.

Under the assumptions:

(A1) a : [0, T ]×C([−τ, 0],R) → R; (t, ϑ) 7→ a(t, ϑ) is jointly continuous; the same holds
for h;
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(A2) a and h are Lipschitz continuous in the variable ϑ (uniformly in [0, T ]): there exists
a finite measure λ on [−τ, 0] such that

|a(t, ϑ)− a(t, ϑ′)|+ |h(t, ϑ)− h(t, ϑ′)| ≤
∫ 0

−τ

|ϑ(u)− ϑ′(u)|λ(du),

for all t ∈ [0, T ], ϑ, ϑ′ ∈ C([−τ, 0],R);

(A3) a and h satisfy the following linear growth condition: there exist a positive constant
k and a finite measure γ on [−τ, 0] such that

|a(t, ϑ)|2 + |h(t, ϑ)|2 ≤ k

(
1 +

∫ 0

−τ

|ϑ(u)|2γ(du)

)
,

for all t ∈ [0, T ] and ϑ ∈ C([−τ, 0],R);

(A4) η is a random function with values in C([−τ, 0],R) with probability 1, there exists
a strictly positive constant k such that

E[exp{k‖η‖2}] < ∞,

and for any partition −τ ≤ τ0 < · · · < τn = 0 the (n + 1) − dimensional random
vector (η(τi); 0 ≤ i ≤ n) has a probability density w.r.t. the Lebesgue measure in
Rn+1.

Under the previous hypotheses Chang gives a computable approximation for the opti-
mal filter. The state process of the original model is approximated by the linear interpo-
lation of (7) with b(t, θ) = 1, and the observation process is approximated by the linear
interpolation of

Y n((` + 1)δ)− Y n(`δ) = h(`δ, Π`δX
n)δ +

[
W ((` + 1)δ)−W (`δ)

]
, 0 ≤ ` ≤ n. (17)

Then, the author shows that the optimal filter for the discrete time approximation can
be designed by an explicit procedure and he verifies the weak convergence of the approx-
imation process and the approximation filter to the original ones.

It is interesting to note some of the differences among the papers concerning the dif-
fusion coefficient of the state process: namely the diffusion coefficient is a deterministic
function F (t) in [11], is just the constant 1 in [4], while it is a function depending only
on the state in [7]. Another important observation is that Kwong and Willsky, as well
as Chang consider non homogeneous delay systems, while Kallianpur and Mandal con-
sider only homogeneous delay systems. Nevertheless, in the homogeneous case, conditions
(A2) and (A3) of Chang imply that the Lipschitz condition

|a(θ)− a(θ̄)|2 + |b(θ)− b(θ̄)|2 ≤ K||θ − θ̄||2

of Kallianpur and Mandal is satisfied with K = max{(λ([−τ, 0]))2, k(γ([−τ, 0]) ∨ 1)}.
Moreover, condition (A2) of Chang implies also that the observation coefficient h satisfies
a Lipschitz condition while condition (A3) implies that the sublinear growth condition
(H7) is satisfied.
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4 Approximation results

4.1 General considerations on approximation for filters

Suppose that a sequence of partially observed systems (Xn,Y n) converges to a partially
observed system (X,Y ). Then a natural question is whether the corresponding sequence
of filters πn converges to the filter π of the limit system.

Different kinds of convergence can be considered for both the systems and the filters.
When all the processes are defined on the same probability space (Ω,F , P ), almost sure
convergence, convergence in probability or weak convergence (i.e. in distribution) can be
studied. Weak convergence is the only notion that can be considered when the systems
(Xn,Y n) are defined on different probability spaces (Ωn,Fn, P n). Furthermore one can
distinguish between convergence of πn

t to πt as random probability measures, for each
t, and convergence of the processes πn = (πn

t ; t ≥ 0) to π = (πt; t ≥ 0), as càdlàg
probability measure-valued processes. Some now classical result in this direction can be
found in Goggin [5].

A different, but connected, approach to the problem of the approximation of the fil-
ter takes into account that a realistic approximation depends on the actually observed
trajectory. Before describing it we need to recall that under very general conditions (see
for instance, Kurtz and Ocone [9]), when denoting by S the state space, by F the ob-
servation space, and by P(S) the space of probability measures on S, there always exist
deterministic functionals Un and U , with paths in DP(S)([0, T ]),

Un, U : [0, T ]×DF ([0, T ]) 7→ P(S)

with the properties Un
(
t, y

)
= Un

(
t, y(· ∧ t)

)
and U

(
t, y

)
= U

(
t, y(· ∧ t)

)
, and such that

πn
t = Un

(
t,Y n)

and πt = U
(
t, Y

)
.

Note that the functionals Un and U depend on the joint distribution of (Xn,Y n) and
(X,Y ) and that they are defined in DF ([0, T ]) almost surely with respect to PY n , the
law of Y n, and with respect to PY , the law of Y , respectively.

When dealing with approximation problems the following typical situation can arise:
the model is (X,Y ), and therefore we observe Y , while the models (Xn,Y n) are merely
more manageable approximations, despite the fact that it may be impossible to observe
the approximate process Y n. In this situation the filter is πt, and it is quite natural to
consider

π̃n
t = Un

(
t, Y

)
(18)

as an approximation depending on the actually observed trajectory. The functional Un

is defined PY n almost surely and therefore to define π̃n
t it is natural to assume that PY is

absolutely continuous with respect to PY n , otherwise it could be impossible to define π̃n
t .

Note that, however, π̃n
t is not a conditional law. Then one can consider both the almost

sure convergence and the convergence in probability of π̃n
t to πt. It is important to note

13



that with this kind of approximation it is even not necessary for the processes Y n and Y
to be defined on the same probability space.

Some results on weak convergence, which also contain explicitly the approach discussed
above, can be found in Bhatt, Kallianpur and Karandikar (1999) [2] and in Bhatt and
Karandikar (2002) [3]. In these papers the observation is a diffusion, in both the limit
model and the approximation model. In [2] the state and its approximation may be gen-
eral processes, while in [3] they are both diffusions and the noises in the signal and the
observation may be correlated. In [2] the following limit model (Xt, Yt)t≥0 and approxi-
mation model (X n

t , Y n
t )t≥0 are considered.

The signal process Xt , with values in a complete separable metric space S, is defined
on (Ω,F , P ) and has càdlàg paths. The observation process Yt is given by

Y (t) =

∫ t

0

h(Xs)ds + W (t), (19)

where (W (t))t≥0 is a standard Brownian motion, defined on (Ω,F , P ), independent of X ,
and h is a measurable function on S with values in Rk, such that

P

(∫ T

0

|h(Xs)|2 ds < ∞
)

= 1.

The approximation signal processes X n
t are defined on (Ωn,Fn, P n), and take values

in S as well. The approximation observation processes Y n
t are defined by

Y n(t) =

∫ t

0

hn(X n
s )ds + W n(t), (20)

where W n(t) are standard Brownian motions, defined on (Ωn,Fn, P n), independent of
X n, and hn are measurable functions on S with values in Rk, such that

P n

(∫ T

0

|hn(X n
s )|2 ds < ∞

)
= 1.

Assuming that

(B1) hn converges to h uniformly on compact sets,

(B2) h is continuous,

(B3) X n converges weakly to X in DS([0, T ]),

(B4) lim
n→∞

En

(∫ T

0

|hn(X n
s )|2 ds

)
= E

(∫ T

0

|h(Xs)|2 ds

)
,

it is proved in [2] that

P n ◦ (πn)−1 converge weakly to P ◦ (π)−1

14



as processes with values in DP(S)([0, T ]), where P(S) is the metric space of probability
measures on S, endowed with the Prohorov metric.

Note that the above conditions (B1)—(B4) are only sufficient conditions, and that in
[2] weaker conditions can be found.

Moreover in [2] (see Theorem 3.3-(a)), as a step to prove the above weak convergence
result, the authors prove that for any Wiener process {B(t); t ≥ 0}, the P(S)-valued pro-
cesses (Un(t, B))t∈[0,T ] converge in probability to the P(S)-valued process (U(t, B))t∈[0,T ].
This amounts to say that if P 0 is the reference probability measure defined by the Radon-
Nikodym derivative

dP 0

dP
= exp

{
−

∫ T

0

h(Xs)(dYs − h(Xs)ds)− 1

2

∫ T

0

|h(Xs)|2 ds

}

= exp

{
−

∫ T

0

h(Xs)dYs +
1

2

∫ T

0

|h(Xs)|2 ds

}
,

i.e. the measure under which the process Y is a Wiener process, independent of the state
process X , then the P(S)-valued processes π̃n = (π̃n

t )t∈[0,T ] = (Un(t, Y ))t∈[0,T ] converge in
P 0-probability to the P(S)-valued process π = (πt)t∈[0,T ] = (U(t, Y ))t∈[0,T ]. In addition,
since the measure P is also absolutely continuous w.r.t. P 0, the authors also prove that

π̃n converges in P -probability to π

which is the result we had already announced for the second approach described above.
Finally in Remark 7.4 in [3] it is observed that if (Ωn,Fn, P n) = (Ω,F , P ), W n(t) = W (t),

in (20), (B1) and (B2) hold, and moreover
(B3’) X n converges in P -probability to X in DS([0, T ]),

(B4’) lim
n→∞

∫ T

0

|hn(X n
s )− h(Xs)|2 ds = 0, in P -probability,

then the filters πn converge to π in P -probability, as measure valued processes.

To conclude this section observe that a sufficient condition for (B4’) to hold is that

(B4”) lim
n→∞

E

(∫ T

0

|hn(X n
s )− h(Xs)|2 ds

)
=0.

4.2 The main results

In this section, we want to prove by using the convergence results proved in [2] (see also
Section 4.1) that the sequence of filters associated with the approximated system (7) and
(8) introduced in Section 2.2 converges to the filter associated with the original system
(1) and (4). With this aim, in our setting we take S = [0, T ]× C([−τ, 0],R), with

distS
(
(t, θ), (t′, θ′)

)
= ‖(t, θ)− (t′, θ′)‖S = |t− t′|+ ‖θ − θ′‖,
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Xt = (t, ΠtX),

and
h : [0, T ]× C([−τ, 0],R) → R; (t, θ) 7→ h(t, θ)

where h is the observation function in (4).
Note that with these choices the observation processes given by (4) and (19) coincide.

Moreover, if we take

X n
t = (δ · bt/δc , Πδ·bt/δcX

n), (21)

as an approximation for the signal process Xt, with Xn(t) defined in Section 2.2, then the
approximation (8) of Section 2.2 for the observation process and the approximation (20)
of Section 4.1, with hn = h and W n = W , coincide.

With the approximations (14) or (15) for the observation process it is natural to take

X n
t = (t, ΠtX

n), (22)

or

X n
t = (t, Πδ·bt/δcX

n), (23)

as an approximation for the signal process.
Indeed, similarly to the previous case, if we take the approximation (22) (respectively

(23)) for the signal process, hn = h and W n = W , then the approximation (14) (respec-
tively (15)) and (20) for the observation process coincide.

Remark 4.1. Note that we are taking (Ωn,Fn, P n) = (Ω,F , P ), and W n = W . More-
over, in order to get the approximation (8) for the observation process in (20), besides
taking X n defined by (21) and hn = h, we can take X n as in (23) and

hn : [0, T ]× C([−τ, 0],R) → R; (t, θ) 7→ h(δ · bt/δc , θ). (24)

Then, the main result of this paper, concerning the approximated system (7) and (8) is
stated in the following theorem. Note that similar results hold for the other approximation
schemes introduced in Section 2.2 (see for example Lemma 4.7).

Theorem 4.2. Assume that conditions (H1) to (H10) are satisfied. Then, the sequence
of filters πn associated with the approximated system (7) and (8) converges weakly and in
probability to the original filter π, in DP(S)([0, T ]).

Moreover the sequence of measure valued processes π̃n converges in probability to the
original filter π.

In addition, if d denotes the Prohorov metric, then maxk=1,··· ,n d(π̃n
kδ, πkδ) converges in

probability to zero.
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Since the filter π is continuous in time, the last statement of the Theorem is an imme-
diate consequence of the convergence in probability of π̃n to π.

In the following, since the measure valued processes πn and π̃n in Section 4.1 coincide
with the processes given by (11) and (12) respectively, we prove that under the assump-
tions of Theorem 4.2 the conditions (B1) to (B4) of the previous section are fulfilled.

In our setting, the convergence condition (B1) is obviously satisfied when taking
hn = h, and the continuity condition (B2) on h is satisfied thanks to the continuity
assumption (H8) on h.

Furthermore, note that, under assumption (H8), condition (B1) is obviously also sat-
isfied when we take hn defined as in (24).

Moreover, in our framework, condition (B3) asserts that Xn =
(
(δ·bt/δc , Πδ·bt/δcXn)

)
t≥0

converges weakly to X =
(
(t, ΠtX)

)
t≥0

in DS([0, T ]) = D[0,T ]×C([−τ,0],R)([0, T ]). We will
prove the convergence of Xn to X , in a sense stronger than weak convergence, in Propo-
sition 4.5 below (see also Remark 4.6).

Assume for the moment that the weak convergence condition (B3) is satisfied. Then,
with our approximation scheme, condition (B4) reads

lim
n→∞

E

(∫ T

0

|h(δ · bs/δc , Πδ·bs/δcX
n)|2 ds

)
= E

(∫ T

0

|h(s, ΠsX)|2 ds

)
. (25)

With the other choices for the approximation models condition (B4) reads

lim
n→∞

E

(∫ T

0

|h(s, ΠsX
n)|2 ds

)
= E

(∫ T

0

|h(s, ΠsX)|2 ds

)
, (26)

or

lim
n→∞

E

(∫ T

0

|h(s, Πδ·bs/δcX
n)|2 ds

)
= E

(∫ T

0

|h(s, ΠsX)|2 ds

)
, (27)

respectively.

Under the sublinear growth condition (H7), and the continuity condition (H8) for
the observation function h, if the weak convergence condition (B3) holds, we can assume
w.l.o.g. that in our case the integrals inside the expectation in the left hand side of (25)
converge to the integral inside the expectation in the right hand side of (25). Therefore,
to prove that condition (B4) holds, we only need a uniform integrability condition. To
this end observe that

sup
n

E

[(∫ T

0

|h(δ · bs/δc , Πδ·bs/δcX
n)|2 ds

)2
]
≤ sup

n
E

[
T

∫ T

0

|h(δ · bs/δc , Πδ·bs/δcX
n)|4 ds

]

≤ sup
n

T

∫ T

0

E

[
C ′

(
1 + sup

t∈[−τ,T ]

|Xn(t)|4
)]

ds < ∞
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and hence, condition (B4) will hold thanks to the following result, which implies also the
stronger condition (B4”), and therefore the convergence in probability of the filters (see
Section 4.1).

Lemma 4.3. Assume that conditions (H1) to (H4) are satisfied, then

sup
n
E

[
sup

t∈[0,T ]

‖ΠtX
n‖2

]
= sup

n
E

[
sup

u∈[−τ,T ]

|Xn(u)|2
]

< ∞.

Moreover, if condition (H10) also holds, then

sup
n
E

[
sup

t∈[0,T ]

‖ΠtX
n‖4

]
= sup

n
E

[
sup

u∈[−τ,T ]

|Xn(u)|4
]

< ∞.

Proof. First observe that

sup
t∈[−τ,T ]

|Xn(t)| = max(|Xn(kδ)|; kδ ≤ T ) ≤ max (‖η‖, max(|Xn(kδ)|; 0 ≤ kδ ≤ T ))

= max (‖η‖, max(|Zn(kδ)|; 0 ≤ kδ ≤ T )) ≤ max

(
‖η‖, sup

t∈[0,T ]

|Zn(t)|
)

,

where Zn(t) is given by (13), and set

Mn
t :=

∫ t

0

bn(u)dW̃u where bn(u) := b(δ · bu/δc , Πδ·bu/δcX
n). (28)

For any ` ∈ {1, 2} take α = 2` and β = 2`/(2`− 1), so that (1/α) + (1/β) = 1. Then for
any stopping time σ, there exists a suitable constant C` such that

sup
u∈[−τ,t∧σ]

|Xn(u)|2`

≤ C`



‖η‖

2` +

(∫ t

0

sup
u∈[0,s∧σ]

|a(δ · bu/δc , Πδ·bu/δcX
n)|ds

)2`

+ sup
s∈[0,t∧σ]

|Mn
s |2`





≤ C`



‖η‖

2` + t2`/β

(∫ t

0

sup
u∈[0,s∧σ]

|a(δ · bu/δc , Πδ·bu/δcX
n)|αds

)2`/α

+ sup
s∈[0,t∧σ]

|Mn
s |2`





≤ C`

{
‖η‖2` + t2`−1

∫ t

0

`K`

(
1 + sup

u∈[−τ,s∧σ]

|Xn(u)|2`

)
ds + sup

s∈[0,t]

|Mn
s∧σ|2`

}
.

If Mn
t∧σ is a martingale, setting

φn
σ,`(t) := E

[
sup

u∈[−τ,t∧σ]

|Xn(u)|2`

]
,

18



and applying Doob’s inequality for p = 2` to Mn
t∧σ yields

φn
σ,`(t) ≤ C ′

`

{
1 + ‖η‖2` +

∫ t

0

φn
σ,`(s)ds + E

[
|Mn

t∧σ|2`
]}

, (29)

for all t ∈ [0, T ], for a suitable constant C ′
` = C ′

`(T ).
Taking σ = σn

N := inf{s > 0; supu∈[−τ,s] |Xn(u)| ≥ N}, we have

∫ T

0

E[1s≤σn
N
b2`
n (s)]ds < ∞, (30)

and Mn
t∧σ = Mn

t∧σn
N

is a martingale. Indeed, by the sublinearity condition (3) on b we have

∫ t

0

E[1s≤σn
N
b2`
n (s)]ds ≤

∫ t

0

E[`K`(1 + sup
u∈[−τ,s∧σn

N ]

|Xn(u)|2`)]ds, (31)

and the r.h.s. of the previous inequality is finite since supu∈[−τ,s∧σn
N ] |Xn(u)| ≤ N . Then

E[|Mn
t∧σn

N
|2] = E

[(∫ t

0

1s≤σn
N
bn(s)dW̃s

)2
]

=

∫ t

0

E[1s≤σn
N
b2
n(s)]ds,

and (see e.g. Lemma 4.12, page 125, in Liptser and Shiryayev [13])2

E[|Mn
t∧σ|4] = E

[(∫ t

0

1s≤σn
N
bn(s)dW̃s

)4
]
≤ 62t

∫ t

0

E[1s≤σn
N
b4
n(s)]ds.

Then, taking into account (29) and (31), and invoking Gronwall’s inequality we get a
bound for φn

σ,`(T ) = φn
σn

N ,`(T ), uniform in n and N . Therefore, applying Fatou’s Lemma
and making use of the fact that σn

N →∞ as N →∞, we get the theses.

Remark 4.4. Note that with the same technique one could prove that

sup
n
E

[
sup

t∈[0,T ]

‖ΠtZ
n‖2`

]
= sup

n
E

[
sup

u∈[−τ,T ]

|Zn(u)|2`

]
< ∞.

for ` = 1, 2, whenever E[‖η‖2`] < ∞, i.e. when assumption (H4) or (H10) holds.

2Apply Lemma 4.12, page 125, with

f(t, ω) := 1t≤σn
N

bn(t),

which assures that, if ∫ T

0

E[f(s, ω)2m]ds < ∞

then

E

[(∫ t

0

f(s, ω)dWs

)2m
]
≤ [m(2m− 1)]mtm−1

∫ t

0

E[f(s, ω)2m]ds
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In order to check the weak convergence condition (B3) we use the following result.

Proposition 4.5. Assume that conditions (H1) to (H4) and (H9) are satisfied. Then

lim
n→∞

E

[
sup

t∈[0,T ]

∥∥(δ · bt/δc , Πδ·bt/δcX
n)− (t, ΠtX)

∥∥2

S

]
= 0. (32)

Remark 4.6. Note that condition (32) implies the convergence in probability in DS([0, T ]),
with the uniform metric, which in fact is stronger than (B3).

As an intermediate step we will need the following result concerning the weak conver-
gence of the approximation Zn(t).

Lemma 4.7. Under the hypotheses of Proposition 4.5

lim
n→∞

E

[
sup

t∈[0,T ]

‖ΠtZ
n − ΠtX‖2

]
= 0.

Before giving the proofs of Proposition 4.5 and Lemma 4.7 we introduce the operator
P δ which gives the linear interpolation of a function

(
x(s)

)
s∈[−τ,T ]

, with step δ, so that(
P δx(s)

)
s∈[−τ,T ]

is the linear interpolation of (`δ, x(`δ)), for ` = −m, . . . , n.

Moreover, denoting by

ωx(δ; [−τ, T ]) := sup
s,t∈[−τ,T ]
|s−t|≤δ,

|x(s)− x(t)|

the modulus of continuity of the function
(
x(s)

)
s∈[−τ,T ]

, we observe that

sup
t∈[0,T ]

‖Πδ·bt/δcP
δx− Πtx‖ ≤ 2ωx(δ; [−τ, T ]), (33)

ωx(δ; [−τ, T ]) ≤ 2 sup
t∈[−τ,T ]

|x(t)| (34)

The second inequality is obvious, while the first one follows by observing that Πδ·bt/δcP δx =
P δΠδ·bt/δcx, and therefore

‖Πδ·bu/δcP
δx− Πux‖ ≤ ‖Πδ·bu/δcP

δx− Πδ·bu/δcx‖+ ‖Πδ·bu/δcx− Πux‖
= ‖P δΠδ·bu/δcx− Πδ·bu/δcx‖+ ‖Πδ·bu/δcx− Πux‖
≤ 2 sup

s,t∈[0,T ]
|s−t|≤δ,

‖Πsx− Πtx‖ = 2 sup
s,t∈[−τ,T ]
|s−t|≤δ,

|x(s)− x(t)|.

Finally, we can apply inequality (33) to the state process. Since the paths of X are
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continuous, the modulus of continuity ωX(δ, [−τ, T ]) converge to zero as δ = δn converge
to zero, and therefore, taking into account (34) and (5), by the dominated convergence
theorem we get that

lim
n→∞

E
[
ω2

X(δ, [−τ, T ])
]

= 0, (35)

and that

lim
n→∞

E

[
sup

t∈[0,T ]

‖Πδ·bt/δcP
δX − ΠtX‖2

]
= 0. (36)

Proof. of Proposition 4.5

First of all we note that∥∥(δ · bt/δc , Πδ·bt/δcX
n)− (t, ΠtX)

∥∥2

S
≤ 2 δ2 + 2

∥∥Πδ·bt/δcX
n − ΠtX

∥∥2
,

Then adding and subtracting Πδ·bt/δcP δX in the second term on the right hand side of
the above expression it yields

∥∥Πδ·bt/δcX
n − ΠtX

∥∥2 ≤ 2
∥∥Πδ·bt/δcX

n − Πδ·bt/δcP
δX

∥∥2
+ 2

∥∥Πδ·bt/δcP
δX − ΠtX

∥∥2
.

Then, taking into account (36), and that

sup
t∈[0,T ]

‖ΠtX
n − ΠtP

δX‖ = sup
k:kδ∈[−τ,T ]

|Xn(kδ)−X(kδ)|

= sup
k:kδ∈[−τ,T ]

|Zn(kδ)−X(kδ)| ≤ sup
t∈[−τ,T ]

|Zn(t)−X(t)|

the result follows by Lemma 4.7.

Proof. of Lemma 4.7

Noticing that P δZn(s) = Xn(s), for s ∈ [−τ, 0] ∪ [0, T ], then we can rewrite (13) as

Zn(t) = η(0) +

∫ t

0

a(δ · bs/δc , Πδ·bs/δcP
δZn)ds +

∫ t

0

b(δ · bs/δc , Πδ·bs/δcP
δZn)dW̃s.

Therefore, taking into account that Zn(t) = X(t) = η(t) for t ∈ [−τ, 0],

sup
s∈[−τ,t]

|Zn(s)−X(s)|2

≤ 2

(∫ t

0

|a(δ · bu/δc , Πδ·bu/δcP
δZn)− a(u, ΠuX)|du

)2

+ 2 sup
s∈[0,t]

(∫ s

0

[
b(δ · bu/δc , Πδ·bu/δcP

δZn)− b(u, ΠuX)
]
dW̃u

)2

≤ 2t

∫ t

0

|a(δ · bu/δc , Πδ·bu/δcP
δZn)− a(u, ΠuX)|2du

+ 2 sup
s∈[0,t]

(∫ s

0

[
b(δ · bu/δc , Πδ·bu/δcP

δZn)− b(u, ΠuX)
]
dW̃u

)2

21



By Lemma 4.3, Remark 4.4 and the sublinearity of b,

∫ s

0

[
b(δ · bu/δc , Πδ·bu/δcP

δZn)− b(u, ΠuX)
]
dW̃u

is a martingale.
Then taking the expectations we can apply Doob’s inequality, and we get for t ∈ [0, T ]

E

[
sup

u∈[0,t]

‖ΠuZ
n − ΠuX‖2

]
= E

[
sup

s∈[−τ,t]

|Zn(s)−X(s)|2
]

≤ 2t

∫ t

0

E
[|a(δ · bu/δc , Πδ·bu/δcP

δZn)− a(u, ΠuX)|2] du

+ 8

∫ t

0

E
[
|b(δ · bu/δc , Πδ·bu/δcP

δZn)− b(u, ΠuX)|2
]

du

≤ max(2T, 8)

∫ t

0

KE

[
sup

u∈[0,s]

‖Πδ·bu/δcP
δZn − ΠuX‖2 + δ2

]
ds

≤ C(T )

∫ t

0

E

[
sup

u∈[0,s]

(‖Πδ·bu/δcP
δZn − Πδ·bu/δcP

δX‖2 + ‖Πδ·bu/δcP
δX − ΠuX‖2

)
+ δ2

]
ds

≤ C(T )

∫ t

0

E

[
sup

u∈[0,s]

‖ΠuZ
n − ΠuX‖2 + 4ω2

X(δ; [−τ, T ]) + δ2

]
ds,

where we have used (33). Then Gronwall’s inequality gives the upper bound

E

[
sup

u∈[0,T ]

‖ΠuZ
n − ΠuX‖2

]
≤ C ′(T )

(
E

[
ω2

X(δ; [−τ, T ])
]
+ δ2

)

and the proof is accomplished, since δ = δn and (according to (35)) E [ω2
X(δ; [−τ, T ])] go

to zero as n goes to infinity.
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