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Modular sheaves on hyperkähler varieties
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Abstract

A torsion-free sheaf on a hyperkähler manifold X is modular if its discriminant satisfies
a certain condition; for example, this is the case if it is a multiple of c2pXq. The definition
is tailor-made for torsion-free sheaves on a polarized hyperkähler variety pX,hq which
deform to all small deformations of pX,hq. For hyperkähler varieties of type K3r2s, we
prove an existence and uniqueness result for slope-stable vector bundles with certain
ranks, c1 and c2. As a consequence, we get the uniqueness up to isomorphism of the
tautological quotient rank 4 vector bundle on the variety of lines on a generic cubic 4-
dimensional hypersurface, and on the Debarre–Voisin variety associated with a generic
element of

Ź3 C10. The last result implies that the period map from the moduli space
of Debarre–Voisin varieties to the relevant period space is birational.

1. Introduction

1.1. Background and motivation. The beautiful properties of vector bundles on K3 surfaces
play a prominent role in algebraic geometry. Since K3 surfaces are the 2-dimensional hyperkähler
(HK) compact manifolds, one is tempted to explore the world of vector bundles on higher-
dimensional HK manifolds. In the present paper, we give way to this temptation. Our proposal
is to focus attention on vector bundles, or more generally (coherent) torsion-free sheaves, whose
Chern character satisfies a certain condition; see Definition 1.1. We call such sheaves modular.
The definition is tailor-made for torsion-free sheaves on a polarized HK manifold pX,hq which
deform to all small deformations of pX,hq. With this hypothesis, we may deform pX,hq to a
Lagrangian pX0, h0, πq, where π : X0 Ñ Pn is a Lagrangian fibration, study stable sheaves F
on X0 by studying the restriction of F to a generic fiber of π (an abelian variety of dimension n)
and then deduce properties of the initial moduli space of sheaves on pX,hq. This strategy has
been implemented in the case of K3 surfaces; see [O’G97]. A successful implementation in higher
dimensions requires an extension of the known results regarding the variation of h slope-stability
of a sheaf. More precisely, one needs to know that, given a class χ P HpX;Qq, there exists a
decomposition of the ample cone into open chambers such that, given a sheaf F with chpF q “ χ
and an open chamber C , the sheaf F is h slope-stable either for all h P C or for no such h.
Modular sheaves on HK manifolds are exactly the sheaves for which one can prove that such a
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decomposition of the ample cone exists. Another remarkable consequence of our definition is the
following. Let π : X Ñ Pn be a Lagrangian fibration, and let F be a modular vector bundle on X
whose restriction to a generic fiber of π is slope-stable; then the restriction of F to a generic
fiber is a semi-homogeneous vector bundle (according to Mukai’s definition; see [Muk78]), and
hence it has no infinitesimal deformations fixing the determinant. This shows that, in the case of
modular sheaves, the strategy outlined above in higher dimensions resembles that which has been
implemented in the case of K3 surfaces (notice that a slope-stable vector bundle on an elliptic
curve has by default no infinitesimal deformations fixing the determinant, while this certainly
does not hold for vector bundles on abelian surfaces—it holds exactly for semi-homogeneous
ones).

1.2. Modular sheaves. Let F be a rank r torsion-free sheaf on a manifold X. The discriminant
∆pF q P H2,2

Z pXq is defined to be

∆pF q :“ 2rc2pF q ´ pr ´ 1qc1pF q
2 “ ´2r ch2pF q ` ch1pF q

2 . (1.2.1)

Below is our key definition.

Definition 1.1. Let X be a HK manifold of dimension 2n, and let qX be its Beauville–
Bogomolov–Fujiki (BBF) bilinear symmetric form. A torsion-free sheaf F on X is modular
if there exists a dpF q P Q such that

ż

X
∆pF q ! α2n´2 “ dpF q ¨ p2n´ 3q!! ¨ qXpαq

n´1 (1.2.2)

for all α P H2pXq.

Remark 1.2. Let X be a HK variety of dimension 2n. Let DpXq Ă HpXq be the image of the map
SymH2pXq Ñ HpXq defined by the cup product. Let DipXq :“ DpXq X H ipXq. The pairing
DipXq ˆ D4n´ipXq Ñ C defined by the intersection product is nondegenerate [Ver96a, Bog96,
Bea07], hence there is a splitting HpXq “ DpXq ‘DpXqK, where orthogonality is with respect
to the intersection pairing. Now let F be a torsion-free sheaf on X. Then F is modular if and
only if the orthogonal projection of ∆pF q onto D4pXq is a multiple of the class q_X dual to qX .
Moreover, if ∆pF q is a multiple of c2pXq, then F is modular by Fujiki’s formula; see [Fuj87,
Remark 4.12].

Remark 1.3. Let X be a HK manifold of type K3r2s. Then HpXq “ DpXq (notation as in
Remark 1.2). It follows that a vector bundle F on X is modular if and only if ∆pF q is a
multiple of c2pXq. It follows [Ver96b] that if F is a modular vector bundle, slope-stable for
a polarization h, then End0pF q is hyperholomorphic on pX,hq, where End0pF q is the vector
bundle of traceless endomorphisms of E . More generally, on an arbitrary HK polarized variety
pX,hq, there should be a relation between the property of being modular and that of being
hyperholomorphic.

1.3. Main results. Let E be a modular torsion-free sheaf on a HK manifold X of type K3r2s.
A simple argument, see Proposition 2.3, shows that rpE q divides the square of a generator of
the ideal

 

qXpc1pE q, αq | α P H2pX;Zq
(

. We give an existence and uniqueness statement for
slope-stable vector bundles E such that rpE q equals the square of a generator of the ideal defined
above, and moreover

∆pE q “
rpE qprpE q ´ 1q

12
c2pXq .
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Modular sheaves on hyperkähler varieties

Before formulating our results, we recall the description of the irreducible components of the
moduli space of polarized HK manifolds of type K3r2s. Let pX,hq be one such polarized HK
manifold (we emphasize that the ample class h P H1,1

Z pXq is primitive). Then either

q
`

h,H2pX;Zq
˘

“ Z , qphq “ e ą 0 , e ” 0 pmod 2q , (1.3.1)

or

q
`

h,H2pX;Zq
˘

“ 2Z , qphq “ e ą 0 , e ” 6 pmod 8q . (1.3.2)

Conversely, if e is a positive integer which is even (respectively, congruent to 6 modulo 8), there
exists an pX,hq such that (1.3.1) (respectively, (1.3.2)) holds. Let K 1

e be the moduli space of
polarized HK manifolds pX,hq of type K3r2s such that (1.3.1) holds, and let K 2

e be the moduli
space of polarized HK manifolds pX,hq of type K3r2s such that (1.3.2) holds.

Theorem 1.4. Let i P t1, 2u, and let r0 and e be positive integers such that r0 ” i pmod 2q and

e ”

$

’

’

’

’

&

’

’

’

’

%

4r0 ´ 10 pmod 8r0q if r0 ” 0 pmod 4q ,
1
2pr0 ´ 5q pmod 2r0q if r0 ” 1 pmod 4q ,

´10 pmod 8r0q if r0 ” 2 pmod 4q ,

´1
2pr0 ` 5q pmod 2r0q if r0 ” 3 pmod 4q .

(1.3.3)

Suppose that rpX,hqs P K i
e is a generic point. Then, up to isomorphism, there exists one and

only one h slope-stable vector bundle E on X such that

rpE q “ r2
0 , c1pE q “

r0

i
h , ∆pE q “

rpE qprpE q ´ 1q

12
c2pXq . (1.3.4)

Moreover, Hp
`

X,End0pE q
˘

“ 0 for all p.

Remark 1.5. Let rpX,hqs P K 2
6 be generic. Then pX,hq is isomorphic to the variety of lines F pY q

on a generic cubic hypersurface Y Ă P5 polarized by the Plücker embedding, and the vector
bundle E of Theorem 1.4 with r0 “ 2 is isomorphic to the restriction of the tautological quotient
vector bundle on Gr

`

2,C6
˘

. Similarly, let rpX,hqs P K 2
22 be generic. Then pX,hq is isomorphic to

the Debarre–Voisin variety associated with a generic σ P
Ź3 V _10 , where V10 is a 10-dimensional

complex vector space, and

Xσ :“ trW s P Grp6, V10q | σ|W “ 0u . (1.3.5)

The vector bundle E of Theorem 1.4 with r0 “ 2 is isomorphic to the restriction to Xσ of the
tautological quotient vector bundle on Grp6, V10q. These results are proved in Section 8.

Remark 1.6. We would like the congruence relations in (1.3.3) to be forced upon us by adding
to the hypotheses on rpE q, c1pE q, ∆pE q the extra hypothesis that χ

`

X,End0pE q
˘

“ 0. Our
computations give this for some values of r0, but we do not have complete results.

The result below replaces the genericity hypothesis in Theorem 1.4 with a cohomological one.

Corollary 1.7. Let i P t1, 2u, and let r0 and e be positive integers such that r0 ” i pmod 2q
and (1.3.3) holds. Let rpX,hqs P K i

e . Suppose that E is an h slope-stable vector bundle on X
such that (1.3.4) holds and H2

`

X,End0pE q
˘

“ 0. If G is an h slope-stable vector bundle on X
and chkpG q “ chkpE q for k P t0, 1, 2u, then G is isomorphic to E .

There is an interesting consequence of Theorem 1.4 involving Debarre–Voisin (DV) varieties.
There is a geometric invariant theory moduli space MDV :“ P

`
Ź3 V _10

˘

{{SLpV10q of DV varieties;
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see [DHOV20]. In [DV10] it was proved that the moduli map MDV 99K K 2
22 has finite nonzero

degree.

Theorem 1.8. The moduli map MDV 99K K 2
22 is birational.

Theorem 1.4 is also relevant to the study of degenerate DV varieties which was carried out
in [DHOV20]. We say a few words about this in Subsection 8.3.

1.4. Outline of the paper. In Section 2, we give a few examples of modular sheaves, and
we make the connection with semi-homogeneous vector bundles. In particular, we give strong
restrictions on the possible ranks of modular sheaves, under some hypotheses.

Section 3 contains the results that extend to modular sheaves the known results on the
variation of slope-stability for sheaves on surfaces. In particular, we show that one can extend
the results that hold for sheaves on surfaces which are fibered over a curve to HK manifolds with
a Lagrangian fibration.

In Section 4, we prove properties of slope-stable modular vector bundles on HK manifolds X
of type K3r2s with a Lagrangian fibration X Ñ P2. We make certain hypotheses; in particular, we
assume that rpE q equals the square of a generator of the ideal

 

qXpc1pE q, αq | α P H2pX;Zq
(

. We
show that the restriction of a slope-stable modular vector bundle on X to a generic Lagrangian
fiber is slope-stable and that if F is another such vector bundle, then the restrictions of E and F
to a generic Lagrangian fiber are isomorphic.

Section 5 discusses a construction which associates with a vector bundle F on a K3 sur-
face S two torsion-free sheaves F rns˘ on Srns whose fibers over a reduced scheme tx1, . . . , xnu
are the tensor product F px1q b ¨ ¨ ¨ b F pxnq of the fibers of F at the points x1, . . . , xn—
this is a generalization of a construction which was given in [DHOV20]. We prove that if
χpS,F_ bF q “ 2, then F r2s˘ is a modular vector bundle, and we compute its Chern char-
acter. As proved in Section 7, this construction gives (by deformation) the existence result of
Theorem 1.4.

In Section 6, we let S Ñ P1 be an elliptic K3 surface with Picard number 2. Then Sr2s has an

associated Lagrangian fibration π : Sr2s Ñ
`

P1
˘p2q

– P2. We prove that if F is a slope-stable rigid

vector bundle on S, then the vector bundle F r2s˘ on Sr2s has good properties. In particular, we
show that it extends to any small deformation of Sr2s which keeps c1

`

F r2s˘
˘

of type p1, 1q and
that the restriction to any fiber of the Lagrangian fibration π is simple.

Section 7 contains the proof of Theorem 1.4 (and of Corollary 1.7). The basic idea is as follows.
Let X Ñ T ie be a complete family of polarized HK manifolds of type K3r2s whose moduli belong
to K i

e . By results of Gieseker and Maruyama, there is a relative moduli scheme f : Mepr0q Ñ T ie
whose fiber over t P T ie is the moduli space of slope-stable vector bundles on pXt, htq with the
given rank, c1 and c2. The map f : Mepr0q Ñ T ie is of finite type by a result of Maruyama. Let
M ˚

e pr0q Ă Mepr0q be the (open) subset parametrizing vector bundles whose ch0, ch1, ch2 are
given by the formulae in Theorem 1.4. Because of the good properties of the vector bundles
F r2s˘, the image fpM ˚

e pr0qq contains a dense open (in the Zariski topology) subset of T ie . On
the other hand, the results of Sections 4 and 6 allow us to prove that, up to isomorphism, there
is a unique slope-stable vector bundle with the relevant ch0, ch1, ch2 on a generic HK manifold
parametrized by a Lagrangian Noether–Lefschetz locus with large discriminant. By the density
of the union of Noether–Lefschetz divisors (with large discriminant), we conclude that f has
degree 1.
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Modular sheaves on hyperkähler varieties

In Section 8, we prove Theorem 1.8. Once we have Theorem 1.4, the main point is to show
that the tautological quotient vector bundle on a generic DV variety is slope-stable.

In the appendix, we discuss properties of semi-homogeneous vector bundles on abelian vari-
eties and of Lagrangian Noether–Lefschetz divisors on moduli spaces of polarized HK manifolds
of type K3r2s.

1.5 Conventions

‚ Algebraic variety is synonymous with complex quasi-projective (not necessarily irreducible)
variety.

‚ Let X be a smooth complex quasi-projective variety and F a coherent sheaf on X. We only
consider topological Chern classes cipF q P H2ipXpCq;Zq.

‚ Let X be a HK manifold of dimension 2n. We let qX , or simply q, be the BBF symmetric
bilinear form of X, and we denote qXpα, αq by qXpαq. We let cX be the normalized Fujiki
constant of X, that is, the positive rational number such that for all α P H2pXq, we have

ż

X
α2n “ cX ¨ p2n´ 1q!! ¨ qXpαq

n . (1.5.1)

A hyperkähler (HK) variety is a projective compact HK manifold.

‚ Let F be a torsion-free sheaf on a polarized projective variety pX,hq. A subsheaf E Ă F
is slope-destabilizing if 0 ă rpE q ă rpF q and µhpE q ě µhpF q, where rpE q and rpF q are
the ranks of E and F , respectively, and µhpE q and µhpF q are the h-slopes of E and F ,
respectively. If µhpE q ą µhpF q, then E Ă F is slope-desemistabilizing. We use similar
terminology for exact sequences 0 Ñ E Ñ F Ñ G Ñ 0.

‚ A torsion-free sheaf on pX,hq is strictly h slope-semistable if it is h slope-semistable but
not h slope-stable.

‚ Abusing notation, we say that a smooth projective variety X is an abelian variety if it is
isomorphic to the variety underlying an abelian variety A. In other words, X is a torsor
of A.

2. Modular sheaves

2.1. First examples. Remark 1.2 leads to the following examples of modular vector bundles:

(1) The tangent bundle ΘX is modular.

(2) Let V6 be a 6-dimensional complex vector space, and let X Ă Grp2, V6q be the variety of
lines contained in a smooth cubic hypersurface in PpV6q. Let h P H1,1

Z pXq be the Plücker
polarization. Then X is a HK variety of type K3r2s; see [BD85]. Let Q be the restriction to
X of the tautological rank 4 quotient vector bundle on Grp2, V6q. We claim that

ch0pQq “ 4 , ch1pQq “ h , ch2pQq “
1
8

`

h2 ´ c2pXq
˘

. (2.1.1)

The first two equations are obvious; the last equation can be obtained as follows. Let U be
the restriction to X of the tautological subbundle on Grp2, V6q. The normal bundle sequence

0 ÝÑ ΘX ÝÑ ΘGrp2,V6q|X ÝÑ Sym3 U _ ÝÑ 0

gives that ch2pU q “ ´
`

h2´c2pXq
˘

{8. Since chpQq “ 6´chpU q, this gives the last equation
in (2.1.1). Thus ∆pQq “ c2pXq, and hence Q is modular.
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(3) Let X Ă Grp6, V10q be a smooth DV variety, and let h P H1,1
Z pXq be the Plücker polarization;

see [DV10]. Then X is a HK variety of type K3r2s. Let Q be the restriction to X of the
tautological rank 4 quotient vector bundle on Grp6, V10q. Then

ch0pQq “ 4 , ch1pQq “ h , ch2pQq “
1
8

`

h2 ´ c2pXq
˘

. (2.1.2)

The above equations follow from the computations in [DV10, Proof of Lemma 4.5, p. 83];
see Lemma 8.1. Thus ∆pQq “ c2pXq, and hence Q is modular.

Remark 2.1. Let X be a HK variety, and let E and F be modular sheaves on X. Then E ‘F
is not modular in general. On the other hand, E bF is modular, at least if E and F are locally
free.

Remark 2.2. Let X be a HK manifold of dimension 2n, and let F be a torsion-free modular
sheaf on X. Then

ż

X
∆pF q ! α1 ! ¨ ¨ ¨ ! α2n´2 “ dpF q ¨

Ă

ÿ

qXpαi1 , αi2q ¨ . . . ¨ qXpαi2n´3 , αi2n´2q (2.1.3)

for all α1, . . . , α2n P H
2pXq, where r

ř

means that in the summation we avoid repeating addends
which are formally equal (that is, are equal modulo reordering of the factors qXp¨, ¨q and switching
the entries in qXp¨, ¨q).

2.2. Restrictions on the rank. Below is the result that was mentioned in Section 1.3.

Proposition 2.3. Let X be a HK fourfold of type K3r2s or Kum2. Let F be a modular torsion-
free sheaf on X. Let m be a generator of the ideal

 

qXpc1pF q, αq | α P H
2pX;Zq

(

.

Then rpF q divides m2 if X is of type K3r2s, and it divides 3m2 if X is of type Kum2.

Proof. As is easily checked, there exists an α P H2pX;Zq such that qXpc1pF q, αq “ m and
qXpαq “ 0. Let r :“ rpF q. Since qXpαq “ 0, equation (1.2.2) gives that

2r

ż

X
c2pF q ! α2 “ pr ´ 1q

ż

X
c1pF q

2 ! α2

“ 2pr ´ 1qcX ¨ qXpc1pF q, αq
2 “ 2pr ´ 1qcX ¨m

2 . (2.2.1)

The result follows because cX “ 1 if X is of type K3r2s and cX “ 3 if X is of type Kum2.

2.3. Modular sheaves on Lagrangian fibrations. We recall that a Lagrangian fibration
π : X Ñ Pn on a HK manifold X of dimension 2n is a surjective map with connected fibers
whose smooth fibers are abelian varieties.

Remark 2.4. For t P Pn, we let Xt :“ π´1ptq be the schematic fiber over t. If Xt is smooth, the
image of the restriction map H2pX;Zq Ñ H2pXt;Zq has rank 1 and is generated by an ample
class θt P H

1,1
Z pXtq; see [Wie16]. If F is a sheaf on Xt, slope-(semi)stability of F will always

mean θt slope-(semi)stability.

If π : X Ñ Pn is a Lagrangian fibration, we let

f :“ c1pπ
˚OPnp1qq P H1,1

Z pXq . (2.3.1)

As is well known, qXpfq “ 0.
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Lemma 2.5. Let π : X Ñ Pn be a Lagrangian fibration of a HK manifold of dimension 2n.
Suppose that F is a modular torsion-free sheaf on X. Let t P Pn be a general point, and let
Ft :“ F|Xt

be the restriction of F to Xt. Then
ż

Xt

∆pFtq ! θn´2
t “ 0 . (2.3.2)

Proof. There exists an ω P H2pX;Zq such that θt “ ω|Xt
. Since t P Pn is a generic point, we

have ∆pFtq “ ∆pF q|Xt
. Moreover, fn is the Poincaré dual of Xt. Hence
ż

Xt

∆pFtq ! θn´2
t “

ż

X
∆pF q ! ωn´2 ! fn . (2.3.3)

The integral on the right vanishes by Remark 2.2 and the equality qXpfq “ 0.

Example 2.6. Let S be a K3 surface, and let V be a vector bundle on S. Let Z Ă S ˆ Srns be
the tautological subscheme, and let p : Z Ñ S and q : Z Ñ Srns be the projection maps. The
locally free sheaf q˚pp

˚V q is known as a tautological sheaf on Srns. In general, such a sheaf is
not modular. In fact, suppose that S is elliptic, with elliptic fibration S Ñ P1. The composition

Srns Ñ Spnq Ñ
`

P1
˘pnq

– Pn is a Lagrangian fibration with generic fiber Xt “ C1 ˆ ¨ ¨ ¨ ˆ Cn,
where C1, . . . , Cn are distinct generic fibers of the elliptic fibration S Ñ P1. If the restriction of V
to the fibers of S Ñ P1 has nonzero degree, then equality (2.3.2) does not hold for F :“ q˚pp

˚V q,
and hence q˚pp

˚V q is not modular.

Proposition 2.7. Let π : X Ñ Pn be a Lagrangian fibration of a HK manifold of dimension 2n.
Let F be a modular torsion-free sheaf on X. Suppose that t P Pn is a regular value of π, that F is
locally free in a neighborhood of Xt and that Ft is slope-stable. Then Ft is a semi-homogeneous
vector bundle.

Proof. This follows from Lemma 2.5 and Proposition A.2.

The result below shows that, under suitable hypotheses, a much stronger version of Proposi-
tion 2.3 holds.

Corollary 2.8. Let X be a HK variety of type K3rns, Kumn or OG6. Let F be a modular
torsion-free sheaf on X. Suppose that t P Pn is a regular value of π, that F is locally free in a
neighborhood of Xt and that Ft is slope-stable. Then there exist positive integers r0, d, with d
dividing cX , such that rpF q “ rn0 {d.

Proof. If X is of type K3rns, then cX “ 1 and θt is (up to multiplication by a nonzero scalar) a
principal polarization; see [Wie16]. If X is of type Kumn or OG6, then cX “ n` 1 and θt is (up
to multiplication by a nonzero scalar) a polarization with elementary divisors p1, . . . , 1, d1, d2q,
where d1 ¨ d2 divides n` 1; see [Wie18] for Kumn and [MR21] for OG6. Hence the result follows
from Propositions 2.7 and A.3.

3. Variation of stability for modular sheaves

3.1. Main results. Let X be an irreducible smooth projective variety. If the ample cone
AmppXq has rank greater than 1 (and hence dimX ě 2), the slope-stability of a sheaf F
depends on the choice of an ample ray. If X is a surface, there is a locally finite decomposition
AmppXqR into chambers defined by rational walls such that slope-stability is the same for ample

7
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classes belonging to the same open chamber. One important feature is that the walls depend
only on the Chern character of F .

If dimX ě 3, the picture is more intricate in general; see, for example, [GRT19].

In the present section, we show that if X is a HK variety and F is a modular sheaf, then
there is a decomposition of AmppXqR as if X were a surface.

Definition 3.1. Let a be a positive real number. An a-wall of AmppXqR is the intersection
λK X AmppXqR, where λ P H1,1

Z pXq, ´a ď qXpλq ă 0 and orthogonality is with respect to the
BBF quadratic form qX .

As is well known, the set of a-walls is locally finite; in particular, the union of all the a-walls
is closed in AmppXqR.

Definition 3.2. An open a-chamber is a connected component of the complement (in AmppXqR)
of the union of all the a-walls.

Definition 3.3. Let X be a HK manifold, and let F be a modular torsion-free sheaf on X.
Then

apF q :“
rpF q2 ¨ dpF q

4cX
, (3.1.1)

where dpF q is as in Definition 1.1.

Below is the first main result.

Proposition 3.4. Let X be a HK variety of dimension 2n, and let F be a torsion-free modular
sheaf on X. Then the following hold:

(i) Suppose that h is an ample divisor class on X which belongs to an open apF q-chamber.
If F is strictly h slope-semistable, there exists an exact sequence of torsion-free nonzero
sheaves

0 ÝÑ E ÝÑ F ÝÑ G ÝÑ 0 (3.1.2)

such that rpF qc1pE q ´ rpE qc1pF q “ 0.

(ii) Suppose that h0 and h1 are ample divisor classes on X belonging to the same open apF q-
chamber. Then F is h0 slope-stable if and only if it is h1 slope-stable.

Proposition 3.4 is proved in Subsection 3.3.

The next result is about slope-stable sheaves on HK varieties which carry a Lagrangian
fibration.

Definition 3.5. Let X be a HK variety equipped with a Lagrangian fibration π : X Ñ Pn, and
let f :“ π˚c1pOPnp1qq. Let a be a positive integer. An ample divisor class h on X is a-suitable if
the following holds. Let λ P H1,1

Z pXq be a class such that ´a ď qXpλq ă 0; then either qXpλ, hq
and qXpλ, fq have the same sign, or they are both zero.

Notice that the notion of a-suitable depends on the chosen Lagrangian fibration.

Proposition 3.6. Let π : X Ñ Pn be a Lagrangian fibration of a HK variety of dimension 2n.
Let F be a torsion-free modular sheaf on X such that sing F does not dominate Pn. Let h be
an ample divisor class on X which is apF q-suitable. Then the following hold:

(i) If the restriction of F to a generic fiber of π is slope-stable, then F is h slope-stable.

(ii) If F is h slope-stable, then the restriction of F to the generic fiber of π is slope-semistable.

Proposition 3.6 is proved in Section 3.5.
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3.2. Change of slope-stability and strictly semistable sheaves. Suppose that E and F
are sheaves on an irreducible smooth variety X. We let

λE ,F :“ prpF qc1pE q ´ rpE qc1pF qq P H
2pX;Zq . (3.2.1)

Lemma 3.7. Let pX,hq be a polarized HK variety, and let E and F be nonzero torsion-free
sheaves on X. Then

(i) µhpE q ą µhpF q if and only if qXpλE ,F , hq ą 0;

(ii) µhpE q “ µhpF q if and only if qXpλE ,F , hq “ 0.

Proof. Let 2n be the dimension of X. We have µhpE q ą µhpF q if and only if
ş

X λE ,F ! h2n´1 ą

0, and by Fujiki’s formula, this holds if and only if

cX ¨ p2n´ 1q!! ¨ qXpλE ,F , hq ¨ qXphq
n´1 ą 0 .

Item (i) follows because cX ą 0 and qXphq ą 0.

We have µhpE q “ µhpF q if and only if
ş

X λE ,F ! h2n´1 “ 0, and hence item (ii) follows
again by Fujiki’s formula.

Proposition 3.8. Let X be a HK variety, and let h0 and h1 be ample divisor classes on X.
Suppose that F is a torsion-free sheaf on X which is h0 slope-stable and not h1 slope-stable.
Then there exists an h P pQ`h0 ` Q`h1q such that F is strictly h slope-semistable, that is, F
is h slope-semistable but not h slope-stable.

Proof. Lemma 3.7 allows us to reproduce the proof of the analogous statement valid for surfaces
(see [HL10]). Let S Ă pr0, 1s XQq be the set of s for which there exists a subsheaf E Ă F with
0 ă rpE q ă rpF q such that

qXpλE ,F , p1´ sqh0 ` sh1q “ 0 . (3.2.2)

Then S is nonempty and finite. In fact, by hypothesis, there exists an h1 destabilizing subsheaf
E Ă F . Thus 0 ă rpE q ă rpF q, and qXpλE ,F , h1q ě 0 by Lemma 3.7. On the other hand, by
the same lemma, qXpλE ,F , h0q ă 0 because F is h0 slope-stable. It follows that there exists an
s P r0, 1s XQ such that (3.2.2) holds; that is, S is not empty.

In order to prove that S is finite, assume that (3.2.2) holds. Since F is h0 slope-stable,
qXpλE ,F , h0q ă 0. By the linearity of qXpλE ,F , ¨q, we get that qXpλE ,F , h1q ě 0. By Lemma 3.7,
it follows that

µh1pE q ě µh1pF q . (3.2.3)

The set of subsheaves E Ă F such that (3.2.3) holds is bounded (see [HL10, Lemma 1.7.9]); that
is, up to isomorphism, each such sheaf belongs to a finite set of families, each parametrized by an
irreducible quasi-projective variety. It follows that S is finite because the values of qXpλE ,F , hiq
for i P t0, 1u are constant for sheaves E parametrized by an irreducible variety.

Since S is finite, there is a minimum s, call it smin, such that (3.2.2) holds for some subsheaf
E Ă F with 0 ă rpE q ă rpF q. Clearly F is strictly ph0 ` sminh1q slope-semistable.

3.3 Strictly semistable modular sheaves

Lemma 3.9. Let

0 ÝÑ E ÝÑ F ÝÑ G ÝÑ 0 (3.3.1)

be an exact sequence of sheaves on a smooth variety. Then

rpF q ¨ rpG q∆pE q ` rpF q ¨ rpE q∆pG q “ rpE q ¨ rpG q∆pF q ` λ2
E ,F . (3.3.2)

9
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Proof. This follows from the additivity of the Chern character and the second equality in (1.2.1).

Proposition 3.10. Let pX,hq be a polarized HK variety of dimension 2n. Let F be a torsion-free
modular strictly h slope-semistable sheaf on X, and let

0 ÝÑ E ÝÑ F ÝÑ G ÝÑ 0 (3.3.3)

be an exact sequence of nonzero torsion-free sheaves which is h slope-destabilizing; that is,
µhpE q “ µhpF q. Then

´apF q ď qXpλE ,F q ď 0 . (3.3.4)

Moreover, qXpλE ,F q “ 0 only if λE ,F “ 0.

Proof. Since the exact sequence in (3.3.3) is destabilizing, qXpλE ,F , hq “ 0 by Lemma 3.7. Since
the BBF form on NSpXq has signature p1, ρpXq ´ 1q, it follows that qXpλE ,F q ď 0 with equality
only if λE ,F “ 0. (Recall that qXphq ą 0 because h is ample.)

We are left with proving the second inequality in (3.3.4). Hence we assume that qXpλE ,F q ă 0.
Cupping both sides of the equality in (3.3.2) by h2n´2 and integrating, we get (here we use the
hypothesis that F is modular)

ż

X
rpF q ¨ rpG q∆pE q ! h2n´2 `

ż

X
rpF q ¨ rpE q∆pG q ! h2n´2

“ rpE q ¨ rpG q ¨ dpF q ¨ p2n´ 3q!!qXphq
n´1 ` cX ¨ qXpλE ,F q ¨ p2n´ 3q!!qXphq

n´1 . (3.3.5)

By hypothesis, µhpE q “ µhpF q “ µhpG q. Since F is h slope-semistable, it follows that E and G
are h slope-semistable torsion-free sheaves. Thus

ż

X
∆pE q ! h2n´2 ě 0 ,

ż

X
∆pG q ! h2n´2 ě 0

by Bogomolov’s inequality, and hence (3.3.5) gives

´rpE q ¨ rpG q ¨ dpF q ď cX ¨ qXpλE ,F q . (3.3.6)

Dividing by cX (which is strictly positive), we see that the second inequality in (3.3.4) follows
from (3.3.6) and the inequality rpE q ¨ rpG q ď rpF q2{4.

3.4 Proof of Proposition 3.4. Item (i) follows from Proposition 3.10. We prove item (ii). By
symmetry, it suffices to show that if F is h0 slope-stable, then it is h1 slope-stable. Suppose that
F is not h1 slope-stable. By Proposition 3.8, there exists an h P pQ`h0 `Q`h1q such that F is
strictly h slope-semistable. Hence there exists an h destabilizing exact sequence

0 ÝÑ E ÝÑ F ÝÑ G ÝÑ 0

of nonzero torsion-free sheaves. Since h0 and h1 belong to the same open apF q-chamber, h also
belongs to the same open apF q-chamber. Thus, by Proposition 3.10, we get that λE ,F “ 0. It
follows that F is not h0 slope-stable, and that gives a contradiction.

3.5 Stability of modular sheaves on a Lagrangian HK variety

Lemma 3.11. Let X be a HK variety of dimension 2n equipped with a Lagrangian fibration
π : X Ñ Pn, and let f :“ c1pπ

˚OPnp1qq. Let F be a torsion-free sheaf on X, and let E Ă F be
a subsheaf with 0 ă rpE q ă rpF q. Then the following hold:

10
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(i) If, for generic t P Pn, the restriction Ft :“ F|Xt
is slope-stable, then

qXpλE ,F , fq ă 0 . (3.5.1)

(ii) If, for generic t P Pn, the subsheaf Et :“ E|Xt
Ă Ft is slope-desemistabilizing, then

qXpλE ,F , fq ą 0 . (3.5.2)

Proof. Let ht :“ h|Xt
. We have
ż

Xt

λEt,Ft ! hn´1
t “

ż

X
λE ,F ! hn´1 ! fn

“ n!cX ¨ qXph, fq
n´1 ¨ qXpλE ,F , fq . (3.5.3)

In fact, the first equality holds because fn is the Poincaré dual of Xt, and the second equality
holds by Fujiki’s formula and the fact that qXpfq “ 0. Items (i) and (ii) follow because cX and
qXpOXphq, fq are strictly positive.

Proof of Proposition 3.6. We prove item (i). Suppose that F is not h slope-stable. Let S Ă
pr0, 1s XQq be the set of s for which there exists a subsheaf E Ă F with 0 ă rpE q ă rpF q such
that

qXpλE ,F , p1´ sqh` sfq “ 0 . (3.5.4)

Let us show that S is nonempty and finite. Since F is not h slope-stable, by Lemma 3.7 there
exists a subsheaf E Ă F with 0 ă rpE q ă rpF q such that qXpλE ,F , hq ě 0. On the other hand,
by Lemma 3.11, the inequality in (3.5.1) holds. It follows that S is not empty. The argument in
the proof of Proposition 3.8 showing that the analogous S is finite also applies in the present
case, and hence S is finite.

Let smin be the minimum element of S. Clearly F is strictly h ` sminf slope-semistable.
Let E Ă F be a subsheaf with 0 ă rpE q ă rpF q which is h ` sminf destabilizing, that is,
qXpλE ,F , h ` sminfq “ 0. Then ´apF q ď qXpλE ,F q ď 0 by Proposition 3.10. On the other
hand, qXpλE ,F , fq ă 0 by Lemma 3.11, and hence qXpλE ,F , hq ă 0 by our hypothesis on h. This
contradicts the equality qXpλE ,F , h` sminfq “ 0.

Next, we prove item (ii). Suppose that the restriction F|Xt
is ht slope-unstable for generic

t P Pn. As before, let S Ă pr0, 1s XQq be the subset of s such that there exists a subsheaf E Ă F
with rank 0 ă rpE q ă rpF q for which (3.5.4) holds. We claim that S is not empty and that it
has a minimum (NB: it does not have a maximum).

In fact, since F|Xt
is ht slope-unstable for generic t P Pn, there exists a subsheaf E Ă F

with 0 ă rpE q ă rpF q such that Et Ă Ft is ht slope-desemistabilizing for generic t P Pn. By
Lemma 3.11, we have qXpλE ,F , fq ą 0. On the other hand, qXpλE ,F , hq ă 0 because F is h
slope-stable. It follows that S is not empty.

It remains to show that S has a minimum. Suppose that (3.5.4) holds. Since qXpλE ,F , hq ă 0
(because F is h slope-stable), we get that qXpλE ,F , fq ą 0. Hence the sheaves E Ă F with
0 ă rpE q ă rpF q such that (3.5.4) holds for some s P r0, 1s X Q are exactly those such that
E|Xt

Ă F|Xt
is an ht slope-desemistabilizing sheaf of F|Xt

for the generic t P Pn.

Let rX :“ X ˆPn CpPnq be the abelian variety over CpPnq obtained from X by base change.
We let rh be the ample divisor on rX determined by h. A subsheaf E Ă F on X determines
a subsheaf rE Ă ĂF on rX.

Then µ
rh

`

rE
˘

ą µ
rh

`

ĂF
˘

, that is, rE is rh desemistabilizing for ĂF , if and only if E|Xt
Ă F|Xt

is

an ht slope-desemistabilizing sheaf of F|Xt
for the generic t P Pn. The set of rh desemistabilizing

11
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subsheaves A Ă ĂF is bounded. Given such a subsheaf, there exists a unique maximal subsheaf
E Ă F such that rE “ A . The set S0 of s P pr0, 1sXQq such that (3.5.4) holds for such a maximal
subsheaf is finite (and nonempty) by boundedness. Hence there is a minimum element s0

min of S0.

All other subsheaves E Ă F (with 0 ă rpE q ă rpF q) such that rE Ă ĂF is an rh desemistabilizing
subsheaf are contained in a maximal subsheaf E , and the quotient E {E is supported on vertical
divisors (that is, divisors whose image under π is a proper subset of Pn). It follows that s0

min is
also the minimum element of S.

The sheaf F is strictly pp1´ sminqh` sminfq slope-semistable by the minimality of smin. Let
E Ă F be a subsheaf with 0 ă rpE q ă rpF q such that qXpλE ,F , p1 ´ sminqh ` sminfq “ 0.
By Proposition 3.10, either ´apF q ď qXpλE ,F q ă 0, or λE ,F “ 0. The latter does not hold
because qXpλE ,F , hq ă 0 (since F is h slope-stable). Hence ´apF q ď qXpλE ,F q ă 0, and thus
qXpλE ,F , fq ă 0 by our hypothesis on h. This contradicts the equality qXpλE ,F , p1 ´ sminqh `
sminfq “ 0.

4. Stable vector bundles on Lagrangian HK varieties

4.1. Main result. Before stating the main result, we recall that K i
e is the moduli space of

polarized HK varieties pX,hq of type K3r2s such that qphq “ e and h has divisibility i (see (1.3.1)
and (1.3.2)). Recall that i “ 1 if e ı 6 pmod 8q and i P t1, 2u if e ” 6 pmod 8q.

The Noether–Lefschetz divisor N i
d peq Ă K i

e parametrizes the pX,hq such that there exists

a saturated rank 2 sublattice xh, fy Ă H1,1
Z pXq, where f is isotropic and qph, fq “ d; see Defini-

tion B.1. Assume that d ą 10pe` 1q, that e ffl 2d and that d is even if i “ 2. By Proposition B.2,
the divisor N i

d peq is of pure codimension 1 (in particular, nonempty), and there exists an open
dense subset N i

d peq
0 Ă N i

d peq such that the following holds for rpX,hqs P N i
d peq

0: there exists
one and only one Lagrangian fibration π : X Ñ P2 (modulo automorphisms of P2) such that,
letting f :“ π˚c1pOP2p1qq, the lattice xh, fy is as above. Below is the main result of the present
section.

Proposition 4.1. Let a0 and d be positive integers, and let i P t1, 2u. Suppose that e ffl 2d, that
d is even if i “ 2 and that

d ą max
 

1
2 a0pe` 1q, 10pe` 1q

(

. (4.1.1)

If rpX,hqs P N i
e pdq

0 is generic, the following hold:

(i) Let E be an h slope-stable vector bundle on X such that

(a) apE q ď a0, where apE q is as in Definition 3.3;
(b) there exists an integer m such that rpE q “ pmiq2, c1pE q “ mh and gcdtmi, d{iu “ 1.

Then the restriction of E to a generic fiber of the associated Lagrangian fibration π : X Ñ P2

is slope-stable.

(ii) If F and G are h slope-stable vector bundles on X such that items (a) and (b) hold for
E “ F and E “ G , then for generic z P P2, the restrictions of F and G to π´1pzq are
isomorphic.

Remark 4.2. Regarding item (b) of Proposition 4.1: according to Proposition 2.3, we always have
rpE q � pmiq2, hence the equality is an extremal case.

12



Modular sheaves on hyperkähler varieties

4.2 Preliminary results

Lemma 4.3. Let pΛ, qq be a nondegenerate rank 2 lattice which represents 0; hence discpΛq “ ´d2,
where d is a strictly positive integer. Let α P Λ be primitive isotropic, and complete it to a basis
tα, βu such that qpβq ě 0. If γ P Λ has strictly negative square pthat is, qpγq ă 0q, then

qpγq ď ´
2d

1` qpβq
. (4.2.1)

Proof. There exist integers x and y such that γ “ xα` yβ. Since discpΛq “ ´qpα, βq2, we have
qpα, βq “ d. Thus qpγq “ yp2dx` qpβqyq. Since qpγq ă 0 and since x and y are integers, we have

0 ă |x| , 0 ă |y| ď |qpγq| , 0 ă |2dx` qpβqy| ď |qpγq| .

It follows that

2d|x| ´ qpβq|y| ď |2dx` qpβqy| ď |qpγq|

because d and qpβq are nonnegative. Hence

2d ď 2d|x| ď qpβq|y| ` |2dx` qpβqy| ď qpβq|qpγq| ` |qpγq| “ p1` qpβqq|qpγq| .

Since qpγq ă 0, this inequality is equivalent to (4.2.1).

Proposition 4.4. Let pA, θq be a principally polarized abelian surface. Let F be a θ slope-
semistable vector bundle on A such that c1pF q is a multiple of θ and ∆pF q “ 0. Then we can
write

rpF q “ r2
0m, c1pF q “ r0b0mθ , (4.2.2)

where r0, m, b0 are integers, the first two of which are positive, and gcdtr0, b0u “ 1. If F is
strictly θ slope-semistable, that is, not slope-stable, then there exists such a decomposition with
m ą 1.

Proof. If F is slope-stable, then it is simple semi-homogeneous by Proposition A.2, and hence
we may write (4.2.2) with x “ 1 by Proposition A.3.

Suppose that F is strictly θ slope-semistable. Then there exists a destabilizing exact sequence
of torsion-free sheaves

0 ÝÑ G ÝÑ F ÝÑ H ÝÑ 0 (4.2.3)

with G slope-stable. Notice that G is locally free because H is torsion-free.

Let us prove that G is simple semi-homogeneous. Since (4.2.3) is slope-destabilizing,
0 ă rpG q ă rpF q and

ş

A λG ,F ! θ “ 0, where λG ,F P H2pA;Zq is defined in (3.2.1). Since
F is slope-semistable, H is slope-semistable. Thus ∆pG q ě 0 and ∆pH q ě 0 by Bogomolov’s
inequality. Now look at equation (3.3.2): since

ş

A λ
2
G ,F ď 0 by the Hodge index theorem, we

get that ∆pG q “ ∆pH q “ 0 and
ş

A λ
2
G ,F “ 0. In particular, G is simple semi-homogeneous by

Proposition A.2 and H is locally free (if it is not locally free, then H _ is a slope-semistable
vector bundle with ∆pH _q ă ∆pH q “ 0, but this contradicts Bogomolov’s inequality). The
equality

ş

A λ
2
G ,F “ 0 gives that λG ,F “ 0 (by the Hodge index theorem). Thus c1pG q is a multiple

of θ, and so is c1pH q.

Since the vector bundle H is slope-semistable, c1pH q is a multiple of θ and ∆pH q “ 0, we
can iterate this argument to get the following result. Let

0 “ G0 Ĺ G1 Ĺ ¨ ¨ ¨ Ĺ Gm “ F

be a Jordan–Hölder filtration (for slope-semistability) of F . Then for i P t1, . . . ,mu, the quotient
Gi{Gi´1 is a simple semi-homogeneous vector bundle and c1pGi{Gi´1q is a multiple of θ. Let
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i P t1, . . . ,mu; by Proposition A.3, we may write

rpGi{Gi´1q “ r2
i , c1pGi{Gi´1q “ ribiθ ,

where ri and bi are integers, ri ą 0 and gcdtri, biu “ 1. Let i, j P t1, . . . ,mu; equating the slopes
of Gi{Gi´1 and Gj{Gj´1, we get that

bi
ri
“
bj
rj
. (4.2.4)

Since gcdtri, biu “ gcdtrj , bju “ 1, it follows that ri “ rj and bi “ bj . Thus rpF q “ mr2
0 and

c1pF q “ mr0b0θ, where r0 “ ri and b0 “ bi for all i P t1, . . . ,mu.

Corollary 4.5. Let pA, θq be a principally polarized abelian surface. Let F be a θ slope-
semistable vector bundle on A such that ∆pF q “ 0. If rpF q “ r2

0 and c1pF q “ r0b0θ, where r0

and b0 are coprime integers, then F is θ slope-stable.

Proof. The proof is by contradiction. Suppose that F is not θ slope-stable. By Proposition 4.4,
we may write rpF q “ s2

0m and c1pF q “ s0c0mθ, where s0, m, c0 are integers (with s0,m ą 0),
s0 and c0 are coprime and m ą 1. It follows that s0b0 “ c0r0. Since gcdtr0, b0u “ 1 and
gcdts0, c0u “ 1, we get that r0 “ s0 and hence m “ 1. This gives a contradiction.

4.3 Proof of item (i) of Proposition 4.1. First we prove that h is a0-suitable (see Defini-
tion 3.5). First suppose that ρpXq “ 2, that is, H1,1

Z pXq “ xh, fy, where f :“ π˚c1pOP2p1qq.

Apply Lemma 4.3 to Λ :“ H1,1
Z pXq, α “ f and β “ h: by (4.1.1) we get that there are no

ξ P H1,1
Z pXq such that ´a0 ď qpξq ă 0. Hence every ample divisor on X is a0-suitable.

Once we know that h on X is a0-suitable if ρpXq “ 2, it follows that the set of rpX,hqs P
N i
e pdq

0 such that h is not a0-suitable belongs to the intersection of N i
e pdq

0 with a finite union
of Noether–Lefschetz divisors in K i

e . In fact, suppose that h is not a0-suitable on X. Then there
exists a γ P H1,1

Z pXq such that

´a0 ď qpγq ă 0 , qpγ, hq ą 0 , qpγ, fq ă 0 . (4.3.1)

Let B be the (finite) index of xh, fy ‘ pxh, fyK XH1,1
Z pXqq in H1,1

Z pXq. Then

γ “
γ1

B
`
γ2

B
, γ1 P xh, fy , γ2 P xh, fy

K . (4.3.2)

By the last two inequalities in (4.3.1), we have qpγ1q ă 0. Hence by the first inequality in (4.3.1),
it follows that there exists a positive M independent of pX,hq such that ´M ď qpγ2q ă 0.
Hence the moduli point of pX,hq belongs to the intersection of N i

e pdq
0 with a finite union of

Noether–Lefschetz divisors in K i
e , as claimed.

We have proved that if pX,hq represents a generic point of N i
e pdq

0, then h is a0-suitable,
and hence apE q-suitable because apE q ď a0. Let A be a generic (smooth) fiber of π. By Propo-
sition 3.6, the restriction of E to A is slope-semistable with respect to the restriction of h.

We claim that the hypotheses of Corollary 4.5 are satisfied by F :“ E|A. In fact, ∆pF q “ 0
because E is modular; see Lemma 2.5. Moreover, the restriction of h to A is a multiple of
a principal polarization θ, by [Wie16, Theorem 1.1]. From the formula

ş

A h
2 “

ş

X h
2 ! f2 “

2qph, fq2 “ 2d2, it follows that h|A “ dθ. Hence rpF q “ pmiq2 and c1pF q “ m ¨ dθ “ pmiqd{i. It
follows that the hypotheses of Corollary 4.5 are satisfied and hence F is slope-stable.

4.4 Proof of item (ii) of Proposition 4.1. For z P P2, we let Az :“ π´1pzq, Fz :“ F|Az

and Gz :“ G|Az
. By item (i) of Proposition 4.1, there exists an open dense U Ă P2 such that for
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z P U , the vector bundles Fz and Gz are both slope-stable. We claim that if z P U , then Fz

and Gz are simple semi-homogeneous vector bundles. In fact, they are simple because they are
slope-stable, and they are semi-homogeneous by Lemma 2.5 and Proposition A.2. Let z P U . By
[Muk78, Theorem 7.11], the set

Vz :“ trξs P A_z | Fz – Gz b ξu

is not empty, and hence it has cardinality rpG q2 by Proposition 7.1 in op. cit. Clearly Vz is
invariant under the monodromy action of π1pU, zq. Now notice that Vz Ă Azrpmiq

2s because
Fz and Gz have rank pmiq2 and isomorphic determinants. Hence by Corollary B.5, we have
Vz “ Armis. Thus 0 P Vz, and therefore Fz – Gz.

5. Basic modular sheaves on Hilbert squares of K3 surfaces

5.1. Main results. Let S be a smooth projective surface. Let XnpSq Ñ Sn be the blow-up of
the big diagonal, that is, the nth isospectral Hilbert scheme of S; see [Hai01, Definition 3.2.4
and Proposition 3.4.2]. The complement of the big diagonal in Sn is identified with a dense
open subset UnpSq of XnpSq, and the natural map UnpSq Ñ Srns extends to a regular map
p : XnpSq Ñ Srns (this follows from [Hai01, Proposition 3.4.2]). Let τ : XnpSq Ñ Sn be the blow-
up map. We let qi : XnpSq Ñ S be the composition of τ and the ith projection Sn Ñ S. Given a
locally free sheaf F on S, let

XnpF q :“ q˚1 pF q b ¨ ¨ ¨ b q
˚
npF q .

The action of the symmetric group Sn on Sn by permutation of the factors maps the big diagonal
to itself and hence lifts to an action ρn : Sn Ñ AutpXnpSqq. The latter action lifts to a natural
action ρ`n on XnpF q. There is also a twisted action ρ´n “ ρ`n ¨ χ, where χ : Sn Ñ t˘1u is the
sign character. Since ρn maps to itself any fiber of p : XnpSq Ñ Srns, the action ρ˘n descends to
an action ρ˘n : Sn Ñ Autpp˚XnpF qq.

Definition 5.1. Let F˘rns Ă p˚XnpF q be the sheaf of Sn-invariants for ρ˘n .

Below is the first main result of the present section.

Proposition 5.2. Let S be a projective K3 surface, and let F be a locally free sheaf on S such
that χpS,EndpF qq “ 2. Then F r2s˘ is a locally free modular sheaf of rank rpF q2, with

∆
`

F r2s˘
˘

“
rpF r2s˘qprpF r2s˘q ´ 1q

12
c2

`

Sr2s
˘

, (5.1.1)

d
`

F r2s˘
˘

“ 5 ¨

ˆ

rpF r2s˘q

2

˙

, (5.1.2)

a
`

F r2s˘
˘

“
5

8
rpF q6

`

rpF q2 ´ 1
˘

. (5.1.3)

pRecall that dpE q is defined by the equality in (1.2.2).q

The proof of Proposition 5.2 is given in Subsection 5.4.

Remark 5.3. If S is a K3 surface and F is a locally free sheaf on S such that χpS,EndpF qq “ 2,
then F r2s˘ is not modular.

The second main result of the section is the following.
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Proposition 5.4. Let S be a projective K3 surface. Let F be a locally free sheaf on S which
is spherical, that is, such that hp

`

S,End0pF q
˘

“ 0 for all p, where End0pF q Ă EndpF q is the
subsheaf of traceless endomorphisms. Then for all p, we have

hp
`

Sr2s,End0
`

F r2s˘
˘˘

“ 0 . (5.1.4)

The proof of Proposition 5.4 is in Subsection 5.5.

Below is a remarkable consequence of Proposition 5.4.

Corollary 5.5. Let S be a projective K3 surface, and let F be a locally free sheaf on S
which is spherical. Then the natural map between deformation spaces Def

`

Sr2s,F r2s˘
˘

ÝÑ

Def
`

Sr2s, det F r2s˘
˘

is smooth.

Proof. This follows from Proposition 5.4 and the main result of [IM19].

5.2. Another description of F r2s˘. A different definition of the sheaf F r2s´ was given
in [DHOV20]. Here we recall that construction, and we give the analogous construction of F r2s`.

The isospectral Hilbert scheme X2pSq is the the blow-up of the diagonal in S ˆ S; we will

denote it by ČS ˆ S. Let E be the exceptional divisor of the blow-up map τ : ČS ˆ S Ñ S2, and
let e P H2

`

ČS ˆ S
˘

be its Poincaré dual. We let τE : E Ñ S be the restriction of τ to E. Let

ι P Aut
`

ČS ˆ S
˘

be the involution lifting the involution of S2 exchanging the factors. Then Sr2s is

the quotient of ČS ˆ S by the group xιy, and p : ČS ˆ S Ñ Sr2s is the quotient map. We recall that

the map qi : ČS ˆ S Ñ S for i P t1, 2u is the composition of τ and the ith projection S ˆ S Ñ S.

The natural map f˘ : p˚
`

F r2s˘
˘

Ñ q˚1Fbq˚2F is an isomorphism away from E; in particular,
it is injective because p˚

`

F r2s˘
˘

is torsion-free. In order to write out the cokernel, we notice
that there are surjective morphisms

q˚1F b q˚2F
ev`
ÝÑ τ˚E Sym2F , q˚1F b q˚2F

ev´
ÝÑ τ˚E

Ź

2F (5.2.1)

obtained by evaluating along E and then projecting onto the symmetric/antisymmetric part of

pq˚1F b q˚2F q|E “ τ˚EpF bF q. Let ι : E ãÑ ČS ˆ S be the inclusion.

Proposition 5.6 ([DHOV20, Lemma 4.2]). The sheaves F r2s˘ are locally free of rank rpF q2,
and the following are exact sequences:

0 ÝÑ p˚
`

F r2s`
˘ f`
ÝÑ q˚1F b q˚2F

ev´
ÝÑ ι˚τ

˚
E

`
Ź

2F
˘

ÝÑ 0 , (5.2.2)

0 ÝÑ p˚
`

F r2s´
˘ f´
ÝÑ q˚1F b q˚2F

ev`
ÝÑ ι˚τ

˚
E Sym2F ÝÑ 0 . (5.2.3)

Proof. Away from E, the sheaves ι˚τ
˚
E

`
Ź

2F
˘

and ι˚τ
˚
E Sym2F are zero and the maps f˘ are

isomorphisms. Hence (5.2.2) and (5.2.3) are exact away from E. In particular, F r2s˘ is locally
free of rank rpF q2 away from E.

Let x P E; then the subscheme y :“ ppxq Ă S is nonreduced, and hence it is supported at
a single point yred. Let h P O

ĆSˆS,x
be a local generator of the ideal of E. Let F pyredq be the fiber

of F at yred. The ˘1 eigenspaces for the action of ρ`2 on p˚pq
˚
1F b q˚2F qy are, respectively,

`

Sym2 F pyredq b OSr2s,y

˘

‘

˜

2
ľ

F pyredq b OSr2s,y ¨ h

¸
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and
˜

2
ľ

F pyredq b OSr2s,y

¸

‘
`

Sym2 F pyredq b OSr2s,y ¨ h
˘

.

Thus F r2s`x is free of rank rpF q2, and we get that (5.2.2) is exact at x. Since the ˘ eigenvalues
of the action of ρ´2 are the ¯ eigenvalues of the action of ρ`2 , we also get that F r2s´x is free of
rank rpF q2 and that (5.2.3) is exact at x.

5.3. Preliminaries on K3rns. Let µn : H2pSq Ñ H2
`

Srns
˘

be the composition of the natural

symmetrization map H2pSq Ñ H2
`

Spnq
˘

and the pull-back H2
`

Spnq
˘

Ñ H2
`

Srns
˘

defined by the

Hilbert–Chow map Srns Ñ Spnq. Let ∆rns Ă Srns be the prime divisor parametrizing nonreduced
subschemes. The class cl

`

∆rns
˘

is divisible by 2 in the integral cohomology of Srns; let δn P

H1,1
Z

`

Srns
˘

be the unique class such that 2δn “ cl
`

∆rns
˘

. We have an orthogonal decomposition
for the BBF quadratic form

H2
`

Srns;Z
˘

“ µn
`

H2pS;Zq
˘

‘ Zδn .

Let q be the BBF form of Srns. Then for α P H2pSq, we have

qpµnpαqq “

ż

S
α2 , qpµnpαq, δnq “ 0 , qpδnq “ ´2pn´ 1q . (5.3.1)

We will deal with Sr2s. In order to simplify notation, we will drop the subscripts of δ2 and µ2.
We go through a few formulas that will be needed in the proof that F r2s˘ is a modular sheaf.
Let η P H4pS;Zq be the orientation class. We claim that

p˚ pxµpc1pF qq ´ yδq “ xpq˚1 c1pF q ` q
˚
2 c1pF qq ´ ye , (5.3.2)

p˚c2pS
r2sq “ 24pq˚1η ` q

˚
2ηq ´ 3e2 . (5.3.3)

In fact (5.3.2) follows directly from the definitions, and (5.3.3) is the last equation in [DV10,
Proof of Lemma 4.5, p. 84]. Equation (5.3.3) gives

ż

Sr2s
c2

`

Sr2s
˘2
“ 828 ,

ż

Sr2s
c2

`

Sr2s
˘

! α2 “ 30qpαq , α P H2
`

Sr2s
˘

. (5.3.4)

Lemma 5.7. Let S be a K3 surface. Let α P H2pSq, and let α2 “ 2m0η. Then

2 pq˚1η ! q˚2α` q
˚
1α ! q˚2ηq ` pq

˚
1α` q

˚
2αq ! e2 “ 0 . (5.3.5)

Proof. Since the cohomology of ČS ˆ S has no torsion, it suffices to check that the cup product
on the left-hand side of (5.3.5) with any class in H2

`

ČS ˆ S
˘

vanishes. Thus we must take the
cup product with q˚i β, where i P t1, 2u and β P H2pSq, and with e. The easy computations are
left to the reader.

5.4 Chern classes of F r2s˘

Proposition 5.8. Let S be a K3 surface, and let F be a locally free sheaf of rank r0 on S such
that χpS,EndpF qq “ 2. Let h˘ P H1,1

Q
`

Sr2s
˘

be defined by

h˘ :“ µpc1pF qq ´
r0 ¯ 1

2
δ . (5.4.1)

17
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Then

ch0

`

F r2s˘
˘

“ r2
0 , (5.4.2)

ch1

`

F r2s˘
˘

“ r0h
˘ , (5.4.3)

ch2

`

F r2s˘
˘

“
1

2
ph˘q2 ´

r2
0 ´ 1

24
c2

`

Sr2s
˘

. (5.4.4)

Proof. Of course (5.4.2) needs no proof. Let ch1pF q2 “ 2m0η, where η P H4pS;Zq is the ori-
entation class. Since χpS,EndpF qq “ 2, the Hirzebruch–Riemann–Roch (HRR) theorem gives
that

2r0 ch2pF q “ ch1pF q
2 ´ 2

`

r2
0 ´ 1

˘

η “
`

2m0 ´ 2
`

r2
0 ´ 1

˘˘

η . (5.4.5)

A straightforward computation shows that

2m0 “ q
`

h˘
˘

`
pr0 ¯ 1q2

2
. (5.4.6)

Since the pull-back p˚ : H
`

Sr2s;Z
˘

Ñ H2
`

ČS ˆ S;Z
˘

is injective, we work on ČS ˆ S. By (5.2.2)
and the Grothendieck–Riemann-Roch (GRR) theorem, we have

p˚ chpF r2s`q

“ q˚1 chpF q ¨ q˚2 chpF q

´ ι˚

ˆ

τ˚E

ˆ̂

r0
2

˙

` pr0 ´ 1q ch1pF q ` pr0 ´ 2q ch2pF q `
1

2
ch1pF q

2

˙̇

¨

ˆ

1´
1

2
e`

1

6
e2 ´

1

24
e3
˙

“ q˚1 pr0 ` ch1pF q ` ch2pF qq ¨ q
˚
2 pr0 ` ch1pF q ` ch2pF qq

´

ˆ̂

r0
2

˙

`
r0 ´ 1

2

2
ÿ

i“1

q˚i ch1pF q `
1

4

2
ÿ

i“1

´

q˚i
`

p2r0 ´ 4q ch2pF q ` ch1pF q
2
˘

¯

˙

¨

¨

ˆ

e´
1

2
e2 `

1

6
e3 ´

1

24
e4
˙

. (5.4.7)

(The cup product is denoted by ¨ in order to save space.) Equation (5.4.3) for F r2s` follows at
once. Using (5.4.5), we get that

p˚ ch2

`

F r2s`
˘

“ ´
`

r2
0 ´ 1

˘

pq˚1η ` q
˚
2ηq `

1

2

`

q˚1 ch1pF q
2 ` q˚2 ch1pF q

2
˘

` q˚1 ch1pF q ¨ q
˚
2 ch1pF q ´

r0 ´ 1

2
e ¨ pq˚1 ch1pF q ` q

˚
2 ch1pF qq `

1

2

ˆ

r0

2

˙

e2 .

By (5.3.2) and (5.3.3), we get that (5.4.4) holds for F r2s`.

The computations for F r2s´ are similar.

Now we prove Proposition 5.2. The sheaf F r2s˘ is locally free of rank rpF q2 by Propo-
sition 5.6. Equation (5.1.1) holds by Proposition 5.8. It follows that F r2s˘ is modular (see
Remark 1.2). Equations (5.1.2) and (5.1.3) follow from (5.1.1) and the second equality in (5.3.4).

5.5 Cohomology groups via the MacKay correspondence. We keep the notation in-
troduced in Subsection 5.2. In particular, τ : ČS ˆ S Ñ S2 is the blow-up of the diagonal and
p : ČS ˆ S Ñ Sr2s is the quotient map for the action of Z{p2q on ČS ˆ S which lifts the permu-
tation action on S2. Let Db

Z{p2q
`

S2
˘

be the bounded derived category of the (abelian) category

of Z{p2q-equivariant coherent sheaves on S2. By the MacKay correspondence proved by Haiman
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and Bridgeland–King–Reid, the functor

p
Z{p2q
˚ ˝ τ˚ : Db

Z{p2q
`

S2
˘

ÝÑ Db
`

Sr2s
˘

(5.5.1)

is an equivalence; see [Kru18, Proposition 2.8]. (Here p
Z{p2q
˚ is the derived functor of the functor

Coh
`

ČS ˆ S
˘

Ñ Coh
`

Sr2s
˘

mapping F to the Z{p2q-invariant subsheaf of p˚pF q.) We have

p
Z{p2q
˚ ˝ τ˚

`

F b2
˘

“ F` , p
Z{p2q
˚ ˝ τ˚

`

F b2 b a
˘

“ F´ , (5.5.2)

where a is the sign representation of Z{p2q. It follows by the Künneth formula that

Ext˚
`

F˘,F˘
˘

– Ext˚
`

F b2,F b2
˘Z{p2q

– Sym2pExt˚pF ,F qq . (5.5.3)

We now prove Proposition 5.4. Since HppS,EndpF qq “ Hp
`

S,End0pF q
˘

‘ HppS,OSq and S
is a K3 surface, the cohomology space ExtppF ,F q is 1-dimensional if p P t0, 2u and vanishes
otherwise. Hence

Sym2 pExt˚pF ,F qq “ Sym2 pCr0s ‘ Cr´2sq “ Cr0s ‘ Cr´2s ‘ Cr´4s . (5.5.4)

By (5.5.3), we get that Hp
`

Sr2s,EndpF q
˘

is 1-dimensional if p P t0, 2, 4u and vanishes otherwise.

Proposition 5.4 follows because hp
`

Sr2s,OSr2s
˘

“ 1 for p P t0, 2, 4u and Hp
`

Sr2s,EndpF˘q
˘

“

Hp
`

Sr2s,End0pF˘q
˘

‘Hp
`

Sr2s,Or2s

˘

.

6. Basic modular sheaves on the Hilbert square of an elliptic K3 surface

6.1. Contents of the section. We will study the vector bundle F r2s` for a spherical vector
bundle F on an elliptic K3 surface S with Picard number 2 (analogous results hold for F r2s´).
Given positive integers e, r0, i satisfying the hypotheses of Theorem 1.4, one can choose suitable S
and F such that the equations in (1.3.4) hold for E :“ F r2s`—see Subsection 6.3. Next, notice
that there is a Lagrangian fibration π : Sr2s Ñ P2 associated with the elliptic fibration S Ñ P1.
In Subsection 6.4, we analyze the restriction of F r2s˘ to (scheme-theoretic) fibers of π. The key
result is Proposition 6.7, which states that the restriction to every Lagrangian fiber is simple.
Along the way, we make another key observation: the restriction to a generic Lagrangian fiber is
slope-stable; see Proposition 6.11.

6.2. Elliptic K3 surfaces and stable rigid vector bundles. We recall the notions of Mukai
vector and Mukai pairing for a K3 surface S. If F is a sheaf over S, the Mukai vector of F is
vpF q :“ chpF qTdpSq1{2. Moreover, the bilinear symmetric Mukai pairing x¨, ¨y on HpSq has the
following property: if F and E are sheaves on S, then

xvpF q, vpE qy “ ´χpF ,E q :“ ´
2
ÿ

i“0

p´1qi dim ExtipF ,E q . (6.2.1)

Let S be a K3 surface with an elliptic fibration S Ñ P1; we let C be a fiber of the elliptic
fibration. The claim below follows from the surjectivity of the period map for K3 surfaces.

Claim 6.1. Let m0 and d0 be positive natural numbers. There exist K3 surfaces S with an
elliptic fibration S Ñ P1 such that

H1,1
Z pSq “ ZrDs ‘ ZrCs , D ¨D “ 2m0 , D ¨ C “ d0 . (6.2.2)

The result below provides us with stable vector bundles F on elliptic K3 surfaces such that
F r2s˘ has good properties; see Proposition 6.7.
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Proposition 6.2. Let m0, r0, s0 be positive integers such that m0 ` 1 “ r0s0. Suppose that d0

is an integer coprime to r0 and that

d0 ą
p2m0 ` 1qr2

0

`

r2
0 ´ 1

˘

4
. (6.2.3)

Let S be an elliptic K3 surface as in Claim 6.1. Then there exists a vector bundle F on S such
that the following hold:

(i) vpF q “ pr0, D, s0q.

(ii) χpS,EndpF qq “ 2.

(iii) The vector bundle F is L slope-stable for any polarization L of S.

(iv) The restriction of F to every fiber of the elliptic fibration S Ñ P1 is slope-stable.

pNotice that every fiber is irreducible by our assumptions on NSpSq, hence the slope-stability of
a sheaf on a fiber is well defined, that is, independent of the choice of a polarization.q

Proof. (i) The Mukai vector v “ pr0, D, s0q P HpSq has square ´2. Let L0 be a polarization
of S. By [Kul90, Theorem 2.1], there exists an L0 slope-semistable vector bundle F on S with
vpF q “ pr0, D, s0q.

(ii) We have that χpS,EndpF qq “ 2 because vpF q2 “ ´2.

(iii) We claim that F is actually L0 slope-stable and that it is L slope-stable for any polariza-
tion L of S. This follows from the well-known results on the stability chamber decomposition of
AmppSq, which have been extended to arbitrary HK varieties in Section 3. In fact, vpF q2 “ ´2
and (1.2.1) give that ∆pF q “ 2

`

r2
0 ´ 1

˘

. It follows that apF q “ 1
2r

2
0pr

2
0 ´ 1q, and hence by

Lemma 4.3 and (6.2.3), there is no apF q-wall. Thus there is a single apF q-chamber.

(iv) By Proposition 3.6, the restriction of F to a generic fiber C of the elliptic fibration
is slope-semistable (because there is a single apF q-chamber). Since d0, which is the degree of
F|C , is coprime to r0, which is the rank of F|C , it follows that the restriction of F to a generic
fiber C is slope-stable. Suppose that there exists a fiber C0 such that F|C0

is not slope-stable.
Then F|C0

is slope-unstable because d0 is coprime to r0. Let F|C0
� B be a desemistabilizing

quotient, that is, 0 ă rpBq ă r and µpBq ´ µpF|C0
q ă 0. Let E be the elementary modification

of F associated with the quotient B, that is, the (torsion-free) sheaf on S fitting into the exact
sequence

0 ÝÑ E ÝÑ F ÝÑ i0,˚B ÝÑ 0 , (6.2.4)

where i0 : C0 ãÑ S is the inclusion map. Then

vpE q2 “ vpF q2 ` 2r0 ¨ rpBq ¨
`

µpBq ´ µpF|C0
q
˘

ă vpF q2 “ ´2 . (6.2.5)

By (6.2.1), it follows that χpE ,E q ą 2. On the other hand, since E is isomorphic to F outside C0,
the restriction of E to a generic elliptic fiber is slope-stable, and this implies that HompE ,E q “
C IdE . By Serre duality, it follows that dim Ext2pE ,E q “ 1. The last two facts contradict the
inequality χpE ,E q ą 2.

6.3. Dictionary. We show that, given positive integers i, e, r0 satisfying the hypotheses of
Theorem 1.4, we get a vector bundle E on the Hilbert square of a suitable K3 surface such that
the equations in (1.3.4) hold. First, we need the result below. The elementary proof is left to the
reader.
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Lemma 6.3. Let i P t1, 2u. Let e and r0 be positive natural numbers such that r0 ” i pmod 2q
and (1.3.3) holds. Let

m0 :“

$

’

&

’

%

e

2
`
pr0 ´ 1q2

4
if r0 is odd ,

e

8
`
pr0 ´ 1q2

4
if r0 is even

(6.3.1)

pm0 is an integer by (1.3.3).q There exists an integer s0 such that m0 ` 1 “ r0s0.

Let i, e, r0, m0 be as in Lemma 6.3. Suppose that d0 is an integer coprime to r0 such
that (6.2.3) holds. Let S be an elliptic K3 surface as in Claim 6.1, and let F be a vector bundle
on S as in Proposition 6.2 (it exists by Lemma 6.3). Let E :“ F r2s`, and let h` be as in (5.4.1).
Lastly, let

h :“ ih` . (6.3.2)

Proposition 6.4. Keeping the notation and hypotheses as above, the following hold:

(i) The cohomology class h is primitive, qphq “ e, and q
`

h,H2pX;Zq
˘

“ piq,

(ii) The values of rpE q, c1pE q and ∆pE q are given by (1.3.4).

Proof. Item (i) holds because clpDq is primitive and by equation (5.4.6). Item (ii) follows from
equations (5.4.2)–(5.4.4) and straightforward computations.

Remark 6.5. In Proposition 6.4, we have set E :“ F r2s`. One gets an analogous result letting
E “ F r2s´ (one needs to replace 1

4pr0 ´ 1q2 with 1
4pr0 ` 1q2 in (6.3.1)).

6.4 Restriction of F r2s˘ to Lagrangian fibers

Definition 6.6. If S Ñ P1 is an elliptically fibered K3 surface, the associated Lagrangian fibra-
tion is the composition

Sr2s ÝÑ Sp2q ÝÑ
`

P1
˘p2q

– P2 . (6.4.1)

In the present subsection, we prove the following result.

Proposition 6.7. Let S be a K3 surface with an elliptic fibration S Ñ P1 as in Claim 6.1, and
let π : Sr2s Ñ P2 be the associated Lagrangian fibration. Let F be a vector bundle on S as in
Proposition 6.2. Then the restriction of F r2s˘ to every pscheme-theoreticq fiber of π is simple.

The proof is given at the end of the subsection.

Let S and π : Sr2s Ñ P2 be as in Proposition 6.7. We describe the fibers of π.

For x P P1, we let Cx be the fiber over x of the elliptic fibration S Ñ P1. The set-theoretic
fibers of π are as follows:

π´1px1 ` x2q “

#

Cx1 ˆ Cx2 if x1 “ x2 ,

C
p2q
x Y PpΘS|Cx

q if x1 “ x2 “ x .
(6.4.2)

As is easily checked, the fiber is reduced if x1 “ x2. On the other hand, the fiber over 2x is not
reduced. In order to prove this, we introduce some notation. Let V r2s Ă Sr2s be the prime divisor
parametrizing vertical subschemes Z (that is, such that the scheme-theoretic image fpZq is a
reduced point), let ∆r2s Ă Sr2s be the prime divisor parametrizing nonreduced subschemes, and

let Dp2q Ă
`

P1
˘p2q

be the prime divisor parametrizing multiple 0-cycles 2x.
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Proposition 6.8. Let S be a K3 surface with an elliptic fibration S Ñ P1 as in Claim 6.1. With
notation as above, we have the equality of pCartierq divisors π˚

`

Dp2q
˘

“ 2V r2s `∆r2s.

Proof. By the set-theoretic equality π´1
`

Dp2q
˘

“ V r2sY∆r2s, there exist positive integers a and b

such that π˚
`

Dp2q
˘

“ aV r2s ` b∆r2s. We have a commutative square

ČS ˆ S
p //

rπ
��

Sr2s

π
��

P1 ˆ P1 p // P2 .

(6.4.3)

Let rV r2s :“ p´1
`

V r2s
˘

, and let DiagP1 be the diagonal of P1 ˆ P1. The proposition follows from
the equalities

arV r2s ` 2bE “ p˚
`

π˚
`

Dp2q
˘˘

“ rπ˚
`

p˚
`

Dp2q
˘˘

“ rπ˚p2DiagP1q “ 2rV r2s ` 2E .

Corollary 6.9. Keep the hypotheses and notation as in Proposition 6.8. Let L be the line
bundle on Sr2s such that c1pL q “ δ. Let x P P1, and let Zx “ π´1p2xq be the schematic fiber
of π over 2x. Then

I
Zred
x {Zx|C

p2q
x
– O

C
p2q
x
p´Ξxq b

`

L
|C
p2q
x

˘

, (6.4.4)

where Ξx :“ t2p | p P Cxu Ă C
p2q
x . In particular, the restriction homomorphism OZx Ñ OZred

x
fits

into the exact sequence

0 ÝÑ O
C
p2q
x
p´Ξxq b

`

L
|C
p2q
x

˘

ÝÑ OZx ÝÑ OZred
x
ÝÑ 0 . (6.4.5)

Proof. It suffices to prove that (6.4.4) holds because the kernel of the surjection OZx Ñ OZred
x

is
equal to the left-hand side in (6.4.4). By Proposition 6.8, we have

I
Zred
x {Zx|C

p2q
x
– OSr2s

`

´V r2s ´∆r2s
˘

|C
p2q
x
. (6.4.6)

We have

OSr2s
`

´∆r2s
˘

|C
p2q
x
– O

C
p2q
x
p´Ξxq . (6.4.7)

On the other hand, Proposition 6.8 gives that

OSr2s
`

2V r2s
˘

– OSr2s
`

π˚Dp2q ´∆r2s
˘

– π˚pOP2p2qq bL ´2 .

Since H1pSr2s;Zq “ 0, it follows that OSr2s
`

V r2s
˘

– π˚pOP2p1qq bL ´1. Since the restriction of

µpc1pOP2p1qqq to C
p2q
x is trivial, we get that

OSr2s
`

´V r2s
˘

|C
p2q
x
– L

|C
p2q
x
. (6.4.8)

Hence (6.4.4) follows from (6.4.6), (6.4.7) and (6.4.8).

For x P P1, let Fx :“ F|Cx
. If x1 “ x2 P P1, then the restriction of F to π´1px1 ` x2q is

equal to Fx1 b Fx2 . Thus we need the following result.

Proposition 6.10. Let Ci, for i P t1, 2u, be polarized irreducible curves, and let D be an ample
divisor on Y :“ C1 ˆ C2 such that

c1pOY pDqq “ m1ρ
˚
1OY1pp1q `m2ρ

˚
2c1pOY2pp2qq , (6.4.9)

where ρi : Y Ñ Ci is the projection and pi P Ci. Let Vi be a slope-stable vector bundle on Ci for
i P t1, 2u. Then V1 b V2 is D slope-stable.
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Proof. The proof is by contradiction. Suppose the contrary. Then there exists an injection α : E Ñ
V1 b V2 with torsion-free cokernel such that 0 ă rpE q ă rpV1 b V2q and

µDpE q ě µDpV1 b V2q . (6.4.10)

Let pi P Ci be generic; the restrictions of α to tp1u ˆ C2 and C1 ˆ tp2u are injective maps of
vector bundles (that is, injective on fibers). We have

µDpE q “ m2µpE|C1ˆtp2uq `m1µpE|tp1uˆC2
q . (6.4.11)

On the other hand,

µDpV1 b V2q “ m2µpV1q `m1µpV2q . (6.4.12)

Since the restrictions of V1 bV2 to C1ˆtp2u and tp1uˆC2 are isomorphic to the polystable vector
bundles V1bCCrpV2q and V1bCCrpV1q, respectively, it follows from (6.4.10), (6.4.11) and (6.4.12)
that µpE|C1ˆtp2uq “ µpV1q and µpE|tp1uˆC2

q “ µpV2q. In turn, these equalities give that there

exist vector subspaces 0 “ A Ă CrpV2q and 0 “ B Ă CrpV1q such that E|C1ˆtp2u “ V1 bC A and
E|tp1uˆC2

“ B bC V2. It follows that Imα “ V1 b V2. This gives a contradiction.

Proposition 6.11. Let S be a K3 surface with an elliptic fibration S Ñ P1 as in Claim 6.1,
and let F be a vector bundle on S as in Proposition 6.2. If x1 “ x2, the restriction of F r2s˘

to π´1px1 ` x2q “ Cx1 ˆ Cx2 is slope-stable for any product polarization, and it is a simple
semi-homogeneous vector bundle.

Proof. We have

F r2s˘
|π˚px1`x2q

– Fx1 b Fx2 . (6.4.13)

By Proposition 6.2, both Fx1 and Fx2 are slope-stable. Hence the statement about slope-stability
follows from Proposition 6.10. Of course, this implies that the restriction of F r2s˘ to π´1px1 `

x2q “ Cx1 ˆCx2 is simple. Moreover, it is semi-homogeneous because every stable vector bundle
on an elliptic curve is semi-homogeneous. (One could argue that the discriminant vanishes by
Lemma 2.5 and conclude by Proposition A.2.)

For x P P1, let ∆
r2s
x :“ PpΘS|Cx

q Ă ∆r2s, and let O
∆
r2s
x
p1q be the dual of the tautological line

subbundle ∆
r2s
x . Let τx : ∆

r2s
x Ñ Cx be the restriction of the Hilbert–Chow map.

Lemma 6.12. Let S be a K3 surface with an elliptic fibration S Ñ P1, and let F be a vector
bundle on S as in Proposition 6.2. Let x be a regular value of the elliptic fibration. Then

F r2s`
|∆
r2s
x

–

ˆ

O
∆
r2s
x
p1q b τ˚x

2
ľ

Fx

˙

‘ τ˚x
`

Sym2 Fx

˘

, (6.4.14)

F r2s´
|∆
r2s
x

–
`

O
∆
r2s
x
p1q b τ˚x Sym2 Fx

˘

‘ τ˚x

ˆ 2
ľ

Fx

˙

, (6.4.15)

and the space of traceless endomorphisms of F r2s˘
|∆
r2s
x

has dimension 1.

Proof. The proofs for F r2s˘ are similar. We provide the proof for F r2s`. Restricting the defining
exact sequence (5.2.2) to E, we get the exact sequence

0 ÝÑ τ˚E

ˆ 2
ľ

F

˙

b OEp´Eq ÝÑ F r2s`
|E ÝÑ τ˚E

`

Sym2 F
˘

ÝÑ 0 . (6.4.16)
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Restricting the exact sequence in (6.4.16) to ∆
r2s
x , we get the exact sequence

0 ÝÑ τ˚x

ˆ 2
ľ

Fx

˙

b O
∆
r2s
x
p1q ÝÑ F r2s`

|∆
r2s
x

β
ÝÑ τ˚x

`

Sym2 Fx

˘

ÝÑ 0 . (6.4.17)

We claim that this exact sequence splits. The extension class belongs to

H1

ˆ

∆r2s
x , τ˚x

ˆ

Sym2 F_
x b

2
ľ

Fx

˙

b O
∆
r2s
x
p1q

˙

. (6.4.18)

We compute this cohomology group via the Leray spectral sequence of τx. Since
`

Sym2 F_
x

b
Ź2 Fx

˘

bR1τx,˚O∆
r2s
x
p1q “ 0, it suffices to show that

H1

ˆ

Cx,

ˆ

Sym2 F_
x b

2
ľ

Fx

˙

b τx,˚O∆
r2s
x
p1q

˙

“ H1

ˆ

Cx,

ˆ

Sym2 F_
x b

2
ľ

Fx

˙

bΘ_S|Cx

˙

“ 0 . (6.4.19)

Since Cx is smooth, the sheaf Θ_S|Cx
has a filtration with associated graded the direct sum of two

copies of OCx . Hence the vector bundle appearing in (6.4.19) has a filtration whose associated
graded is the direct sum of two copies of Sym2 F_

x b
Ź2 Fx. The latter vector bundle has no

nonzero section because it is slope-stable of slope 0. By the HRR theorem, it follows that

H0

ˆ

Cx,

ˆ

Sym2 F_
x b

2
ľ

Fx

˙

bΘ_S|Cx

˙

“ H1

ˆ

Cx,

ˆ

Sym2 F_
x b

2
ľ

Fx

˙

bΘ_S|Cx

˙

“ 0 .

Hence the extension group in (6.4.18) vanishes.

The result about traceless endomorphisms of F r2s˘
|∆
r2s
x

follows from the direct sum decom-

position in (6.4.14) and the vanishing in (6.4.19).

Lemma 6.13. Let S be a K3 surface with an elliptic fibration S Ñ P1 as in Claim 6.1, and let F
be a vector bundle on S as in Proposition 6.2. Let x be a regular value of the elliptic fibration. Let

px : C2
x Ñ Sr2s be the composition of the quotient map C2

x Ñ C
p2q
x and the inclusion C

p2q
x ãÑ Sr2s.

Then p˚xF r2s
˘ is simple, and hence the restriction of F r2s˘ to C

p2q
x is simple.

Proof. The proofs for F r2s˘ are similar. We give the proof for F r2s`.

Let qx, rx : C2
x Ñ Cx be the two projections, and let Diagx Ă C2

x be the diagonal. By the
exact sequence in (5.2.3), we have the exact sequence

0 ÝÑ p˚xF r2s
` ÝÑ q˚xFx b r

˚
xFx

ev´x
ÝÑ

2
ľ

Fx|Diagx
ÝÑ 0 . (6.4.20)

It follows that we have the exact sequence

0 ÝÑ q˚xFx b r
˚
xFx b OC2

x
p´Diagxq

λ
ÝÑ p˚xF r2s

` ev`x
ÝÑ Sym2 Fx|Diagx

ÝÑ 0 . (6.4.21)

Notice that the restriction of λ to Diagx is identified with the natural map ev´x : Fx bFx Ñ
Ź2 Fx (notice that the normal bundle of Diagx in C2

x is trivial because Cx is an elliptic curve);
in particular, its image is

Ź2 Fx (we identify Diagx and Cx). Equivalently, the restriction of the
exact sequence in (6.4.21) to Diagx gives rise to the exact sequence

0 ÝÑ
2
ľ

Fx ÝÑ p˚xF r2s
`

|Diagx

ev`x
ÝÑ Sym2 Fx ÝÑ 0 , (6.4.22)
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which is split by Lemma 6.12. Now let ϕ be an endomorphism of p˚xF r2s
`. The restriction of

ϕ to Diagx preserves the exact sequence in (6.4.22) because the vector bundles Sym2 Fx and
Ź2 Fx are slope-stable of equal slopes. It follows that ϕ induces an endomorphism of the kernel
of ev`x , that is, of q˚xFxb r

˚
xFxbOC2

x
p´Diagxq. Since Fx is simple, the latter is a simple sheaf.

It follows that ϕ is a scalar.

Proposition 6.14. Let S be a K3 surface with an elliptic fibration S Ñ P1 as in Claim 6.1,
and let F be a vector bundle on S as in Proposition 6.2. Let x be a regular value of the elliptic
fibration. Then the restriction of F r2s˘ to the scheme-theoretic fiber π´1p2xq is a simple sheaf.

Proof. Let Zx :“ π´1p2xq be the scheme-theoretic fiber. By Corollary 6.9, we have an exact
sequence

0 ÝÑ End0pF q
|C
p2q
x
bO

C
p2q
x
p´Ξxqb

`

L
|C
p2q
x

˘

ÝÑ End0pF q|Zx
ÝÑ End0pF q|Zred

x
ÝÑ 0 . (6.4.23)

Taking global sections, we get an isomorphism

H0
`

Cp2qx ,End0pF q
|C
p2q
x
b O

C
p2q
x
p´Ξxq b

`

L
|C
p2q
x

˘˘

„ÝÝÑ H0
`

Cp2qx ,End0pF q|Zx

˘

, (6.4.24)

because of Lemmas 6.12 and 6.13. On the other hand, since

p˚x
`

O
C
p2q
x
p´Ξxq b

`

L
|C
p2q
x

˘˘

– OC2
x
p´Diagxq ,

we have an embedding

H0
`

Cp2qx ,End0pF q
|C
p2q
x
bO

C
p2q
x
p´Ξxq b

`

L
|C
p2q
x

˘˘

ãÝÑ H0
`

C2
x,End0pp˚xFxqp´Diagxq

˘

, (6.4.25)

and the latter vanishes by Lemma 6.13.

Proof of Proposition 6.7. Let B Ă P2 be the (finite) set parametrizing 2x P
`

P1
˘p2q

, where x is
a critical value of the elliptic fibration S Ñ P1. Let us prove that if px1 ` x2q P

`

P2zB
˘

, then

hp
`

π´1px1 ` x2q,End0 F r2s˘
|π´1px1`x2q

˘

“ 0 @p . (6.4.26)

To see this, first notice that since π´1px1 ` x2q is a local complete intersection with trivial
dualizing sheaf and χ

`

π´1px1` x2q,End0 F r2s˘
0|π´1px1`x2q

˘

“ 0, it suffices to check that (6.4.26)

holds for p “ 0.

If x1 “ x2, then (6.4.26) holds for p “ 0 by Proposition 6.11. If x1 “ x2 “ x and x is
a regular value of the elliptic fibration, then (6.4.26) holds for p “ 0 by Proposition 6.14. This
proves that (6.4.26) holds for all px1 ` x2q P

`

P2zB
˘

. Since B is a finite set, we get that

Rpπ˚ End0 F r2s˘ “ 0 , p P t0, 1u . (6.4.27)

(See [Muk87, Proposition 2.26].) Now suppose that there exist x1 ` x2 P P2 such that the
restriction of F r2s˘ to π´1px1`x2q is not simple. As shown above, such points are contained in
the finite set B, and hence it follows (since the fibers of π are surfaces) that R2π˚ End0

`

F r2s˘
˘

is a nonzero Artinian sheaf. By the Leray spectral sequence for π and the vanishing in (6.4.27),
it follows that H2

`

Sr2s,End0
`

F r2s˘
˘˘

“ 0. This contradicts Proposition 5.4.

7. Proof of Theorem 1.4 and Corollary 1.7

7.1. Summary. In Subsection 7.2, we prove that if d " 0, there exists an irreducible component
N i
e pdq

good Ă N i
e pdq, where N i

e pdq Ă K i
e is the Lagrangian Noether–Lefschetz divisor defined

in Definition B.1, with the following property: if rpX,hqs P N i
e pdq

good is generic, there exists
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an h slope-stable vector bundle E on X with ch0pE q, ch1pE q, ch2pE q given by (1.3.4) whose
restriction to Lagrangian fibers is slope-stable with the possible exception of a finite set of fibers.
We also prove that there exists one component of the relative moduli space of slope-stable vector
bundles on polarized HK varieties parametrized by K i

e with ch0, ch1, ch2 given by (1.3.4) which
dominates the moduli space K i

e .

In Subsection 7.3, we prove that if rpX,hqs P N i
e pdq

good is as above, there is a single h
slope-stable vector bundle with the relevant Chern character.

In Subsection 7.4, we prove Theorem 1.4 and Corollary 1.7.

7.2. Good vector bundles over Lagrangian HK varieties. Below is the first main result
of the present subsection.

Proposition 7.1. Let i P t1, 2u, and let r0 ě 2 be such that i ” r0 pmod 2q. Suppose that (1.3.3)
holds, that e ffl 2d and that

d ą
5

16
r6

0

`

r2
0 ´ 1

˘

pe` 1q . (7.2.1)

There exists an irreducible component N i
e pdq

good Ă N i
e pdq, where N i

e pdq Ă K i
e is as in Def-

inition B.1, such that the following holds. Let rpX,hqs P N i
e pdq

good be generic. pNotice that
the hypotheses of Proposition B.2 hold, and hence there is an associated Lagrangian fibration
π : X Ñ P2.q Then

(i) there exists an h slope-stable vector bundle E on X such that (1.3.4) holds, and

(ii) except possibly for a finite set of z P P2, the restriction of E to π´1pzq is slope-stable for
the restricted polarization.

The proof of Proposition 7.1 is given at the end of the subsection.

Let S be an elliptic K3 surface as in Subsection 6.3, and let us adopt the notation of that
subsection. Let X0 “ Sr2s, and let E0 :“ F r2s` be the vector bundle on X0 of loc. cit. Let
h0 :“ h, where h is given by (6.3.2). Let C Ă S be a fiber of the elliptic fibration, and let
f0 :“ µpclpCqq. Lastly, let d0 be as in (6.2.2), and set

d :“ id0 . (7.2.2)

Then the sublattice xf0, h0y Ă H1,1
Z pX0q is saturated, and

qpf0q “ 0 , qph0, f0q “ d , qph0q “ e . (7.2.3)

Let π0 : X0 Ñ P2 be the Lagrangian fibration associated with the elliptic fibration of S; see
Definition 6.6. Notice that f0 “ c1pπ

˚
0OP2p1qq.

Let ϕ : X Ñ B be an analytic representative of the deformations space of pX, xh0, f0yq, that
is, deformations of X0 that keep h0 and f0 of Hodge type. We assume that B is contractible.
Let 0 P B be the base point; in particular, X0 is isomorphic to ϕ´1p0q. For b P B, we let
Xb :“ ϕ´1pbq. If B is small enough, then by Proposition 6.7 and Corollary 5.5, the vector
bundle E0 on X0 deforms to a vector bundle Eb on Xb (unique up to isomorphism because
H1

`

X0,End0pE0q
˘

“ 0). Notice that xh0, f0y deforms by Gauss–Manin parallel transport to a
saturated sublattice

Λb :“ xhb, fby Ă H1,1
Z pXbq . (7.2.4)

Possibly after shrinking B around 0, there exists a map π : X Ñ P2 which restricts to a La-
grangian fibration on every Xb and is equal to π0 on X0. We let πb be the restriction of π to Xb.
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Notice that the fiber of ϕˆπ : X Ñ BˆP2 over pb, zq is the Lagrangian fiber of Xb Ñ P2 over z;
we denote it by Xb,z. Of course fb “ c1pπ

˚
bOP2p1qq.

Proposition 7.2. With the hypotheses of Proposition 7.1, the following holds. For b P B outside
a proper analytic subset, hb is ample and hence rpXb, hbqs P N i

e pdq, where i ” r0 pmod 2q.
Moreover, Eb is hb slope-stable, and items (i) and (ii) of Proposition 7.1 hold for E “ Eb.

Proof. Since r0 ě 2, inequality (7.2.1) implies that d ą 10pe ` 1q. Hence the hypotheses of
Proposition B.2 hold. In the proof of that proposition, we show that hb is ample for b outside a
proper analytic subset of B.

Next we prove that hb is apEbq-suitable; see Definition 3.5. We claim that the hypotheses of
Proposition 4.1 hold with a0 “ apEbq. This is clear for all the hypotheses, except perhaps for the
inequality in (4.1.1). By Proposition 5.2, we have apEbq “

5
8r

6
0

`

r2
0 ´ 1

˘

, and hence the inequality
in (4.1.1) follows from (7.2.1).

Since hb is apEbq-suitable, in order to prove that Eb is hb slope-stable, it suffices to show that
the restriction to a generic fiber of the Lagrangian fibration is slope-stable; see Proposition 3.6.
This is true for E0 by Proposition 6.11. By the openness of slope-stability, it follows that it is
also true for b P B outside a proper analytic subset.

Next we prove that items (i) and (ii) of Proposition 7.1 hold for E “ Eb.

Item (i) holds by Proposition 6.4.

Let us prove that item (ii) holds. First we notice that for b P B outside a proper closed analytic
subset, the restriction of Eb to every Lagrangian fiber is simple. In fact, this holds for b “ 0 by
Proposition 6.7, and hence the assertion we made holds by the openness of “simpleness.”Let us
prove that for b P B outside a proper closed analytic subset, the restriction of Eb to a smooth
Lagrangian fiber is slope-stable. By Proposition 6.11, the restriction of E0 to a generic Lagrangian
fiber is slope-stable, and hence the restriction of Eb (for b P B outside . . . ) to a generic Lagrangian
fiber is slope-stable by the openness of slope-stability. By Proposition A.2, we get that the
restriction of Eb (for b P B outside . . . ) to a generic smooth Lagrangian fiber is semi-homogeneous.
It follows that the restriction to any smooth Lagrangian fiber is simple semi-homogeneous (note:
the fact that the restriction is simple is crucial). By [Muk78, Proposition 6.16], the restriction
of Eb to any smooth Lagrangian fiber is Gieseker–Maruyama stable and hence slope-semistable.
By Corollary 4.5, it follows that it is actually slope-stable.

Next we claim that the restriction of Eb (for b P B outside . . . ) to a generic singular Lagrangian
fiber is slope-stable, except possibly for a finite set of fibers. The singular Lagrangian fibers of Xb

are parametrized by the discriminant curve of πb, which, for b P B outside a proper closed analytic
subset, is the dual curve of a generic sextic plane curve; see Proposition B.4. On the other hand,
the discriminant curve of π0 is the union of 24 lines (each corresponding to a critical value of the
elliptic fibration) and a conic (the “diagonal”). The restriction of E0 to the Lagrangian surface
parametrized by a generic point of one of the lines is slope-stable by Proposition 6.11. By the
openness of slope-stability, it follows that the locus of singular Lagrangian fibers on which Eb
restricts to a slope-stable vector bundle is nonempty (for b P B outside . . . ). Since (for b P B
outside . . . ) the discriminant curve is irreducible, this proves that, with the possible exception
of a finite set of singular fibers, the restriction of Eb (for b P B outside . . . ) to a generic singular
Lagrangian fiber is slope-stable.

Proof of Proposition 7.1. Let X Ñ T 1
e and X Ñ T 2

e be complete families of polarized HK
varieties of type K3r2s such that (1.3.1) and (1.3.2), respectively, hold—for example, the families
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parametrized by the relevant open subsets of suitable Hilbert schemes. We may, and will, assume
that T ie is irreducible. For t P T ie , we let pXt, htq be the corresponding polarized HK variety of
type K3r2s. Let m : T ie Ñ K i

e be the moduli map, which sends t to rpXt, htqs.

By fundamental results of Gieseker and Maruyama, there exists a map of schemes

f : Mepr0q ÝÑ T ie (7.2.5)

such that for every t P T ie , the (scheme-theoretic) fiber f´1ptq is isomorphic to the (coarse) moduli
space of ht slope-stable vector bundles E onXt such that (1.3.4) holds. Moreover, f : Mepr0q Ñ T ie
is of finite type by Maruyama [Mar81], and hence fpMepr0qq is a constructible subset of T ie .

By Proposition 7.2, the image of f : Mepr0q Ñ T ie contains a nonempty subset of m´1
`

N i
e pdq

˘

which is open in the classical topology. Since the image of f is a constructible set, it follows that
it contains a Zariski-open dense subset of an irreducible component of m´1

`

N i
e pdq

˘

. Since the
image of f is the inverse image of a subset of the moduli map m, it follows that there exists
an irreducible component N i

e pdq
good Ă N i

e pdq such that the image of f contains a Zariski-open
dense subset of m´1

`

N i
e pdq

good
˘

.

Next we state the second main result of the present subsection. Let us agree that a map of
quasi-projective varieties is dominant if the image is Zariski-dense in the codomain (usually, the
attribute dominant is reserved to maps between irreducible varieties).

Proposition 7.3. With notation as above, the map f : Mepr0q Ñ T ie is dominant.

Proof. This follows at once from Corollary 5.5.

7.3. Unicity of stable vector bundles on Lagrangian HK varieties. We will prove the
result below.

Proposition 7.4. Let i P t1, 2u. Suppose that r0 ě 2, that r0 ” i pmod 2q, that (1.3.3) holds,
that e ffl 2d and that

d ą
5

16
r6

0

`

r2
0 ´ 1

˘

pe` 1q . (7.3.1)

Let rpX,Hqs P N i
e pdq

good be generic, where N i
e pdq

good is as in Proposition 7.1. Then, up to
isomorphism, there exists one and only one h slope-stable vector bundle E on X such that (1.3.4)
holds.

We first prove the following auxiliary result.

Lemma 7.5. Let pY, hq be a polarized irreducible smooth projective variety, and let ρ : Y Ñ T be
a dominant map to a smooth curve with integral fibers of dimension n. For t P T , set Yt :“ ρ´1ptq
and ht :“ h|Yt . Let F and G be locally free sheaves on Y such that the following hold:

(i) ∆pF q ! hn´1 “ ∆pG q ! hn´1.

(ii) The restriction Ft :“ F|Yt is ht slope-stable for all t P T .

(iii) The restrictions Ft and Gt :“ G|Yt are isomorphic for generic t P T .

Then Ft and Gt are isomorphic for all t P T .

Proof. The sheaf L :“ HomρpG ,F q is torsion-free because G and F are locally free, and its
fiber over a generic point of T is 1-dimensional by items (ii) and (iii). Since T is a smooth curve,
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it follows that L :“ HomρpG ,F q is an invertible sheaf. The tautological map G b ρ˚pL q Ñ F
gives rise to an exact sequence

0 ÝÑ G bL
α
ÝÑ F ÝÑ Q ÝÑ 0 . (7.3.2)

It suffices to show that Q “ 0. Suppose that Q “ 0; we claim that
ż

Y
∆pG b ρ˚pL qq ! hn´1 ą

ż

Y
∆pF q ! hn´1 . (7.3.3)

In order to prove this, we notice that the (set-theoretic) support of Q is a disjoint union of fibers
of ρ, say Yt1 , . . . , Ytd , and that αt : Gt Ñ Ft is not an isomorphism if and only if t P tt1, . . . , tdu.
Thus we have Q “ ‘di“1Qi, where the set-theoretic support of Qi is Yti . Let r “ rkpF q “ rkpG q.
We have

∆pG b ρ˚pL qq “ ∆pF q ` 2
d
ÿ

i“1

`

r ch2pQiq ´ c1pF q ! c1pQiq
˘

. (7.3.4)

Let εi P OT,ti be a local parameter at ti. There exist mi ą 0 such that εmi
i Qi “ 0. For each ti,

we have a filtration Q Ą εi ¨Q Ą ¨ ¨ ¨ Ą εmi
i ¨Q “ 0 and

r ch2pQiq ´ c1pF q ! c1pQiq

“

mi
ÿ

`“1

`

r ch2

`

ε`i ¨Qi{ε
``1
i ¨Qi

˘

´ c1pF q ! c1

`

ε`i ¨Qi{ε
``1
i ¨Qi

˘˘

. (7.3.5)

The sheaf ε`i ¨Qi{ε
``1
i ¨Qi is annihilated by εi, hence it is the pushforward of a sheaf on Yti :

ε`i ¨Qi{ε
``1
i ¨Qi “ iYti ,˚

`

Qi,`

˘

.

By the GRR theorem, we get that

ch2

`

iYti ,˚
`

Qi,`

˘˘

“ iYti ,˚
`

c1

`

Qi,`

˘˘

, c1pF q ! c1

`

Qi,`

˘

“ iYti ,˚
`

rk
`

Qi,`

˘

i˚Yti
c1pF q

˘

.

Hence
ż

Y

`

r ch2

`

ε`i ¨Qi{ε
``1
i ¨Qi

˘

´ c1pF q ! c1

`

ε`i ¨Qi{ε
``1
i ¨Qi

˘˘

! hn´1

“

ż

Yti

`

rc1

`

Qi,`

˘

´ rk
`

Qi,`

˘

c1pFtiq
˘

! hn´1
ti

. (7.3.6)

We have surjections

F {εi ¨F
φi,`
Ý� ε`i ¨Qi{ε

``1
i ¨Qi ,

s ÞÝÑ ε`i ¨ s .
(7.3.7)

Notice that we may view φi,` as a map of sheaves on Yti , namely as φi,` : Fti Ñ Qi,`. By the hti
slope-stability of Fti it follows that if

0 ă rk
`

Qi,`

˘

ă r “ rkpF q “ rkpG q , (7.3.8)

the integral in (7.3.6) is strictly positive.

Let us prove that (7.3.8) holds if ` “ 0. The map αti : Gti Ñ Fti is nonzero by hypothesis, and
Qi,0 “ cokerpαtiq. If rkYti

`

Qi,0

˘

“ r, then αti vanishes at the generic point of Yti , and hence it

vanishes at all points of Yti , which gives a contradiction. Now suppose that rkYti
`

Qi,0

˘

“ 0, that
is, that αti is an isomorphism at the generic point. By item (iii), we have c1pGtiq “ c1pFtiq, and
it follows that αti is an isomorphism, which gives a contradiction. We have proved that (7.3.8)
holds if ` “ 0.
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If rk
`

Qi,0

˘

“ 0, then c1

`

Qi,`

˘

is effective, and hence the integral in (7.3.6) is positive or zero,

and if rk
`

Qi,0

˘

“ r, then Fti – Qi,0, and hence the integral in (7.3.6) vanishes.

By (7.3.4) and (7.3.5), we get that (7.3.3) holds.

Since ∆pG b ρ˚pL qq “ ∆pG q, the inequality in (7.3.3) contradicts item (i).

Proof of Proposition 7.4. The existence has been proved in Proposition 7.1. Let E be the vector
bundle of that proposition. Then rE s PMepr0q.

Now let A be any h slope-stable vector such that

chipA q “ chipE q @i P t0, 1, 2u . (7.3.9)

We must prove that A is isomorphic to E .

Let π : X Ñ P2 be the associated Lagrangian fibration of rpX,hqs. Since rpX,hqs is a generic
point of N i

e pdq
good, the discriminant divisor of π is the dual of a smooth plane sextic curve

(see Proposition B.4), and hence it is smooth away from a finite set B0 Ă P2. By item (ii) of
Proposition 7.1, there is a finite (possibly empty) set B1 Ă P2 of z such that the restriction of E
to π´1pzq is not slope-stable.

Let z0 P
`

P2zpB0 Y B1q
˘

. We claim that A|π´1pz0q is isomorphic to E|π´1pz0q. In fact, let
T Ă P2 be a smooth curve containing z0 and intersecting transversely the discriminant divisor
of π. Thus Y :“ π´1pT q is a smooth threefold, and the restriction of π to Y defines a dominant
map ρ : Y Ñ T . We apply Lemma 7.5 to F :“ E|Y and G :“ A|Y (the polarization of T is
the restriction of the polarization of X). Let us check that the hypotheses of that lemma are
satisfied: item (i) holds by (7.3.9), item (ii) holds by item (ii) of Proposition 7.1, and item (iii)
holds by Proposition 4.1. In fact, by that proposition, the set of z P P2 such that E|π´1pzq is not
isomorphic to A|π´1pzq is contained in a proper closed subset Z Ă P2, and hence it suffices to
choose T so that it is not contained in Z. This shows that the hypotheses of Lemma 7.5 hold,
and hence we get that the restrictions of E and A to any fiber of Y Ñ T are isomorphic. In
particular, E|π´1pz0q is isomorphic to A|π´1pz0q.

Let z P
`

P2zpB0 Y B1q
˘

. We have proved that A|π´1pzq is isomorphic to E|π´1pzq, and hence
in particular A|π´1pzq and E|π´1pzq are slope-stable. Since c1pE q “ c1pA q, it follows that the

restrictions of E and A to π´1
`

P2zpB0 Y B1q
˘

are isomorphic; see the proof of Lemma 7.5. By
Hartogs’ theorem, it follows that E is isomorphic to A .

7.4 Proofs of Theorem 1.4 and Corollary 1.7

Proof of Theorem 1.4. If r0 “ 1, the result is trivially true, hence we may assume that r0 ě 2.
Let X Ñ T 1

e and X Ñ T 2
e be complete families of polarized HK varieties of type K3r2s such

that (1.3.1) and (1.3.2), respectively, hold—for example, the families parametrized by the relevant
open subsets of suitable Hilbert schemes. Since K i

e is irreducible, we may, and will, assume that
T ie is irreducible. By passing to normalization if necessary, we may assume that T ie is normal.
For t P T ie , we let pXt, htq be the corresponding polarized HK variety of type K3r2s. We let
m : T ie Ñ K i

e be the moduli map, sending t to rpXt, htqs.

Let f : Mepr0q Ñ T ie be the relative moduli space that we have introduced; see (7.2.5).

By Proposition 7.4, for t in a dense subset of
Ť

d"0m
´1
`

N i
e pdq

good
˘

, the preimage f´1ptq
is a singleton. Since

Ť

d"0m
´1
`

N i
e pdq

good
˘

is Zariski-dense in T ie (it is the union of an infinite
collection of pairwise distinct divisors), and since fpMepr0qq is a constructible subset of T ie , it
follows that for generic t P T ie , the fiber f´1ptq is a singleton.
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Let rE s be the unique point of f´1ptq for t a generic point of m´1
`

N i
e pdq

good
˘

, where d " 0.
Then Hp

`

Xt,End0pE q
˘

“ 0 by Proposition 6.7. Hence the last sentence of Theorem 1.4 follows
from upper semicontinuity of cohomology.

Proof of Corollary 1.7. Since T ie is normal, it follows by Theorem 1.4 and Zariski’s main theorem
that every fiber of f is either empty or connected.

Now let t P T ie be such that pXt, htq is isomorphic to pX,hq; we identify Xt with X. Let
x P f´1ptq be the point representing the vector bundle E . Since h2

`

X,End0pE q
˘

“ 0, every
irreducible component of Mepr0q containing x dominates T ie . By Theorem 1.4, there is a single
such component. Hence

χ
`

X,End0pE q
˘

“ χ
`

Xs,End0pG q
˘

, (7.4.1)

where s P T ie is generic and G is the unique (up to isomorphism) hs slope-stable vector bundle
on Xs such that (1.3.4) holds (with G replacing E ).

By (7.4.1) and Theorem 1.4, we get that χ
`

X,End0pE q
˘

“ 0. Now h0
`

X,End0pE q
˘

“ 0 by sta-
bility, hence h4

`

X,End0pE q
˘

“ 0 by Serre duality, and h2
`

X,End0pE q
˘

“ 0 by hypothesis. It fol-
lows that H1

`

X,End0pE q
˘

“ 0 (notice that H1
`

X,End0pE q
˘

is Serre dual to H3
`

X,End0pE q
˘

),
and hence txu is a component of f´1ptq. Since f´1ptq is not empty, it is connected, and hence it
equals txu. This proves Corollary 1.7.

8. Moduli of DV varieties

8.1. Debarre–Voisin vector bundles. Let X Ă Grp6, V10q be a DV variety, and let

0 ÝÑ S ÝÑ OX b V10 ÝÑ Q ÝÑ 0 (8.1.1)

be the restriction to X of the tautological exact sequence of vector bundles on Grp6, V10q. Thus
rpS q “ 6 and rpQq “ 4.

Lemma 8.1. Let X be a DV variety, and let h P H1,1
Z pXq be the Plücker polarization. Then

ch0pQq “ 4 , (8.1.2)

ch1pQq “ h , (8.1.3)

ch2pQq “
1
8

`

h2 ´ c2pXq
˘

, (8.1.4)

where ηX P H
8pX;Zq is the fundamental class.

Proof. The first two equations are obvious, and equation (8.1.4) follows from [DV10, Proof of
Lemma 4.5, second displayed equation after (12), p. 83] (beware that ci “ cipS _q).

Remark 8.2. Let pX,hq be a smooth DV variety. Then qphq “ 22, and the divisibility of h is 2,
that is, rpX,hqs P K 2

22. If one sets r0 “ 2, i “ 2 and e “ 22, then for the vector bundle E ,
the equations in (1.3.4) give the same rank, ch1 and ch2 as for the quotient vector bundle Q
described above.

Remark 8.3. Let X be the variety of lines in a smooth cubic fourfold in PpV6q. Let

0 ÝÑ S ÝÑ OX b V6 ÝÑ Q ÝÑ 0 (8.1.5)

be the restriction to X of the tautological exact sequence of vector bundles on Grp2, V6q. Hence
the rank of Q is 4. Let h P H1,1

Z pXq be the Plücker polarization. Then (see the equations
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in (2.1.1)) we have

ch0pQq “ 4 , ch1pQq “ h , ch2pQq “
1

8

`

h2 ´ c2pXq
˘

.

Next notice that qphq “ 6 and the divisibility of h is 2, that is, rpX,hqs P K 2
6 . The equations

above show that the Chern character of Q is identified with the Chern character appearing in
Theorem 1.4 for r0 “ 2, i “ 2 and e “ 6.

Proposition 8.4. If X is a smooth DV variety with cyclic Picard group, both Q and S
psee (8.1.1)q are slope-stable vector bundles.

Proof. Let h P H1,1
Z pXq be the Plücker polarization. Let us prove that Q is h slope-stable.

Suppose that 0 Ñ A Ñ Q Ñ B Ñ 0 is a desemistabilizing sequence. Thus 0 ă rpA q ă 4,

c1pA q ¨ h3

rpA q
“ µpA q ě µpQq :“

h4

4
“ 363 , (8.1.6)

and we may assume that B is torsion-free. By hypothesis, c1pA q “ xh for some x P Z, and
hence x ě 1. It follows that c1pBq “ p1 ´ xqh. Since Q is globally generated, so is B. Thus
x “ 1, that is, c1pBq “ 0, and B is trivial because it is globally generated. Hence c4pQq “ 0.
This gives a contradiction. In fact, following the notation in [DV10, Proof of Lemma 4.5, p. 83],
we let ci “ cipS _q. Then (using the formulae in equation (11) of loc. cit.)

c4pQq “ c4
1 ´ 3c2

1c2 ` c
2
2 ` 2c1c3 ´ c4 “ 9ηX .

An analogous proof gives the slope-stability of S .

By the openness of slope-stability, we also get the following result.

Corollary 8.5. If X is a generic DV variety, both Q and S are slope-stable vector bundles
pfor the Plücker polarizationq.

Remark 8.6. Let X be the variety of lines in a smooth cubic fourfold in PpV6q, and let Q be
the quotient vector bundle appearing in (8.1.5). If PicpXq is cyclic, one can prove that Q is
slope-stable by proceeding as in the proof of Proposition 8.4, except that in the end one does not
conclude by a Chern class computation (we have c4pQq “ 0). Rather, one shows directly that
there is no trivial quotient Q � OX . In fact, assume that there is such a quotient; then there
is a nonzero section of Q_, and one gets that the latter is false by considering the dual of the
exact sequence in (8.1.5).

Proposition 8.7. If X is a generic DV variety, then the map V10 Ñ H0pX,Qq induced by (8.1.1)
is an isomorphism.

Proof. The vector bundle S has no global sections because it is slope-stable (by Corollary 8.5)
with negative slope. Hence it suffices to prove that h0pX,Qq “ 10. We do this by considering
a K3 surface S as in Claim 6.1 with m0 “ 3 and large odd d0. The vector bundle F on S of
Proposition 6.2 has Mukai vector vpF q “ p2, D, 2q. We claim that

h0pS,F q “ 4 , h1pS,F q “ 0 , h2pS,F q “ 0 (8.1.7)

at least for d " 0 and “most” S. In fact, let pS1, D1q be a generic polarized K3 surface with D1

of square 6. Then there exists a unique D1 slope-stable vector bundle F 1 on S1 with Mukai
vector p2, D1, 2q. As is easily checked, h0pS1,F 1q “ 4. Since moduli of elliptic K3 surfaces that
we are considering are dense in the moduli space of polarized K3 surfaces of degree 6, we get
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that h0pS,F q “ 4 for “most” S. By the stability of F , we have h2pS,F q “ 0. Hence the middle
equality in (8.1.7) also holds because χpS,F q “ 4.

Let E0 :“ F r2s`. By definition, there is a canonical isomorphism

H0
`

Sr2s,E0

˘

– Sym2H0pS,F q ,

and hence h0
`

Sr2s,E0

˘

“ 10. From the second equality in (8.1.7), we also get that h1
`

Sr2s,E0

˘

“ 0.

Now let X0 :“ Sr2s, and let h0 :“ h, where h is given by (6.3.2). Notice that qph0q “ 22 and the
divisibility of h0 is 2.

Let X Ñ T be an analytic representative of the deformations space of pX0, h0q. Let t P T ;
by Proposition 6.7 and Corollary 5.5, there is one and only one vector bundle Et on Xt which
is a deformation of E0. By Proposition 7.2, the cohomology class ht is a polarization on Xt for
t generic in T , and Et is ht slope-stable. But for t P T generic, pXt, htq is isomorphic to a DV
variety parametrized by an analytic open subset of P

`
Ź3 V _10

˘

. Hence Et is isomorphic to the
corresponding quotient DV vector bundle Qt on Xt by Theorem 1.4 and Corollary 8.5. Hence
h0pXt,Etq “ h0pX0,E0q “ 10 because h1pX0,E0q “ 0.

8.2 Proof of Theorem 1.8

Proof. Let d be the degree of the moduli map

MDV 99K K 2
22 . (8.2.1)

We have d ě 1 because the moduli map is dominant. We need to prove that d “ 1. Let rpX,hqs P
K 2

22 be a generic point. Then there exist rσ1s, . . . , rσds P P
`
Ź3 V _10

˘

such that the corresponding
polarized DV varieties pX1, h1q . . . , pXd, hdq are smooth and all isomorphic to pX,hq, but the
PGLpV10q-orbits of rσ1s, . . . , rσds are pairwise distinct. Let Qi be the DV quotient vector bundle
on X determined by σi. By Corollary 8.5, each Qi is h slope-stable, and hence by Theorem 1.4, all
the Qi are isomorphic to a single vector bundle E . By Proposition 8.7, the surjection OXibV10 �
Qi is identified with the canonical map OX bH

0pX,E q Ñ E . It follows that d “ 1.

Remark 8.8. Let |OP5p3q|{{PGLp6q 99K K 2
6 be the moduli map one gets by associating with

a smooth cubic 4-fold the variety of its lines. This map is birational by Voisin’s global Torelli
theorem for cubics. Charles [Cha12] inverted the argument: he proved independently that the
moduli map |OP5p3q|{{PGLp6q 99K K 2

6 is birational and obtained global Torelli for cubic 4-folds
from global Torelli for HK varieties.

Here we notice that Charles’ result can also be obtained arguing as in the proof of Theo-
rem 1.8.

8.3 Relation with degenerate DV varieties. In short, one may approach the subject of
[DHOV20] from the “opposite” direction. That means starting from pX,h,E q, where X is of
type K3r2s (either Sr2s for a suitable K3 surface, or a HK variety birational to Sr2s), h is a big
and nef class such that qphq “ 22 and q

`

h,H2pX;Zq
˘

“ p2q, and E is a slope-stable vector bundle
(or more generally a GM stable torsion-free sheaf) such that (1.3.4) holds with r0 “ 2. Then
pX,hq should correspond to a degenerate σ P

Ź3 V _10 (“degenerate” means that the corresponding
Debarre–Voisin variety is not smooth of dimension 4) if E is not as good as possible, for example
h0pX,E q ą 10, or h0pX,E q “ 10 but E is not globally generated, or E is globally generated
but the corresponding map X Ñ Gr

`

6, H0pE q
˘

is not an embedding, or E is not locally free
(one should also take into account the possibility of getting a degenerate σ because h is not
ample). An example: in the proof of Proposition 8.7, we discussed a case in which h0pX,E q “ 10
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and E is globally generated but the corresponding map X Ñ Gr
`

6, H0pE q
˘

is not an embedding.
The “inverse” approach should allow us to complete the discussion of the family appearing in
[DHOV20, Section 8].

Appendix A. Homogeneous and semi-homogeneous vector bundles
on abelian varieties

A.1 Basics. Let A be an abelian variety, and let A_ :“ Pic0pAq be its dual abelian variety. For
a P A, let Ta : AÑ A be the translation by a. For an invertible sheaf ξ on A, we let rξs P A_ be
its isomorphism class.

Definition A.1. A vector bundle F on A is homogeneous if T ˚a F – F for every a P A. It is
semi-homogeneous if, for every a P A, there exists a rξs P Pic0pAq such that T ˚a F – F b ξ.

Proposition A.2. Let pA, θq be a polarized abelian variety of dimension n, and let F be a θ
slope-stable vector bundle on A. If

ż

A
∆pF q ! θn´2 “ 0 (A.1.1)

pthe condition is to be understood to be empty if n “ 1q, then F is simple semi-homogeneous.
Moreover, ∆pF q “ 0.

Proof. Of course F is simple because it is slope-stable.

If n “ 1, then F is semi-homogeneous by Atiyah’s classification of simple vector bundles on
elliptic curves.

Suppose that n ě 2. By the Kobayashi–Hitchin correspondence, F has a θ Hermitian-
Einstein metric, and hence so does the vector bundle EndpF q. Equation (A.1.1) is equivalent to
ş

A c2pEndpF qq ! θn´2 “ 0. Since c1pEndpF qq “ 0, the Hermite–Einstein connection on EndpF q
is flat; see [Kob82, Section 4]. Hence EndpF q is homogeneous, and thus F is semi-homogeneous
by [Muk78, Theorem 5.8].

Since EndpF q is homogeneous, it is a direct sum of vector bundles which have filtrations whose
associated graded bundles are direct sums of a topologically trivial line bundles; see [Muk78,
Theorem 4.17]. Thus ∆pF q “ c2pEndpF qq “ 0.

A.2 Rank of semi-homogeneous vector bundles. The rank of a simple semi-homogeneous
vector bundle with assigned first Chern class is not arbitrary. Below we extend a result of Mukai,
see [Muk78, Theorem 7.11 and Remark 7.13], so that we cover all the canonical polarizations
that occur on Lagrangian fibrations in the known deformation classes of HK varieties with the
exception of OG10.

Proposition A.3 (Mukai [Muk78]). Let pA, θq be a polarized abelian variety of dimension n.
Suppose that the elementary divisors of θ are p1, . . . , 1, d1, d2q, where d1 divides d2. Let F be
a simple semi-homogeneous vector bundle on A such that c1pF q “ aθ. Then there exists a positive
integer r0 such that, letting gi :“ gcdtr0, diu, we have

gcdtrpF q, au “
rn´1

0

g1 ¨ g2
, rpF q “

rn0
g1 ¨ g2

. (A.2.1)

Proof. Let r :“ rpF q, and let c :“ gcdtr, au. We let r0 :“ r{c and a0 :“ a{c. Let us prove
that (A.2.1) holds. Let L be a line bundle on A such that c1pL q “ a0θ, and let ϕL : AÑ A_ be
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the homomorphism defined by ϕL paq :“ T ˚a pL q bL ´1. Let KpL q be the kernel of ϕL . Lastly,
following Mukai, we let

ΣpF q :“
 

rξs P A_ | D „ÝÝÑ F b ξ
(

. (A.2.2)

(Since we are in characteristic 0, the above set-theoretic definition coincides with the schematic
one; see [Muk78, Proposition 5.9].) By [Muk78, Corollary 7.8], we have an exact sequence of
groups

0 ÝÑ Arr0s XKpL q ÝÑ Arr0s
ϕL
ÝÑ ΣpF q ÝÑ 0 . (A.2.3)

Because of our hypothesis on the elementary divisors of θ, we have

KpL q – pZ{pa0qq
2 ‘ ¨ ¨ ¨ ‘ pZ{pa0d1qq

2 ‘ pZ{pa0d2qq
2 . (A.2.4)

Since a0 and r0 are coprime, it follows that Arr0s X KpL q – pZ{pg1qq
2 ‘ pZ{pg2qq

2. Thus
|ΣpF q| “ r2n

0 {pg
2
1 ¨ g

2
2q. On the other hand, the cardinality of ΣpF q is equal to r2 by [Muk78,

Proposition 7.1]. Thus we get that r “ rn0 {pg1 ¨ g2q. Since c :“ r{r0, it follows that gcdtr, au “
c “ rn´1

0 {pg1 ¨ g2q.

Appendix B. Polarized Lagrangian HK varieties of type K3r2s

B.1 Lagrangian Noether–Lefschetz loci. We recall that K i
e is the moduli space of polarized

HK varieties of type K3r2s with polarization of BBF square e and divisibility given by i (which
is either 1 or 2); see Subsection 1.3.

Definition B.1. For d a strictly positive integer, let N i
e pdq Ă K i

e be the closure of the locus
parametrizing polarized HK varieties pX,hq such that H1,1

Z pXq contains a saturated rank 2
sublattice generated by h and f , where

qpfq “ 0 , qph, fq “ d . (B.1.1)

Proposition B.2. Keeping the notation as above, suppose in addition that d is even if i “ 2
and that

d ą 5pe` 1q , e ffl 2d . (B.1.2)

Then N i
e pdq is closed of pure codimension 1 pin particular, nonemptyq, and if rpX,hqs P N i

e pdq
is generic, there is one and only one Lagrangian fibration π : X Ñ P2 pmodulo automorphisms
of P2q such that, letting f :“ c1pπ

˚OP2p1qq, the equalities in (B.1.1) hold and the sublattice
xh, fy Ă H1,1

Z pXq is saturated.

Proof. Before starting the proof, we emphasize that N i
e pdq might have several irreducible com-

ponents and that “generic point” of N i
e pdq means point belonging to an open dense subset of

N i
e pdq. By the surjectivity of the period map, there exists a HK variety X of type K3r2s such

that H1,1
Z pXq “ xh, fy, where

qphq “ e ,
 

qph, αq | α P H2pX;Zq
(

“ piq , (B.1.3)

and the equalities in (B.1.1) hold. There are no ξ P H1,1
Z pXq with ´10 ď qpξq ă 0 by Lemma 4.3

and the inequality in (B.1.2). It follows that the ample cone of X is equal to the intersection
of H1,1

Z pXq and the positive cone. Hence either h or ´h is ample. If the former holds, then
rpX,hqs P N i

e pdq; if the latter holds, we may replace h and f with ´h and ´f , respectively, and
again we get that rpX,hqs P N i

e pdq. Moreover, N i
e pdq is closed of pure codimension 1 because it

is a Noether–Lefschetz divisor.
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A straightforward computation shows that there are exactly two primitive nef isotropic
classes, namely f and α :“ p1{gcdtd, euqp2dh´efq. By our “nondivisibility” hypothesis in (B.1.2),
we get that qpα, hq “ de{gcdtd, eu is not equal to d. Hence f is the unique primitive nef isotropic
class such that qph, fq “ d.

By [Mar14, Theorem 1.3] (see also [Mar14, Remark 1.8]), there exists a Lagrangian fibration
π : X Ñ P2 such that f :“ c1pπ

˚OP2p1qq. By [Mat17, Theorem 1.2], it follows that there exists
a Zariski-open neighborhood U of rpX,hqs in N i

e pdq such that each representative pX 1, h1q of
a point in U has a Lagrangian fibration as required. Since the set of points of N i

e pdq representing
pX,hq such that ρpXq “ 2 is dense, this proves the result about the existence of the required
Lagrangian fibration.

It remains to prove that if rpX,hqs P N i
e pdq is generic, then there is a unique isotropic class f

such that qph, fq “ d. We checked that this is the case if ρpXq “ 2. It follows that the statement
holds for the generic point of N i

e pdq; the argument is similar to that given to show that h is
apE q-suitable in the proof of Proposition 4.1.

Definition B.3. Suppose that (B.1.2) holds. We let N i
e pdq

0 Ă N i
e pdq be an open dense subset

such that the thesis of Proposition B.2 holds for any rpX,hqs P N i
e pdq

0. For rpX,hqs P N i
e pdq

0,
the associated Lagrangian fibration π : X Ñ P2 is the unique fibration (modulo automorphisms
of P2) of Proposition B.2.

B.2 Tate–Shafarevich twists. A basic example of Lagrangian fibration is constructed as fol-
lows. Let S Ñ P2 be the double cover ramified over a smooth sextic curve B, that is, a polarized
K3 surface of degree 2. Let J pSq be the moduli space of rank 0 pure OSp1q semistable sheaves
ξ with χpξq “ ´1. The generic point of J pSq is represented by i˚L , where i : C ãÑ S is the
inclusion of a smooth C P OSp1q and L is a line bundle of degree 0. Then for generic B, every
semistable sheaf is stable (the precise condition is that B have no tritangents), and hence J pSq
is smooth. In fact, it is a HK variety of type K3r2s, and the support map J pSq Ñ

`

P2
˘_

is a
Lagrangian fibration.

A Lagrangian fibration parametrized by a generic point of N i
e pdq is related to a generic J pSq

via a Tate–Shafarevich twist. In order to be more precise, we recall a result of Markman. Let
pX,hq be a representative of a generic point of N i

e pdq. Then there is an associated polarized K3
surface pS,Dq of degree 2, and moreover pS,Dq is generic; see [Mar14, Subsection 4.1].

Proposition B.4. Keep the hypotheses of Proposition B.2. Let rpX,hqs be a generic point
of N i

e pdq. Let π : X Ñ P2 and S be the associated Lagrangian fibration and K3 surface of
degree 2, respectively. Then X is isomorphic to a Tate–Shafarevich twist of J pSq Ñ

`

P2
˘_

via

an identification P2 „
Ñ

`

P2
˘_

.

Proof. First suppose that ρpXq “ 2. Then, as shown in the proof of Proposition B.2, the ample
cone of X is equal to the positive cone (because of the inequality in (B.1.2)), and hence every
bimeromorphic map X 99K X 1, where X 1 is a HK variety, is actually an isomorphism. It follows
that X is isomorphic to a Tate–Shafarevich twist of J pSq Ñ

`

P2
˘_

by [Mar14, Theorem 7.13].
The result follows from this because the locus in N i

e pdq parametrizing the pX,hq such that
ρpXq “ 2 is dense.

Let X Ñ P2 be as in Proposition B.4, and let Pic0
`

X{P2
˘

be the relative Picard scheme
(notice that all fibers of X Ñ P2 are irreducible by Proposition B.4). If U Ă P2 is the open dense
set of regular values of X Ñ P2 and z P U , the fiber of Pic0

`

X{P2
˘

Ñ P2 over z is an abelian
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surface Az and the fundamental group π1pU, zq acts by monodromy on the subgroup Az,tors of
torsion points.

Corollary B.5. Keep the hypotheses as above, and suppose that V Ă Az
“

r2
0

‰

is a coset pof
a subgroupq of cardinality r4

0 invariant under the action of monodromy. Then V “ Azrr0s.

Proof. Let S be the polarized K3 surface of degree 2 associated with X following Markman, and
let S Ñ P2 be the double cover ramified over a sextic curve B. Let J pSq0 Ă J pSq be the open
dense subset of smooth points (that is, smooth points of J pSq with surjective differential) of
the map J pSq Ñ

`

P2
˘_

. By Proposition B.4, the relative Picard scheme Pic0
`

X{P2
˘

Ñ P2 is
isomorphic to J pSq0 Ñ

`

P2
˘_

for a certain identification P2 „ÝÑ
`

P2
˘_

. Under this identification,
z P P2 corresponds to a line R P

`

P2
˘_

transverse to B, and the corresponding Lagrangian fiber
Az is the Jacobian of the curve C which is the double cover of R ramified over RXB. Hence we
have a natural isomorphism

H1pC;Qq{H1pC;Zq „ÝÝÑ Az,tors , (B.2.1)

and the identification is compatible with the monodromy actions.

First we prove the result under the assumption that V is a subgroup G. By the structure theo-
rem for finite abelian groups, G – Z{pd1q‘¨ ¨ ¨‘Z{pdrq, where r ď 4

`

because Az
“

r2
0

‰

– Z{
`

r2
0

˘‘4˘

and di|r
2
0 for all i. Since the monodromy action on H1pC;Zq is transitive on nonzero elements,

it follows from the isomorphism in (B.2.1) that r “ 4 and d1 “ ¨ ¨ ¨ “ dr. Thus di “ r0 for all
i P t1, . . . , 4u because |G| “ r4

0. This proves the result under the assumption that V is a subgroup.

Now let V be a translate of a group G. Then G “ ta ´ b | a, b P V u, and hence G is also
invariant for the monodromy action. Thus G “ Azrr0s, and hence the coset V gives a point of
the quotient Az

“

r2
0

‰

{Azrr0s which is invariant for the monodromy action. By the isomorphism
in (B.2.1), it follows that 0 is the unique invariant element, and hence V “ Azrr0s.
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38

https://doi.org/10.2969/aspm/01010105
https://doi.org/10.1007/s00031-018-9477-6
https://doi.org/10.1090/S0894-0347-01-00373-3
https://doi.org/10.1017/CBO9780511711985
https://doi.org/10.4153/cjm-2018-027-8
https://doi.org/10.3792/pjaa.58.158
https://doi.org/10.1007/s00208-018-1660-5
https://doi.org/10.1007/s00208-018-1660-5
https://doi.org/10.1017/CBO9780511721526.010
https://doi.org/10.1007/978-3-319-05404-9_10
https://doi.org/10.1215/kjm/1250522511
https://doi.org/10.1215/kjm/1250521908
https://doi.org/10.2969/aspm/07410291
https://doi.org/10.1016/j.matpur.2020.12.006
https://doi.org/10.1215/kjm/1250522574
https://doi.org/10.1007/BF02247112
https://doi.org/10.1007/s00229-016-0845-z
https://doi.org/10.1007/s00209-017-2020-y
mailto:ogrady@mat.uniroma1.it

	Introduction
	Background and motivation
	Modular sheaves
	Main results
	Outline of the paper
	Conventions

	Modular sheaves
	First examples
	Restrictions on the rank
	Modular sheaves on Lagrangian fibrations

	Variation of stability for modular sheaves
	Main results
	Change of slope-stability and strictly semistable sheaves
	Strictly semistable modular sheaves
	Proof of Proposition 3.4
	Stability of modular sheaves on a Lagrangian HK variety

	Stable vector bundles on Lagrangian HK varieties
	Main result
	Preliminary results
	Proof of item (i) of Proposition 4.1
	Proof of item (ii) of Proposition 4.1

	Basic modular sheaves on Hilbert squares of K3 surfaces
	Main results
	Another description of F[2]^+ and F[2]^-
	Preliminaries on K3^[n]
	Chern classes of F[2]^+ and F[2]^-
	Cohomology groups via the MacKay correspondence

	Basic modular sheaves on the Hilbert square of an elliptic K3 surface
	Contents of the section
	Elliptic K3 surfaces and stable rigid vector bundles
	Dictionary
	Restriction of F[2]^+ and F[2]^- to Lagrangian fibers

	Proof of Theorem 1.4 and Corollary 1.7
	Summary
	Good vector bundles over Lagrangian HK varieties
	Unicity of stable vector bundles on Lagrangian HK varieties
	Proofs of Theorem 1.4 and Corollary 1.7

	Moduli of DV varieties
	Debarre–Voisin vector bundles
	Proof of Theorem 1.8
	Relation with degenerate DV varieties

	Appendix A. Homogeneous and semi-homogeneous vector bundles  on abelian varieties
	Basics
	Rank of semi-homogeneous vector bundles

	Appendix B. Polarized Lagrangian HK varieties of type K3^[2]
	Lagrangian Noether–Lefschetz loci
	Tate–Shafarevich twists

	References

