On the moments of the modulus of continuity of
Itô processes∗

MARKUS FISCHER† GIOVANNA NAPPO‡

July 15, 2008

Abstract

The modulus of continuity of a stochastic process is a random element for any fixed
mesh size. We provide upper bounds for the moments of the modulus of continuity of
Itô processes with possibly unbounded coefficients, starting from the special case of
Brownian motion. References to known results for the case of Brownian motion and
Itô processes with uniformly bounded coefficients are included. As an application,
we obtain the rate of strong convergence of Euler-Maruyama schemes for the approx-
imation of stochastic delay differential equations satisfying a Lipschitz condition in
supremum norm.

2000 AMS subject classifications: primary 60J60, 60J65, 60G17, 60G70, 60H99;
secondary 34K50, 60H10, 60H35.

Key words and phrases: modulus of continuity; Itô process; extreme values; stochas-
tic differential equation; functional differential equation; delay; Euler-Maruyama scheme.

1 Introduction

A typical trajectory of standard Brownian motion is Hölder continuous of any order less
than one half. If such a trajectory is evaluated at two different time points \(t_1, t_2 \in [0, 1] \)
with \(|t_1 - t_2| \leq h \) small, then the difference between the values at \(t_1 \) and \(t_2 \) is not greater
than a multiple of \(\sqrt{h \ln \left(\frac{1}{h} \right)} \), where the proportionality factor depends on the trajectory
(and on the time horizon, here equal to one), but not on the choice of the time points.
This is a consequence of Lévy’s theorem on the uniform modulus of continuity of Brownian
motion (cf. Lévy, 1937: p. 172). Let us recall the definition of the modulus of continuity of
a deterministic function.

∗Ringraziamenti.
†Corresponding author. Institute for Applied Mathematics, University of Heidelberg, Im Neuenheimer
Feld 294, 69120 Heidelberg, Germany. E-Mail: fischer@statlab.uni-heidelberg.de
‡Department of Mathematics, University of Rome “La Sapienza”, Piazzale Aldo Moro 2, 00185 Roma,
Italy. E-Mail: nappo@mat.uniroma1.it
Definition 1. Let \(f : [0, \infty) \to \mathbb{R}^d \) and \(T > 0 \). Then the *modulus of continuity* of \(f \) on the interval \([0, T] \) is the function \(w_f(\cdot, T) \) defined by

\[
[0, \infty) \ni h \mapsto w_f(h, T) := \sup_{t,s \in [0,T], |t-s| \leq h} |f(t) - f(s)| \in [0, \infty].
\]

Here and in what follows, \(| . |\) denotes Euclidean distance of appropriate dimension. Let \(f \) be any function \([0, \infty) \to \mathbb{R}^d \). Then, according to Definition 1, we have \(w_f(0,T) = 0 \) for all \(T > 0 \), \(w_f(h_1, T) \leq w_f(h_2, T) \) for all \(0 \leq h_1 \leq h_2 \), all \(T > 0 \), and \(w_f(h, T_1) \leq w_f(h, T_2) \) for all \(0 < T_1 \leq T_2, h \geq 0 \). Moreover, \(f \) is continuous on \([0,T] \) if and only if \(w_f(h, T) \) tends to zero as the mesh size \(h \) goes to zero.

The modulus of continuity of a stochastic process is a random element for any fixed mesh size \(h > 0 \). The following results show that the moments of the modulus of continuity of Brownian motion and, more generally, of Itô processes whose coefficients satisfy suitable integrability conditions allow for upper bounds of the form

\[
E \left[(w_Y(h, T))^p \right] \leq C(p) \left(h \ln \left(\frac{2T}{h} \right) \right)^{\frac{p}{2}} \quad \text{for all } h \in (0, T],
\]

where \(C(p) \) is a finite positive number depending on the moment \(p \) and the coefficients of the Itô process \(Y \). In the case of Brownian motion, the order in \(h \) and \(T \) of the \(p \)-th moments of the modulus of continuity as given by Inequality (1) is exact.

Results to the effect that Inequality (1) holds in case \(Y \) is a Brownian motion or a \(d \)-dimensional Itô process with uniformly bounded coefficients can be found in the literature. In Ritter (1990), the problem of recovering a merely continuous univariate function from a finite number of function evaluations is considered in the “average case setting” of information-based complexity theory with respect to the Wiener measure. From Theorem 2 therein it is possible to deduce that the \(p \)-th-moment of the modulus of continuity of Brownian motion asymptotically behaves like \((\ln(n)/n)^{p/2}\) in the mesh size \(h = 1/n \).

In the works by Słomiński (1994, 2001) and Pettersson (1995), Euler schemes for the approximate solution of stochastic differential equations with reflection (in the sense of the Skorohod problem) are studied. Lemma 4.4 of Pettersson (1995) gives the order (in the mesh size) of the second moment of the modulus of continuity of Brownian motion. In Słomiński (1994), a suboptimal bound of order \(h^{p/2-\varepsilon} \) for the \(p \)-th-moment of the modulus of continuity of Itô processes with bounded coefficients was obtained, while Lemma A.4 of Słomiński (2001) provides bounds of the right order of \((h \ln(1/h))^{p/2}\) for all (integer) moments \(p \). The estimates are extended from the case of Brownian motion (for which an inequality due to Utev (1981) is used) to that of Itô processes with bounded coefficients by means of a time-change argument, which works in a straightforward way thanks to the boundedness assumption.

We too start from the special case of one-dimensional Brownian motion. In Section 2 we collect some classical results from the theory of extreme values in order to show that, for each \(p > 0 \), there are finite and strictly positive constants \(c(p) \) and \(C(p) \) such that

\[
c(p) \left(h \ln \left(\frac{2T}{h} \right) \right)^{\frac{p}{2}} \leq E \left[(w_W(h, T))^p \right] \leq C(p) \left(h \ln \left(\frac{2T}{h} \right) \right)^{\frac{p}{2}} \quad \text{for all } h \in (0, T],
\]

where \(w_Y(h, T) \) denotes Euclidean distance of appropriate dimension. Let

\[
Y(t) := \int_0^t \sigma(s) \, dW(s)
\]

be any function \([0, \infty) \to \mathbb{R}^d \). Then, according to Definition 1, we have \(w_Y(0,T) = 0 \) for all \(T > 0 \), \(w_Y(h_1, T) \leq w_Y(h_2, T) \) for all \(0 \leq h_1 \leq h_2 \), all \(T > 0 \), and \(w_Y(h, T_1) \leq w_Y(h, T_2) \) for all \(0 < T_1 \leq T_2, h \geq 0 \). Moreover, \(Y \) is continuous on \([0,T] \) if and only if \(w_Y(h, T) \) tends to zero as the mesh size \(h \) goes to zero.
where W is a standard one-dimensional Wiener process. Observe that neither of the inequalities in (2) can be deduced from the traditional formulation of Lévy’s theorem on the pathwise modulus of continuity of Brownian motion; yet cf. Remark 1. We also provide explicit bounds on the constant $C(p)$; our derivation, though in the spirit of extreme values theory, is elementary in that it only relies on a few well-known properties of the normal distribution, see Lemma 3 and its proof.

In the appendix, an alternative way of deriving bounds on $C(p)$ is presented; it is based on an inequality due to Garsia, Rodemich, and Rumsey Jr., see the proof of Lemma 4. The technique also appears in Section 3 of Friz and Victoir (2005), where the pathwise modulus of continuity of enhanced Brownian motion is computed.

In Section 3, we apply the bounds on the moments of the Wiener modulus of continuity in terms of the mesh size, the moment and the time horizon in order to prove Inequality (1), again by a time-change argument, also for Itô processes with possibly unbounded coefficients, see Theorem 1 and Remark 2.

As an application of Theorem 1, we consider the problem of approximately computing the solution to a stochastic delay (or functional) differential equation (SDDE / SFDE). In the case of ordinary stochastic differential equations (SDEs), it is well known that the pth-moment of the approximation error produced by a standard Euler-Maruyama discretisation scheme is of order $h^{p/2}$ in the mesh size h of the time grid. Such a result holds on condition that in measuring the error only grid points are taken into account.

Suppose, now, that the approximation error is measured in supremum norm, that is, as the maximal difference over the time interval between the exact solution and the continuous-time approximate solution, where the latter is obtained from the discrete-time approximate solution by piecewise constant or piecewise linear interpolation with respect to the time grid. In the case of SDEs, upper bounds for the p-th moment of the error of order $(h \ln(1/h))^{p/2}$ in the mesh size h can then be derived, see Faure (1992) and Remark B.1.5 in Bouleau and Lépingle (1994: Ch. 5). In fact, with respect to this error criterion, the order of the error bound cannot be improved beyond $(h \ln(1/h))^{p/2}$, neither for an Euler scheme nor for any other scheme using the same information, see Hofmann et al. (2000). In Müller-Gronbach (2002), an adaptive Euler scheme is introduced which is optimal also in the sense that it attains, for any moment, the asymptotically optimal constant in the error bound.

Observe that trajectories of the continuous-time approximate solution can be actually computed – up to machine precision – at any point in time, not only at grid points, by a simple polygonal interpolation. Values of the driving Wiener process, in particular, are needed at grid points only. Measuring the error in supremum norm in this way allows to approximate path-dependent functionals of the exact solution in a strong sense.

In Section 4, we obtain that the rate of strong uniform convergence for piecewise linear Euler-Maruyama approximation schemes in the case of SDDEs./ SFDEs whose coefficients satisfy a functional Lipschitz condition in supremum norm is of order $(h \ln(1/h))^{p/2}$, thus
extending the above mentioned results. When the continuous-time approximate solution is built from the trajectories of the underlying Wiener process, as is common for SDEs (e.g. Kloeden and Platen, 1999), then the approximation error of the Euler-Maruyama scheme is of order $h^{p/2}$ also in the case of SDDEs / SFDEs, see Section 5 in Mao (2003). Notice that the Lipschitz condition there is more restrictive than the one adopted below. In Hu et al. (2004), a Milstein scheme for SDDEs with point delay is shown to be of first order (in contrast to the order $1/2$ of the Euler scheme). The continuous-time approximate solution depends again on the full trajectories of the Wiener process.

2 Moments of the modulus of continuity of one-dimensional Brownian motion

Let W be a standard one-dimensional Wiener process living on the probability space (Ω, \mathcal{F}, P), and denote by w_W its modulus of continuity, that is, the random element $\Omega \ni \omega \mapsto w_W(\omega)$, where $w_W(\omega)$ is the modulus of continuity of the path $[0, \infty) \ni t \mapsto W(t, \omega)$ in the sense of Definition 1.

The aim of this section is to prove Inequalities (2). The proof is based on classical results in extreme values theory; it also yields a representation of the constants $c(p)$ and $C(p)$. We start by introducing another modulus of continuity, which we will call the Euler modulus of continuity.

Definition 2. Let f be a deterministic function. The Euler modulus of continuity of f on the interval $[0, T]$ is the function $w_E^f(., T)$ defined by

$$[0, \infty) \ni h \mapsto w_E^f(h,T) := \sup_{t \in [0,T]} |f(t) - f(t/h)| \in [0, \infty].$$

In view of the above definition, it is immediate to check that

$$w_E^f(h,T) \leq w_f(h,T) \leq 3 w_E^f(h,T) \quad \text{for all } h \in (0, T],$$

whence we may concentrate on the Euler modulus of continuity.

Lemma 1. Let W be a standard one-dimensional Wiener process, and let $(Z_i)_{i \in \mathbb{N}}$ be a sequence of independent random variables with standard normal distribution. Then, for all $p > 0$, all $h \in (0, T]$,

$$\mathbb{E} \left[\max_{i=1,\ldots,\lfloor T/h \rfloor} |Z_i|^p \right] h^{p/2} \leq \mathbb{E} \left[(w_E^W(h,T))^p \right] \leq 2 \mathbb{E} \left[\max_{i=1,\ldots,\lfloor T/h \rfloor} |Z_i|^p \right] h^{p/2}. $$

Proof. It is clear that, for any continuous function f, any $n \in \mathbb{N}$,

$$w_E^f(h,nh) = \max_{i=1,\ldots,n} \sup_{t \in [(i-1)h,ih]} |f(t) - f((i-1)h)|$$

$$\quad = \max_{i=1,\ldots,n} \max \{ \Delta_f(i,h), \Delta_f(i,h) \},$$

where $\Delta_f(i,h)$ and $\Delta_f(i,h)$ are the increments of f over the interval $[(i-1)h,ih]$. This is a direct consequence of the definition of the Euler modulus of continuity.
where \(\Delta_f(i, h) := \sup \{ f(t) - f((i-1)h); t \in [(i-1)h, i h] \} \). It is easily seen that
\[
\left(\max_{i=1, \ldots, \lfloor T/h \rfloor} \Delta_f(i, h) \right)^p \leq \left(w_f^E(h, T) \right)^p \\
\leq \left(\max_{i=1, \ldots, \lfloor T/h \rfloor} \Delta_f(i, h) \right)^p + \left(\max_{i=1, \ldots, \lfloor T/h \rfloor} \Delta_f(i, h) \right)^p.
\]

By the symmetry of Brownian motion, it follows that
\[
E \left(\max_{i=1, \ldots, \lfloor T/h \rfloor} \Delta_f(i, h) \right)^p \leq \left(w_f^E(h, T) \right)^p \leq 2 E \left(\max_{i=1, \ldots, \lfloor T/h \rfloor} \Delta_W(i, h) \right)^p.
\]
Then, by means of a rescaling argument, we immediately get that
\[
E \left(\max_{i=1, \ldots, \lfloor T/h \rfloor} \Delta_W(i, h) \right)^p = h^{p/2} E \left(\max_{i=1, \ldots, \lfloor T/h \rfloor} \Delta_W(i, 1) \right)^p.
\]

Finally, the well known fact that the random variables
\[
\Delta_W(i, 1) = \sup \{ W(t) - W(i-1); t \in [i-1, i] \}
\]
are independent, with the same distribution as \(|Z_i|\), ends the proof of the inequalities (4).

Lemma 2. Let \((Z_i)_{i \in \mathbb{N}}\) be a sequence of independent standard Gaussian random variables. Then, for all \(p > 0 \),
\[
\lim_{n \to \infty} E \left(\frac{\max_{i=1, \ldots, n} |Z_i|}{\sqrt{2 \ln(2n)}} \right)^p = 1.
\]

Before giving the proof of the above result, we show how to use it for the proof of the inequalities in (2). Indeed, by (6),
\[
c_0(p) (2 \ln(2n))^{p/2} \leq E \left(\max_{i=1, \ldots, n} |Z_i| \right)^p \leq C_0(p) (2 \ln(2n))^{p/2},
\]
for every \(n \in \mathbb{N} \), where
\[
c_0(p) := \inf_{n \in \mathbb{N}} \frac{E \left(\max_{i=1, \ldots, n} |Z_i| \right)^p}{(2 \ln(2n))^{p/2}}, \quad C_0(p) := \sup_{n \in \mathbb{N}} \frac{E \left(\max_{i=1, \ldots, n} |Z_i| \right)^p}{(2 \ln(2n))^{p/2}}.
\]

Therefore, taking into account that
\[
w_f^E(h, \lfloor \frac{T}{h} \rfloor h) \leq w_f^E(h, T) \leq w_f^E(h, \lceil \frac{T}{h} \rceil h),
\]
and that, for \(x \geq 1 \), \(\frac{1}{2} \ln(2x) \leq \ln(2[x]) \leq \ln(2 \lceil x \rceil) \leq 2 \ln(2x) \), we find that
\[
c_0(p) (h \ln(\frac{2T}{h}))^{p/2} \leq E \left((w_f^E(h, T))^p \right) \leq 2 C_0(p) (4h \ln(\frac{2T}{h}))^{p/2},
\]
where the bounds are valid for all \(h \in (0, T] \). Inequalities (2) then follow by (3) with
\[
c(p) = c_0(p), \quad C(p) = 2 \cdot 6^p \cdot C_0(p).
\]
The proof of Lemma 2 is based on some classical results of extreme values theory concerning the sequence
\[M_n := \max_{i=1,\ldots,n} X_i, \]
where \((X_i)_{i \in \mathbb{N}}\) is a sequence of i.i.d. random variables with common distribution function \(F\). The first result we recall can be found in Gnedenko (1943), while the second one is due to Pickands (1968), and we state it in a simplified version.

Proposition 1 (Gnedenko (1943)). Assume that \(F(x) < 1\) for every \(x \in \mathbb{R}\) and that the sequence \((\beta_n) \subset \mathbb{R}\) converges to infinity. Then the sequence \((M_n/\beta_n)\) converges to 1 in probability if and only if for any \(\epsilon > 0\),
\[
\lim_{n \to \infty} n \left(1 - F(\beta_n(1+\epsilon)) \right) = 0,
\]
\[
\lim_{n \to \infty} n \left(1 - F(\beta_n(1-\epsilon)) \right) = +\infty.
\]

Proposition 2 (Theorem 3.2 in Pickands (1968), Exercise 2.1.3 in Resnick (1987)). Assume that \(F(x) < 1\) for every \(x \in \mathbb{R}\) and that \(E[(X_1)^p] < \infty\), where \(p > 0\). Assume furthermore that the sequence \((M_n/\beta_n)\) converges to 1 in probability. Then
\[
E \left[\left(\frac{M_n}{\beta_n} \right)^p \right] \xrightarrow{n \to \infty} 1.
\]

Proof of Lemma 2. In our case \(X_i = |Z_i|\), so that \(M_n := \max_{i=1,\ldots,n} |Z_i|\) and, if \(\Phi(x)\) denotes the distribution function of \(Z_i\), then the validity of (6) follows from Proposition 2, because
\[
(i)\; 1 - F(x) = 2(1 - \Phi(x)) < 1 \text{ for every } x \in \mathbb{R},
\]
\[
(ii) \; \text{the negative part of } X_1 \text{ is zero},
\]
\[
(iii) \; M_n/\beta_n \xrightarrow{n \to \infty} 1 \text{ in probability, where } \beta_n := \sqrt{2 \ln(2n)}.
\]

Properties (i) and (ii) are obvious, and we only need to check property (iii). Let \(\varphi = \Phi'\) denote the density function of \(Z_i\), so that asymptotically \(1 - \Phi(x) \sim \varphi(x)/x\). Then, for any \(\alpha = 1 \pm \epsilon > 0\) we have
\[
n \left(1 - F(\beta_n \alpha) \right) = n \cdot 2(1 - \Phi(\beta_n \alpha)) \sim 2n \frac{\varphi(\beta_n \alpha)}{\beta_n \alpha} = \sqrt{\frac{2}{\alpha^2 \pi}} \cdot \frac{n}{\sqrt{\ln 2n}} \exp(-\frac{1}{2} \cdot \frac{2\alpha^2 \ln(2n)}{\ln 2n}) = \sqrt{\frac{2}{\alpha^2 \pi}} \cdot \frac{n}{\sqrt{\ln 2n}} (2n)^{-\alpha^2} = C(\alpha) \frac{n^{1-\alpha^2}}{\sqrt{\ln 2n}}.
\]
The sequence \(n^{1-\alpha^2}/\sqrt{\ln 2n}\) converges to zero or to infinity as \(\alpha = 1 + \epsilon > 1\) or \(\alpha = 1 - \epsilon < 1\), whence one can apply Proposition 1 in order to obtain property (iii), i.e. the relative stability of \((M_n)\).
Remark 1. As already observed, neither of the inequalities in (2) follows from Lévy’s theorem on the pathwise uniform modulus of Brownian motion, which states, in the notation of this section, that

\begin{equation}
\Pr \left(\limsup_{h \to 0^+} \sup_{t,s \in [0,1], |t-s|=h} \frac{|W(t) - W(s)|}{\sqrt{2h \ln(\frac{1}{h})}} = 1 \right) = 1,
\end{equation}

see Lévy (1937: pp. 168-172) and Itô and McKean (1974: pp. 36-38). Equation (11) implies that there is a finite, non-negative random variable \(M \) such that, for \(\Pr \)-almost all \(\omega \in \Omega \),

\[\sup_{t,s \in [0,1], |t-s| \leq h} |W(t,\omega) - W(s,\omega)| \leq M(\omega) \sqrt{h \ln(\frac{1}{h})} \]

for all \(h \in (0, \frac{1}{2}] \),

while nothing can be said about the moments of \(M \) (clearly, \(M \) cannot be bounded from above). Consequently, no upper bounds on the moments of \(w_{W}(.,1) \) can be obtained from Lévy’s result.

As regards the lower bounds, Equation (11) does not allow to conclude that the constants \(c(p) \) in (2) are strictly positive, because it does not guarantee that the lower limit in (11) is positive. “A closer examination of the proof” of Lévy’s theorem (Taylor, 1974: § 3), however, shows that

\begin{equation}
\Pr \left(\liminf_{h \to 0^+} \sup_{t,s \in [0,1], |t-s|=h} \frac{|W(t) - W(s)|}{\sqrt{2h \ln(\frac{1}{h})}} = 1 \right) = 1.
\end{equation}

Indeed, the first part of the proof as given in Itô and McKean (1974: p. 37) still works if, instead of using \(2^n \) subintervals of length \(2^{-n} \), we consider increments of the Brownian path over \(\lfloor 1/h \rfloor \) subintervals of length \(h \).

Equation (12) guarantees the existence of strictly positive constants \(c(p) \) in (2), although it does not yield any representation of these constants.

The next lemma provides explicit bounds on the moments of the modulus of continuity of one-dimensional Brownian motion.

Lemma 3. Let \(W \) be a standard one-dimensional Wiener process. Then for any \(p > 0 \), any \(T > 0 \),

\begin{equation}
\mathbb{E} \left[(w_{W}(h,T))^p \right] \leq \frac{5}{\sqrt{\pi}} \cdot \left(\frac{6}{\sqrt{\ln(2)}} \right)^p \cdot \Gamma\left(\frac{p+1}{2} \right) \cdot \left(h \ln\left(\frac{2T}{h} \right) \right)^\frac{p}{2} \quad \text{for all } h \in (0,T].
\end{equation}

Proof. Let \(p > 0 \), \(T > 0 \), \(h \in (0,T] \). Let \((Z_i)_{i \in \mathbb{N}} \) be a sequence of independent random variables with standard normal distribution. Denote by \(w_{W}^{E}(.,T) \) the Euler modulus of continuity according to Definition 2. By the upper bound in (2), taking into account (10) and (8), we see that

\[\mathbb{E} \left[(w_{W}(h,T))^p \right] \leq 2 \cdot 6^p \cdot \sup_{n \in \mathbb{N}} \mathbb{E} \left[\max_{i=1,...,n} |Z_i|^p \right] \cdot \left(h \ln\left(\frac{2T}{h} \right) \right)^\frac{p}{2}. \]

\[= 2 \cdot 6^p \cdot \left(h \ln\left(\frac{2T}{h} \right) \right)^\frac{p}{2} \cdot \sup_{n \in \mathbb{N}} \mathbb{E} \left[\left(\frac{M_n}{\beta_n} \right)^p \right], \]
where \(\beta_n := \sqrt{2 \ln(2n)} \) and \(M_n := \max_{i=1,\ldots,n} |Z_i|, \, n \in \mathbb{N} \), as in the proof of Lemma 2. It is therefore sufficient to obtain a uniform upper bound for the expectations \(\mathbb{E}[(M_n/\beta_n)^p] \).

Indeed, for all \(n \in \mathbb{N} \) it holds that

\[
\mathbb{E} \left[\left(\frac{M_n}{\beta_n} \right)^p \right] = \int_0^\infty \left(1 - \mathbb{P} \left(M_n \leq x^{1/p} \beta_n \right) \right) \, dx
\]

\[
\leq 2^{-p/2} + \int_{2^{p/2}}^\infty \left(1 - \left(F \left(x^{1/p} \beta_n \right) \right)^n \right) \, dx
\]

\[
\leq 2^{-p/2} + \int_{2^{p/2}}^\infty \left(1 - n F \left(x^{1/p} \beta_n \right) \right) \, dx,
\]

where \(F(.) \) is the common distribution function of the i.i.d. sequence \((|Z_i|)_{i \in \mathbb{N}}, \) that is, \(F(x) = 2 \Phi(x) - 1 \) with \(\Phi(.) \) the standard normal distribution function. The last of the above inequalities holds, because \((1 - a^n) \leq n(1 - a) \) for any \(a \in [-1, 1] \).

At this point, let \(\beta(.) \) be the function \([1, \infty) \ni t \mapsto \sqrt{2 \ln(2t)} \in [0, \infty) \) and observe that, for fixed \(y \geq 1 \), the mapping

\([1, \infty) \ni t \mapsto t \cdot (1 - F(y \beta(t))) \)

is non-increasing. To see this, notice that \(t \cdot \beta'(t) = \frac{2}{\beta(t)} \) for \(t \geq 1 \), observe that

\[
F'(x) = 2 \varphi(x), \quad 1 - F(x) = 2(1 - \Phi(x)) \leq 2 \frac{\varphi(x)}{x}, \quad x > 0,
\]

where \(\varphi = \Phi' \), and check that, for all \(y \geq 1/\sqrt{3}, \, t \geq 1, \)

\[
\frac{d}{dt} \left(t \cdot (1 - F(y \beta(t))) \right) = 1 - F(y \beta(t)) - 2 \varphi(y \beta(t)) \frac{2y}{\beta(t)}
\]

\[
\leq \frac{2 \varphi(y \beta(t))}{y \beta(t)} (1 - 2 y^2) \leq 0.
\]

As \(x^{1/p} \geq 1/\sqrt{2} \) whenever \(x \geq 2^{-p/2} \), it follows that

\[
\mathbb{E} \left[\left(\frac{M_n}{\beta_n} \right)^p \right] \leq 2^{-p/2} + \int_{2^{p/2}}^\infty \left(1 - F \left(x^{1/p} \beta_1 \right) \right) \, dx \leq 2^{-p/2} + \mathbb{E} \left[\left(\frac{|Z_1|}{\beta_1} \right)^p \right]
\]

\[
= 2^{-p/2} + (2 \ln(2))^{-p/2} \mathbb{E} \left[|Z_1|^p \right] = 2^{-p/2} + (2 \ln(2))^{-p/2} \frac{\Gamma \left(\frac{p+1}{2} \right)}{\sqrt{\pi}},
\]

because \(Z_1 \) has standard normal distribution, whence \(|Z_1|^2 \) has Gamma distribution with shape parameter \(\frac{1}{2} \) and scale parameter \(2 \). Consequently, we find that

\[
\mathbb{E} \left[(wW(h, T))^p \right] \leq 2 \cdot \left(6/\sqrt{\ln(2)} \right)^p \cdot \left((\ln(2))/2 \right)^{p/2} \cdot \left(\frac{\Gamma \left(\frac{p+1}{2} \right)}{\sqrt{\pi}} \right) \cdot \left(h \ln \left(\frac{2T}{h} \right) \right)^{\frac{p}{2}}
\]

\[
\leq \frac{5}{\sqrt{\pi}} \cdot \left(6/\sqrt{\ln(2)} \right)^p \cdot \Gamma \left(\frac{p+1}{2} \right) \cdot \left(h \ln \left(\frac{2T}{h} \right) \right)^{\frac{p}{2}}.
\]

\(\square \)
3 Upper bounds for Itô processes

In this section, we turn to deriving upper bounds on the moments of the modulus of continuity for quite general Itô processes.

Theorem 1. Let W be a d_1-dimensional Wiener process adapted to a filtration (\mathcal{F}_t) satisfying the usual assumptions and defined on a complete probability space (Ω, \mathcal{F}, P). Let $Y = (Y^{(1)}, \ldots, Y^{(d)})^T$ be an Itô process of the form

$$Y(t) = y_0 + \int_0^t b(s)ds + \int_0^t \sigma(s)dW(s), \quad t \geq 0,$$

where $y_0 \in \mathbb{R}^d$ and b, σ are (\mathcal{F}_t)-adapted processes with values in \mathbb{R}^d and $\mathbb{R}^{d \times d_1}$, respectively. Let $T > 0$, and let $\zeta = \zeta_T$, $\xi = \xi_T$ be $[0, \infty]$-valued \mathcal{F}_T-measurable random variables such that for all $\omega \in \Omega$,

\begin{align*}
\zeta(\omega) &\geq \max_{i \in \{1, \ldots, d\}, s.t. 0 \leq t} \left| t - s \right| \ln \left(\frac{2T}{t - s} \right) \left[b_i(s, \omega) \right] d\tilde{s}, \\
\xi(\omega) &\geq \max_{i \in \{1, \ldots, d\}, j \in \{1, \ldots, d_1\}} \text{ess sup}_{t \in [0, T]} \sigma_{ij}^2(t, \omega).
\end{align*}

Let $p \geq 1$. If the processes b, σ are such that

(H1) $E[\zeta^p] < \infty$,

(H2) there is $\varepsilon > 0$ such that $E \left[\frac{\zeta^{p + \varepsilon}}{\zeta} \right] < \infty$,

then there is a finite constant $\tilde{C}_p > 0$ such that

$$E \left[(w_Y(h, T))^p \right] \leq \tilde{C}_p \left(h \ln \left(\frac{2T}{h} \right) \right)^{\frac{p}{2}} \quad \text{for all } h \in (0, T].$$

Proof. With $T > 0$, $p \geq 1$, it holds for all $t, s \in [0, T]$ that

$$|Y(t) - Y(s)|^p \leq d_1^p \left(|Y^{(1)}(t) - Y^{(1)}(s)|^p + \ldots + |Y^{(d)}(t) - Y^{(d)}(s)|^p \right),$$

and for the i-th component of Y we have

\begin{align*}
|Y^{(i)}(t) - Y^{(i)}(s)|^p &= \left| \int_s^t b_i(s)ds \right|^p + \sum_{j=1}^{d_1} \int_s^t \sigma_{ij}(\tilde{s})dW^j(\tilde{s}) \bigg|^p \\
&\leq (d_1 + 1)^p \left(t - s \right) \ln \left(\frac{2T}{t - s} \right)^{\frac{p}{2}} + \sum_{j=1}^{d_1} \left| \int_s^t \sigma_{ij}(\tilde{s})dW^j(\tilde{s}) \right|^p.
\end{align*}

Hence, by Hypothesis (H1), for any $h \in (0, T]$,

\begin{align*}
E \left[(w_Y(h, T))^p \right] &= E \left[\sup_{t, s \in [0, T], |t - s| \leq h} |Y(t) - Y(s)|^p \right] \\
&\leq d_1^p (d_1 + 1)^p \left(d \cdot E [\zeta^p] \cdot \left(h \ln \left(\frac{2T}{h} \right) \right)^{\frac{p}{2}} + \sum_{i=1}^{d_1} \sum_{j=1}^{d_1} E \left[\sup_{t, s \in [0, T], |t - s| \leq h} \left| \int_s^t \sigma_{ij}(\tilde{s})dW^j(\tilde{s}) \right|^p \right] \right).
\end{align*}
To prove the assertion, it is enough to show that the $d \cdot d_1$ expectations on the right-hand side of the last inequality are finite and of the right order in h. Let $i \in \{1, \ldots, d\}$, $j \in \{1, \ldots, d_1\}$, and define the one-dimensional process $M = M^{(i,j)}$ by

$$M(t) := \int_0^{t \wedge T} \sigma_{ij}(\bar{s}) \, dW^j(\bar{s}) + (W^j(t) - W^j(T)) \cdot 1_{\{t \wedge T\}}, \quad t \geq 0.$$

Since $\int_0^T \sigma^2_{ij}(\bar{s}) \, d\bar{s}$ is P-almost surely finite as a consequence of Hypothesis (H2), the process M is a (continuous) local martingale vanishing at zero, and M can be represented as a time-changed Brownian motion. More precisely, by the Dambis-Dubins-Schwarz theorem, for instance Theorem 3.4.6 in Karatzas and Shreve (1991: p. 174), there is a standard one-dimensional Brownian motion \tilde{W} living on (Ω, \mathcal{F}, P) such that, P-almost surely,

$$M(t) = \tilde{W}(\langle M \rangle_t) \quad \text{for all } t \geq 0,$$

where $\langle M \rangle$ is the quadratic variation process associated with M, that is,

$$\langle M \rangle_t = \int_0^{t \wedge T} \sigma^2_{ij}(\bar{s}) \, d\bar{s} + (t - T) \lor 0, \quad t \geq 0.$$

Consequently, it holds P-almost surely that

$$\sup_{t,s \in [0,T], |t - s| \leq h} \left| \int_s^t \sigma_{ij}(\bar{s}) \, dW^j(\bar{s}) \right|^p = \sup_{t,s \in [0,T], |t - s| \leq h} \left| \tilde{W}(\langle M \rangle_t) - \tilde{W}(\langle M \rangle_s) \right|^p$$

$$\leq \sup \left\{ \left| \tilde{W}(u) - \tilde{W}(v) \right|^p : u, v \in [0, \langle M \rangle_T], |u - v| \leq \sup_{t \in [h,T]} \langle M \rangle_t - \langle M \rangle_{t-h} \right\}$$

$$\leq (w_{\tilde{W}}(\delta_h, \tau))^p,$$

where τ and δ_s, $s \in [0, T]$, are the random elements defined by

$$\tau(\omega) := \langle M \rangle_T(\omega), \quad \delta_s(\omega) := \sup_{t \in [s, T]} \langle M \rangle_t(\omega) - \langle M \rangle_{t-s}(\omega), \quad \omega \in \Omega.$$

Notice that $\tau = \langle M \rangle_T = \delta_T$, and $\delta_h \leq \langle M \rangle_T$ for all $h \in [0, T]$. By the monotonicity of the modulus of continuity and Hypothesis (H2), for P-almost all $\omega \in \Omega$ it holds that

$$w_{\tilde{W}(\omega)}(\delta_h(\omega), \tau(\omega)) \leq w_{\tilde{W}(\omega)}(\xi(\omega)h, \tau(\omega)) \leq w_{\tilde{W}(\omega)}(\xi(\omega)h, \xi(\omega)T).$$

Let $\alpha > 1$. Then, by Hölder’s inequality and Lemma 3, for all $h \in (0, T]$ it holds that

$$E \left[(w_{\tilde{W}}(\delta_h, \tau))^p \right] \leq E \left[(w_{\tilde{W}}(\xi h, \xi T))^p \right]$$

$$\leq \sum_{n=1}^{\infty} E \left[1_{\{\xi \in (n-1, n]\}} (w_{\tilde{W}}(nh, nT))^p \right]$$

$$\leq \sum_{n=1}^{\infty} P \left\{ \xi \in (n-1, n] \right\} \frac{\alpha - 1}{\alpha} E \left[(w_{\tilde{W}}(nh, nT))^\alpha \right] \frac{1}{\alpha}.$$
for some $\beta \parallel \text{with the supremum norm, denoted by}$

differential equation (SDDE)

In this section we assume that the process X is a positive constant, τ is the state process X associated with the state process X, and $\mathcal{C} := C([\tau, 0], \mathbb{R}^d)$ is called the segment space. The segment space \mathcal{C} is equipped, as usual, with the supremum norm, denoted by $\|\cdot\|$.
As an example, the functions $\mu(t, \theta)$ and $\sigma(t, \theta)$ with $\theta \in C$ can be taken to be of the form

$$g \left(t, \max_{u \in [\tau_{i-1}, \tau_i]} \theta(u) ; \ i = 1, \ldots, r \right) \quad (16)$$

where $-\tau = \tau_0 < \tau_1 < \ldots < \tau_r = 0$, or

$$g \left(t, \int_{-\tau}^{0} \psi_i(u, \theta(u)) \gamma_i(du) ; \ i = 1, \ldots, r \right) \quad (17)$$

where γ_i are finite measures on $[-\tau, 0]$, and g and ψ_i are continuous functions. The fixed point delay model

$$dX(t) = g_{\mu}(X(t), X(t-\tau)) dt + g_{\sigma}(X(t), X(t-\tau)) dW(t)$$

can be recovered by choosing, in (17), $r = 2$, $\psi_1(u, x) = \psi_2(u, x) = x$, and γ_1, γ_2 as the Dirac measures $\delta_0, \delta_{-\tau}$.

We assume the following conditions:

条件下 (A1) η is a \mathcal{F}_0-measurable C-valued random variable such that

$$E \left[\sup_{s \in [-\tau, 0]} |\eta(s)|^2 \right] < \infty, \quad k = 1, 2. \quad (20)$$

条件下 (A2) The functionals $\mu(t, \theta)$ and $\sigma(t, \theta)$ on $[0, T] \times C$ are jointly globally continuous, Lipschitz in space and α-Hölder in time for some constant $\alpha \in \left[\frac{1}{2}, 1 \right]$, that is,

$$|\mu(t, \theta) - \mu(t', \bar{\theta})|^2 + |\sigma(t, \theta) - \sigma(t', \bar{\theta})|^2 \leq K \left(|t - t'|^{2\alpha} + ||\theta - \bar{\theta}||^2 \right), \quad (18)$$

and satisfy the growth condition

$$|\mu(t, \theta)|^2 + |\sigma(t, \theta)|^2 \leq K \left(1 + ||\theta||^2 \right), \quad (19)$$

for some constant $K > 0$.

Conditions (A1) and (A2), with $t' = t$ in (18), guarantee the existence and uniqueness of solutions to Equation (15) as well as the bound

$$E \left[\sup_{u \in [0,T]} \|\Pi_u X\|^{2k} \right] < \infty, \quad k = 1, 2, \quad (20)$$

see Theorem II.2.1 and Lemma III.1.2 in Mohammed (1984) and Theorem I.2 in Mohammed (1996). Condition (20) together with the sublinearity of μ and σ imply that conditions (H1) and (H2) of Theorem 1 are satisfied with $p = 2$ and $\varepsilon = 1$. As a consequence, there exists a constant \tilde{K} such that

$$E \left[w_X^2(h; [0, T]) \right] \leq \tilde{K} h \ln \left(\frac{T}{h} \right) \quad \text{for all } h \in (0, T/2]. \quad (21)$$

The above upper bound is the key point in the proof of our convergence result (see Proposition 3).
We start by considering the sequence of approximating processes $X^n = (X^n(t))_{t \in [-\tau, T]}$ defined according to the piecewise linear Euler-Maruyama scheme, that is, X^n is the piecewise linear interpolation of the Euler discretization scheme with step size $h = h_n = T/n$, where $\tau = mh$ for some $m \in \mathbb{N}$ (for the sake of simplicity, we assume that T/τ is rational):

$$
\begin{cases}
X^n((\ell + 1)h) = X^n(\ell h) + \mu(\ell h, \Pi_{\ell h}X^n)h \\
+ \sigma(\ell h, \Pi_{\ell h}X^n)[W((\ell + 1)h) - W(\ell h)], & 0 \leq \ell \leq n - 1, \\
X^n(\ell h) = \eta(\ell h), & -m \leq \ell \leq 0.
\end{cases}
$$

By means of the approximating sequence of processes X^n for the process X, we define the piecewise-constant C-valued process $(\Pi_{\lfloor t/h \rfloor \cdot h} X^n)_{t \in [0, T]}$, which can be interpreted as an approximation of the C-valued process $(\Pi_t X)_{t \in [0, T]}$.

We also consider the continuous Euler-Maruyama scheme, that is, the processes $Z^n = (Z^n(t))_{t \in [0, T]}$ where

$$
\begin{cases}
Z^n(t) := \eta(0) + \int_0^t \mu(h \cdot \lfloor s/h \rfloor, \Pi_{h \cdot \lfloor s/h \rfloor} X^n)ds \\
+ \int_0^t \sigma(h \cdot \lfloor s/h \rfloor, \Pi_{h \cdot \lfloor s/h \rfloor} X^n)dW(s), & 0 \leq t \leq T, \\
Z^n(t) := \eta(t), & -\tau \leq t \leq 0,
\end{cases}
$$

which can be interpreted as intermediate approximations. Notice that the process X^n is not adapted, while the processes Z^n and $(\Pi_{t/h}X^n)_{t \in [0, T]}$ are adapted processes.

The aim of this section is to compute an upper bound for the rate of convergence of our scheme, i.e., to prove the following result.

Proposition 3. Assume that conditions (A1) and (A2) are satisfied, and furthermore that the initial condition η satisfies

$$
E \left[w^2_\eta(h; [-\tau, 0]) \right] \leq C_\eta h \ln(\frac{T}{h}).
$$

Then there exist constants C_X and C_Z such that

$$
E \left[\sup_{t \in [0, T]} \| \Pi_{h \cdot [t/h]} X^n - \Pi_t X \|^2 \right] \leq C_X h \ln(\frac{T}{h}),
$$

$$
E \left[\sup_{u \in [0, T]} \| \Pi_u Z^n - \Pi_u X \|^2 \right] \leq C_Z h \ln(\frac{T}{h}).
$$

The above result generalizes Proposition 4.2 in Calzolari et al. (2007), since it does not require the boundedness of the coefficients μ and σ (there denoted by a and b, respectively). We point out that Proposition 3 requires that condition (A1) holds also for $k = 2$, while when the diffusion coefficient $|\sigma(t, \theta)|$ is bounded by a deterministic constant, then $k = 1$ is sufficient.
By (21), the above result implies that a similar upper bound holds also for the expectation of \(\sup_{u \in [-\tau,T]} |X^n(u) - X(u)|^2 \). In this respect, Proposition 3 can be seen as a generalization to SDDEs of an old result, due to Faure (1992), about piecewise linear approximations of solutions to ordinary stochastic differential equations (see Bouleau and Lépingle (1994)).

Proposition 3 can be proved, with obvious modifications, in the same way as the above quoted Proposition 4.2, which deals with the one-dimensional case (see Section 5 of Calzolari et al. (2007)); the boundedness assumptions on the coefficients there is used only to get the upper bound (21). For the ease of the reader, here we briefly sketch the proof.

The processes \(Z^n \) have the property that

\[
Z^n(\ell h) = X^n(\ell h), \quad \text{for } \ell \geq -m, \tag{27}
\]

as can be easily seen. The latter property implies that the piecewise linear interpolation of \(Z^n \) coincides with \(X^n \). In other words,

\[
P^h Z^n(s) = X^n(s), \quad \text{for } s \in [-\tau,T], \tag{28}
\]

where \(P^h \) denotes the operator which gives the piecewise linear interpolation with step size \(h \) of a function \(f : [-\tau,T] \to \mathbb{R} \), i.e.

\[
P^h f(v) := \lambda(v) f(h \cdot [v/h] + h) + (1 - \lambda(v)) f(h \cdot [v/h]),
\]

where \(\lambda(v) := v/h - [v/h] \). By rewriting \(f(v) = \lambda(v) f(v) + (1 - \lambda(v)) f(v) \), we have

\[
|P^h f(v) - f(v)| = |\lambda(v) (f(h \cdot [v/h] + h) - f(v)) + (1 - \lambda(v)) (f(h \cdot [v/h]) - f(v))| \leq |\lambda(v) w_f(h) + (1 - \lambda(v)) w_f(h)| = w_f(h).
\]

Furthermore, taking into account (28), we see that

\[
\sup_{t \in [0,T]} \| \Pi_t X^n - \Pi_t P^h X \| = \sup_{k, h \in [-\tau,T]} |X^n(kh) - X(kh)| = \sup_{k, h \in [-\tau,T]} |Z^n(kh) - X(kh)| \leq \sup_{t \in [-\tau,T]} |Z^n(t) - X(t)| = \sup_{t \in [0,T]} \| \Pi_t Z^n - \Pi_t X \|.
\]

Therefore, it holds that

\[
\| \Pi_{[t/t]} X^n - \Pi_t X \|^2 \leq 2 \| \Pi_{[t/t]} X^n - \Pi_{[t/t]} P^h X \|^2 + 2 \| \Pi_{[t/t]} P^h X - \Pi_t X \|^2 \leq 2 \sup_{t \in [0,T]} \| \Pi_t Z^n - \Pi_t X \|^2 + 2 w^2_X(h; [-\tau,T]). \tag{29}
\]

The result now follows by the inequality

\[
\mathbb{E} \left[\sup_{u \in [0,T]} \| \Pi_u Z^n - \Pi_u X \|^2 \right] \leq C_1(T) \left(\mathbb{E} \left[w^2_X(h; [-\tau,T]) \right] + h^{2\alpha} \right), \tag{30}
\]

14
(cf. (5.12) in the proof of Lemma 5.3 in Calzolari et al. (2007)), by (21), and by the assumption on the moments of the modulus of continuity of η.

We end this section by observing that the rate of convergence in (25) cannot be improved. Indeed consider the toy model with $\mu = 0$ and $\sigma = 1$, with $\eta(s) = 0$ for all $s \in [-\tau, 0]$, i.e. the case $X(t) = W(t)$, for all $t \in [0, T]$. In this case $Z^n(t) = W(t)$, for all $t \in [-\tau, T]$, so that the continuous Euler approximation is useless, while, $W^n(t) = p^h W(t)$, for all $t \in [-\tau, T]$. Therefore, since for a general process X

$$
\sup_{t \in [0, T]} \| \Pi_{h, [t/h]} X^n - \Pi_t X \| = \sup_{t \in [0, T]} \sup_{s \in [-\tau, 0]} |X^n(s + h \cdot [t/h]) - X(s + t)| \geq \max_{t = ih + \frac{h}{2} \in [0, T]} \max_{s = kh \in [-\tau, 0]} |X^n(kh + ih) - X(kh + ih + \frac{h}{2})| \geq \max_{j \cdot jh, jh + \frac{h}{2} \in [0, T]} |X^n(jh) - X(jh + \frac{h}{2})|,
$$

we have that

$$
\sup_{t \in [0, T]} \| \Pi_{h, [t/h]} W^n - \Pi_t W \| \geq \max_{j \cdot jh, jh + \frac{h}{2} \in [0, T]} |W(jh) - W(jh + \frac{h}{2})| = \sqrt{\frac{h}{2}} \max_{j = 0, \ldots, n-1} |Z^h_j|,
$$

where Z^h_j are independent standard Gaussian random variables. With the same extreme value technique used in Section 2, one can prove that the moments of

$$
\max_{0 \leq j \leq n-1} |Z^h_j|/\sqrt{2 \ln(2n)} = \max_{0 \leq j \leq n-1} |Z^h_j|/\sqrt{2 \ln(2T/h)}
$$

converge to 1. Therefore, we can get a result of the following kind:

$$
E \left[\sup_{t \in [0, T]} \| \Pi_{h, [t/h]} W^n - \Pi_t W \|^p \right] = O((h \ln(T/h))^{p/2}).
$$

Similar results hold for the piecewise linear approximation W^n as well as for the piecewise constant approximation \bar{W}^n, i.e. $W^n(t) := W(h \cdot [t/h])$, $t \in [0, T]$:

$$
\sup_{t \in [-\tau, T]} |W^n(t) - W(t)| \leq \bar{w}^E_W(h; [0, T]) = \sup_{t \in [-\tau, T]} |\bar{W}^n(t) - W(t)|
$$

and

$$
\sup_{t \in [-\tau, T]} |W^n(t) - W(t)| \geq \max_{1 \leq i \leq n; j \text{ even}} \left| \frac{1}{2} \left(W(ih + h) - W(ih + h) \right) + \frac{1}{2} \left(W(ih) - W(ih + h) \right) \right|,
$$

where the random variables inside the absolute value are independent Gaussian random variables with mean zero and variance $\frac{h}{4} + \frac{h}{4} = \frac{h}{2}$.
Appendix

Here, we derive bounds on the moments of the modulus of continuity of one-dimensional Brownian motion in an alternative way with respect to Section 2.

Lemma 4. Let W be a standard one-dimensional Wiener process. Then there is a constant $K > 0$ such that for any $p > 0$, any $T > 0$,

$$
\mathbb{E} \left[(w_W(h,T))^p \right] \leq K^p \cdot p^2 \cdot \left(h \ln \left(\frac{T}{h} \right) \right)^{\frac{p}{2}} \quad \text{for all } h \in \left(0, \frac{T}{e} \right].
$$

The approach we take in proving the lemma should be compared to the derivation of Lévy’s exact modulus of continuity for Brownian motion described in Exercise 2.4.8 of Stroock and Varadhan (1979). The main ingredient is an inequality due to Garsia, Rodemich, and Rumsey Jr., see Theorem 2.1.3 in Stroock and Varadhan (1979: p. 47) and the original paper by Garsia et al. (1970). Their inequality allows to get an upper bound for $|W(t,\omega) - W(s,\omega)|^p$ in terms of T, the distance $|t-s|$ and $\xi(\omega)$, where ξ is a suitable random variable.

Proof of Lemma 4. Let $p \geq 1$. Let us first suppose that $T = 1$. Inequality (31) for $T \neq 1$ will be derived from the self-similarity of Brownian motion. In order to prepare for the application of the Garsia-Rodemich-Rumsey lemma, define on $[0, \infty)$ the strictly increasing functions Ψ and μ by

$$
\Psi(x) := \exp \left(\frac{x^2}{2} \right) - 1, \quad \mu(x) := \sqrt{c}x, \quad x \in [0, \infty),
$$

where $c > p$. Clearly,

$$
\Psi(0) = 0 = \mu(0), \quad \Psi^{-1}(y) = \sqrt{2 \ln(y+1)} \quad \text{for all } y \geq 0, \quad d\mu(x) = \mu(dx) = \frac{\sqrt{c}}{2\sqrt{x}} \, dx.
$$

Define the \mathcal{F}-measurable random variable $\xi = \xi_c$ with values in $[0, \infty]$ by letting

$$
\xi(\omega) := \int_0^1 \int_0^1 \Psi \left(\frac{|W(t,\omega) - W(s,\omega)|}{\mu(|t-s|)} \right) \, ds \, dt, \quad \omega \in \Omega.
$$

Notice that μ and ξ depend on the choice of the parameter c. Since $\frac{W(t) - W(s)}{\sqrt{t-s}}$ has standard normal distribution $N(0,1)$, we see that

$$
\mathbb{E}[\xi^p] \leq \mathbb{E}[(\xi + 1)^p] = \mathbb{E} \left[\left(\int_0^1 \int_0^1 \exp \left(\frac{|W(t) - W(s)|^2}{2c|t-s|} \right) \, ds \, dt \right)^p \right]
$$

$$
\leq \mathbb{E} \left[\int_0^1 \int_0^1 \exp \left(\frac{|W(t) - W(s)|^2}{2c|t-s|} \right) \, ds \, dt \right]
$$

$$
= \int_0^1 \int_0^1 \mathbb{E} \left[\exp \left(\frac{p}{2c} \left(\frac{W(t) - W(s)}{\sqrt{t-s}} \right)^2 \right) \right] \, ds \, dt = \sqrt{\frac{c}{c-p}}.
$$
In particular, $\xi(\omega) < \infty$ for P-almost all $\omega \in \Omega$. The Garsia-Rodemich-Rumsey inequality now implies that for all $\omega \in \Omega$, all $t, s \in [0, 1]$,

$$|W(t, \omega) - W(s, \omega)| \leq 8 \int_0^{[t-s]} \Psi^{-1}\left(\frac{4\xi(\omega)}{x^2}\right) \mu(dx) = 8 \int_0^{[t-s]} \sqrt{2 \ln \left(\frac{4\xi(\omega)}{x^2} + 1\right)} \frac{\sqrt{c}}{2\sqrt{x}} \, dx.$$

Notice that if $\xi(\omega) = \infty$ then the above inequality is trivially satisfied. With $h \in (0, \frac{1}{c}]$, we have

$$\begin{align*}
\sup_{t, s \in [0, 1], |t-s| \leq h} |W(t, \omega) - W(s, \omega)| &\leq 4\sqrt{2c} \int_0^h \sqrt{\ln(4\xi(\omega) + x^2)} + 2 \ln(\frac{1}{\sqrt{x}}) \frac{dx}{\sqrt{x}} \\
&\leq 4\sqrt{2c} \left(\sqrt{\ln(4\xi(\omega) + 1)} + \sqrt{2} \int_0^h \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{\ln(\frac{1}{\sqrt{x}})}} + \frac{1}{\sqrt{\ln(\frac{1}{\sqrt{x}})}}\right) \frac{dx}{\sqrt{x}}\right) \\
&\leq 8\sqrt{2c} \left(\sqrt{\ln(4\xi(\omega) + 1)} + 2\sqrt{2} \sqrt{\ln(\frac{1}{h})}\right) \leq 32\sqrt{c} \left(\sqrt{\xi(\omega) + 1}\right) \sqrt{\ln(\frac{1}{h})}.
\end{align*}$$

Consequently, for all $h \in (0, \frac{1}{c}]$,

$$\begin{align*}
E\left[\sup_{t, s \in [0, 1], |t-s| \leq h} |W(t) - W(s)|^p\right] &\leq 32^p \cdot c^{\frac{p}{2}} \cdot E\left[\left(\sqrt{\xi(\omega) + 1}\right)^p \left(h \ln(\frac{1}{h})\right)^{\frac{p}{2}}\right] \\
&\leq 64^p \cdot c^{\frac{p}{2}} \cdot \left(\sqrt{E[\xi(\omega)] + 1}\right) \left(h \ln(\frac{1}{h})\right)^{\frac{p}{2}}.
\end{align*}$$

Choosing the parameter c to be equal to $\frac{9}{8p}$, we find that for all $h \in (0, \frac{1}{c}]$,

$$E\left[\left(|W_W(h, 1)|\right)^p\right] \leq E\left[\sup_{t, s \in [0, 1], |t-s| \leq h} |W(t) - W(s)|^p\right] \leq (96/\sqrt{2})^p \cdot p^{\frac{p}{2}} \cdot (\sqrt{3} + 1) \left(h \ln(\frac{1}{h})\right)^{\frac{p}{2}} < 192^p \cdot p^{\frac{p}{2}} \cdot \left(h \ln(\frac{1}{h})\right)^{\frac{p}{2}}.$$

The asserted inequality thus holds for any $K \geq 192$ in case $T = 1$. To derive the assertion for arbitrary $T > 0$, recall that by letting $\tilde{W}(t) := \frac{1}{\sqrt{T}} W(T \cdot t)$, $t \geq 0$, we obtain a second standard one-dimensional Wiener process \tilde{W}. Therefore,

$$\begin{align*}
E\left[\left(|W_W(h, T)|\right)^p\right] &= E\left[\sup_{t, s \in [0, T], |t-s| \leq h} |W(t) - W(s)|^p\right] \\
&= E\left[\sup_{t, s \in [0, T], |t-s| \leq h} |\sqrt{T}\tilde{W}(\frac{t}{T}) - \sqrt{T}\tilde{W}(\frac{s}{T})|^p\right] \\
&= T^{\frac{p}{2}} E\left[\sup_{t, s \in [0, 1], |t-s| \leq \frac{h}{T}} |\tilde{W}(t) - \tilde{W}(s)|^p\right] = T^{\frac{p}{2}} E\left[\left(|W_W(h, \frac{T}{h})|\right)^p\right].
\end{align*}$$

Since W and \tilde{W} have the same distribution, estimate (34) implies that for all $h \in (0, \frac{T}{c}]$,

$$E\left[\left(|W_W(h, T)|\right)^p\right] \leq T^{\frac{p}{2}} \cdot 192^p \cdot p^{\frac{p}{2}} \cdot \left(h \ln(\frac{1}{h})\right)^{\frac{p}{2}},$$

which yields Inequality (31). \hfill \Box
Remark 3. The proof of Lemma 4 shows that the constant K need not be greater than 192. The assertion of the lemma remains valid with h from the interval $(0, \alpha \cdot T]$ for any $\alpha \in (\frac{1}{e}, 1)$, but the constant K such that Inequality (31) holds will be different.

Remark 4. From the chain of inequalities (33) in the proof of Lemma 4 it is easy to see that higher than polynomial moments of the Wiener modulus of continuity exist. More specifically, let $\xi = \xi_c$ be the random variable defined by (32), and let $\lambda > 0$. By the second but last line in (33) we have for all $h \in (0, \frac{T}{e}]$,

\begin{equation}
E \left[\exp \left(\lambda (w_W(h, T))^2 \right) \right] \leq E \left[\left(e \cdot (4\xi + 1) \right)^{2048e^\lambda h \ln(\frac{1}{h})} \right].
\end{equation}

The expectation on the right-hand side of (35) is finite if $c > 2048e^\lambda h \ln(\frac{1}{h})$, that is, the above exponential-quadratic moment exists if $\lambda h \ln(\frac{1}{h}) < \frac{1}{2048}$. The situation here should be compared to the case of standard Gaussian random variables. The constant $\frac{1}{2048}$ is, of course, not optimal.

Remark 5. The p-dependent factors in Inequalities (31) and (13) are asymptotically equivalent in the moment p up to a factor \widetilde{K}^p for some $\widetilde{K} > 0$. This is a consequence of Stirling’s formula for the Gamma function. When the p-dependent factors in Inequality (13) are bounded by an expression of the form $K^p \cdot p^{p/2}$, then K need not be greater than four for $p > 1$ big enough.

References

