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Abstract

For a given bivariate survival function F , we study the relations between the set of
the level curves of F and the Kendall distribution. Then we characterize the survival
models simultaneously admitting a specified Kendall distribution and a specified
set of level curves. Attention will be restricted to exchangeable survival models.
Furthermore, we assume that the level curves of F are regular curves within the
quadrant R2

+. For our results we combine two different methods. On the one hand
we use a transformation result proven by Genest and Rivést (2001); on the other
hand we resort to the semi-copula representation of the level curves of F , introduced
by Bassan and Spizzichino (2001). On the one hand we resort to the semi-copula
representation of the level curves of F , introduced by Bassan and Spizzichino (2001);
on the other hand we use a semicopula version of a transformation result proven by
Genest and Rivést (2001) for copulas.

Also, results by Genest and Rivést (1993), Nelsen et Al. (2003), and Nelsen et
Al. (2008), concerning the equivalence class of bivariate copula sharing a same
Kendall distribution, reveal to have a basic role in our analysis. In view of such
result in fact it turns out that, under simple technical hypothesis, survival models
with Archimedean survival copulas have a key role in the study of the general case.
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1 Introduction

Let X, Y be a pair of non-negative random variables and let F (x, y) denote
their joint survival function, namely, for x ≥ 0, y ≥ 0,

F (x, y) = P{X > x, Y > y}.

We concentrate our attention on the case when X,Y are exchangeable and as-
sume F to be continuous, strictly positive and strictly 1-decreasing. Denoting
by G(·) the common univariate marginal survival function of X and Y , i.e.

G(t) = P{X > t} = F (t, 0) = P{Y > t} = F (0, t),

G will then be continuous, strictly positive, and strictly decreasing all over
the half-line [0,∞), with G(0) = 1. For v ∈ (0, 1), we consider the level set

Av := {(x, y) ∈ R2
+|F (x, y) ≤ v},

the set LF = {Av|v ∈ (0, 1)}, and assume that the boundary ∂Av,

∂Av := {(x, y) ∈ R2
+|F (x, y) = v},

is a continuous curve, that will be referred to as a level curve. In the rest of
the paper all these conditions will be always assumed and will be referred to
as our standing hypotheses.

We will be interested in survival models admitting a given set of level curves.
We mention in this respect that, for 0 < v < 1, ∂Av can be interpreted as the
bivariate (upper-orthant) Value at Risk curve at level 1− v (see [17], [8]).

We set

K̂(v) := P{(X,Y ) ∈ Av} = P{F (X,Y ) ≤ v}, (1)

and we shall write K̂F when we need to stress that K̂ is the upper-orthant
Kendall distribution associated to F .

We recall that, for a pair of random variables (X, Y ) with joint distribution
function F , the random variable F (X, Y ) is known as the Bivariate Probabil-
ity Integral Transformation (BIPIT) (see e.g. [10]) and that its distribution
function K is called the Kendall distribution function associated to F (see [9],
[15], [16], and references therein for basic details about Kendall distributions).
In [10] and [16] several aspects of the Kendall distribution K have been an-
alyzed, based on the fact that it only depends on the connecting copula of
X,Y . As we shall see, these papers provide an essential background for the
present paper.
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K̂ in (1) will be termed ”upper-orthant” Kendall distribution. It is easy to
check (see also Section 4 below) that K̂ is a Kendall distribution function asso-
ciated to the bivariate distribution function Ĉ, the survival copula associated
to F , i.e.

Ĉ(u, v) := F
(
G
−1

(u), G
−1

(v)
)
.

Therefore, similarly to what happens for the Kendall distribution K, K̂ is
determined by Ĉ. In this respect we recall the following representation for F
in terms of Ĉ and G:

F (x, y) = Ĉ
(
G(x), G(y)

)
, (2)

which, under our hypotheses, uniquely characterize the survival copula.

We shall denote by LF the set {Av|v ∈ (0, 1)} and write K̂F when we need to

stress that K̂ is the upper-orthant Kendall distribution associated to F .

There is however an infinite class of bivariate copulas that share the same
Kendall distribution. There is then an infinite class of bivariate survival func-
tions H such that K̂H = K̂F ; in particular this relation holds if H and F
admit the same survival copula Ĉ, i.e. if it is

H(x, y) = F (Φ (x) , Φ (y))

for some continuous, strictly increasing, mapping Φ : [0,∞) → [0,∞).

On the other hand, it is immediate to see that any bivariate survival function
M of the form

M(x, y) = Ψ
[
F (x, y)

]
,

with Ψ : [0, 1]× [0, 1] → [0, 1] strictly increasing, is such that LM = LF .

For given F , we then wonder if there exists a different bivariate survival func-
tion N such that, simultaneously,

LN = LF , K̂N = K̂F ,

and, in case, which type of relations exist between N and F .

More generally, in this paper we face the following compatibility problem: let-
ting K = K̂H be the upper-orthant Kendall distribution of a given joint sur-
vival function H and L = LJ , for a given joint survival function J satisfying
our required properties, we wonder if the system of functional equations

LF = L, K̂F = K

admit some solution F . If this is the case we shall say that L and K are
compatible.
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Our main result concerns the compatibility problem and will be stated as
Theorem 2 in the next Section 2. Before proving Theorem 2, we need some
preliminary notation and results about the representation of the set L, about
(upper-orthant) Kendall distributions and about the relations existing be-
tween LF and K̂F , for a same F . Essentially, our analysis will be based on
three different types of arguments:

a) For a bivariate survival model satisfying our assumptions, the set L can
be represented in terms of the so-called bivariate aging function B, whose
definition will be recalled in Section 3 (see (9); see also, e.g., [4]) and which
is, generally, a semi-copula. Concerning the use of the notion of the bivariate
aging function in order to describe the set L, it is worthwhile mentioning
that, along with the familiar representation (2), F will also be alternatively

described in terms of the pair
(
B, G

)
(see (10), below).

b) We shall briefly recall results obtained in [9], [10], [15], and [16], concerning
the equivalence class CK of all bivariate copulas admitting a same Kendall
distribution K. We shall in particular use a basic result showing that, under
the condition K(t−) > t, the class CK contains only one Archimedean copula.
The generator of such a copula will have a fundamental role in the solution of
the compatibility problem.

c) We analyze some specific aspects of the relations existing between LF and

K̂F , for a same F . To this purpose we use (a slight modification of) a trans-
formation result proven in [10].

We shall also see that the analysis of the compatibility problem is rather direct
in the special case when the survival copulas ĈH and ĈJ are Archimedean.
Such a case will be analyzed in some details, since it also has a key role in the
interpretation of the result for the general case.

More in details, the outline of the paper is as follows. Our main result will
be stated in Section 2, and proven in Section 5, under the conditions that GJ

admits a density function g and that K̂ is continuous. In Section 2, we will also
recall some basic facts about the Kendall distributions. Sections 3 and 4 will
be devoted to collect further developments and results that are preliminary to
the proof of Theorem 2; in Section 3 we discuss in which sense the level sets of
a bivariate, exchangeable, survival function can be described in terms of the
semi-copula B and, then, in which sense the compatibility problem above can
be formulated in terms of B. We also provide some examples and details useful
for our purposes. In Section 4 we analyze a few aspects of K̂, corresponding
to those obtained for K in [10]; in particular we detail the form under which
K̂ depends on the survival copula Ĉ of F and its relations with the set of the
level curves of F . Section 5 will be devoted to present the proof of Theorem 2
and some related comments based on the analysis of special cases. In Section
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6 we present a short discussion and some concluding remarks about meaning
and possible applications of the obtained results.

2 Strict Archimedean Kendall distributions and solution to the
compatibility problem.

In order to state our main result we recall here some relevant facts about
the Kendall distributions and we introduce some terminology and notation,
convenient for our purposes. In particular we focus on the concept of Strict
Archimedean Kendall distribution.

Let X, Y be two random variables, with joint distribution function F (x, y) =
P{X ≤ x, Y ≤ y}, and with continuous univariate marginal distributions
FX and FY , respectively. As mentioned in the Introduction, the probability
distribution function of the random variable F (X, Y ) has been called Kendall
distribution and several basic aspects of it have been studied in [9], [10], [15],
and in the recent paper [16]. For 0 ≤ u ≤ 1, set then

K(u) = P{F (X,Y ) ≤ u}.
K satisfies the conditions

K(0−) = 0, K(u) ≥ u, u ∈ [0, 1] . (3)

Furthermore, in view of Sklar’s Theorem (see e.g. [14]), it is also easily seen
that K only depends on the connecting copula of F

C(u, v) = F (F−1
X (u), F−1

Y (u)), u, v ∈ [0, 1] .

We remind that a bivariate copula is Archimedean if it is of the form

Cφ(u, v) = φ−1[φ(u) + φ(v)] (4)

with φ : (0, 1] → [0, +∞) a convex, continuous, decreasing function. φ is called
an (additive) generator of Cφ and it is obviously determined up to a positive
multiplicative constant. φ is said to be strict when φ (0) = φ (0+) = +∞.

Consider the family of bivariate copulas C, such that Cv (·) := C (·, v) is a
strictly increasing and continuous function for every v and, on this family,
define the operator K as follows:

KC(t) := t +
∫ 1

t

∂C

∂u
(u, v)|v=vC

u,t
du, (5)
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with vC
u,t = C−1

u (t). Set also λC(t) := − ∫ 1
t

∂C
∂u

(u, v)|v=vC
u,t

du so that

KC(t) = t− λC(t).

Then the Kendall distribution associated to C is given by KC(t) (see e.g. [10]).

For any distribution function K satisfying (3), it is possible to find a bivariate
copula such that its Kendall distribution coincides with K. Generally, there
is an equivalence class CK of different bivariate copulas admitting the same
Kendall distribution K. If, moreover, it is

K(t−) > t, ∀t ∈ (0, 1), (6)

then there exists a unique Archimedean copula Cφ belonging to CK .

Letting t0 be an arbitrary constant, arbitrarily chosen in (0, 1), any possible
generator of Cφ is a decreasing function φ : (0, 1] → [0, +∞) of the form

φ(t) = θ · exp{
∫ t

t0

1

s−K(s)
ds}, (7)

with θ > 0. This result had been proven by Genest and Rivest in [9] and has
been exploited by Nelsen et al. in [16], to prove a result valid in the case when
(3) holds but without assuming the condition (6). Such a result says that,
under the conditions (3), there exists a unique associative copula C belonging
to CK . As well known, a copula C is said to be associative, when

C(C(u, v), w) = C(u,C(v, w))

holds for every u, v and w in [0, 1]. Since an Archimedean copula is associative,
C coincides with Cφ above, in the case when K(t−) > t for all t ∈ (0, 1).

In order to state our main result, we introduce the following

Definition 1 A distribution function K is an Archimedean Kendall distri-
bution when it satisfies the conditions in (6). We say that K is a strict
Archimedean Kendall distribution when the generators of the associated Archi-
medean copula, that are then given by (7), are strict. For an Archimedean
Kendall distribution K, we will use the notation

Υt0,K(t) = exp{
∫ t

t0

1

s−K(s)
ds}.

Concerning the upper-orthant Kendall distributions, it is important to point
out that also K̂ is a Kendall distribution, as it is easy to check (see also Section
4 below) and as we mentioned in the Introduction.
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Now we consider a pair
(
K, J

)
where K is a Kendall distribution and J is an

exchangeable bivariate survival function, jointly continuous and strictly one-
decreasing, with marginal survival function GJ . We look for bivariate survival
functions F such that

K̂F = K,LF = LJ . (8)

Our result is the following

Theorem 2 Let J be as above, and let K be a strict Archimedean Kendall
distribution with generator φ̂. Assume furthermore that GJ is differentiable

and that K̂J is also a strict Archimedean Kendall distribution, with generator
Υ

t0,K̂
J

(t). Let

ϕ(t) := Υ
t0,K̂

J

(
GJ(− log t)

)
,

Gθ(x) := φ̂−1
(
θϕ(e−x)

)
= φ̂−1

(
θΥ

t0,K̂
J

(
GJ(x

))
.

Then

(a) Gθ(x) is a survival function for any θ > 0

(b) A bivariate survival function F , satisfying our standing hypotheses, satis-
fies (8) if and only if it is of the form

F θ (x, y) = Gθ(G
−1

J

(
J(x, y)

)
)

(c) Gθ is the marginal survival function of F θ

In order to better focus our developments, a few remarks and comments are
now in order.

First we notice that the bivariate function Gθ(G
−1

J

(
J(x, y)

)
) is not necessar-

ily a joint survival function. Even though sufficient conditions under which
F θ (x, y) is a joint survival function could be given, we do not detail them
here for brevity’s reasons.

Remark 3 The solution of the compatibility problem rather depends on the
set LJ and not on the specific survival function J . In fact the solution depends

on G
−1

J

(
J(x, y)

)
and all the different survival functions sharing the same L

give rise to the same solution (see also the arguments in the next Section).
Furthermore, it cannot come as a surprise that a solution F is of the form

F (x, y) = GF (G
−1

J

(
J(x, y)

)
) (in this respect see, more specifically, Lemma 8

below). The actual problem is rather to understand whether we can establish
compatibility for given (K, LJ) and to identify the possible acceptable mar-
ginals GF .
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As a consequence of our analysis we will also single out some conditions under
which a pair (K,L) is not compatible.

In order to prove Theorem 2 we need some preliminary notation and results
that will be provided in the next two Sections.

3 On the semi-copula representation of LF

Let F be an exchangeable bivariate survival function satisfying our standing
hypotheses. To start this Section, we first consider the function h : [0,∞) ×
[0,∞) → [0,∞) defined by

h(x, y) = hF (x, y) = G
−1

[
F (x, y)

]
.

In view of our assumptions on F , h is continuous and strictly 1-increasing;
furthermore, ∂Av is the image of a function γv : [0, 1] → [0,∞) × [0,∞),
connecting the Cartesian axes, i.e. such that γv(0) = (xv, 0) and γv(1) =
(0, yv), for some strictly positive xv and yv. Concerning xv, yv, and the curve
γv, the following properties can be easily checked:

xv = yv = G
−1

(v), xF (x,y) = h(x, y).

Moreover, the curve γv can be parametrized as a function y(v, x) of the variable
x, with x ∈ [0, xv],

y(v, 0) = xv, y(v, xv) = 0,

and, for x ∈ [0, xv], y(v, x) = h−1
x (G

−1
(1− v)), where hx(·) = h(x, ·).

We can also write

Av = {(x, y) ∈ R2
+|h(x, y) ≥ G

−1
(v)}

and

∂Av = {(x, y) ∈ R2
+|h(x, y) = G

−1
(v)}.

The function h then determines LF or, equivalently, the set DF of the level
curves ∂Av of F , while the marginal G determines the level on each level curve.

It is also immediate to see that the following Lemma holds.

Lemma 4 Let F and J be two different survival functions satisfying our hy-
potheses, then LF = LJ if and only if hF = hJ .
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For our purposes we follow however the approach introduced in [2], [4], and
replace the function h by the function B : [0, 1]× [0, 1] → [0, 1] defined by:

B(u, v) = exp{−h(− log u,− log v)}, u, v ∈ [0, 1] ,

i.e.
B(u, v) = exp{−G

−1
(
F (− log u,− log v)

)
}. (9)

We can then write

F (x, y) = G
(
− log B

(
e−x, e−y

))
. (10)

Notice that Eq. (10) provides the already mentioned representation of F (x, y)

in terms of the pair
(
B, G

)
; this is in a sense analogous to (but different from)

the representation (2).

In order to fix ideas it is useful to consider the set of the level curves, and the
related functions B, corresponding to three very special cases that will also
have a role in the subsequent analysis.

Example 5 (Perfect dependence) Let P{X = Y } = 1. Then F (x, y) =
G (x ∨ y) and, for 0 ≤ v ≤ 1,

Av = {(x, y) : x ∨ y ≥ G
−1

(v)}. (11)

In this case, B is the maximal copula

B(u, v) = u ∧ v (12)

Example 6 (”Schur-constant” F ) Here we consider the case

F (x, y) = G (x + y) (13)

where G is a univariate continuous, convex, strictly positive and strictly de-
creasing survival function on [0, +∞). It is immediate to check that G has also
the role of univariate marginal and that

Av = {(x, y) : x + y ≥ G
−1

(v)}.

The condition (13) holds if and only if B is the product copula:

B(u, v) = u · v.

Example 7 (i.i.d. variables) When F (x, y) = G(x) ·G(y), we can write

Av = {(x, y) : Λ(x) + Λ(y) ≥ − log v},
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by setting Λ(x) := − log G (x). In terms of the function B, we can say that
the above condition holds if and only if

B(u, v) = Q−1[Q(u) + Q(v)], (14)

where we set
Q(u) := Λ(− log u) = − log G (− log u) . (15)

The function B turns out to be a convenient tool in the study of certain
notions of multivariate ageing (see in particular [2], [4], [7]) and has also been
termed bivariate ageing function.

In view of what has been discussed so far, B can be seen as a tool for rep-
resenting LF or DF . Taking into account the definition (9), we can in fact
replace Lemma 2 above by the following Lemma, whose proof is immediate
(see also [3]).

Lemma 8 Let F and J be two different survival functions satisfying our hy-
potheses. Then the following conditions are equivalent

(a) LF = LJ

(b) BF = BJ .

(c) there exists a continuous, strictly increasing, function ψ : [0, 1] → [0, 1],
such that

F (x, y) = ψ
(
J(x, y)

)

(d) it is

F (x, y) = GF

[
G
−1
J

(
J(x, y)

)]
. (16)

Notice that point (b) of Theorem 2 provides more detailed information than
Eq. (16); the latter in fact has been obtained by imposing the condition (a) (or
(b)) above and we do not take into account here possible information about
K̂F (see also Remark 3 above).

Let us now look at analytical properties of the function B, as defined by (9).

Since X, Y are exchangeable it is

B(u, v) = B(v, u).

It is immediate to check that B : [0, 1]× [0, 1] → [0, 1] is strictly increasing in
each variable and also shares with a copula the property to be grounded, i.e.

B(u, 0) = 0, B(u, 1) = u, ∀0 ≤ u ≤ 1.
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However it is not necessarily a copula: in some cases it can happen that is not
two-increasing, as for example in (14) whenever Q is not convex.

The term semi-copula has been introduced to describe functions B : [0, 1] ×
[0, 1] → [0, 1] that are grounded and strictly increasing in each variable. See
[4], [6]; see in particular [6] for the analysis of some technical aspects of the
notion of semi-copula and also [7] for the relations with the concept of Cho-
quet capacity. This notion can have however other interesting applications in
problems of rather different type (see e.g.[5], [12]).

In the special case (14), B is in any case an Archimedean t-norm (see [13]);
in some of the cited past papers the term Archimedean semi-copula had also
been used.

Generally, for an Archimedean t-norm

Sϕ(u, v) = ϕ−1[ϕ(u) + ϕ(v)],

the generator ϕ is a decreasing function, with ϕ(1) = 0. When ϕ(0+) = ∞,
then we say that ϕ is a strict generator. It is clear that if ϕ is a generator,
then θ ϕ is also a generator, for any θ > 0.

As mentioned just above, when the generator is a convex function φ, then Sφ

is a copula and it coincides with the Archimedean copula Cφ, where we used
the notation (4).

We now come back to the compatibility problem stated in the Introduction.
In view of Lemma 8, we can in fact restate it as follows:

Let K be a given Kendall distribution and B a (semi-)copula such that B =
BJ , for a given joint survival function J satisfying our required properties,
we wonder if B and K are compatible, i.e., if we can find some solution F to
the system of equations

BF = B, K̂F = K.

Since K̂F is a characteristic of ĈF , for the study of this problem it is necessary
to analyze the relations existing between BF and ĈF .

Regardless of B being or not a copula, the relations between B and Ĉ involve
the marginal survival function G; in fact we can write, from (10) and (2),

B(u, v) = exp
{
−G

−1
(
Ĉ

(
− log G(u), − log G(v)

)) }
,

Ĉ (u, v) = G
(
− log B

(
e−G

−1
(u), e−G

−1
(v)

))
,
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or

B(u, v) = γ
(
Ĉ

(
γ−1 (u) , γ−1 (v)

))
, Ĉ (u, v) = γ−1 (B (γ (u) , γ (v))) (17)

where γ, γ−1 : [0, 1] → [0, 1] are the increasing functions defined by

γ(w) = exp{−G
−1

(w)}, γ−1(u) = G (− log u) . (18)

Example 9 In the perfect dependence case it is, trivially,

Ĉ(u, v) = B(u, v) = u ∧ v.

Notice that the maximal copula u∧v is a fixed point of both the transformations
in (17), regardless of the marginal G.

As to the Schur-constant case, with given marginal G, we observe that B(u, v) =
u · v holds if and only if it is

Ĉ(u, v) = G
(
G
−1

(u) + G
−1

(v)
)
,

i.e., Ĉ = CG
−1

.

Finally, we consider the case of independence, with given marginal G. In this
case, the necessary condition (14) for B, can be rewritten as B = SQ, with Q
given by (15).

Example 10 (Exponential marginals) When G(x) = e−βx, then γ and

γ−1 in (18) are given respectively by γ(w) = w
1
β and γ−1(u) = uβ, and (17)

becomes

B(u, v) =
(
Ĉ

(
uβ, vβ

)) 1
β , and Ĉ (u, v) =

(
B

(
u

1
β , v

1
β

))β
.

Note that if we take the copula Ĉ(u, v) = (u + v − 1)+, i.e. the lower Frechét-
Hoeffding bound, then B coincides with the Clayton semi-copula, given by

B(u, v) =
[(

u−β + v−β − 1
)+

] 1
β

.

The condition G(x) = e−x implies γ(w) = w, and therefore

B(u, v) = Ĉ(u, v).

Thus we see that if B is compatible with the standard exponential marginal dis-
tribution, i.e., if there exists a survival function F with a standard exponential
marginal and such that BF = B, then necessarily B is a copula. However the
condition G(x) = e−x is not necessary for B = Ĉ as we see, for instance,
by considering the perfect dependence case. Another instance will be met in
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Section 5, where we will consider the case of Marshall-Olkin models, whose
marginal distributions are exponential, but non-necessarily standard exponen-
tial.

We conclude this Section with the following remarks and preliminary results,
the role of which will emerge in the rest of the paper.

Remark 11 The property of associativity can immediately be extended to
semi-copulas: we will say that a semi-copula S is associative when

S(S(u, v), w) = S(u, S(v, w))

holds for every u, v and w in [0, 1]. It can be derived from (17) that B is
associative if and only if Ĉ is such. In the latter case the aging function is
then a t-norm (see [13]).

Remark 12 If Ĉ is Archimedean then it is associative; whence B is associa-
tive as well. In such a case we can however say more. In view of (17), we also
see that B is Archimedean, with an invertible generator, if and only if Ĉ is
such; if φ̂ is a convex generator of Ĉ then

φ̂
(
γ−1(u)

)
= φ̂

(
G(− log u

)
(19)

is a generator of B. Furthermore, since generators of Archimedean semi-
copulas are determined up to a constant, we can conclude as follows: if φ̂
is an invertible, convex, generator of Ĉ and ϕ is a generator of B, then

θ ϕ(u) = φ̂
(
γ−1(u)

)
= φ̂

(
G(− log u)

)
, (20)

for some constant θ > 0. From the above relation we also see that, in our
framework, the generator ϕ is continuous.

We now state a useful result that is suggested by the Eq. (20).

Lemma 13 (a) Assume that θ > 0, φ̂, and G are given, with φ̂ a strict and
convex generator, and G a strictly positive survival function with G(0) = 1.
Then ϕ defined by (20) is a strict generator of a semi-copula. Furthermore if
φ̂ and G are strictly decreasing, then the same holds for ϕ.

(b) Assume that θ > 0, φ̂, and ϕ are given, with φ̂ a strict and convex gen-
erator and ϕ a strict generator. Assume furthermore that φ̂ and ϕ are strictly
decreasing, and that Gθ is defined by means of (20), i.e.

Gθ(x) := φ̂−1
(
θ ϕ(e−x)

)
. (21)

Then Gθ is a strictly decreasing survival function, with Gθ(0) = 1.

13



(c) Assume that φ̂ and ϕ satisfy the same properties of item (b), except the
strictness property, i.e. φ̂(0) = φ̂(0+) and ϕ(0) = ϕ(0+) are finite. Then (21)
defines a survival function Gθ if and only if θ ≥ θ0, where θ0 := ϕ(0)/φ̂(0).
Furthermore Gθ is strictly decreasing on [0,∞) if and only if θ = θ0.

PROOF. The proof of part (a) is a simple verification: since θ > 0, φ̂,
G and − log are (strictly) decreasing, then ϕ is (strictly) decreasing. Since
limu→0+ − log(u) = +∞, limx→+∞ G(x) = 0 and limu→0+ φ̂(u) = +∞, then
limu→0+ ϕ(u) = +∞.

Finally it is ϕ(1) = 0, since − log(1) = 0, G(0) = 1, and φ̂(1) = 0.

The proof of part (b) is similar: since φ̂, ϕ and e−x are strictly decreasing, then
φ̂−1 and therefore Gθ are also strictly decreasing. Since ϕ(1) = 0, φ̂−1(0) = 1,
then Gθ(0) = φ̂−1(θϕ(1)) = 1. Finally, since φ̂ and ϕ are strict generators,
then

lim
x→∞Gθ(x) = lim

y→0+
φ̂−1 (θ ϕ(y)) = 0.

The proof of part (c) is readily obtaining by observing that φ̂−1 (θ x) = 0 if
and only if θ x ≥ φ̂(0).

Note that in the proof of Lemma 13 we have not actually used the fact that φ̂ is
convex, while the convexity property has a key role in the following Corollary;
the latter is a simple consequence of the previous Lemma 13, and its proof is
left to the reader.

Corollary 14 Assume the same hypotheses of Lemma 13 part (b). Assume
furthermore that ϕ is continuous and that Gθ is defined by (21). Then, for
every θ > 0, the bivariate function

φ̂−1
(
θ

(
ϕ(e−x) + ϕ(e−y)

))
(22)

coincides with the bivariate survival function defined by

F θ(x, y) := φ̂−1
(
φ̂

(
Gθ(x)

)
+ φ̂

(
Gθ(y)

))
.

Furthermore F θ(x, y) satisfies our standing hypotheses, its marginal survival
function is Gθ and has Archimedean survival function and ageing function
with generators φ̂ and ϕ respectively, i.e.

ĈF θ
= C φ̂, BF θ

= Sϕ

Viceversa, if F is a bivariate survival function with ĈF = C φ̂ and BF = Sϕ

then F = F θ and GF = Gθ, for some θ > 0.

14



This result is the starting point for the proof of the compatibility problem,
at least in the cases when given K̂ and B are both Archimedean. In the next
Section we shall analyze this point more in details and in a larger generality.

4 Survival copulas and upper-orthant Kendall distributions

In this Section we concentrate our attention on the upper-orthant Kendall
distribution K̂ defined in (1). We start by introducing the bivariate function

Φ(x, y) := K̂
(
F (x, y)

)
, (23)

which has the interesting meaning:

Φ(x, y) = P{(X, Y ) ∈ AF (x,y)}. (24)

Since G(0) = 1 and K̂ (0) = 0, Φ(x, 0) = K̂
(
G(x)

)
is a univariate survival

function, with Φ(0, 0) = 1; moreover, since K̂ is strictly increasing, the func-
tion Φ(x, 0) is strictly decreasing. When Φ(x, y) turns out to be a bivariate
survival function, then we can write

GΦ (x) = K̂
(
G(x)

)
, BΦ(u, v) = BF (u, v).

We notice that, as it can also be shown by taking into account Eq. (24), it is

F (x, y) ≤ K̂
(
F (x, y)

)
= Φ(x, y). (25)

As an immediate consequence we get that for any bivariate survival function
F it holds

K̂(u) ≥ u, ∀ u ∈ [0, 1]. (26)

The previous inequality is also a consequence of the fact that K̂ is a Kendall
distribution (that depends only on the survival copula Ĉ). The latter property
can be easily seen by taking into account the relation between the survival cop-
ula and the connecting copula C(u, v), which is the joint distribution function
of the pair (U, V ), where U = G(X), V = G(Y ): similarly, Ĉ(u, v) is the joint

distribution function of the pair
(
Û , V̂

)
, where Û := G(X), V̂ := G(Y ). Then

K̂(t) = P{F (X,Y ) ≤ t} = P{Ĉ(Û , V̂ ) ≤ t}. (27)

The following Lemma points out further properties of K̂, that are important
in our frame.
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Lemma 15

K̂(t−) = K̂(t) if and only if P
(
F (X, Y ) = t

)
= 0, (28)

i.e. if and only if P ((X, Y ) ∈ ∂At) = 0.

Under our standing assumptions on F , the inequality in (26) is strict for all
u ∈ (0, 1), namely

K̂(u) > u, ∀ u ∈ (0, 1). (29)

PROOF. The proof of (28) is readily obtained by observing that K̂(t−) =

P
(
F (X,Y ) < t

)
.

We now prove that the strict inequality (29) holds; actually we want to show
that the condition K̂(t) = t for some t ∈ (0, 1) is incompatible with our
assumptions. To this purpose we notice that, for all u ∈ (0, 1),

P
(
G(X) ≤ u

)
= u

and that the event {F (X, Y ) ≤ u} contains both the events

{G(X) ≤ u} and {G(Y ) ≤ u},

whence

P
(
F (X, Y ) ≤ u

)
≥ P

(
G(X) ≤ u

)
.

Suppose that the condition K̂(t) = t holds for some t ∈ (0, 1). We may write
then

t = P
(
F (X,Y ) ≤ t

)
≥ P

(
G(X) ≤ t

)
= t

which entails

P
(
F (X, Y ) ≤ t

)
= P

(
G(X) ≤ t

)
.

In its turn, the latter equality implies

P
(
X > G

−1
(t), Y ≤ G

−1
(t)

)
= P

(
X ≤ G

−1
(t), Y > G

−1
(t)

)
= 0.

This condition implies that F (x, G
−1

(t)) = t for every x ∈
[
0, G

−1
(t)

]
and

this is impossible since we assumed that F is strictly 1-increasing.

Remark 16 It is interesting to note that if the condition K̂(t) = t holds for

every t ∈ (t1, t2), then P
(
X = Y

∣∣∣X ∈ (t1, t2)
)

= 1. In this respect see also

Theorem 5.2 in [1]. Moreover we note that the continuity condition K̂(t−) =
K̂(t) is not automatically fulfilled, under our assumptions; as a counter-example
we can take (X, Y ) = (X1, Y1) with probability λ ∈ (0, 1), and (X, Y ) =

16



(U, 1 − U) with probability 1 − λ, where (X1, Y1) are independent and stan-
dard exponential, and U is uniformly distributed in (0, 1), then

F (x, y) = P (X > x, Y > y)

= λP (X1 > x, Y1 > y) + (1− λ) P (U > x, 1− U > y)

= λ e−(x+y) + (1− λ) (1− x− y)+ = G(x + y).

Then F is a Schur-constant survival function, satisfying all our standing as-
sumptions, nonetheless

P
(
F (X, Y ) = λ e−1

)
= 1− λ > 0.

It was recalled in Section 2 that, under natural regularity conditions, the
Kendall distribution K, associated to a bivariate distribution F (x, y) with
marginal distributions GX and GY , can be obtained analytically from the
connecting copula CF (u, v) = F (G−1

X (u), G−1
Y (v)): whenever C = CF is strictly

1-increasing and with u → C(u, v) continuous, KF (t) = KCF (t), where K is
defined in (5). The latter is a consequence on the fact that

P (V ≤ v|U = u) =
∂C

∂u
(u, v).

By using a similar argument, and the representation (27), it can be checked
that an analogous representation connects the upper-orthant Kendall distrib-
ution function K̂ to the survival copula Ĉ = ĈF , when Ĉ satisfies the above
conditions; more precisely,

K̂F (t) = KĈF (t). (30)

For a given bivariate F , then, the negative function t− K̂F (t) depends only
on the survival copula ĈF .

Consider now the family of bivariate semi-copulas S, such that Sv (·) := S (·, v)
is a strictly increasing and continuous function for every v. Extending to this
family the definition given in (5), we put:

KS(t) := t +
∫ 1

t

∂S

∂u
(u, v)|v=vS

u,t
du, (31)

with vS
u,t = S−1

u (t), i.e. SF (u, vS
u,t) = t.

Furthermore, also for a semi-copula S, we put

λS(t) := t−KS(t).

Notice that, while for the copulas CF and ĈF , the functions KCF and KĈF

are distribution functions, KS is not generally a distribution function, and
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therefore we can refer to KS by using the term Kendall pseudo-distribution
function.

When B = BF is a strictly 1-increasing semi-copula, with Bv continuous, we
can therefore define KB and λB.

Now we can turn to studying the relations existing between KB, KĈ and G
for

(
B, Ĉ, G

)
=

(
BF , ĈF , GF

)
. Such relations constitute in fact an essential

ingredient in the proof of results about the compatibility problem. As first, we
direct the reader’s attention to the following known result.

Theorem 17 (Genest and Rivest, [10]) If C and C∗ are copulas that are
related via the relation

C∗ (u, v) = γ−1 (C (γ (u) , γ (v)))

by a strictly increasing, differentiable bijection γ, then

λC∗(v) =
λC(γ(v))

γ′ (v)
, 0 < v < 1.

Now we point out that this result can be applied in a rather straightforward
way to the case when C∗ is not a copula but a semi-copula. Taking into
account the Eqs. (17) and (18), for a joint survival F satisfying our current
assumptions, we can then get the following

Proposition 18 Assume the marginal survival function GF admit a strict
positive density gF , so that γ−1(u) = GF (− log t) is differentiable and bijective
from [0, 1] to [0, 1]. Then

KBF (t) = t +
1

(γ−1)′(t)

(
λ

Ĉ
γ−1(t)

)
. (32)

Corollary 19 Let us maintain the assumption of the Proposition above and
assume furthermore that K̂ = KĈ is Archimedean, then Υt0,KB is well defined,
with

Υt0,KB(t) = exp

{∫ t

t0

1

s−KB(s)
ds

}
= exp

{∫ γ−1(t)

γ−1(t0)

1

s−KĈ(s)
ds

}
, (33)

and there exists a positive constant θ such that the following relation holds

θ Υt0,KB(t) = Υ
t0,K̂

(
G(− log(t)

)
. (34)

PROOF.
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The relation (33) is a direct consequence of Eq. (32), while the relation (34)
follows by observing that

Υt0,KB(t) = Υ
γ−1(t0),KĈ

(
γ−1(t)

)
= θ̂ Υ

t0,K̂

(
γ−1(t)

)
,

where

θ̂ = exp{
∫ t0

γ−1(t0)

1

s−KĈ(s)
ds} .

In the next Example 20 we compute the upper-orthant Kendall distribution
functions KĈ and the functions λ

Ĉ
, together with KB and λB, for the basic

cases considered in Examples 5, 6, and 7, replacing the Schur-constant case
with the more general Archimedean case.

Example 20 In the perfect dependence case, in agreement with Remark 16,
it holds

K̂F (t) = KĈ(t) = t, λ
Ĉ
(t) = t− t = 0,

since F (x, y) = G(x ∨ y), and Û = G(X) is a uniform random variable on
(0, 1). This corresponds to the fact that F (x, y) = Φ(x, y), where Φ is the func-
tion defined in (23). Furthermore KB(t) = t and λB(t) = 0, since B = Ĉ.

In the case of an Archimedean survival copula with convex generator φ̂, i.e.
(using the notation (4))

Ĉ(u, v) = C φ̂(u, v) = φ̂−1
(
φ̂(u) + φ̂(v)

)
, (35)

it is (see e.g. [14] p.102)

KĈ(t) = KC φ̂(t) = t− φ̂(t)

φ̂′(t+)
, λ

Cφ̂
(t) =

φ̂(t)

φ̂′(t+)
. (36)

As we already know, in this case the aging function is an Archimedean semi-
copula, i.e. (by extending to Archimedean t-norms the notation in (4)), B =

Sϕ = ϕ−1
(
ϕ(u) + ϕ(v)

)
, with ϕ satisfying (20). As a consequence it is not

difficult to get that

KB(t) = KSϕ(t) = t− ϕ(t)

ϕ′(t+)
, λB(t) = λSϕ (t) =

ϕ(t)

ϕ′(t+)
. (37)

Finally, for the product copula Ĉ(u, v) = u · v, it holds KĈ(t) = t− t log t (see
e.g. [10], p. 394); so that it is

λ
Ĉ

(t) = t log t.
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The above relations can also be obtained by the previous Archimedean case,

observing that Ĉ = C φ̂0, with φ̂0 = − log t. This observation allows also to
compute immediately KB and λB, by means of (37), with ϕ = Q, and Q
defined as in (15).

In view of the arguments in the next Section, we add a couple of useful com-
ments concerning Eq. (34). To this end we recall that the equivalence class CK

contains one and only one associative copula. The latter is Archimedean (and
its generators are given by (7)) if and only if the condition (6) holds. In this
respect, we note that, under the assumptions considered here, the condition
(6) for K̂ is granted if the equivalent conditions in (28) hold.

Note that the unique Archimedean copula C belonging to the class CK (when
(6) holds) does not depend on the choice of the constant θ appearing in (7).
Nevertheless this constant will play a role in the compatibility conditions in
the next section.

Consider now a joint survival function F such that K̂F is an Archimedean

Kendall distribution, so that the unique copula in C
K̂

F

is the copula C φ̂ that

admits, as a generator, the convex function

φ̂(t) := Υ
t0,K̂

F

(t).

Then by letting

ϕ(t) := Υt0,KB
F
(t),

the relation (34) becomes exactly the relation (19).

If, furthermore, the convex generator φ̂ is strict then (34) necessarily implies
that

GF (x) = φ̂
(
θϕ(e−x)

)
. (38)

5 Conditions for compatibility between Kendall distributions and
level sets

Consider the following objects that appear in the statement of Theorem 2:
K is a strict Archimedean Kendall distribution and φ̂ is its strict generator.
Furthermore, J is a jointly continuous and strictly one-decreasing bivariate
survival function, with differentiable marginal survival function GJ , and such

that K̂J is also a strict Archimedean Kendall distribution, with generator
Υ

t0,K̂
J

(t).

Basic aspects of the arguments developed in the Sections 3 and 4 will be
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collected and used in this Section to provide the proof of Theorem 2 and to
present examples and related comments.

Before proceeding with the announced proof it is convenient however to focus
the reader’s attention on the following remarks.

First we recall from Section 3 that, by letting B = BJ , any solution F of

the compatibility problem (besides satisfying K̂F = K) must be such that
BF = B. In view of the latter condition and of Eq. (10), F must be of the
form

F (x, y) = GF

(
− log B

(
e−x, e−y

))
,

and then, in order to identify it, we only need to determine the marginal
survival function GF .

The latter, if it exists, must (and can) be obtained then by taking into account
the simultaneous conditions K̂F = K and BF = B.

In this respect, Corollary 19, and in particular the Eq. (34), and (33), help
us in giving a necessary condition concerning the possible candidates for the
marginal survival function GF when

φ̂(t) := Υt0,K(t), ϕB(t) := Υt0,KB(t)

are strict generators: by (38) the possible candidates for GF are necessarily of
the form

Gθ(x) = φ̂−1
(
θ ϕB(e−x)

)
for some θ > 0. (39)

On the other hand ϕB can be obtained by applying once again Corollary 19
and (38) to the survival function J , in view of the conditions that BJ = B

and that K̂J is also a strict Archimedean Kendall distribution, with generator
Υ

t0,K̂
J

(t).

We now proceed more formally with the proof of our result.

PROOF. (of Theorem 2) (a) First of all note that ϕB is well-defined since,
for some θB > 0,

θB Υt0,KB(t) = Υ
t0,K̂

J

(
GJ(− log(t)

)
,

as immediately follows from the assumption that K̂J is a strict Archimedean
Kendall distribution, with generator Υ

t0,K̂
J

(t) and from Eq. (34), applied to J .

Taking again into account that K̂J is a strict Archimedean Kendall distrib-

ution, we have that φ̂J := Υ
t0,K̂

J

(t) is a strict and convex generator. It also
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follows from our assumptions on J that GJ is strictly positive and strictly de-
creasing. Then ϕB is a strict generator and (a) follows by part (b) of Lemma
13.

(b) In view of (a), Gθ(x) is a bona-fide one-dimensional survival function for
any θ > 0. We can combine (39) and (10) in order to immediately obtain the
equation F θ (x, y) = φ̂−1 (θϕB(B(e−x, e−y)). Then

F θ (x, y) = φ̂−1
(
θΥ

t0,K̂
J

(
J(x, y

))
,

and the result is obtained by taking into account the definition of Gθ.

(c) is obvious since F θ (x, 0) = Gθ(G
−1

J

(
J(x, 0)

)
) = Gθ(G

−1

J

(
G

J
(x)

)
) =

Gθ(x).

We notice that in the proof of part (b), we have obtained that F θ can also be
written in the form

F θ (x, y) = φ̂−1
(
θϕB(B(e−x, e−y)

)
. (40)

Theorem 2 provides conditions on the form of F that are necessary for F to
be a solution of the compatibility problem, but it does not ensure that the
bivariate functions F θ are actually survival functions, for a given choice of
B = BJ and K̂.

The following two remarks, that point out some further aspects about the
function B, can be of help in the discussion about sufficient conditions that
guarantee that the functions F θ are survival functions.

Remark 21 Let (G,B) = (GF , BF ) be the marginal survival function and
the semi-copula respectively obtained, from a given joint survival function F ,
by means of the Eq. (9). Assume that F has a jointly continuous and strictly
positive density f , so that G = GF has a strictly positive, differentiable, density
and B = BF has continuous second-order derivatives. Then necessarily

1 +
g′(x)

g(x)

∣∣∣∣
x=− log B(u,v)

≤ B(u, v) ∂2

∂u∂v
B(u, v)

∂
∂u

B(u, v) ∂
∂v

B(u, v)
(41)

or, equivalently,

1 +
d

dx
log g(x)

∣∣∣∣
x=− log B(u,v)

≤
∂
∂u

log ∂
∂v

B(u, v)
∂
∂u

log B(u, v)
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Note that when G(x) = e−x, then the compatibility condition (41) may be
satisfied if and only if ∂2

∂u∂v
B(u, v) ≥ 0, i.e. if and only if B is a copula. In

fact (see Example (10)) we know that B has to be a copula, in order to be
compatible with a standard exponential marginal. Similar considerations hold
when G(x) = e−θ x, with θ ≥ 1.

Remark 22 Let M be an arbitrary continuous, strictly decreasing and strictly
positive survival function over [0, +∞), and S be a semi-copula. The bivariate
function defined by

M
(
− log S

(
e−x, e−y

))

is a bivariate survival function (with aging function S and marginal survival
function M) provided appropriate compatibility conditions hold. For instance,
if we assume that M has a strictly positive density m ∈ C1 and that S = BF ,
with F as in Remark 21, i.e., admitting a jointly continuous and strictly pos-
itive density f (and therefore B ∈ C2), then the necessary and sufficient
compatibility conditions are given by (41) with g = m. As a consequence, in
this case, a sufficient condition is given by

m′(x)

m(x)
≤ g′F (x)

gF (x)
⇔ d

dx
log m(x) ≤ d

dx
log gF (x), (42)

which implies that

1 +
m′(x)

m(x)

∣∣∣∣
x=− log B(u,v)

≤ 1 +
g′F (x)

gF (x)

∣∣∣∣
x=− log B(u,v)

≤ B(u, v) ∂2

∂u∂v
B(u, v)

∂
∂u

B(u, v) ∂
∂v

B(u, v)
.

For instance, this happens when g(x) = k exp{−AF (x)}, with AF positive and
increasing, and m(x) := kθ exp{−θ AF (x)}, with θ ≥ 1.

For fixed K̂ and J , and under suitable regularity assumptions on K̂ and on J
(and therefore on B = BJ), we may assume that gθ = −G

′
θ is a C1 probability

density, and we may use the conditions of Remark 22 to find sufficient condi-
tions for compatibility (take also into account the above Remark 21): When B
admits continuous second order derivatives, a necessary and sufficient condi-
tion is given by (41) with g replaced by gθ, and a sufficient condition is given
by

d

dx
log gθ(x) ≤ d

dx
log gJ(x),

as immediately follows by (42).

Actually the above conditions are not often satisfied. In a number of cases,
however, it can be checked directly that the bivariate functions F θ in (41) are
bivariate survival functions and therefore they are solutions of our compati-
bility problem.

A relevant special case of this kind arises when, besides the assumptions of
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Theorem 2, we add the condition that B is Archimedean. Even though this
remark is nothing but an application of Corollary 14, we prefer in the following
example to summarize some details about the Archimedean cases and to briefly
discuss a few related aspects.

Example 23 Consider the special case of exchangeable survival models char-
acterized by the condition that the survival copula ĈF is Archimedean with a

(convex) invertible generator φ̂. In this case BF is Archimedean, with a con-
tinuous and invertible generator ϕ, as well.

Concerning the role of φ̂, we first recall Eq. (35) and also write

F (x, y) = φ̂−1
(
φ̂

(
GF (x)

)
+ φ̂

(
GF (y)

))
.

As to ϕ, it is easy to check, by (9), that it is

BF = Sϕ,

for

ϕ(u) = φ̂
(
GF (− log u)

)
.

Thus, in terms of φ̂ and ϕ, GF is given by Eq. (21), and it must be

F (x, y) = φ̂−1
(
ϕ(e−x) + ϕ(e−y)

)
.

In the latter formulas, GF (x) and F (x, y) respectively are a one-dimensional

and a two-dimensional survival function, for any choice of the generators φ̂
and ϕ, under our assumptions. Now, let K̂ and J be given, with K̂ Archimedean
copula having an invertible generator φ̂. From above we see that the compati-
bility problem is determined by the pair φ̂ and ϕ, where ϕ is the generator of
BJ (and then of BF ). Furthermore we see that, for any choice of such φ̂ and
ϕ, the compatibility problem admits solutions.

Of course, for θ > 0, θ ϕ is also a generator of BF (u, v) and, correspondingly,
any bivariate survival function having the form (22), i.e.

φ̂−1
(
θ

(
ϕ(e−x) + ϕ(e−y)

))
,

is still a solution of the same compatibility problem.

Two comments are here in order.

First, Eq. (40) can be seen as the natural generalization of Eq. (22). However
Eq. (22) can be derived directly, just by taking into account (17) and (21); the
derivation of Eq. (40) on the contrary stands on the appropriate extension to
semi-copulas of Theorem 17.
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Second, the condition that BF is Archimedean with strict generator ϕ char-
acterizes the bivariate models such that the set of the level curves is the same
as in the case of stochastic independence; in fact (see also [2] and (14) in Ex-
ample 6) a pair of independent, identically distributed, non-negative variables
with marginal survival function e−θ ϕ(e−x) admits Sϕ as its aging function. We
can then conclude by saying that any strict Archimedean Kendall distribution
is compatible with the set of the level curves associated to any independent
model, provided that the marginal of the latter is strictly positive, strictly
decreasing, and continuous all over [0, +∞).

Theorem 2 can also be used in cases where B and K̂ are not Archimedean,
nor admit second derivatives. The following example is related to the cele-
brated Marshall-Olkin models, where the corresponding F is not absolutely
continuous, as in the basic perfect dependence case.

Example 24 (Marshall-Olkin models and Cuadras-Augé copulas)
Consider independent, exponentially distributed, non-negative variables A,B, τ ,
where A,B ∼ Exp(λ), τ ∼ Exp(µ), and set X = min(A, τ), Y = min(B, τ).
The joint survival function of X, Y is

F (x, y) = exp{−λ (x + y)− µ (x ∨ y)}. (43)

In this case it is

G(x) = e−(λ+µ)x, G
−1

(u) = − log u

λ + µ
,

By (2), and by (10) in Example 10, with β = λ + µ, we find

Ĉ(u, v) = B(u, v) = (uv)α (u ∧ v)1−α , (44)

with α = λ
λ+µ

, i.e. Ĉ = B is a Cuadras-Augé copula. Notice that this is not
an Archimedean copula.

It was shown in [11] that

K̂F (t) = t− 1 + α2

1 + α
t log t,

i.e.

λ
Ĉ

(t) =
1 + α2

1 + α
t log t.

Let us now consider the compatibility problem with B = BJ the Cuadras-Augé

(44) copula and K̂(t) = KB(t). We then write K̂(t) = t−ρ̂ t log t, with ρ̂ = 2 α
1+α

and notice that K̂ is a strict Archimedean Kendall distribution, in fact

ϕB(t) = φ̂ = exp

{∫ t

t0

1

ρ̂

1

log u
d log u

}
= const | log t|1/ρ̂.
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Therefore (39) shows that the compatible marginal survival functions have to be
exponential. These are exactly the marginal survival functions of exchangeable
Marshall-Olkin models in (43).

Summarizing, if B is the Cuadras-Augé copula and K̂ = KB, then K̂ and B
are compatible. The choice of such a pair (K̂, B) characterizes the exchangeable
Marshall-Olkin models in (43).

In the conclusion of this Section we present a remark about F θ(x, y) and
about their survival copulas. F θ depends on θ, φ̂ and B. The marginal Gθ,
more specifically, depends on θ, φ̂ and ϕB (see the formula (39)). But, after
computing the marginal, we generally need the entire knowledge of B in order
to recover both F θ (see the formula (40)) and its survival copulas, say Ĉθ. The
latter is Archimedean if and only if B (as a semi-copula) is such, i.e. if and
only if the survival function J , such that B = BJ , is of the form

J(x, y) = ψ
(
G(x)G(y)

)

for G a one-dimensional survival function respecting our conditions, and for
ψ : [0, 1] → [0, 1] a strictly increasing function.

6 Summary and concluding remarks

Our attention has been focused on exchangeable bivariate survival models
characterized by joint survival functions F , that satisfy a convenient set of
regularity conditions.

For any such model, we considered the (upper-orthant) Kendall distribution
K̂F and the set DF of level curves. From a geometric viewpoint, the relation
between these two objects becomes immediately clear when considering the
level sets Av (0 < v < 1) of F .

For a given Kendall distribution K̂ and a given set D of level curves, it is then
natural to wonder whether they are compatible, i.e. whether it there exists F
such that K̂F = K̂, DF = D. In the paper we developed a method that allows
us to find sufficient or necessary conditions for compatibility.

We described the family DF in terms of the “aging function” BF and this
allowed us to rephrase that problem in an analytical form, as follows: for a
given K̂ and a given aging function B does there exist F such that K̂F = K̂,
BF = B?

The advantage offered by this formulation is based on the possibility to use
(a slight extension of) the transformation result presented in [10] and here
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recalled as Theorem 17. In the present context this result plays a key role in
describing the relations between the (semi-)copula B and the copula Ĉ (see
(17)). Furthermore we also relied on (a slight extension of) the representation
(7), which provides the generators of the unique Archimedean (semi-)copula
having a given strict Archimedean (pseudo-) Kendall distribution. The above-
mentioned extension was summarized in Proposition 19.

As an application of such results, we could determine the form that possible
solutions to the system of equations K̂F = K̂, BF = B must have. To this pur-
pose, the strategy followed is simply summarized as follows: since, by Eq.(10),
F is determined from the knowledge of both BF and the marginal GF , then, in

view of the condition BF = B, the condition K̂F = K̂ is to be used to obtain
GF . For this reason we first found (see Eq. (21)) that the possible marginals
are of the form displayed in (39), i.e.

Gθ (x) = φ̂−1
(
θ · ϕB

(
e−x

))
,

where φ̂ is the generator of the unique Archimedean copula with Kendall
distribution K̂, and, analogously, ϕB is the generator of the Archimedean semi-
copula BH associated to the Archimedean model J , and such that KBJ =
KB. Then, by applying Eq. (10), in Theorem 2 we obtained the family of
“candidate” joint survival functions, given by (40), i.e.

F θ (x, y) = φ̂−1
(
θ · ϕB

(
B

(
e−x, e−y

)))
.

Whenever F θ turns out to be a joint survival function, then it actually is a
solution to the compatibility problem. As we discussed, this can happen when
some suitable further conditions are satisfied. We can easily exhibit however
simple cases where this does not happen; for instance, if φ̂ and ϕB are not
strict, we can find values of θ for which even Gθ (x) = φ̂−1 (θ · ϕB (e−x)) is not
a one-dimensional survival function (see point (c) of Lemma 13).

However, under the assumptions of Theorem 2, we proved that Gθ (x) is a
one-dimensional survival function.

One basic assumption that we used along the paper is that K̂ is a strict
Archimedean Kendall distribution so that there exists a unique Archimedean
copula in the equivalence class determined by K̂. This yields that Gθ (x) co-
incides with the marginal survival function of an Archimedean model.

Furthermore we note that ϕ = Υt0,KB
J
, the generator of the Archimedean

semi-copula Bj, is strict if and only if the convex generator φ̂ = Υ
t0,K̂

is
such. This observation leads us to another source of incompatibility: B and
K̂ are certainly not compatible whenever K̂ is a strict Archimedean Kendall
distribution, and the generator ϕB is not strict.
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The above arguments point out the interest of the fact that any equivalence
class associated to a strict Archimedean Kendall distribution contains one and
only one Archimedean copula.

The assumption that K̂ is a strict Archimedean Kendall distribution actually
allows for the possibility that F θ (x, y) in (40) are solutions to the compatibility
problem for infinite different values of the parameter θ.

An example of this situation is provided by the family of Marshall-Olkin mod-
els, that is obtained by taking B as a Cuadras-Augé copula (see 44) and
K̂ = KB = t− ρ̂ t log t, with ρ̂ = 2 α

1+α
. In fact, in this case we have that all the

exponential marginals are compatible.

For the sake of simplicity, we assumed that F is strictly 1-decreasing all over
R2

+, and this was actually used in Theorem 2. Actually, in Proposition 19,
we strictly used the assumption that γ−1 is a differentiable bijection, i.e. that
G admits a strictly positive density. However we one can find examples of
solutions to the compatibility problem where this assumption does not hold.

As already remarked, in the case of models with strict Archimedean K̂ a cen-
tral role for the analysis of the compatibility problem is played by the unique
Archimedean copula with the given strict Archimedean Kendall distribution.
We can conjecture that, in the more general case when K̂(t−) = t for some t,
a similar role would be played by the unique associative copula in the class
of K̂.

Some applications of our method can be found in the field of risk and (bivari-
ate) models of interacting defaults. In fact, as mentioned in the Introduction,
the set DF of level curves of F can be interpreted as the set of the (upper-
orthant) bivariate VaR curves.

A different type of application is, instead, the characterization of special (one-
parameter) families of bivariate models. A particular case has been described
in the above example about Marshall-Olkin models. A more complete treat-
ment may be the object of a future paper.

Finally we mention an open problem that, in our setting, arises as a natural
one: to characterize the semi-copulas B that are “aging functions”, i.e. that
can be obtained by applying a continuous transformation as in the first line
of (17) on a bivariate copula Ĉ.

For the Archimedean case Corollary 14 gives at least a sufficient condition: any
Archimedean semi-copula with continuous, strict, and strictly decreasing gen-
erator ϕ is an aging function. More in general, we expect that our arguments
can be used to study this open problem.
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