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Abstract

First steps towards a classification of irreducible symplectic 4-folds
whose integral 2-cohomology with 4-tuple cup product is isomorphic to
that of (K3)[2]. We prove that any such 4-fold deforms to an irreducible
symplectic 4-fold of Type A or Type B. A 4-fold of Type A is a double cover
of a (singular) sextic hypersurface and a 4-fold of Type B is birational to
a hypersurface of degree at most 12. We conjecture that Type B 4-folds
do not exist.

1 Introduction

Kodaira [16] proved that any two K3 surfaces are deformation equivalent. A K3
surface is the same as an irreducible symplectic 2-fold - recall that a compact
Kähler manifold is irreducible symplectic if it is simply connected and it carries
a holomorphic symplectic form spanning H2,0 (see [1, 13]). A classification of
higher-dimensional irreducible symplectic manifolds up to deformation equiva-
lence appears to be out of reach at the moment (see [1, 13]). We will take the
first steps towards a solution of the classification problem for numerical (K3)[2]’s.
We explain our terminology: two irreducible symplectic manifolds M1,M2 of di-
mension 2n are numerically equivalent if there exists an isomorphism of abelian
groups ψ : H2(M1; Z) ∼−→ H2(M2; Z) such that

∫
M1

α2n =
∫
M2

ψ(α)2n for all
α ∈ H2(M1; Z). Recall [1] that if S is a K3 then S[n] - the Douady space
parametrizing length-n analytic subsets of S - is an irreducible symplectic man-
ifold of dimension 2n. A numerical (K3)[2] is an irreducible symplectic 4-fold
numerically equivalent to S[2] where S is a K3.

Theorem 1.1. Let M be a numerical (K3)[2]. Then M is deformation equiv-
alent to one of the following:
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(1) An irreducible symplectic 4-fold X carrying an anti-symplectic involution
φ : X → X such that the quotient X/〈φ〉 is isomorphic to a sextic hyper-
surface Y ⊂ P5. Let f : X → Y be the quotient map and H := f∗OY (1);
the fixed locus of φ is a smooth irreducible Lagrangian surface F such that

c2(F ) = 192, OF (2KF ) ∼= OF (6H), c1(F )2 = 360. (1.0.1)

(2) An irreducible symplectic 4-fold X admitting a rational map f : X 99K P5

which is birational onto its image Y , with 6 ≤ deg Y ≤ 12.

We give a brief outline of the proof of the theorem. By applying surjectivity
of the period map and Huybrechts’ projectivity criterion [13, 14] we will be
able to deform M to an irreducible symplectic 4-fold X such that Items (1)
through (6) of Proposition (3.2) hold. The first item gives (via Hirzebruch-
Riemann-Roch and Kodaira Vanishing) that there is an ample divisor H on X
such that ∫

X

c1(H)4 = 12, h0(OX(H)) = 6. (1.0.2)

Let h := c1(H); Items (2), (3) and (4) state that h generates H1,1
Z (X) and

that H4(X) has no rational Hodge substructures other than those forced by the
existence of h and the Beauville-Bogomolov bilinear symmetric form. Items (5)-
(6) imply, via Proposition (4.1), the following Irreducibility property of |H|: if
D1, D2 ∈ |H| are distinct then D1 ∩D2 is a reduced and irreducible surface in
X. Next we will study the rational map f : X 99K |H|∨ ∼= P5. Let U ⊂ X be the
open set where f is regular and Y := f(U) ⊂ P5. A straightforward argument
based on ampleness of H and the Irreducibility property of |H| will show that
one of the following holds: there exists an involution φ on X such that Item (1)
of Theorem (1.1) holds and f equals the quotient map X → X/〈φ〉 followed by
the inclusion X/〈φ〉 ↪→ P5, or f is as in Item (2) of Theorem (1.1), or else Y is
one of the following:

(a) a 3-fold of degree at most 6,

(b) a 4-fold of degree at most 4.

Thus in order to complete the proof of Theorem (1.1) we will need to show that
(a) nor (b) can hold. We will argue by contradiction: assuming that (a) or (b)
holds we will get that either H4(X) has a non-existent Hodge substructure or
the Irreducibilty property of |H| does not hold (the case of Y a normal quartic
4-fold is exceptional, it will require an ad hoc argument). Thus we will need
to analyze 3-folds and 4-folds in P5 of low degree. In particular we will prove
some results on cubic 4-folds Y ⊂ P5 which might be of independent interest.
First we will show that if dim(singY ) ≥ 1 then Y contains a plane. Secondly
we will prove that if Y is singular with isolated singularities and it does not
contain planes then GrW4 H4(Y ) contains a Hodge substructure isomorphic to
the transcendental part of the H2 of a K3 surface (shifted by (1, 1)), namely
the minimal desingularization of the set of lines in Y through any of its singular
points. This result should be equivalent to a statement about degenerations of
the variety F (Y ) parametrizing lines on a cubic 4-fold Y ⊂ P5 - recall that if Y
is smooth then F (Y ) is a deformation of (K3)[2] (see [2]) and if Y is singular
then F (Y ) is singular [11]. The relevant statement should be the following: Let
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U be the parameter space for cubic 4-folds Y ⊂ P5 not containing a plane; then
there exists a finite cover Ũ → U such that the pull-back to Ũ of the family
over U with fiber F (Y ) at [Y ] has a simultaneous resolution of singularities.
Going back to the proof of Theorem (1.1) we notice that in its barest outline it
resembles the proof given in [25] of Kodaira’s theorem on deformation equiva-
lence of K3 surfaces. In [21] we described explicitly the X satisfying Item (1)
of Theorem (1.1): they are double covers of certain special singular sextic hy-
persurfaces in P5 that where constructed by Eisenbud-Popescu-Walter [7]. We
also proved that the X satisfying Item (1) of Theorem (1.1) belong to a single
locally complete irreducible family of projective irreducible symplectic varieties.

Conjecture 1.2. Suppose that X is a numerical (K3)[2] and that Items (1)
through (6) of Proposition (3.2) hold. Then Item (1) of Theorem (1.1) holds.

Assume that Conjecture (1.2) is true: then any numerical (K3)[2] is defor-
mation equivalent to an X satisfying Item (1) of Theorem (1.1) and by the
results of [21] it follows that X is a deformation of (K3)[2].

Notation: If X is a topological space then H∗(X) denotes cohomology with
complex coefficients.

Topology of algebraic varieties (or analytic spaces) will be either the classical
topology or the Zariski topology: in general it will be clear from the context in
which topology we are working.

Let X be a smooth projective variety. If W is a closed subscheme of X of
pure dimension d we let

[W ] ∈ Zd(X) (1.0.3)

be the fundamental cycle associated to W as in [9], p. 15.
Let P(V ) be a projective space. If A ⊂ P(V ) we let span(A) ⊂ P(V ) be

the span of A, i.e. the intersection of all linear subspaces containing A. If
A,B ⊂ P(V ) we let

J(A,B) :=
⋃

p∈A,q∈B
span(p, q). (1.0.4)

If A,B are closed and A ∩B = ∅ then J(A,B) is closed - in general J(A,B) is
not closed.

Let X be a scheme and x ∈ X a (closed) point; we let ΘxX be the Zariski
tangent space to X at x. Now assume that X is a subscheme of a projective
space P(V ). Then ΘxX ⊂ ΘxP(V ): the projective tangent space to X at x is
the unique linear subspace

TxX ⊂ P(V ) (1.0.5)

containing x whose Zariski tangent space at x is equal to ΘxX.

Acknowledgements: Initially I proved the results of Sections (4)-(5) for X
a deformation of (K3)[2] provided with an ample divisor H of square 2 for the
Beauville-Bogomolov quadratic form. Claire Voisin observed that the proofs had
to be valid for symplectic 4-folds satisfying suitable cohomological hypotheses.
I thank Claire for her precious observation.
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2 Preliminaries

2.1 The Beauville-Bogomolov form and Fujiki’s constant

Let M be an irreducible symplectic manifold of (complex) dimension 2n. By
Beauville and Fujiki (see [1] and Thm. (4.7) of [8]) there exist a rational positive
number cM and an integral indivisible symmetric bilinear form (, )M on H2(M)
characterized by the following two properties. First if ω ∈ H1,1(M ; R) is a
Kähler class then the restriction of (, )M to the span of ω and {σ+σ}σ∈H2,0(M)

is positive definite. Secondly we have the equality∫
M

α2n = cM (α, α)nM , α ∈ H2(M). (2.1.1)

The above two properties of (, )M imply that

Hp,q(X)⊥Hp′,q′(X), if p+ p′ 6= 2, (2.1.2)

and that the signature of (, )M is (3, b2(M) − 3), see [1]. In particular (, )M is
non-degenerate and hence H2(M ; Z) has a canonical structure of lattice. Let
M1,M2 be irreducible symplectic manifolds of dimension 2n. If the lattices
H2(M1; Z) and H2(M2; Z) are isometric and the Fujiki constants of M1,M2 are
equal then M1,M2 are numerically equivalent by (2.1.1). The converse is true
unless n is even and b2(M1) = b2(M2) = 6: in this case numerical equivalence
implies that cM1 = cM2 and that H2(M1; Z) is isometric either to H2(M2; Z)
or to the lattice H2(M2; Z)(−1) i.e. H2(M2; Z) equipped with the symmetric
bilinear form defined by (α, β) := −(α, β)M2 . Let Λ be the lattice given by

Λ := U⊕3⊕̂(−E8)⊕2⊕̂(−2), (2.1.3)

where U is the standard hyperbolic plane. Let S be a K3 surface; the Beauville-
Bogomolov form and Fujiki constant of S[2] are given (see [1]) by

H2(S[2]; Z) ∼= Λ, cS[2] = 3. (2.1.4)

In particular b2(S[2]) = 23 6= 6 and hence an irreducible symplectic 4-fold M is
a numerical (K3)[2] if and only if

H2(M ; Z) ∼= Λ, (2.1.5)
cM = 3. (2.1.6)

Let M be a numerical (K3)[2]; since b2(M) = 23 we have [10, 23]

H3(M ; Q) = 0, (2.1.7)

Sym2H2(M ; Q) ∼−→ H4(M ; Q), (2.1.8)

where the second isomorphism is given by cup-product. In particular the Hodge
numbers of M are uniquely determined.

2.2 Quadratic forms on V and Sym2V

Let V be a finite-dimensional complex vector space. Let (V ⊗V )+, (V ⊗V )− ⊂
V⊗V be the subspaces of tensors which are invariant, respectively anti-invariant,
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for the involution of V ⊗V interchanging the factors. We let Sym2V := (V ⊗V )+

and Sym2V := V ⊗V/(V ⊗V )−. Assume that (, ) is a symmetric bilinear form
on V ; we let 〈, 〉 be the unique symmetric bilinear form on Sym2V such that

〈α1α2, α3α4〉 = (α1, α2)(α3, α4) + (α1, α3)(α2, α4) + (α1, α4)(α2, α3) (2.2.1)

for α1, . . . , α4 ∈ V . Using (2.1.1) and (2.1.6) one gets the following result.

Remark 2.1. Let M be a numerical (K3)[2]. The intersection form on

Sym2H2(M) ∼= H4(M) (2.2.2)

is the bilinear form given by (2.2.1) for V := H2(M) and (, ) := (, )M .

Now assume that the symmetric bilinear form (, ) on V is non-degenerate.
Let q ∈ Sym2V

∨ be the symmetric tensor associated to (, ); there is a dual q∨ ∈
Sym2V defined as follows. Since q is non-degenerate it defines an isomorphism
Lq : V ∨ ∼→ V and hence we get Sym2(Lq)(q) ∈ Sym2V . Let Π2 : Sym2V →
Sym2V be the composition of the inclusion Sym2V ↪→ V ⊗V and the projection
map V ⊗ V → Sym2V ; we let

q∨ := Π2 ◦ Sym2(Lq)(q) ∈ Sym2V. (2.2.3)

Explicitly: let r := dimV and let {e1, . . . , er} be a basis of V . Let {e∨1 , . . . , e∨r }
be the dual basis of V ∨. Then

q =
∑
ij

gije
∨
i ⊗ e∨j (2.2.4)

where (gij) is a symmetric matrix and

q∨ =
∑
ij

mijeiej , (mij) = (gij)−1. (2.2.5)

Proposition 2.2. Suppose that V is a complex vector space of dimension r
equipped with a non-degenerate bilinear symmetric form (, ). Let 〈, 〉 be the bi-
linear symmetric form on Sym2V defined by (2.2.1). Then 〈, 〉 is non-degenerate
and furthermore

〈q∨, αβ〉 =(r + 2)(α, β), α, β ∈ V (2.2.6)
〈q∨, q∨〉 =r(r + 2). (2.2.7)

Proof. Since (, ) is a symmetric bilinear non-degenerate form on a complex
r-dimensional vector space there exists a basis {e1, . . . , er} of V such that
q =

∑r
i=1 e

∨
i ⊗ e∨i . A straightforward computation gives that the discrimi-

nant of 〈, 〉 with respect to the basis {e21, . . . , e2r, e1e2, . . . , er−1er} is equal to
(r + 2)2r−1; thus 〈, 〉 is non-degenerate. Equations (2.2.6)-(2.2.7) are obtained
by a straightforward computation.

3 The deformation

Let M be a numerical (K3)[2]. We will show that M can be deformed to a pro-
jective irreducible symplectic 4-fold X such that H∗(X) has few integral Hodge
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substructure. First we introduce the tautological rational Hodge substructures
of H∗(X) for X a numerical (K3)[2] with an h ∈ H1,1

Q (X) such that∫
X

h4 6= 0. (3.0.1)

The above inequality is equivalent to (h, h)X 6= 0 by (2.1.1). We have an
orthogonal direct sum decomposition

H2(X) = Ch⊕̂h⊥ (3.0.2)

(orthogonality is with respect to (, )X) into Hodge substructures of levels 0 and 2
respectively. We will systematically identify H4(X) with Sym2H2(X) because
of (2.1.8); thus (3.0.2) gives a direct sum decomposition

H4(X) = Ch2 ⊕
(
Ch⊗ h⊥

)
⊕ Sym2(h⊥) (3.0.3)

into Hodge substructures of levels 0, 2 and 4 respectively. There is a refinement
of Decomposition (3.0.3) obtained as follows. Let qX ∈ Sym2H

2(X)∨ be the
symmetric tensor associated to the Beauville-Bogomolov form; let

q∨X ∈ Sym2H2(X) ∼= H4(X) (3.0.4)

be the dual of qX - see Subsection (2.2). By (2.2.6)-(2.2.7) we have

〈q∨X , αβ〉 =23(α, β)X , α, β ∈ H2(X) (3.0.5)
〈q∨X , q∨X〉 =575. (3.0.6)

Equation (2.1.2) gives that q∨X ∈ H2,2(X) and since qX is integral we have
q∨X ∈ H4

Q(X); thus q∨X ∈ H2,2
Q (X). In terms of Decomposition (3.0.3) we have

q∨X ∈ Ch2 ⊕ Sym2(h⊥). More precisely let qh ∈ Sym2(h⊥)∨ be the symmetric
tensor associated to the restriction of (, )X to h⊥. Since (h, h) 6= 0 the restriction
of (, )X to h⊥ is non-degenerate and hence we have the dual q∨h ∈ Sym2(h⊥);
as is easily checked

q∨X = (h, h)−1h2 + q∨h . (3.0.7)

Let 〈, 〉X be the intersection form onH4(X): identifyingH4(X) with Sym2H2(X)
the intersection form 〈, 〉X gets identified with the symmetric bilinear form con-
structed from (, )X as in Subsection (2.2) - see Remark (2.1). Let

W (h) := (q∨X)⊥ ∩ Sym2(h⊥), (3.0.8)

where the first orthogonality is with respect to 〈, 〉X .

Claim 3.1. Keep notation as above and assume that (3.0.1) holds. Then W (h)
is a codimension-1 rational sub-Hodge-structure of Sym2(h⊥), and we have a
direct sum decomposition

Ch2 ⊕ Sym2(h⊥) = Ch2 ⊕ Cq∨X ⊕W (h). (3.0.9)

Proof. Since q∨X is a Hodge class W (h) is a rational sub-Hodge-structure. It
follows immediatly from (3.0.5) that Sym2(h⊥) 6⊂ (q∨X)⊥ and thus W (h) has
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codimension 1. Now let’s prove that we have (3.0.9). First we prove that h2, q∨X
are linearly independent. Assume that

λh2 + µq∨X = 0, λ, µ ∈ C. (3.0.10)

Since (, )X is non-degenerate there exists α ∈ H2(X) such that (α, α)X = 0 and
(h, α)X 6= 0. Then from (3.0.10) and (3.0.5) we get that

0 = 〈λh2 + µq∨X , α〉X = 2λ(h, α)2X , (3.0.11)

and hence λ = 0. Since q∨X 6= 0 we get that µ = 0. This shows that h2, q∨X are
linearly independent. To finish the proof of the claim it suffices to show that(

Ch2 ⊕ Cq∨X
)
∩W (h) = {0}. (3.0.12)

It follows from (3.0.5) that(
Ch2 ⊕ Cq∨X

)
∩ (q∨X)⊥ = C(23h2 − (h, h)q∨X). (3.0.13)

On the other hand by (3.0.7) we have(
Ch2 ⊕ Cq∨X

)
∩ Sym2(h⊥) = C(h2 − (h, h)q∨X). (3.0.14)

Equation (3.0.12) follows immediately from (3.0.13)-(3.0.14).

Keep notation as above and assume that (3.0.1) holds; by (3.0.3) and Claim (3.1)
we have a decomposition

H4(X; C) =
(
Ch2 ⊕ Cq∨X

)
⊕
(
Ch⊗ h⊥

)
⊕W (h) (3.0.15)

into sub-H.S.’s of levels 0, 2 and 4 respectively. The following is the main result
of this section.

Proposition 3.2. Keep notation as above. Let M be a numerical (K3)[2].
There exists an irreducible symplectic manifold X deformation equivalent to M
such that:

(1) X has an ample divisor H with (h, h)X = 2, where h := c1(H),

(2) H1,1
Z (X) = Zh,

(3) Let Σ ∈ Z1(X) be an integral algebraic 1-cycle on X and cl(Σ) ∈ H3,3
Q (X)

be its Poincaré dual. Then cl(Σ) = mh3/6 for some m ∈ Z.

(4) if V ⊂ H4(X) is a rational sub Hodge structure then V = V1 ⊕ V2 ⊕ V3

where V1 ⊂
(
Ch2 ⊕ Cq∨X

)
, V2 is either 0 or equal to Ch ⊗ h⊥ and V3 is

either 0 or equal to W (h).

(5) the image of h2 in H4(X; Z)/Tors is indivisible, (we denote by Tors the
torsion subgroup of H4(X; Z))

(6) H2,2
Z (X)/Tors ⊂ Z(h2/2)⊕ Z(q∨X/5).
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The proof of the proposition will be given after some preliminary results. We
recall Huybrechts’ Theorem on surjectivity of the global period map [13, 14] - in
the context of numerical (K3)[2]’s. Let M be a numerical (K3)[2] and M be the
moduli space of marked irreducible symplectic 4-folds deformation equivalent to
M ; thus a point ofM is an equivalence class of couples (X,ψ) whereX is an irre-
ducible symplectic 4-fold deformation equivalent to M and ψ : Λ ∼−→ H2(X; Z)
is an isometry of lattices where Λ is the lattice given by (2.1.3). Couples (X,ψ)
and (X ′, ψ′) are equivalent if there exists an isomorphism f : X → X ′ such that
H2(f) ◦ ψ′ = ±ψ. If t ∈M we let (Xt, ψt) be a representative of t. It is known
that M is a non-separated complex analytic space, see Thm.(2.4) of [18]. The
period domain Q ⊂ P(Λ⊗ C) is given by

Q := {[σ] ∈ P(Λ⊗ C)| (σ, σ)Λ = 0, (σ, σ)Λ > 0} (3.0.16)

where (, )Λ is the symmetric bilinear form on Λ ⊗ C obtained by extending
linearly the integral symmetric bilinear form on Λ. The period map is given by

M P−→ Q
(X,ψ) 7→ ψ−1H2,0(X).

(3.0.17)

Here and in the following ψ denotes both the isometry Λ ∼−→ H2(X; Z) and
its linear extension Λ⊗ C → H2(X; C). The map P is locally an isomorphism,
see [1]. Let M0 be a connected component of M. Huybrechts’ Theorem on sur-
jectivity of the global period map (Thm. (8.1) of [13]) states that the restriction
of P to M0 is surjective. Given α ∈ Λ we let

M0
α := {t ∈M0| ψt(α) ∈ H1,1

Z (Xt)}. (3.0.18)

Of course M0
0 = M0. Assume that α 6= 0 and let

Qα := α⊥ ∩Q = {[σ] ∈ Q| (σ, α)Λ = 0}. (3.0.19)

Then Qα is a non-empty codimension 1 analytic subset of Q (a submanifold if
(α, α)Λ 6= 0) and furthermore

M0
α = P−1(Qα). (3.0.20)

By surjectivity of the period map we get that M0
α is non-empty of dimension

20.

Lemma 3.3. Let M be a numerical (K3)[2] and M0 be a connected component
of the moduli space of marked irreducible symplectic 4-folds deformation equiva-
lent to M . Let α ∈ Λ such that (α, α)Λ 6= 0. For t ∈M0

α outside of a countable
union of proper analytic subsets we have:

(1) H1,1
Q (Xt) = Qψt(α),

(2) any rational sub-Hodge-structure of W (ψt(α)) is trivial.

Proof. It is well-known that Item (1) holds for t ∈ M0
α outside of a countable

union of proper analytic subsets; we recall the proof for the reader’s convenience.
Let N 0

α ⊂M0
α be the subset of t such that Item (1) does not hold. Let Zα ⊂ Λ
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be the saturation of Zα i.e. the set of β ∈ Λ such that β is proportional to α.
Then

N 0
α =

⋃
β∈Λ\Zα

P−1(Qα ∩Qβ). (3.0.21)

Let β ∈ (Λ \ Zα): then (Qα ∩ Qβ) is a proper analytic subset of Qα because
(, )Λ is non-degenerate. Since P is a (holomorphic) local isomorphism we get
that P−1(Qα ∩Qβ) is a proper analytic subset of M0

α; Item (1) follows because
(Λ \ Zα) is countable. Now let’s prove that the set of t ∈ M0

α for which (2)
does not hold is a countable union of proper analytic subsets of M0

α. Let 〈, 〉Λ
be the symmetric bilinear form on Sym2(Λ ⊗ C) constructed from (, )Λ as in
Subsection (2.2) - see (2.2.1). Let qΛ ∈ Sym2(Λ⊗C)∨ be the symmetric tensor
associated to (, )Λ and q∨Λ ∈ Sym2(Λ⊗ C) be its dual. Let

W (α) := Sym2(α⊥) ∩ (q∨Λ)⊥ ⊂ Sym2(Λ⊗ C) (3.0.22)

where the first orthogonality is with respect to (, )Λ and the second orthogonality
is with respect to 〈, 〉Λ. For a linear subspace V ⊂W (α) defined over Q let

M0
α(V ) := {t ∈M0

α| Sym2(ψt)(V ) is a sub-H.S. of H4(Xt)}. (3.0.23)

Let t ∈ M0
α; then (2) does not hold if and only if t ∈ M0

α(V ) for some linear
subspace 0 6= V ⊂

6=
W (α) defined over Q. Since the set of subspaces V ⊂ W (α)

defined over Q is countable we get that it suffices to prove that M0
α(V ) is a

proper analytic subset of M0
α whenever V 6= 0 or V 6= W (α). First of all

M0
α(V ) is an analytic subset of M0

α because the period map is holomorphic.
Assume that M0

α(V ) contains a non-empty open subset

U ⊂M0
α; (3.0.24)

we will show that either V = W (α) or V = 0. We have

(a) Sym2(ψt)(V ) ∩H4,0(Xt) 6= {0} for all t ∈ U , or

(b) Sym2(ψt)(V ) ∩H4,0(Xt) = {0} for all t ∈ U .

Assume that (a) holds. Then

Sym2(ψt)(V ) ⊃ H4,0(Xt) = H2,0(Xt) ∧H2,0(Xt) (3.0.25)

for all t ∈ U and hence
V ⊃ {σ2| [σ] ∈ P (U)}, (3.0.26)

where P is the period map. We claim that this implies that V = W (α). Let

P(α⊥) να−→ P(Sym2(α⊥))
[σ] 7→ [σ2]

(3.0.27)

be the Veronese map associated to the complete linear system of quadrics on
P(α⊥). Let Vα := Im(να). Let Zα ⊂ P(α⊥) be the quadric of one-dimensional
subspaces isotropic for the restriction of (, )Λ to α⊥. Since (α, α)Λ 6= 0 the
quadric Zα is smooth. Furthermore by (2.2.6) we get that

να(Zα) = Vα ∩ P(W (α)). (3.0.28)
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Since Zα is an irreducible (actually smooth) quadric we get that να(Zα) spans
P(W (α)). In fact the following stronger statement holds: if U ⊂ Zα is a non-
empty subset which is open in the classical topology then να(U) spans P(W (α)).
Now notice that Qα is a non-empty subset of Zα which is open in the classical
topology. Let U ⊂ M0

α be the open non-empty subset of (3.0.24). Then P (U)
is open non-empty in Qα and hence it is open non-empty in Zα; thus

span{σ2| [σ] ∈ P (U)} = W (α). (3.0.29)

By (3.0.26) we get that V = W (α). Now assume that (b) holds. Then

〈Sym2(ψt)(V ),H0,4(Xt)〉X = 0 (3.0.30)

for all t ∈ U and hence V ⊗ C⊥{σ2| [σ] ∈ P (U)}, where orthogonality is with
respect to 〈, 〉Λ. Since V ⊗ C is real, that is invariant under conjugation, we
get that V ⊗ C⊥{σ2| [σ] ∈ P (U)}. By (3.0.29) we get that V⊥W (α). Thus in
order to finish the proof it suffices to show that the restriction of 〈, 〉Λ to W (α)
is non-degenerate. First we claim that the restriction of 〈, 〉Λ to Sym2(α⊥) is
non-degenerate: in fact since (α, α)Λ 6= 0 the restriction of (, )Λ to α⊥ is non-
degenerate and the claim follows from Proposition (2.2). Let qα ∈ Sym2(α⊥)∨

be the symmetric tensor associated to the restriction of (, )Λ to α⊥; we claim
that

W (α) = {ζ ∈ Sym2(α⊥)| 〈q∨α , ζ〉Λ = 0}; (3.0.31)

In fact by (2.2.6) we have

〈q∨Λ, γδ〉 = 25(γ, δ)Λ, (3.0.32)
〈q∨h , γδ〉 = 24(γ, δ)Λ (3.0.33)

for all γ, δ ∈ α⊥; this implies (3.0.31). By (2.2.7) we have 〈q∨h , q∨h 〉Λ = 22 · 24;
by (3.0.31) we get that W (h) is the orthogonal (in Sym2(α⊥)) of a non-isotropic
vector and since the restriction of 〈, 〉Λ to Sym2(α⊥) is non-degenerate it follows
that the restriction of 〈, 〉Λ to W (h) is non-degenerate.

We will apply Lemma (3.3) with a particular choice of α. We will need the
following two results.

Lemma 3.4. The vectors α ∈ Λ with

(α, α)Λ = 2 (3.0.34)

belong to a single O(Λ)-orbit.

Proof. Let α, β ∈ Λ be indivisible: by Proposition (2.3) of [12] the elements α, β
belong to the same O(Λ)-orbit if and only if (α, α)Λ = (β, β)Λ and

(α,Λ)Λ := {(α, γ)Λ| γ ∈ Λ} = {(β, δ)Λ| δ ∈ Λ} =: (β,Λ)Λ. (3.0.35)

Let α ∈ Λ such that (α, α)Λ = 2. Then α is indivisible because (α, α)Λ has no
square factors. Thus to finish the proof of the lemma it suffices to show that

(α,Λ)Λ = Z. (3.0.36)
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Assume that (3.0.36) does not hold. Since α is indivisible and the discriminant
of (, )Λ is 2 it follows that

(α,Λ)Λ = 2Z. (3.0.37)

Let ξ ∈ Λ be a generator of the summand (−2) appearing in (2.1.3). Then
α = v + xξ where v ∈ ξ⊥ and x ∈ Z. Since the restriction of (, )Λ to ξ⊥ is
unimodular we get from (3.0.37) that v = 2w. Thus

1 =
(α, α)Λ

2
= 4

(w,w)Λ
2

− x2. (3.0.38)

Since (, )Λ is even we get that x2 ≡ −1 (mod 4): that is absurd and hence (3.0.37)
does not hold. This proves (3.0.36).

Lemma 3.5. Let M be a numerical (K3)[2]. Let M0 be a connected compo-
nent of the moduli space of marked irreducible symplectic 4-folds deformation
equivalent to M . Suppose that α1, α2 ∈ Λ satisfy

(α1, α1)Λ = (α2, α2)Λ = 2, (α1, α2)Λ ≡ 1 mod 2. (3.0.39)

There exists 1 ≤ i ≤ 2 such that for every t ∈ M0 the class of ψt(αi)2 in
H4(Xt; Z)/Tors is indivisible.

Proof. By Remark (2.1) we have

〈ψt(α1)2, ψt(α2)2〉Xt = (α1, α1)Λ · (α2, α2)Λ + 2(α1, α2)2Λ ≡ 2 (mod 4).
(3.0.40)

Next we show that the class of ψt(αi)2 in H4(Xt; Z)/Tors is divisible at most
by 2. We claim that there exists βi ∈ Λ with

(αi, βi)Λ = 1, (βi, βi)Λ = 0. (3.0.41)

In fact by Lemma (3.4) it suffices to exhibit α′, β′ ∈ Λ such that

(α′, α′)Λ = 2, (α′, β′)Λ = 1, (β′, β′)Λ = 0, (3.0.42)

and this is a trivial exercise. Now let βi be as above; by Remark (2.1) we have

〈ψt(αi)2, ψt(βi)2〉Xt
= 2(αi, βi)Λ = 2 (3.0.43)

and thus the class of ψt(αi)2 in H4(Xt; Z)/Tors is divisible at most by 2. Now
we prove the lemma arguing by contradiction. Assume that the class of ψt(αi)2

in H4(Xt; Z)/Tors is divisible for i = 1 and i = 2; then it is divisible by 2
for i = 1 and i = 2. Thus 〈ψt(α1)2, ψt(α2)2〉Xt

≡ 0 (mod 4) and this contra-
dicts (3.0.40).

Proof of Proposition (3.2). LetM0 be a connected component of the moduli
space of marked irreducible symplectic 4-folds deformation equivalent to M . By
Lemma (3.5) there exists α ∈ Λ such that (α, α) = 2 and the class of ψt(α)2

in H4(Xt; Z)/Tors is indivisible for every t ∈ M0. Let t ∈ M0
α be such that

both Item (1) and Item (2) of Lemma (3.3) are satisfied. Set X := Xt. Since
ψt(α) ∈ H1,1

Z (X) and (ψt(α), ψt(α)) = 2 we know that X is projective by
Huybrechts’ projectivity criterion [13]: since H1,1

Z (X) = Zψt(α) either ψt(α) or
−ψt(α) is the class of an ample divisor. Let h := ψt(α) in the former case and
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h := −ψt(α) in the latter case. We let H be a divisor with c1(H) = h. Let’s
prove that Proposition (3.2) holds for (X,H). First X is a deformation of M by
definition of M0. Next Items (1)-(2) hold by construction. Let’s prove Item (3):
By Item (2) and Hard Lefschetz we have H3,3

Q (X) = Qh3 and hence cl(Γ) = xh3

for some x ∈ Q. There exists e ∈ H2(X; Z) with (e, h)X = 1, see (3.0.41), and
hence by Remark (2.1) we have

Z 3
∫

Γ

e = 〈xh3, e〉X = 3x(h, h)X(h, e)X = 6x. (3.0.44)

This proves Item (3). Item (4) follows from Item (2) of Lemma (3.3), from
the fact that Ch ⊗ h⊥ has no non-trivial sub-H.S.’s and an easy argument
based on the observation that the three summands of Decomposition (3.0.15)
have pairwise distinct levels. Item (5) holds by our choice of α, thanks to
Lemma (3.5). Finally we prove Item (6). First we show that

c2(X) = 6q∨X/5 in H4(X; Q). (3.0.45)

Let Z be an irreducible symplectic manifold: it is known that if

θ ∈ Im(Sym2H2(Z) → H4(Z)) (3.0.46)

is a (2, 2) class which remains of type (2, 2) for all small deformations of Z then θ
is a multiple of q∨Z . Clearly c2(X) remains of type (2, 2) for all small deformations
of X, and since X is a numerical (K3)[2] we have H4(X) ∼= Sym2H2(X); thus
c2(X) = aq∨X for some a. We claim that a ≥ 0; in fact Theorem (1.1) of [19]
together with (3.0.5) gives that

0 ≤ 〈c2(x), h2〉X = 〈aq∨X , h2〉X = 50a. (3.0.47)

On the other hand applying Hirzebruch-Riemann-Roch and keeping in mind
that all odd Chern classes of X vanish we get that

3 = χ(OX) =
1

240

(
c2(X)2 − 1

3
c4(X)

)
. (3.0.48)

By (2.1.7)-(2.1.8) we have that

c4(X) = 324 (3.0.49)

and hence it follows that c2(X)2 = 828. Applying Formula (3.0.6) we get that

828 = c2(X)2 = 〈aq∨X , aq∨X〉X = a223 · 25. (3.0.50)

Since a ≥ 0 we get that a = 6/5; this proves (3.0.45). Now notice that by (2.2.5)
we have 2q∨X ∈ Sym2H2(X; Z)/Tors. Thus Formula (3.0.45) gives that

H4(X; Z)/Tors 3 (2c2(X)− 2q∨X) = 2q∨X/5. (3.0.51)

In particular
Ω(h) := Zh2 ⊕ Z(2q∨X/5) ⊂ (H2,2

Z (X)/Tors) (3.0.52)

By Item (4) of Proposition (3.2) we know that h2,2
Q (X) = 2; since h2 and q∨X

are linearly independent we get that Ω(h) is of finite index in H2,2
Z (X)/Tors.

A straightforward computation (use (3.0.6) and (3.0.5)) shows that

discr
(
〈, 〉X |Ω(h)

)
= 26 · 11, (3.0.53)
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and hence
[H2,2

Z (X)/Tors : Ω(h)] ≤ 8. (3.0.54)

Now let xh2 + y(2q∨X/5) ∈ H2,2
Z (X)/Tors: in order to prove Item (6) we must

show that 2x ∈ Z and 2y ∈ Z. Let β ∈ H2(X; Z) with (h, β)X = 1 and
(β, β)X = 0: such a β exists, see (3.0.41). Using (3.0.5) we get that

Z 3 〈xh2 + y(2q∨X/5), β2〉X = 2x. (3.0.55)

Next let γ, δ ∈ H2(X; Z) with (γ, δ)X = 1. By Remark (2.1) we have

Z 3 〈xh2 + y(2q∨X/5), γδ〉X = 2x(1 + (h, γ)X(h, δ)X) + 10y. (3.0.56)

By (3.0.55) we have 2x ∈ Z and hence we get that 10y ∈ Z. By (3.0.54) we
know that 8y ∈ Z and hence 2y ∈ Z. This finishes the proof of Item (6) and of
Proposition (3.2).

Let M be a numerical (K3)[2]: by Proposition (3.5) there exists γ ∈ H2(M ; Z)
such that (γ, γ)M = 2 and the class of γ2 in H4(M ; Z)/Tors is indivisible,
however we cannot exclude a priori the existence of some γ ∈ H2(M ; Z) such
that (γ, γ)M = 2 and the image of γ2 in H4(M ; Z)/Tors is divisible by 2. If M
is a deformation of (K3)[2] the picture is simpler.

Proposition 3.6. Let M be a deformation of (K3)[2] and γ ∈ H2(M ; Z) such
that (γ, γ)M = 2. The image of γ2 in H4(M ; Z)/Tors is indivisible.

Proof. Let S be a K3 surface. We may assume that γ ∈ H2(S[2]; Z). Let
∆ ⊂ S[2] be the codimension-1 locus parametrizing non-reduced subschemes of
S. There exists ξ ∈ H2(S[2]; Z) such that 2ξ = c1(∆). Furthermore there is
an orthogonal direct sum decomposition (see Prop. 6, p. 768 and pp. 777-778
of [1])

H2(S[2]; Z) = µ(H2(S; Z))⊕̂Zξ (3.0.57)

where µ : H2(S; Z) → H2(S[2]; Z) is the symmetrization map (Donaldson map).
If Γ ⊂ S is an oriented closed C∞ surface representing a class [Γ] ∈ H2(S; Z)
then a representative of µ([Γ]) is given by

{[Z] ∈ S[2]| Z ∩ Γ 6= ∅}. (3.0.58)

By (3.0.57) we have γ = xµ(α) + yξ where α ∈ H2(S; Z) is indivisible (in
particular non-zero) and x, y ∈ Z are coprime. Let (, )S be the intersection form
on H2(S). Since α is indivisible and the group of isometries of the K3-lattice
acts transitively on indivisible vectors of a given length there exists β ∈ H2(S; Z)
such that

(β, β)S = −2, (3.0.59)
x(α, β)S + y ≡ 1 (mod 2). (3.0.60)

By deforming the complex structure of S we may assume that H1,1
Z (S) = Zβ.

From (3.0.59) one gets that ±β is represented by a smooth irreducible rational
curve C ⊂ S. Let Σ := C(2) ⊂ S[2]; thus Σ ∼= P2. Then

ξ|Σ = c1(OΣ(1)), (3.0.61)
µ(α)|Σ = c1(OΣ(±(α, β)S)). (3.0.62)
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Thus (3.0.60) gives that

γ|Σ = c1(OΣ(d)), d ≡ 1 (mod 2). (3.0.63)

Thus γ2|Σ is not divisible by 2. On the other hand we know that the image of
γ2 in H4(M ; Z)/Tors is divisible at most by 2, see the proof of Lemma (3.5);
thus the image of γ2 in H4(S[2]; Z)/Tors is not divisible.

4 The linear system |H|
In this section we let X,H be as in Proposition (3.2); we will prove some basic
properties of the complete linear system |H|. We let h := c1(H). First we claim
that

h0(OX(nH)) =
1
2
n4 +

5
2
n2 + 3, n ∈ N+. (4.0.1)

In fact applying Hirzebruch-Riemann-Roch and keeping in mind that all odd
Chern classes of X vanish we get that

χ(OX(nH)) =
1
24

(∫
X

h4

)
n4 +

1
24

(∫
X

c2(X)h2

)
n2 + χ(OX). (4.0.2)

Using (3.0.45) and (3.0.5) we get that

χ(OX(nH)) =
1
2
n4 +

5
2
n2 + 3, n ∈ Z. (4.0.3)

Since KX
∼= OX Kodaira vanishing gives that for n > 0 we have h0(OX(nH)) =

χ(OX(nH)). Thus (4.0.1) follows from (4.0.3). In particular we have h0(OX(H)) =
6. We choose once and for all an isomorphism

|H|∨ ∼−→ P5 (4.0.4)

and we let
f : X 99K P5 (4.0.5)

be the composition X 99K |H|∨ ∼−→ P5. Let B be the base-scheme of |H|, i.e.

B :=
⋂

D∈|H|

D, (4.0.6)

and π : X̃ → X be the blow-up of B. Let

f̃ : X̃ → P5 (4.0.7)

be the regular map which resolves the indeterminacies of f . Let Y := Im(f̃);
thus Y ⊂ P5 is closed and we have (abusing notation) a dominant map

f : X 99K Y. (4.0.8)

We let deg f be the degree of the map above. Let X0 := (X \B); thus X0 ⊂ X
is open and dense. The restriction of f to X0 is regular; we let Y0 := f(X0).
Thus Y0 ⊂ Y is a constructible dense subset of Y , in particular Y0 contains an
open dense subset of Y . Let

f0 : X0 → Y0 (4.0.9)

be the restriction of f to X0. The next proposition is the key technical result
of this section.
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Proposition 4.1. If D1, D2 ∈ |H| are distinct then D1 ∩ D2 is a reduced
irreducible surface.

Proof. Assume that Γ ∈ Z2(X) is an effective non-zero algebraic cycle of pure
codimension 2. Assume that

cl(Γ) = (sh2 + t(2q∨/5)) ∈ H4(X; Z)/Tors, (4.0.10)

where cl(Γ) is the image of the Poicaré dual of the homology class represented
by Γ. Let σ ∈ Γ(Ω2

X) be a symplectic form. Then by Remark (2.1) and (3.0.5)-
(2.1.2) we have

0 <〈cl(Γ), h2〉X = 12s+ 20t, (4.0.11)

0 ≤〈cl(Γ), (σ + σ)2〉X = (2s+ 10t)(σ + σ, σ + σ)X . (4.0.12)

Since (σ + σ, σ + σ)X > 0 we get that

3s+ 5t > 0, s+ 5t ≥ 0. (4.0.13)

Now let D1, D2 ∈ |H| be distinct. By Item (2) of Proposition (3.2) we know that
D1 ∩ D2 is a subscheme of X of pure codimension 2 representing h2. Assume
that D1 ∩D2 is not reduced and irreducible: then we have an equality of cycles
[D1∩D2] = A+B with A,B effective non-zero. By Item (6) of Proposition (3.2)
we have

cl(A) = xh2 + y(2q∨/5), cl(B) = (1− x)h2 − y(2q∨/5) (4.0.14)

with
2x, 2y ∈ Z. (4.0.15)

Applying (4.0.13) to A and B we get that

0 < 3x+ 5y < 3, 0 ≤ x+ 5y ≤ 1. (4.0.16)

“Eliminating x”we get that

−3/5 < 2y < 3/5. (4.0.17)

Thus by (4.0.15) we get that y = 0 and hence cl(A) = xh2 with 0 < x < 1.
That contradicts Item (5) of Proposition (3.2).

Corollary 4.2. Keep notation as above.

(1) If L ⊂ P5 is a linear subspace of codimension at most 2 then L ∩ Y0 is
reduced and irreducible and, if non-empty, it has pure codimension equal
to cod(L,P5).

(2) The base-scheme B of |H| has dimension at most 1. Let Bred be the
reduced scheme associated to B i.e. the scheme defined by the radical of
the ideal sheaf of B; let B1

red be the union of 1-dimensional irreducible
components of Bred. If D1, D2, D3 are linearly independent then D1 ∩
D2 ∩D3 is purely 1-dimensional and there is a unique decomposition

[D1 ∩D2 ∩D3] = Γ + Σ (4.0.18)

where Γ,Σ are effective 1-cycles such that:
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(2a) supp(Γ) ∩Bred is zero-dimensional or empty,
(2b) suppΣ = B1

red.

Proof. Let’s prove Item (1). If L = P5 there is nothing to prove. Assume that
cod(L,P5) = 1. Let D ∈ |H| be the divisor corresponding to L via (4.0.4).
Then D ∩X0 = f∗0L; since X0 is open dense in X and f0 is surjective Item (1)
follows from Item (2) of Proposition (3.2). Assume that cod(L,P5) = 2 and
write L = L1 ∩L2 where L1, L2 ⊂ P5 are hyperplanes. Let D1, D2 ∈ |H| be the
divisors corresponding to L1, L2 via (4.0.4). Then D1∩D2∩X0 = f∗0L; since X0

is open dense in X and f0 is surjective Item (1) follows from Proposition (4.1).
This finishes the proof of Item (1). Let’s prove Item (2). By Proposition (4.1)
the intersection D1 ∩D2 ∩D3 is purely 1-dimensional and hence in particular
the dimension of the base-scheme B of |H| is at most 1. It remains to prove
that there is a unique decomposition (4.0.18) with the stated properties. Let
Γ0 ∈ Z1(X0) be the fundamental cycle of ((D1 ∩D2 ∩D3) \B) and Γ ∈ Z1(X)
be its closure. Since D1 ∩ D1 ∩ D3 ⊃ B and dimB ≤ 1 we get that Item (1)
holds with this choice of Γ. On the other hand it is clear that if we have a
decomposition (4.0.18) such that (2a) and (2b) hold then necessarily Γ is the
closure of Γ0 and hence decomposition (4.0.18) is unique.

Corollary 4.3. Keeping notation as above, we have dimY ≥ 3.

Proof. Suppose that dimY = 1. Since Y is an irreducible non-degenerate curve
in P5 we have deg Y ≥ 5. Let L ⊂ P5 be a generic hyperplane; since Y0

contains an open dense subset of Y the intersection Y0 ∩ L consists of deg Y
points, contradicting Item (1) of Corollary (4.2). Now suppose that dimY = 2;
since Y is an irreducible non-degenerate surface in P5 we have deg Y ≥ 4. Let
L ⊂ P5 be a generic linear subspace of codimension 2; since Y0 contains an open
dense subset of Y the intersection Y0 ∩L consists of deg Y points, contradicting
Item (1) of Corollary (4.2).

The following result is the first step towards the proof that the variety X
satisfies (1) or (2) of Theorem (1.1).

Proposition 4.4. Let (X,H) be as in Proposition (3.2) and Y ⊂ |H|∨ ∼= P5

be the image of f : X 99K |H|∨ - see (4.0.8). One of the following holds:

(1) dimY = 3 and 3 ≤ deg Y ≤ 6. Furthermore if dimY = 3 and deg Y = 6
then B is 0-dimensional.

(2) dimY = 4, deg Y = 2.

(3) dimY = 4, deg Y = 3 and deg f = 3.

(4) dimY = 4, deg Y = 3, deg f = 4 and B = ∅.

(5) dimY = 4, deg Y = 4, deg f = 3 and B = ∅.

(6) There exists a regular anti-symplectic involution φ : X → X such that
Y ∼= X/〈φ〉 and the quotient map X → X/〈φ〉 is identified with f : X → Y
- in particular f is regular. The (±1)-eigenspaces of H2(φ) are Ch and
h⊥ respectively. The fixed locus of φ is a smooth irreducible Lagrangian
surface F such that

c2(F ) = 192, OF (2KF ) ∼= OF (6H), c1(F )2 = 360. (4.0.19)
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(7) dimY = 4, f : X 99K Y is birational and 6 ≤ deg Y ≤ 12.

The proof of the above proposition will be given after a series of preliminary
results.

Proposition 4.5. Keep notation as above and assume that dimY = 3. Then
3 ≤ deg Y ≤ 6. If deg Y = 6 then the base-scheme B is 0-dimensional.

Proof. Let d := deg Y . Since Y is an irreducible non-degenerate 3-fold in P5

we have 3 ≤ d. Let’s prove that d ≤ 6. Let L1, L2, L3 ⊂ P5 be generic linearly
independent hyperplanes. Then the intersection Y ∩L1∩L2∩L3 is transverse and
it consists of d points p1, . . . , pd ∈ Y0. Let Γ0,i := f−1

0 (pi) and Γi be its closure in
X. Let D1, D2, D3 ∈ |H| correspond to L1, L2, L3 via (4.0.4). Since L1, L2, L3

are generic we may assume that D1, D2, D3 are linearly independent and hence
by Corollary (4.2) we have Decomposition (4.0.18). By our assumptions on
Y ∩ L1 ∩ L2 ∩ L3 we have

Γ =
d∑
i=1

Γi. (4.0.20)

By Item (3) of Proposition (3.2)

cl(Γi) = mih
3/6, mi ∈ N+. (4.0.21)

Since the 1-cycle [D1 ∩D2 ∩D3] represents h3 Equations (4.0.20) and (4.0.21)
give that

12 =
∫
X

h4 = 〈h,
d∑
i=1

Γi + Σ〉 = 2
d∑
i=1

mi + 〈h,Σ〉 ≥ 2d+ 〈h,Σ〉. (4.0.22)

Since h is ample and Σ is effective we get that d ≤ 6. Now assume that d = 6.
Then 〈h,Σ〉 = 0 and hence Σ = 0; by Item (2b) of Proposition (4.2) we get that
dimB = 0.

Proposition 4.6. Keep notation as above and assume that dimY = 4. Let
D1, D2, D3, D4 ∈ |H| be generic - in particular we may assume that D1, D2, D3

are linearly independent. Let Γ,Σ be as in (4.0.18). Then

deg Y · deg f +
∑

p∈Bred

multp(Γ ·D4) +
∫

Σ

h = 12. (4.0.23)

(Notice that the summation appearing in (4.0.23) is finite by Item (2a) of Corol-
lary (4.2).)

Proof. Let L1, L2, L3, L4 ⊂ P5 be the hyperplanes corresponding respectively
to D1, D2, D3, D4 ∈ |H| - see (4.0.4). Then L1, · · · , L4 are generic because
D1, . . . , D4 are generic. Let Z ⊂ Y be the subset of points p such that dim f̃−1(p) >
0; then Z is closed and dimZ ≤ 2. Of course dim f̃(suppE) ≤ dim(suppE) = 3.
Furthermore dimY = 4 by hypothesis. Since L1, . . . , L4 are generic we get that

∅ = L1∩· · ·∩L4∩Z = L1∩· · ·∩L4∩ f̃(E), |L1∩· · ·∩L4∩Y | <∞. (4.0.24)
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Let π : X̃ → X be the blow-up of the base-schemB of |H|; it follows from (4.0.24)
that the effective divisors f̃∗L1, . . . , f̃

∗L4 on X̃ intersect properly and that the
intersection is contained in the open subset X0. Thus

deg Y ·deg f = f̃∗L1 · f̃∗L2 · f̃∗L3 · f̃∗L4 =
∑
p∈X0

multp(D1 · · · · · · ·D4). (4.0.25)

On the other hand by (4.0.18) we have

12 =
∫
X

h4 = (Γ + Σ) ·H = Γ ·D4 +
∫

Σ

h. (4.0.26)

Furthermore the restrictions of Γ and [D1 ∩D2 ∩D3] to X0 are equal. Thus

Γ ·D4 =
∑
p∈X0

multp(D1 ·D2 ·D3 ·D4) +
∑

p∈Bred

multp(Γ ·D4). (4.0.27)

Equation (4.0.23) follows from (4.0.25), (4.0.26) and (4.0.27).

Corollary 4.7. Assume that dimY = 4. Then

deg Y · deg f ≤ 12 (4.0.28)

with equality if and only if B = ∅.
Proof. Let D1, . . . , D4 ∈ |H| be generic. By Proposition (4.6) we have (4.0.23).
SinceH is ample

∫
Σ
h ≥ 0 and hence (4.0.28) follows from (4.0.23). IfB = ∅ then

Bred = ∅ and furthermore Σ = 0 by Item (2b) of Corollary (4.2); thus (4.0.28)
is an equality by (4.0.23). Assume that (4.0.28) is an equality. By (4.0.23) we
have Σ = 0 and hence Item (2b) of Proposition (4.6) gives that dimB = 0.
From (4.0.18) we get that suppΓ ⊃ Bred. Since suppD4 ⊃ Bred it follows that
every p ∈ Bred is contained in D4 ∩ Γ. By (4.0.23) we get that B = ∅.

Proposition 4.8. Assume that f : X 99K Y is birational. Then 6 ≤ deg Y ≤ 12.

Proof. From Corollary (4.7) we get that deg Y ≤ 12. One gets the lower bound
6 ≤ deg Y by adjunction. Explicitly, let Ỹ ⊂ P̃5 be an embedded resolution of
Y ⊂ P5: then

h0(KeY ) = 1 (4.0.29)

because Ỹ is birational to X. On the other hand by adjunction and vanishing
of the Hodge numbers h5,1(P5), h5,0(P5), h4,0(P5) we get an isomorphism

H0(KeY ) = H0(IZ(deg Y − 6)), (4.0.30)

where Z ⊂ P5 is a subscheme supported on singY . From (4.0.29) we get that
6 ≤ deg Y .

Proposition 4.9. Assume that dimY = 4 and that deg f = 2. Then there
exists a regular anti-symplectic involution φ : X → X such that Y ∼= X/〈φ〉 and
the quotient map ρ : X → X/〈φ〉 is identified with f : X → Y - in particular
f is regular. The (±1)-eigenspaces of H2(φ) are Ch and h⊥ respectively. The
fixed locus of φ is a smooth irreducible Lagrangian surface F such that

c2(F ) = 192, (4.0.31)
OF (2KF ) ∼= OF (6H), (4.0.32)

c1(F )2 = 360. (4.0.33)
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Proof. Since f : X 99K Y is generically a double cover it defines a birational
involution φ : X 99K X. We claim that φ is regular: since KX ∼ 0 there exist
closed subsets I1, I2 ⊂ X of codimension at least 2 such that φ restricts to a
regular map (X \ I1) → (X \ I2). Since H1,1

Z (X) = Zh we have φ∗H ∼ H;
it follows by a well-known argument (see [13]) that φ is regular. The map
f : X 99K Y factors as

X
ρ−→ X/〈φ〉

f
99K Y (4.0.34)

where ρ is the quotient map. Since deg f = 2 we have deg f = 1, i.e. f is
birational. We claim that

deg Y = 6, f is regular, dim(singY ) ≤ 2. (4.0.35)

Let σ be a symplectic form on X: since H0(Ω2
X) = Cσ and since φ is an

involution we have φ∗σ = ±σ and hence φ∗(σ ∧ σ) = σ ∧ σ. Thus if W is
any desingularization of X/〈φ〉 we have H0(KW ) 6= 0. Since f is birational
we get that H0(KeY ) 6= 0 for any desingularization Ỹ → Y . By (4.0.30) we
get that deg Y ≥ 6, and hence Corollary (4.7) gives that deg Y = 6 and that
B = ∅. Since B = ∅ the map f is regular. Since deg Y = 6 we get that
dim(singY ) ≤ 2 - if dim(singY ) = 3 then singY certainly “imposes conditions
on adjoints”. We have proved (4.0.35). Let’s show that f is an isomorphism.
The fibers of f are finite because f

∗OY (1) is ample, furthermore Y is normal
because it is a hypersurface smooth in codimension 1: this implies that the
regular birational map f is an isomorphism. Let H2

±(X) ⊂ H2(X) be the (±1)-
eigenspace of H2(φ) respectively. Then dimH2

+(X) is equal to h2(Y ), which is
1 by Lefschetz’ Hyperplane Section Theorem: since h belongs to H2(φ)+ we get
that

H2(φ)+ = Ch. (4.0.36)

Since φ preserves the Beauville-Bogomolov form (, )X we get that

H2(φ)− = h⊥. (4.0.37)

In particular φ is anti-symplectic. Let’s prove that the fixed locus F has the
stated properties. Since F is the fixed locus of an involution on a smooth
manifold it is smooth. Since φ is anti-symplectic F has pure dimension equal
to dimX/2 = 2, and F is Lagrangian. Let’s prove that F is irreducible. Let
F =

⋃
i∈I

Fi be the decomposition into irreducible components. For i ∈ I let

cl(Fi) ∈ H2,2
Q (X) be the Poincaré dual of Fi; we claim that

cl(Fi) = ki(15h2 − c2(X)), ki ∈ Q+. (4.0.38)

In fact since Fi is effective and Lagrangian we have∫
X

cl(Fi) ∧ h2 > 0,
∫
X

cl(Fi) ∧ σ ∧ σ = 0. (4.0.39)

By Item (6) of Proposition (3.2) and by (3.0.45) we have

cl(Fi) = xih
2 + yic2(X), xi, yi ∈ Q. (4.0.40)
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Substituting the above expression for cl(Fi) in (4.0.39) and applying (2.1)-(2.2.1)
and (3.0.5) we get (4.0.38). We will be using the formula∫

X

(15h2 − c2(X))2 = 1728 (4.0.41)

which follows from (2.1)-(2.2.1) and (3.0.5). Now suppose that there exist two
distinct irreducible components Fi, Fj of F . Then Fi ∩ Fj = ∅ because F is
smooth and hence by (4.0.38) we get that

0 =
∫
X

cl(Fi) ∧ cl(Fi) = kikj

∫
X

(15h2 − c2(X))2. (4.0.42)

Thus
∫
X

(15h2−c2(X))2 = 0, and this contradicts (4.0.41); this proves that F is
irreducible. Now let’s prove (4.0.31). First we compute the Euler characteristic
of Y . We have bi(Y ) = dimHi(φ)+. Thus bi(Y ) = 0 for odd i and b2(Y ) = 1
by (4.0.36). By (2.1.8) and (4.0.36)-(4.0.37) we get that H4(φ)+ = Ch2 ⊕
Sym2(h⊥) and hence b4(Y ) = 254. Thus

χ(Y ) = 258. (4.0.43)

On the other hand the decompositions X = (X \ F )
∐
F and Y = (Y \

ρ(F ))
∐
ρ(F ) give that

324 = χ(X) = 2χ(Y \ ρ(F )) + χ(F ) = 2χ(Y )− χ(F ). (4.0.44)

By (4.0.43) we get that χ(F ) = 192, and this proves (4.0.31). Before prov-
ing (4.0.32) we show that

cl(F ) = 5h2 − 1
3
c2(X). (4.0.45)

We have ∫
cl(F ) ∧ cl(F ) =

∫
F

c2(NF/X) =
∫
F

c2(Ω1
F ) = 192, (4.0.46)

where the second equality holds because F is Lagrangian and the third equality
follows from (4.0.31); replacing cl(F ) by the right-hand side of (4.0.38) and
using (4.0.41) one gets (4.0.45). Now let’s prove (4.0.32). Let F ′ := ρ(F ); thus
ρ : F → F ′ is an isomorphism. The embedding of Y ∼= (X/〈φ〉) into P5 defines
by pull-back an isomorphism

ρ∗N∨
F ′/P5

∼= Sym2(N∨
F/X). (4.0.47)

Since F is Lagrangian in X we have N∨
F/X

∼= ΘF ; substituting in (4.0.47) and
taking determinants we get an isomorphism

ρ∗ det(NF ′/P5) ∼= OF (3KF ). (4.0.48)

On the other hand the normal sequence for the embedding F ′ ↪→ P5 gives

det(NF ′/P5) ∼= OF ′(6)⊗OF ′(KF ′). (4.0.49)
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The restriction of ρ to F defines an isomorphism F
∼−→ F ′ and furthermore

(ρ|F )∗OF ′(1) ∼= OF (H); thus

(ρ|F )∗ det(NF ′/P5) ∼= OF (6H)⊗OF (KF ). (4.0.50)

The above isomorphism together with (4.0.48) gives (4.0.32). Finally to get (4.0.33)
use (4.0.32) and (4.0.45) together with (2.1)-(2.2.1) and (3.0.5).

Proof of Proposition (4.4). By Corollary (4.3) we have dimY ≥ 3 and of
course dimY ≤ 4. If dimY = 3 then Item (1) holds by Proposition (4.5). Now
assume that dimY = 4. If deg f = 1 then Item (7) holds by Proposition (4.8).
If deg f = 2 then Item (6) holds by Proposition (4.9). Thus we may assume that
deg f ≥ 3. By Corollary (4.7) we get that deg Y ≤ 4, and of course deg Y ≥ 2
because Y is a non-degenerate hypersurface. If deg Y = 2 then Item (2) holds. If
deg Y = 3 then by Corollary (4.7) either Item (3) or Item (4) holds. If deg Y = 4
then Item (5) holds by Corollary (4.7).

We remark that the (X,H) satisfying Item (6) of Proposition (4.4) are stable
under small deformations. More precisely let X be a numerical (K3)[2] and
suppose that there exist an anti-symplectic involution φ : X → X with quotient
map ρ : X → X/〈φ〉 =: Y and an embedding j : Y ↪→ P5 with j(Y ) a sextic
hypersurface. Let f := j ◦ ρ and H = c1(f∗OY (1)) ∈ Pic(X).

Proposition 4.10. Let (X ′,H ′) be a small deformation of (X,H). Then φ
deforms to an involution φ′ : X ′ → X ′. Let ρ′ : X ′ → X ′/〈φ′〉 =: Y ′ be the
quotient map; there is an embedding j′ : Y ′ ↪→ P5 which deforms j : Y ↪→ P5.
Furthermore H ′ = c1((f ′)∗OY ′(1)).

Proof. Let h := c1(H). Since j(Y ) is a sextic and deg f = 2 we have
∫
X
h4 = 12.

By Remark (2.1) and Equation (2.2.1) we get that (h, h) = 2. The invariant
subspace H2(X)+ ⊂ H2(X) for the action of H2(φ) contains h and has rank 1
because H2(Y ) has rank 1; thus H2(X)+ = Ch. It follows that H2(φ) is the
reflection in the span of h. The result then follows from Proposition (3.3) of [20].
(Notice that in that proposition we assume that X is a deformation of (K3)[n]

however the proof is valid for any irreducible symplectic manifold satsifying the
hypothesis of Proposition (3.3) of [20] because all we need is Corollary (3.2)
of [20] which is valid for an arbitrary irreducible symplectic manifold.)

Of course also the (X,H) satisfying Item (7) of Proposition (4.4) are stable
under small deformations.

5 Proof of Theorem (1.1)

We will prove that Items (1) through (5) of Proposition (4.4) do not hold.
Subsections (5.1), (5.2), (5.3), (5.5), (5.6) are devoted to the proof that (1), (2),
(3), (4), (5) of Proposition (4.4) respectively do not hold. Subsection (5.4) is
preliminary to Subsection (5.5) and contains results on cubic hypersurfaces in
P5.
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5.1 (1) of Proposition (4.4) does not hold

We will prove the following result.

Proposition 5.1. Let Y ⊂ P5 be an irreducible non-degenerate linearly normal
3-dimensional subvariety of degree at most 6.

(1) If deg Y ≤ 5 then given an arbitrary non-empty subset U ⊂ Y there exists
a 3-dimensional linear subspace L ⊂ P5 such that L ∩ U is reducible.

(2) If deg Y = 6 then there exists a 3-dimensional linear subspace L ⊂ P5 such
that L ∩ Y is not reduced or not irreducible.

Let’s grant the above proposition for the moment and prove that (1) of
Proposition (4.4) does not hold. The proof is by contradiction. First assume
that (1) of Proposition (4.4) holds with deg Y ≤ 5. Clearly Y is irreducible
non-degenerate and linearly normal. Let U ⊂ Y be the interior of Y0; then U
is non-empty and hence by Proposition (5.1) there exists a 3-dimensional linear
subspace L ⊂ P5 such that L∩U is reducible. Since U is open in Y0 we get that
L∩Y0 is reducible; that contradicts Item (1) of Corollary (4.2). This proves that
(1) of Proposition (4.4) with deg Y ≤ 5 does not hold. In order to show that
the remaining case, i.e. deg Y = 6, does not hold we first prove the following
result.

Claim 5.2. Suppose that (1) of Proposition (4.4) holds with deg Y = 6. Then
Y0 = Y .

Proof. By Item (1) of Proposition (4.4) we know that dimB = 0. Let n be
such that nH is very ample and let D ∈ |nH| be generic; in particular since
dimB = 0 we have D ⊂ (X \B) = X0. Let f0 be the map of (4.0.9); it suffices
to show that

f0(D) = Y. (5.1.1)

Since dimY0 = 3 the generic fiber of f0 is 1-dimensional and hence its intersec-
tion with D consists of a finite set of points. Thus f0(D) is 3-dimensional. Since
f0(D) is closed in Y and Y is irreducible of dimension 3 we get (5.1.1).

Now assume that (1) of Proposition (4.4) holds with deg Y = 6; we will arrive
at a contradiction. By Claim (5.2) we have Y0 = Y . Since Y is irreducible non-
degenerate and linearly normal Proposition (5.1) applies and we get that there
exists a 3-dimensional linear subspace L ⊂ P5 such that L ∩ Y0 is not reduced
or not irreducible, contradicting Item (1) of Corollary (4.2).

Proof of Proposition (5.1). The proof consists in a case-by-case analysis.
We classify the 3-fold Y according to deg Y and the nature of singY .
Assume that Y is a cone: We have Y = J(p, Y ) where Y is a surface with
dim(spanY ) = 4. (See (1.0.4) for the notation J(·, ·).) Let L ⊂ (spanY ) be
a linear subspace of dimension 2. Then L := J(p, L) is a 3-dimensional linear
subspace of P5 and

L ∩ Y = J(p, L ∩ Y ). (5.1.2)

If L is generic then L ∩ U has deg Y irreducible components - they are open
dense subsets of lines through p. Since deg Y = deg Y ≥ 3 we get that L ∩ Y is
reducible. This proves the proposition for Y a cone.
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Assume that deg Y ≤ 5, Y is singular and not a cone: Let p ∈ sing(Y ) and let
m be its multiplicity. Let A ⊂ P5 be a hyperplane not containing p and let

ρ : (Y \ {p}) → A (5.1.3)

be projection from p. Let Z := Im(ρ) and let Z be its closure. Since Y is not a
cone Z is a hypersurface with degZ = (deg Y −m). Thus Z is a hypersurface
in A ∼= P4 of degree at most 3 and hence it is covered by lines. The image
ρ(U \ {p}) ⊂ Z contains an open dense V ⊂ Z. Let ` ⊂ Z be a generic line:
then ` ∩ V is dense in `. Let q ∈ (V \ `) be generic and let L := J(q, `). Thus
L ⊂ A is a plane and

L ∩ V = (` ∩ V ) ∪ C (5.1.4)

where C is an open dense subset of a line or of a conic. (Notice that L 6⊂ Z
because ` and q are generic in Z.) Let L := J(p, L); this is a 3-dimensional
linear subspace of P5. We have

L ∩ (ρ−1V ) = ρ−1(L ∩ V ) (5.1.5)

and hence L ∩ (ρ−1V ) is reducible because of (5.1.4). Since ρ−1V is an open
subset of U we get that L ∩ U is reducible.
Assume that deg Y ≤ 5 and Y is smooth: All smooth non-degenerate linearly
normal 3-folds Y ⊂ P5 of degree at most 5 have been classified, see [15]: Y is the
Segre 3-fold i.e. P1×P2 embedded by OP1(1)�OP2(1), or a complete intersection
of two quadric hypersurfaces, or a quadric fibration, i.e. it fibers over P1 with
fibers which are embedded quadric surfaces. In each case Y is covered by lines;
it follows immediately that Item (1) of Proposition (5.1) holds for Y .
It remains to prove that Proposition (5.1) holds for Y of degree 6. Before going
into the case-by-case analysis we state the following elementary result.

Claim 5.3. Suppose that Y ⊂ P5 is an irreducible 3-dimensional non-degenerate
subvariety containing a plane curve. Then there exists a 3-dimensional linear
subspace L ⊂ P5 such that L ∩ Y is reducible.

Proof. Let C ⊂ Y be a plane curve and Λ := span(C). Thus dim Λ = 1 if C is
a line and dim Λ = 2 otherwise. Let L ⊂ P5 be a generic 3-dimensional linear
subspace containing Λ. Then L ∩ Y 6⊂ Λ and every irreducible component of
L ∩ Y has dimension at least 1. Thus L ∩ Y is reducible unless possibly if each
of its irreducible components not contained in Λ has dimension at least 2: thus
we may assume that

dim((L ∩ Y ) \ Λ) ≥ 2 for all Λ ⊂ L ⊂ P5, L linear, dimL = 3. (5.1.6)

Let Ω ⊂ P5 be a linear subspace complementary to Λ, i.e. such that Ω ∩ Λ = ∅
and dim Ω + dim Λ = 4. Let

ρ : (Y \ Λ) → Ω (5.1.7)

be the projection from Y ∩Λ. Let Z := Im(ρ) and Z be its closure. Since Y is
irreducible Z is irreducible and since Y is non-degenerate Z is non-degenerate.
By (5.1.6) we have dimZ ≤ 1 and hence Z is an irreducible non-degenerate
curve in Ω. Thus degZ ≥ 2 and since Z is open dense in Z there exists a
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hyperplane D ⊂ Ω such that D ∩ Z is finite with |D ∩ Z| = degZ ≥ 2. The
hyperplane J(Λ, D) ⊂ P5 intersects Y in a reducible surface - in fact J(Λ, D)∩Y
has at least degZ irreducible components. Let L1 ⊂ P5 be a generic hyperplane
and L := L1 ∩ J(Λ, D); then L ∩ Y is reducible.

Assume that deg Y = 6 and dim(singY ) = 2: Let V ⊂ singY be a 2-dimensional
component. We claim that

deg V ≤ 4. (5.1.8)

In fact let Σ ⊂ P5 be a generic 3-dimensional linear subspace: then

sing(Σ ∩ Y ) = Σ ∩ singY ⊃ Σ ∩ V (5.1.9)

and |Σ ∩ V | = deg V . Now Σ ∩ Y is an irreducible non-degenerate degree-6
curve in Σ ∼= P3 and hence it has at most 4 singular points. Thus (5.1.8) follows
from (5.1.9). A straightforward argument shows that any surface V of degree at
most 4 contains a plane curve. Explicitely: If dim(spanV ) = 2 there is nothing
to prove. If dim(spanV ) ≤ 3 intersect V with a plane contained in span(V ). If
dim(spanV ) ≥ 4 and V is singular the projection of V from q ∈ (singV ) is a
quadric surface Q; if ` ⊂ Q is a line the intersection J(q, `) ∩ V has dimension
1. If dim(spanV ) ≥ 4 and V is smooth then (see [15]) V is a rational scroll,
a complete intersection of quadric hypersurfaces in a hyperplane of P5 or the
Veronese surface. In the first two cases V contains lines, in the third case it
contains conics. Thus we proved that V contains a plane curve. Since V ⊂ Y
we get that Y contains a plane curve and hence we are done by Claim (5.3).
Assume that deg Y = 6 and dim(singY ) = 1: Let W ⊂ (singY ) be a 1-
dimensional component. If dim(spanW ) ≤ 2 then Y contains a plane curve
and we are done by Claim (5.3). Now assume that dim(spanW ) = 3. If
dim((spanW ) ∩ Y ) = 2 then Y contains plane curves and we are done by
Claim (5.3). If dim((spanW ) ∩ Y ) = 1 let L := spanW ; since Y is singu-
lar along W the intersection L ∩ Y is not reduced along W . Finally assume
that dim(spanW ) ≥ 4. Then dim((spanW ) ∩ Y ) ≥ 2 and hence there exists
p ∈ ((spanW )∩ (Y \W )). Since curves are never defective (see [4]) there exists
a 3-secant plane of W containing p, call it Ω. We claim that dim(Ω ∩ Y ) ≥ 1.
In fact assume that this is not the case; then dim(Ω ∩ Y ) = 0 and hence by
Bezout’s Theorem ∑

x

multx(Ω · Y ) = 6. (5.1.10)

If x ∈ Ω∩W then multx(Ω · Y ) ≥ 2 because W ⊂ (singY ). Since Ω is 3-secant
to W we get that the points in Ω ∩W give a contribution of at least 6 to the
left-hand side of (5.1.10). On the other hand we have an extra contribution of
at least 1 from p, and hence we get that the left-hand side of (5.1.10) is at least
7; that contradicts (5.1.10) and hence we get that dim(Ω∩Y ) ≥ 1. Since Ω is a
plane we get that Y contains a plane curve and thus we are done by Claim (5.3).
Assume that deg Y and dim(singY ) ≤ 0: Let Λ ⊂ P5 be a generic hyperplane;
thus S := Λ ∩ Y is an irreducible smooth non-degenerate (in Λ!) surface of
degree 6. Since deg(S) 6= 4 we know that S is linearly normal (Severi) and
hence we may invoke the classification of irreducible smooth non-degenerate
degree-6 surfaces in P4 (see [15]): S is either the complete intersection of a
quadric and a cubic or a Bordiga surface i.e. the blow up of P2 at 10 points
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embedded by the linear system of plane quartics through the 10 points. Assume
that S is the complete intersection of a quadric and a cubic. Then since Y is
linearly normal the quadric hypersurface in Λ containing S lifts to a quadric
hypersurface Q ⊂ P5 containing Y . There exist 3-dimensional linear spaces
L ⊂ P5 such that L∩Q is the union of 2 planes; if L is a generic such space then
L ∩ Y is reducible. Now assume that S is a Bordiga surface. Then S contains
lines, namely the image of the 10 exceptional lines; thus Proposition (5.1) holds
for Y by Claim (5.3).

5.1.1 Comment

One may ask the following: does there exist a numerical (K3)[2] with an ample
H with (c1(H), c1(H)) = 2 and Y := Im(f : X 99K |H|∨) of dimension strictly
smaller than 4? We do not know of any such example however we do have
examples with H big and nef such that dimY < dimX. (Couples (X,H) with
H a big and nef divisors will be needed in order to construct complete moduli
spaces.) An explicit example is the following. Let π : S → P2 be a double cover
ramified over a smooth sextic; thus S is a K3 surface. Let HS := π∗OP2(1) and
let X := M(0,HS , 0) be the Moduli space of HS-semistable rank-0 pure sheaves
G on S with c1(G) = c1(HS) and χ(G) = 0: a typical G is given by ι∗ξ where
ι : C ↪→ S is the inclusion of a curve C ∈ |HS | and ξ is a degree-1 line-bundle
on C. It is known that X is a deformation of (K3)[2] - see [24]. There is a
Lagrangian fibration ρ : X → |HS | mapping [G] ∈ M(0,HS , 0) to its support;
the fiber over C ∈ |HS | is Jac1(C) (suitably defined if C is singular). Thus on
X we have the divisor class F := ρ∗O|HS |(1). We also have a unique effective
divisor A on X whose restriction to any Lagrangian fiber ρ−1([C]) ∼= Jac1(C)
is the canonical Θ-divisor. Let H := A+2F ; a straightforward argument shows
that (c1(H), c1(H)) = 2. One can also show that H is nef; since

∫
X
c1(H)4 = 12

we get that H is big. The image Y = Im(f : X 99K |H|) is the Veronese surface
in P5.

5.2 (2) of Proposition (4.4) does not hold

Let’s assume that Y ⊂ P5 is a quadric hypersurface. Of course Y is irreducible.
Since Y0 contais an open dense subset of the irreducible quadric 4-fold Y there
exists a 3-dimensional linear subspace L ⊂ P5 such that L∩Y0 is reducible; that
contradicts Item (1) of Corollary (4.2) and hence we get that Y can not be a
quadric hypersurface.

5.2.1 Comment

There exist examples (X,H) with X a deformation of (K3)[2] and H an ample
divisors with (c1(H), c1(H)) = 2 such that Y is a quadric hypersurface - see (4.1)
of [20].

5.3 (3) of Proposition (4.4) does not hold

First we will analyze the base-scheme B of |H| under the hypothesis that
dimY = 4 and (deg f · deg Y ) ≥ 9. As a consequence we will get that un-
der these hypotheses the hypersurface Y ⊂ P5 contains a 3-dimensional linear
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subspace. Then we will concentrate on the case when deg f = deg Y = 3.
First we will prove an elementary result on 4-dimensional cubic hypersurfaces
containing a 3-dimensional linear subspace, and then we will prove that (3) of
Proposition (4.4) does not hold.

Proposition 5.4. Let f : X 99K Y be as in Proposition (4.4). Assume that

dimY = 4, (5.3.1)
deg Y · deg f ≥ 9. (5.3.2)

Then the following hold:

(1) Let Bi be a 0-dimensional connected component of the base-scheme B of
|H|; then Bi is curvilinear, i.e. it is contained in a curve which is smooth
at the point (Bi)red.

(2) Assume that dimB > 0. Then

deg Y · deg f = 9 (5.3.3)

and B is an irreducible and reduced l.c.i. curve. If D1, D2, D3 ∈ |H| are
generic - in particular linearly independent - and Γ,Σ are as in (4.0.18)
then Σ = [B] and

|suppΓ ∩B| = 1. (5.3.4)

Letting {p} = suppΓ∩B there is a unique irreducible component of suppΓ
containing p, call it Γp, and it appears with multiplicity 1 in Γ. Further-
more both Γp and B are smooth at p, and they have distinct tangent spaces
at p.

Proof. Throughout the proof we let D1, . . . , D4 ∈ |H| be generic and Γ,Σ be as
in (4.0.18). By (4.0.23) and (5.3.2) we have∑

p∈Bred

multp(D4 · Γ) +
∫

[Σ]

h = 12− deg Y · deg f ≤ 3. (5.3.5)

Let’s prove Item (1). Let pi := (Bi)red. Of course pi ∈ (suppΓ ∪ suppΣ), and
since Bi is a 0-dimensional connected component of B we get by Item (2b) of
Corollary (4.2) that

pi ∈ (suppΓ \ suppΣ). (5.3.6)

Since [D1 ∩ D2 ∩ D3] = Γ outside Σ we get from (5.3.6) and (5.3.5) that
D1, . . . , D4 intersect properly at pi and that

multpi(D1 ·D2 ·D3 ·D4) ≤ 3. (5.3.7)

We claim that the connected component of D1 ∩ · · · ∩ D4 supported at pi is
curvilinear, i.e. that

c := dim

 4⋂
j=1

Θpi
Dj

 ≤ 1. (5.3.8)

There exist D′
1, . . . , D

′
4 ∈ |H| which span the same linear system as D1, . . . , D4

and such that D′
1, . . . , D

′
c are singular at pi. By (5.3.7) we get that

3 ≥ multpi
(D1 ·D2 ·D3 ·D4) = multpi

(D′
1 ·D′

2 ·D′
3 ·D′

4) ≥ 2c. (5.3.9)
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Thus c ≤ 1 and this proves (5.3.8). Since Bi is a subscheme of the connected
component of D1 ∩ · · · ∩D4 supported at pi and the latter is curvilinear we get
that Bi is curvilinear. This proves Item (1). Now we prove Item (2). Assume
that dimB > 0. By Item (2) of Corollary (4.2) we have dimB = 1 and

suppΣ = B1
red. (5.3.10)

Thus Σ 6= 0 and since H is ample we get that
∫
Σ
h > 0. By Item (3) of

Proposition (3.2) we have cl(Σ) = mh3/6 for some m ∈ Z and hence m ∈ N+.
Thus

∫
Σ
h = 2m > 0 and by (5.3.5) we get that∫

Σ

h = 2. (5.3.11)

Hence by Item (3) of Proposition (3.2) we get that

cl(Σ) = h3/6. (5.3.12)

Let’s prove that (5.3.3) holds. We notice that Σ 6= 0 by (5.3.11) and that Γ 6= 0
because D1, D2, D3 are generic. Since H is ample the 1-cycle Γ+Σ is connected
and hence there exists p ∈ (suppΓ ∩ suppΣ). By (5.3.10) we have p ∈ B1

red.
Since B is the base-scheme of |H| we get that p ∈ D4. Thus p ∈ (B1

red∩Γ∩D4)
and hence ∑

p∈B1
red

multp(D4 · Γ) ≥ 1. (5.3.13)

This together with (5.3.11) and (5.3.5) gives that deg Y ·deg f ≤ 9; by hypothesis
deg Y · deg f ≥ 9 and hence (5.3.3) holds. From (5.3.5)-(5.3.11) we get that∑

p∈Bred

multp(D4 · Γ) = 1, (5.3.14)

and hence (5.3.13) gives that B1
red = Bred and that (5.3.4) holds. In particular

we have proved that B is purely 1-dimensional. On the other hand (5.3.11)
together with Item (3) of Proposition (3.2) gives that

Σ is reduced and irreducible, (5.3.15)

that is Σ is the fundamental cycle of an irreducible curve in X; by (5.3.10) we
get that B is irreducible. Now choose p0 ∈ Bred; let’s prove that there exists a
generic (D1, . . . , D4) ∈ |H|4 such that if Γ is as in (4.0.18) then

p0 /∈ suppΓ. (5.3.16)

First we may assume that the open dense Ugen ⊂ |H|4 parametrizing generic
(D1, . . . , D4) is invariant under permutation of the factors. Let (D1, . . . , D4) ∈
Ugen; since B ⊂ (D1 ∩ · · · ∩D4) and B is purely 1-dimensional we have

dimVp0(D1 ∩ · · · ∩D4) := dim(
4⋂
i=1

Θp0Di) ≥ 1. (5.3.17)
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Thus there exist 3 of the Di’s such that the intersection of their tangent spaces
at p0 equals Vp0(D1∩· · ·∩D4). By invariance of Ugen under permutation of the
factors we may assume that

3⋂
i=1

Θp0Di = Vp0(D1 ∩ · · · ∩D4). (5.3.18)

Now assume that p0 ∈ suppΓ; since suppΓ ⊂ (D1 ∩ · · · ∩D4) we get that

Θp0suppΓ ⊂ Vp0(D1 ∩ · · · ∩D4) ⊂ Θp0D4. (5.3.19)

Thus multp0(D4 · Γ) ≥ 2; that contradicts (5.3.14) and hence proves that there
exists (D1, . . . , D4) ∈ Ugen such that (5.3.16) holds. Let’s prove that B is
a reduced l.c.i. curve. Let p0 ∈ Bred and let (D1, . . . , D4) ∈ Ugen be such
that (5.3.16) holds. Then in a neighborhood of p0 we have Σ = [D1 ∩D2 ∩D3]
and the multiplicity of intersection of D1, D2, D3 along Σ is 1 by (5.3.15). Thus
in a neighborhhod of p0 the scheme D1 ∩D2 ∩D3 is a l.c.i. which is generically
reduced; since it is a l.c.i. it has no embedded components and hence we get
that it is reduced. Of course B ⊂ (D1 ∩D2 ∩D3) and by (5.3.10) we get that B
is also locally around p0 the complete intersection of D1, D2, D3 and that it is
reduced. This proves that B is a reduced l.c.i. curve. Now let D1, D2, D3 ∈ |H|
be generic. We have proved that (5.3.4) holds; let suppΓ∩B = {p}. It remains
to prove that there is a unique irreducible component Γp of suppΓ containing
p, that it appears with multiplicity 1 in Γ and that the tangent spaces to Γp
and B at p are distinct. Since D1, D2, D3 are generic the point p is a generic
point of B by (5.3.16) and hence B is smooth at p. Since D1, D2, D3 are generic
there exists D4 such that (D1, D2, D3, D4) is generic. All the statements that
reamain to be proved follow from (5.3.14).

Corollary 5.5. Let f : X 99K Y be as in Proposition (4.4). Assume that (5.3.1)
and (5.3.2) hold. Then Y ⊂ P5 contains a 3-dimensional linear subspace.

Proof. Let π : X̃ → X be the blow-up of B and f̃ : X̃ → P5 be the resolution of
indeterminacise of f . First assume that B contains a 0-dimensional connected
component Bi. Then Bi is curvilinear by Item (1) of Proposition (5.4), in
particular Bi is a l.c.i. and hence Ei := π−1(Bi) ∼= P3 and f̃∗OY (1) ∼= OEi

(1).
Thus f̃(Ei) ⊂ Y is a 3-dimensional linear space. Now assume that B does not
contain 0-dimensional connected components. By Item (2) of Proposition (5.4)
the base scheme B is an irreducible, reduced 1-dimensional l.c.i. Thus the
exceptional divisor of π is an irreducible divisor E. Let L1, L2, L3 ⊂ P5 be
generic hyperplanes; it follows from Item (2) of Proposition (5.4) that

|f̃(E) ∩ L1 ∩ L2 ∩ L3| = 1. (5.3.20)

Thus f̃(E) ⊂ Y is a 3-dimensional linear space.

Before applying the above corollary to our case we prove an elementary result
on 4-dimensional cubic hypersurfaces.

Proposition 5.6. Let Y ⊂ P5 be a cubic hypersurface containing a 3-dimensional
linear space Ω. There exists a hyperplane Z ⊂ P5 containing Ω such that Z ∩Y
is swept out by planes, i.e. either Z ⊂ Y or Z · Y = Ω + Q where Q ⊂ Z is a
singular quadric hypersurface.
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Proof. Let I ⊂ Gr(3,P5)×|OP5(3)|× (P5)∨ be the set of triples (Ω, Y, Z) where
Ω ⊂ Y and Ω ⊂ Z. Let J ⊂ Gr(3,P5) × |OP5(3)| be the set of couples (Ω, Y )
where Ω ⊂ Y and let

I
ρ−→ J

(Ω, Y, Z) 7→ (Ω, Y )
(5.3.21)

be the forgetful map. Let I0 ⊂ I be the (open) subset of triples (Ω, Y, Z) such
that Z · Y = Ω + Q with Q ⊂ Z a smooth quadric hypersurface. We must
show that ρ(I \ I0) = J . The map ρ is proper and surjective with 1-dimensional
fibers, J is irreducible and (I \ I0) is closed of pure codimension 1 in I; thus it
suffices to exhibit one couple (Ω, Y ) ∈ J such that

ρ−1(Ω, Y ) ∩ I0 6= ∅, ρ−1(Ω, Y ) ∩ (I \ I0) 6= ∅. (5.3.22)

Let [X0, . . . , X5] be homogeneous coordinates on P5. Let Ω = V (X4, X5)
and Y = V (F · X4 + G · X5) where F,G ∈ C[X0, . . . , X5]2 are such that
F (X0, . . . , X4, 0) and G(X0, . . . , X3, 0, X5) are quadratic forms of rank 4 and
5 respectively. Then (Ω, Y ) ∈ J and (5.3.22) holds: in fact (Ω, Y, V (X4)) ∈
(ρ−1(Ω, Y ) ∩ I0) and (Ω, Y, V (X5)) ∈ (ρ−1(Ω, Y ) ∩ (I \ I0)).

Proof that Item (3) of Proposition (4.4) does not hold. By contradiction.
Assume that Item (3) of Proposition (4.4) holds. By Corollary (5.5) we get that
Y contains a 3-dimensional linear space Ω. By Proposition (5.6) there exists a
hyperplane Z ⊂ P5 containing Ω such that Z ∩ Y is swept out by planes. We
claim that Z ∩ Y0 6= ∅. In fact let E be the exceptional divisor of the blow-
up π : X̃ → X of B and f̃ : X̃ → P5 be the resolution of indeterminacies of
f . If Z ∩ Y0 = ∅ then supp(f̃∗Z) ⊂ supp(E) and that is absurd - an ample
divisor cannot be linearly equivalent to a divisor supported on components of
an exceptional divisor. Let y ∈ Z ∩ Y0; by Proposition (5.6) there exists a
plane Λ ⊂ (Z ∩ Y ) with y ∈ Λ. Now let y′ ∈ (Y0 \ Z) and let L ⊂ P5 be the
3-dimensional linear space L := J(y′,Λ). Then

(a) either L ⊂ Y , or

(b) L ∩ Y = Λ ∪ Γ where dim Γ = 2 and Γ 3 y′.

If Item (a) holds then L ∩ Y0 is non-empty 3-dimensional (notice: we do not
know whether our “original”3-dimensional linear space Ω ⊂ Y intersects Y0)
and if Item (b) holds then L ∩ Y0 is reducible. In either case we contradict
Item (1) of Corollary (4.2).

5.4 Cubic 4-folds that do not contain planes

We will prove two propositions on cubic hypersurfaces in P5. These results
will be the key ingredients in the proof that (4) of Proposition (4.4) does not
hold - see Subsection (5.5). In order to state our first result we introduce some
notation.

Definition 5.7. Let Y ⊂ P5 be a singular cubic hypersurface and p ∈ sing(Y ).
We let Sp ⊂ Gr(1,P5) be the subscheme parametrizing lines contained in Y and
containing p.

29



Thus the associated reduced variety (Sp)red is given by

(Sp)red := {` ∈ Gr(1,P5)| p ∈ ` ⊂ Y }. (5.4.1)

The scheme structure on Sp is defined as follows. Let F be the tautological
globally generated rank-2 vector-bundle on Gr(1,P5). The Fano scheme of lines
on Y is the zero-scheme F (Y ) of the section of Sym3F defined by Y ; we let Sp
be the scheme-theoretic intersection of F (Y ) and the Schubert variety of lines
containing p. The first result on 4-dimensional cubic hypersurfaces that we will
prove in this subsection is the following.

Proposition 5.8. Suppose that Y ⊂ P5 is a cubic hypersurface that contains
no planes. Then either Y is smooth or the following holds.

(a) The cubic Y has isolated quadratic singularities.

(b) If p ∈ singY then Sp is a reduced and irreducible normal surface with du
Val singularities1 and the minimal desingularization of Sp is a K3 surface
S̃p.

(c) If p, q ∈ singY the surfaces S̃p and S̃q are isomorphic.

The second result that we will prove is on cubic hypersurfaces Y ⊂ P5 for
which Items (a), (b) and (c) of Proposition (5.8) hold. Before stating the result
we recall that H4(Y ) has a (mixed) Hodge structure with weight filtration [6]

. . . ⊂W3H
4(Y ) ⊂W4H

4(Y ) = H4(Y ). (5.4.2)

If ζ : Ỹ → Y is an arbitrary desingularization then (see Proposition (8.5.2) of [6])
we have

W3H
4(Y ) = ker(H4(Y )

H4(ζ)−→ H4(Ỹ )). (5.4.3)

In particular W3H
4(Y ) is contained in the kernel of the intersection form on

H4(Y ) and hence the intersection form is well-defined on

GrW4 H4(Y ) := H4(Y )/W3H
4(Y ). (5.4.4)

Let Y ⊂ P5 be a singular cubic hypersurface such that (a), (b) and (c) of
Proposition (5.8) hold. Let p ∈ singY . Then S̃p is a K3 surface: let T (S̃p) ⊂
H2(S̃p; Z) be the transcendental lattice of S̃p i.e.

T (S̃p) := {α ∈ H2(S̃p; Z)| α⊥H1,1
Z (S̃p)}. (5.4.5)

Then
T (S̃p)C := T (S̃p)⊗Z C ⊂ H2(S̃p) (5.4.6)

is a sub-Hodge structure of level 2 with

h2,0(T (S̃p)C) = h0,2(T (S̃p)C) = 1, 1 ≤ h1,1(T (S̃p)C) ≤ 19. (5.4.7)

The second main result of this subsection is the following.
1See Ch.4 of [17] for definition and properties of du Val singularities.
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Proposition 5.9. Let Y ⊂ P5 be a cubic hypersurface such that Items (a), (b)
and (c) of Proposition (5.8) hold. Let p ∈ singY . There is a morphism of type
(1, 1) of Hodge structures

γ : T (S̃p)C −→ GrW4 H4(Y ) (5.4.8)

such that ∫
Y

γ(η) ∧ γ(θ) = −
∫

eSp

η ∧ θ, η, θ ∈ T (S̃p)C. (5.4.9)

Propositions (5.8) and (5.9) will be proved at the end of the present subsec-
tion.

5.4.1 Singular cubic 4-folds: preliminary considerations

Both hyperplanes and quadric hypersurfaces in P5 contain planes and hence we
have the following.

Claim 5.10. Let Y ⊂ P5 be a cubic hypersurface which is not reduced or not
irreducible. Then Y contains a plane.

Let Y ⊂ P5 be a singular cubic hypersurface. Suppose that p, q ∈ singY
are distinct points: then by Bézout’s Theorem we get that span(p, q) ⊂ Y . It
follows that if W ⊂ singY is a closed subset then

chord(W ) ⊂ Y, (5.4.10)

where chord(W ) ⊂ P5 is the subvariety swept out by the chords of W i.e.

chord(W ) := closure of {span(p, q)| p, q ∈W, p 6= q}. (5.4.11)

Let p ∈ singY . Choose homogeneous coordinates [X0, . . . , X4, Z] on P5 such
that p = [0, . . . , 0, 1]. We have

Y = V (F (X0, . . . , X4)Z +G(X0, . . . , X4)) (5.4.12)

where F,G are homogeneous of degrees 2 and 3 respectively. We may and will
view

[X] = [X0, . . . , X4] as homogeneous coordinates on P(ΘpY ). (5.4.13)

Let Sp ⊂ Gr(1,P5) be the subscheme parametrizing lines in Y that contain p -
see Definition (5.7); the natural inclusion Sp ⊂ P(ΘpY ) is given by

Sp = V (F,G) ⊂ P4
[X] = P(ΘpY ). (5.4.14)

The following remark follows immediatly from (5.4.12) and (5.4.14).

Remark 5.11. Let Y ⊂ P5 be a singular cubic hypersurface which is reduced
and irreducible. Let p ∈ singY . Suppose that Y is not a cone with vertex p.
Then referring to (5.4.12), (5.4.13) and (5.4.14) we have:

(1) F 6= 0 and hence P(CpY ) ⊂ P(ΘpY ) is identified with V (F ),

(2) the scheme Sp is the complete intersection of V (F ) and V (G) - in partic-
ular it is a l.c.i. surface.
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Claim 5.12. Let Y ⊂ P5 be a cubic hypersurface which is a cone. Then Y
contains a plane.

Proof. Suppose that Y is a cone with vertex p. Let F,G ∈ C[X0, . . . , X4] be as
in (5.4.12). Then F = 0. Since V (G) ⊂ P4

[X] is a cubic hypersurface it contains
a line L. The lines in Y parametrized by L sweep out a plane.

Claim 5.13. Let Y ⊂ P5 be a singular cubic hypersurface which is reduced and
irreducible. Let p ∈ singY and suppose that Y is not a cone with vertex p - thus
by Item (2) of Remark (5.11) we know that Sp is a complete intersection in P4.
Suppose that Sp is not reduced or not irreducible. Then Y contains a plane.

Proof. By (5.4.14) and Item (2) of Remark (5.11) we get that there exists a
surface T ⊂ Sp of degree at most 3. It follows that T contains a line `. The
lines in P5 parametrized by points of ` sweep out a plane contained in Y .

Now assume that Y is irreducible and reduced and furthermore that it is
not a cone with vertex p. Then the rational map

ψp : Y 99K P(ΘpY ) (5.4.15)

given by projection from p is birational. The inverse of ψp is given by

P(ΘpY )
ψ−1

p

99K Y

[X] 7→ [F (X)X0, . . . , F (X)X4,−G(X)]

(5.4.16)

Proposition 5.14. Let Y ⊂ P5 be an irreducible and reduced singular cubic
hypersurface. Let p ∈ singY and suppose that Y is not a cone with vertex p.
The resolution of indeterminacies of ψp defines an isomorphism

ψ̃p : BlpY
∼−→ BlSp

P(ΘpY ). (5.4.17)

Proof. Let F,G ∈ C[X0, . . . , X4] be as in (5.4.12). By Remark (5.11) we get that
Sp is a (possibly non-reduced, non-irreducible) surface, complete intersection of
V (F ) and V (G). The indeterminacy locus of ψ−1

p is clearly identified with Sp
and ψ−1

p is defined by the linear system |ISp
(3)| on P(ΘpY ). Since ISp

(3) is
globally generated the proposition follows.

We will need to relate properties of Y and of Sp. A first observation: if
y ∈ sing(Y \ {p}) then span(p, y) ⊂ Y by (5.4.10) and hence

ψp(singY \ {p}) ⊂ Sp ⊂ P(ΘpY ). (5.4.18)

Proposition 5.15. Suppose that Y ⊂ P5 is a singular reduced and irreducible
cubic hypersurface, that p ∈ singY and that Y is not a cone with vertex p.

(1) If y ∈ sing(Y \ {p}) then s := ψp(y) ∈ sing(Sp). If span(p, y) ⊂ sing(Y )
then dim Θs(Sp) = 4, in particular P(CpY ) is singular at s. If span(p, y) 6⊂
sing(Y ) then P(CpY ) is smooth at s.

(2) Let s ∈ sing(Sp) and assume that dim Θs(Sp) = 4. Then Y is singular at
all points of the line corresponding to s.
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(3) Let s ∈ sing(Sp) and assume that dim Θs(Sp) = 3. If P(CpY ) is smooth at
s there exists a unique y ∈ sing(Y \ {p}) such that ψp(y) = s. If P(CpY )
is singular at s there is no y ∈ sing(Y \ {p}) such that ψp(y) = s.

(4) Y contains a plane if and only if Sp contains a line or a conic.

Proof. Let [X0, . . . , X4, Z] be homogeneous coordinates on P5 with p = [0, . . . , 0, 1];
thus we have (5.4.12)-(5.4.14). Let y = [a0, . . . , a4, b] ∈ P5 \ {p}: thus

ψp(y) = [a0, . . . , a4] = [a]. (5.4.19)

Differentiating the defining equation of Y we get that y ∈ sing(Y \ {p}) if and
only if

b · ∂F
∂Xi

(a) +
∂G

∂Xi
(a) = 0 i = 0, . . . , 4, and F (a) = 0. (5.4.20)

Let’s prove Item (1). From (5.4.20) we get that G(a) = 0 and hence [a] ∈ Sp (we
already noticed this), and the first equation shows that s ∈ sing(Sp). Assume
that for a fixed a 6= (0, . . . , 0) the first equation holds with an arbitrary choice
of b: then both V (F ) and V (G) are singular at s and this proves the second
statement (recall that P(CpY ) = V (F ) by Item (1) of Remark (5.11).). Assume
that for a fixed a 6= (0, . . . , 0) the first equation holds for some but not for all
choices of b: then V (F ) is smooth at s and this proves the third statement.
Items (2)-(3) are proved by similar elementary considerations. Now let’s prove
Item (4). Assume that Y contains a plane L. If p ∈ L then ψp(L \ {p}) is a line
contained in Sp. If p /∈ L then Λ := ψp(L) is a plane in P4

[X]. The restriction of
ψ−1
p to Λ is the linear system |IΛ∩Sp

(3)|. Since ψ−1
p (Λ) = L is a plane we get

that necessarily Λ ∩ Sp is a conic in Λ; thus Sp contains a conic. The proof of
the converse is similar.

5.4.2 Cubic 4-folds with positive-dimensional singular set

We will prove the following result.

Proposition 5.16. Let Y ⊂ P5 be a cubic hypersurface such that singY has
strictly positive dimension. Then Y contains a plane.

The proof of the proposition will be given at the end of this subsubsection.

Lemma 5.17. Let Y ⊂ P5 be a cubic hypersurface such that dim(singY ) = 3.
Then Y contains a plane.

Proof. By Claim (5.10) we may assume that Y is reduced and irreducible. The
intersection of Y and a generic plane is a singular reduced and irreducible cubic
curve and hence it has exactly one singular point. Thus singY has exactly one
3-dimensional irreducible component, call it V , and V is a linear space. Thus
Y contains (many) planes.

Lemma 5.18. Let Y ⊂ P5 be a cubic hypersurface such that dim(singY ) = 2.
Then Y contains a plane.

33



Proof. Assume that there exists a 2-dimensional irreducible component V of
singY with dim(span(V )) ≤ 4. Then chord(V ) = span(V ) and hence by (5.4.10)
we get that Y contains a linear subspace of dimension at least 2. Thus we may
assume that every 2-dimensional irreducible component V of singY is non-
degenerate. By (5.4.10) we have chord(V ) ⊂ Y and hence dim(chord(V )) ≤ 4,
i.e. the non-degenerate surface V ⊂ P5 is defective. By a classical result of
Severi (see [4]) we get that V is either a cone over a degree-4 rational normal
curve or the Veronese surface. One verifies easily that in both cases chord(V )
is a cubic hypersurface in P5 and hence

Y = chord(V ). (5.4.21)

If V is a cone over a degree-4 rational normal curve then chord(V ) is itself a
cone, and hence by (5.4.21) we get that Y is cone; thus Y contains a plane by
Claim (5.12). If V is a Veronese surface let ψ : P2

∼=→ V be an isomorphism with
ψ∗OV (1) ∼= OP2(2); if ` ⊂ P2 is a line then ψ(`) is a conic spanning a plane
contained in chord(V ). By (5.4.21) we get that Y contains a plane.

Proposition 5.19. Let Y ⊂ P5 be a cubic hypersurface such that

dim(singY ) = 1. (5.4.22)

Let (singY )1 be the union of 1-dimensional irreducible components of singY .
Suppose that there exists p ∈ (singY )1 such that

(singY )1 is smooth at p, (5.4.23)

and
Sp is a reduced and irreducible surface. (5.4.24)

Then
deg(singY )1 ≤ 5. (5.4.25)

Proof. If deg(singY )1 = 1 then (5.4.25) holds, thus we may assume that

deg(singY )1 ≥ 2. (5.4.26)

Let Lp ⊂ singY be defined by

Lp := {q ∈ singY | span(p, q) ⊂ singY }. (5.4.27)

By (5.4.23) either Lp = {p} or Lp is a line. By (5.4.22) the cubic Y is reduced
and irreducible and furthermore by (5.4.24) it is not a cone with vertex p; thus
we have the birational map ψp : Y 99K P(ΘpY ) - see (5.4.15). Let

Wp := ψp((singY )1 \ Lp)). (5.4.28)

By (5.4.26) we know that Wp 6= ∅; in fact by (5.4.22) and Proposition (5.15)
we get that Wp ⊂ sing(Sp) and that Wp is of pure dimension 1. Furthermore
by (5.4.23) we have

degWp = deg(singY )1 − 1. (5.4.29)

By hypothesis Sp is a reduced surface and hence dim(sing(Sp)) ≤ 1. Let
(singSp)1 be the union of 1-dimensional irreducible components of sing(Sp).
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Thus Wp is a union of irreducible components of sing(Sp)1, and by (5.4.29) it
follows that it suffices to prove that

deg(singSp)1 ≤ 4. (5.4.30)

Let Λ ⊂ P(ΘpY ) be a generic 3-dimensional linear space; then Sp ∩ Λ is irre-
ducible by (5.4.24). By (5.4.14) Sp ∩ Λ is a complete intersection of a quadric
and a cubic in Λ ∼= P3 and hence it has arithmetic genus 4; since it is irreducible
we get that it has at most 4 singular points. Inequality (5.4.30) follows because
sing(Sp ∩ Λ) = sing(Sp) ∩ Λ.

Corollary 5.20. Let Y ⊂ P5 be a cubic hypersurface satisfying the hypotheses
of Proposition (5.19). Then one of the following holds:

(I) (singY )1 contains a line.

(II) There is an irreducible component Γ of (singY )1 with 2 ≤ dim(span(Γ)) ≤
3.

(III) There is an irreducible component Γ of (singY )1 with dim(span(Γ)) = 4
and 4 ≤ deg(Γ) ≤ 5.

(IV) (singY )1 is the rational normal curve of degree 5 in P5.

Proof. By Proposition (5.19) there exists an irreducible component Γ of (singY )1

which has degree at most 5. If dim(span(Γ)) = 1 then (I) holds, if 2 ≤
dim(span(Γ)) ≤ 3 then (II) holds, if dim(span(Γ)) = 4 then (III) holds and
if dim(span(Γ)) = 5 then (IV) holds.

Lemma 5.21. Let Y ⊂ P5 be a cubic hypersurface such that singY contains a
line `. There exists a plane Λ ⊂ Y containing `.

Proof. Let [X0, . . . , X5] be homogeneous coordinates on P5 such that ` = V (X0, . . . , X3).
Let Y = V (P ) where P ∈ C[X0, . . . , X3]3. Since Y is singular along ` we have
P ∈ (X0, . . . , X3)2 and hence we may write

P = A ·X4 +B ·X5 + C (5.4.31)

where A,B,C ∈ C[X0, . . . , X3] are homogeneous with degA = degB = 2 and
degC = 3. There exists a point

[a0, . . . , a3] ∈ V (A,B,C) ⊂ P3
[X0,...,X3]

. (5.4.32)

The plane
Λ := {[λa0, . . . , λa3, µ, θ]| [λ, µ, θ] ∈ P2} (5.4.33)

is contained in Y .

Lemma 5.22. Let Y ⊂ P5 be a cubic hypersurface such that singY contains an
irreducible curve Γ such that 2 ≤ dim(span(Γ)) ≤ 3. Then Y contains a plane.

Proof. Since dim(span(Γ)) ≤ 3 we have chord(Γ) = span(Γ). By (5.4.10) we
know that Y ⊃ span(Γ). Since by hypothesis dim(span(Γ)) ≥ 2 we get that Y
contains a plane.
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Next we examine cubic hypersurfaces Y for which Proposition (5.19) and
Item (III) of Corollary (5.20) hold.

Lemma 5.23. Let Y ⊂ P5 be a cubic hypersurface which satsifies the hypotheses
of Proposition (5.19) and such that Item (III) of Corollary (5.20) holds. Then
Γ is a degree-4 rational normal curve and Y ∩ (span(Γ)) is the cubic 3-fold
chord(Γ).

Proof. By (5.4.22) the hypersurface Y is reduced and irreducible and hence
Y ∩ (span(Γ)) is a hypersurface. By (5.4.10) chord(Γ) ⊂ Y . Since chord(Γ) is
a hypersurface in span(Γ) we get that

3 = deg(Y ∩ span(Γ)) ≥ deg(chord(Γ)), (5.4.34)

with equality only if (Y ∩ span(Γ)) = (chord(Γ)). From our hypotheses we get
that either Γ is a degree-4 rational normal curve in span(Γ) or it has degree 5
and arithmetic genus at most 1. A straightforward computation shows that

deg(chordΓ) =


3 if deg Γ = 4,
6 if deg Γ = 5 and pa(Γ) = 0,
5 if deg Γ = 5 and pa(Γ) = 1.

(5.4.35)

The lemma follows from the above formulae and (5.4.34).

Now fix a degree-4 rational normal curve Γ ⊂ P5 (normal in its span, of
course). Let IΓ ⊂ OP5 be the ideal sheaf of Γ; then |I2

Γ(3)| is the linear system
of cubic hypersurfaces Y ⊂ P5 such that Γ ⊂ singY . We will show that if
Y ∈ |I2

Γ(3)| then Y contains a plane. If it were true that chord(Γ) contains a
plane then the result would follow immediatly from Lemma (5.23); unfortunately
chord(Γ) does not contain planes.

Proposition 5.24. Let Γ ⊂ P5 be a degree-4 rational normal curve. Let Y ∈
|I2

Γ(3)|. Then Y contains a 1-dimensional family of planes Λ such that Λ ∩
span(Γ) is a chord of Γ.

Proof. Let Z ⊂ Γ(2) ×Gr(2,P5) be the subset defined by

Z := {(p+ q,Λ)| Λ ⊃ p, q}, (5.4.36)

where p, q = span(p, q) if p 6= q and p, p = TpΓ. Projecting Z to the first factor
we get that Z is smooth irreducible and

dimZ = 5. (5.4.37)

Let W ⊂ Z × |I2
Γ(3)| be defined by

W := {(p+ q,Λ, Y )| Λ ⊂ Y }. (5.4.38)

One verifies easily that cod(W,Z × |I2
Γ(3)|) ≤ 4; thus (5.4.37) gives that

dimW ≥ dim |I2
Γ(3)|+ 1. (5.4.39)

Let ρ : W → |I2
Γ(3)| be the restriction of the projection map Z × |I2

Γ(3)| →
|I2

Γ(3)|.
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Claim 5.25. Keep notation as above. There exist (z0, Y0) ∈ W and an open
U ⊂W containing (z0, Y0) such that U ∩ ρ−1(Y0) is purely 1-dimensional.

Proof. As is easily checked there exists a smooth Q ∈ |IΓ(2)|. Since Γ is cut
out by quadrics we may assume that

Q 6⊃ chord(Γ). (5.4.40)

let Y0 := Q+ span(Γ); clearly Y0 ∈ |I2
Γ(3)|. Before choosing z0 we notice that

ΣQ := {p+ q ∈ Γ(2)| p, q ⊂ Q} (5.4.41)

is 1-dimensional because of (5.4.40). Let p0 + q0 ∈ ΣQ. There exist two planes
Λ ⊂ Q which contain p0, q0, let Λ0 be one of them: we set z0 := (p0 + q0,Λ0).
We let U ⊂W be the open subset given by

U := {(p+ q,Λ, Y ) ∈W | Λ 6⊂ span(Γ)}. (5.4.42)

One easily checks that with these choices the claim holds.

Let’s finish the proof of the proposition. By Claim (5.25) the fibers of ρ re-
stricted to U have dimension at most 1 in a neighborhood of ρ−1(Y )0; by (5.4.39)
we get that

dim ρ(W ) = dim |I2
Γ(3)|. (5.4.43)

Since ρ is proper and |I2
Γ(3)| is irreducible we get that ρ(W ) = |I2

Γ(3)|, i.e. every
Y ∈ |I2

Γ(3)| contains a plane intersecting span(Γ) in a chord of Γ. Furthermore
the set of such planes has dimension at least 1 because every fiber of ρ|W has
dimension at least 1 by (5.4.39) and because every plane in P5 intersects Γ in a
finite set of points.

Now let Γ ⊂ P5 be a degree-5 rational normal curve. First we will give
an explicit construction of cubic hypersurfaces Y ∈ |I2

Γ(3)| and then we will
prove that every Y ∈ |I2

Γ(3)| is realized by that procedure. Let L → Γ be
“the”degree-1 line-bundle. Given a degree-3 linear system G of dimension 2 on
Γ i.e. G ∈ |L⊗3|∨, we let

YG :=
⋃

p1+p2+p3∈G
p1, p2, p3 (5.4.44)

be the variety swept out by the planes spanned by divisors parametrized by
G - of course if p1 = p2 = p and p3 6= p then p1, p2, p3 := J(TpΓ, p3) and if
p1 = p2 = p3 = p then p1, p2, p3 is the the projective osculating plane to Γ at p.
One easily checks that YG is a hypersurface and that sing(YG) = Γ. Furthermore
YG is a cone with vertex p if and only if p ∈ Γ and G = p+ |L⊗2|; if this is the
case then YG = 〈p, chord(Γp)〉 where Γp ⊂ P(Θp(P5)) is the projection of Γ from
p. Since Γp is a degree-4 rational normal curve chord(Γp) is a cubic 3-fold and
hence we get that deg(YG) = 3 whenever G has a base point. Since deg(YG)
is independent of G we get that YG is a cubic hypersurface for all G ∈ |L⊗3|∨.
Thus we have defined an injection

|L⊗3|∨ ↪→ |I2
Γ(3)|

G 7→ YG
(5.4.45)
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Proposition 5.26. Keep notation as above. The map (5.4.45) is an isomor-
phism.

Proof. Let p ∈ Γ and let Σp ⊂ |I2
Γ(3)| be the linear subspace of cubics which

are cones with vertex p. Let Gp := (p + |L⊗2|) ∈ |L⊗3|∨; a straightforward
argument shows that

Σp = {YGp
}. (5.4.46)

Now let’s prove that
cod(Σp, |I2

Γ(3)|) ≤ 3. (5.4.47)

Let U 3 p be an open affine space containing p; associating to Y ∈ |I2
Γ(3)| an

affine cubic equation of Y ∩ U we may identify H0(I2
Γ(3)) with a sub-vector-

space A ⊂ C[U ]. If Y ∈ |I2
Γ(3)| then Y is singular at p; thus p is a critical point

of φ for all φ ∈ A. Associating to φ ∈ A its Hessian at p we get a linear map

A
H−→ Sym2(Ω1

p(P5))
φ 7→ Hessian of φ at p.

(5.4.48)

Since Σp = P(kerH) it suffices to prove that

dim(ImH) ≤ 3. (5.4.49)

Let Q ∈ P(ImH); we may view Q as a quadric hypersurface in P5 with vertex
at p. Since cubics in |I2

Γ(3)| are singular at all points of Γ the quadric Q is
singular at all points of TpΓ. Moreover Q contains all the lines p, q for q ∈ Γ
because such lines are contained in any Y ∈ |I2

Γ(3)|. Hence projecting Q from
the line TpΓ we get a quadric Q ⊂ P(NTpΓ,P5) containing the degree-3 rational
normal curve Γ obtained projecting Γ from TpΓ. The linear system of quadrics
in P(NTpΓ,P5) ∼= P3 containing Γ has (projective) dimension 2 and hence we
get (5.4.49). This proves (5.4.47). By (5.4.46) we get that dim |I2

Γ(3)| ≤ 3.
Since the map of (5.4.45) is injective and since dim |L⊗3|∨ = 3 we get the
proposition.

Proof of Proposition (5.16) If dim(singY ) = 4 then Y is not reduced
and hence it contains a plane by by Claim (5.10). If dim(singY ) = 3 or
dim(singY ) = 2 then Y contains a plane by Lemma (5.17) and Lemma (5.18)
respectively. Now assume that dim(singY ) = 1. Of course this implies that
Y is reduced and irrreducible. If Y is a cone then Y contains a plane by
Claim (5.12), thus we may suppose that Y is not a cone. Let (singY )1 be the
union of 1-dimensional irreducible components of singY . Let p ∈ (singY )1 be
such that (singY )1 is smooth at p. By Item (2) of Remark (5.11) we get that Sp
is a l.c.i. intersection surface. First suppose that Sp is not reduced or not irre-
ducible. Then Y contains a plane by Claim (5.13). Thus we may suppose that
Sp is a reduced and irreducible surface. It follows that Y satisfies the hypothe-
ses of Proposition (5.19) and hence one of Items (I) - (IV) of Corollary (5.20)
holds. If (I) holds then Y contains a plane by Lemma (5.21). If (II) holds then
Y contains a plane by Lemma (5.22). If (III) holds then Y contains a plane by
Lemma (5.23) and Proposition (5.24). If (IV) holds then by Proposition (5.26)
we have Y = YG for some G ∈ |L⊗3|∨ where YG is defined by (5.4.44). Since
YG is sept out by planes we get that Y contains a plane.
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5.4.3 Proof of Proposition (5.8)

Let Y ⊂ P5 be a cubic hypersurface which contains no planes. We suppose that
Y is singular: we must prove that Items (a), (b) and (c) of Proposition (5.8)
hold. Let’s prove that (a) holds. The hypersurface Y is reduced and irreducible
by Claim (5.10), and it is not a cone by Claim (5.12). Thus Y has quadratic
singularities. Furthermore singY is finite by Proposition (5.16). This proves
that Item (a) of Proposition (5.8) holds. Next we address Item (b).

Proposition 5.27. Let Y ⊂ P5 be a singular cubic hypersurface which does not
contain any plane. Let p ∈ sing(Y ). Then:

(1) The projectivizied tangent cone P(CpY ) is a quadric hypersurface with
dim(singP(CpY )) ≤ 1.

(2) Sp ⊂ P(ΘpY ) is a reduced and irreducible complete intersection of P(CpY )
and a cubic hypersurface.

(3) Sp has isolated hypersurface singularities (embedding dimension 3) - in
particular Sp is normal.

Proof. Let F,G be as in (5.4.12). We know that Y is reduced, irreducible and
it has quadratic singularities; thus by Item (2) of Remark (5.11) we have

Sp = V (F ) ∩ V (G). (5.4.50)

Furthermore by Item (1) of Remark (5.11) we have P(CpY ) = V (F ) - here we
refer to (5.4.13). Let’s prove Item (1). Since degF = 2 we get that P(CpY ) is
a quadric hypersurface. Suppose that dim(singP(CpY )) ≥ 2. Then P(CpY )) is
the union of two hyperplanes in P(ΘpY ) ∼= P4

[X] or a double hyperplane. Thus
by (5.4.50) we get that Sp is the union of two cubic surfaces or a double cubic
surface. In either case Sp contains a line, contradicting Item (4) of Proposi-
tion (5.15). Let’s prove Item (2): Sp is reduced and irreducible by Claim (5.13),
and it is a complete intersection of P(CpY ) and a cubic hypersurface by (5.4.50).
Let’s prove Item (3). First we show that Sp has hypersurface singularities. Let
s ∈ sing(Sp) and suppose that dim(ΘsSp) ≥ 4; since Sp ⊂ P(CpY ) ∼= P4 we
get that dim(ΘsSp) = 4 and hence by Item (2) of Proposition (5.15) the line
corresponding to s is contained in singY . By Lemma (5.21) we get that Y
contains a plane, that is a contradiction. It remains to show that sing(Sp) is
finite. By Item (3) of Proposition (5.15) we have a one-to-one correspondence

sing(Y \ {p}) −→ sing(Sp) \ singP(CpY )
y 7→ ψp(y).

(5.4.51)

By Item (a) of Proposition (5.8) (which we have already proved) singY is finite
and hence we get that |sing(Sp) \ singP(CpY )| <∞. Thus it remains to prove
that

|sing(Sp) ∩ singP(CpY )| <∞. (5.4.52)

By Item (1) we now that singP(CpY ) is either empty or a single point or a line.
If singP(CpY ) is empty or a single point then (5.4.52) holds, so let’s assume
that singP(CpY ) is a line. By Item (4) of Proposition (5.15) the surface Sp does
not contain singP(CpY ) and hence we get that (5.4.52) holds.
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Proposition 5.28. Let Y ⊂ P5 be singular cubic hypersurface which does not
contain planes. Let p ∈ singY . Then Sp has du Val singularities. (This makes
sense because Sp is a reduced normal surface by Proposition (5.27).)

The above proposition will be proved at the end of the present subsubsec-
tion. For the moment we grant the above proposition and we finish the proof
of Proposition (5.8). Let’s prove that Item (b) holds. That Sp is reduced,
irreducible and normal follows from Items (2) and (3) of Proposition (5.27).
Furthermore Sp has duVal singularities by Proposition (5.28). By Items (1), (2)
of Proposition (5.27) we know that Sp is an intersection of a quadric and a cubic
in P4 and hence by simultaneous resolution of du Val singularities it follows that
the minimal desingularization S̃p is a deformation of a smooth intersection of
a quadric and a cubic in P4. Since a smooth intersection of a quadric and a
cubic in P4 is a K3 surface we get that S̃p is a K3. This proves that Item (b) of
Proposition (5.8) holds. In order to prove that Item (c) holds we examine the
relation between Sp and Sq for p, q ∈ singY . By Item (a) of Proposition (5.8)
we know that singY is a finite set: let

k := |singY |, sing(Y ) = {p1, . . . , pk}. (5.4.53)

Suppose that k > 1 and let i 6= j ∈ {1, . . . , k}. Let rij := span(pi, pj); thus
rij ⊂ Y . Let Σij ⊂ Gr(2,P5) be defined by

Σij := {Λ ∈ Gr(2,P5)| Λ ⊃ rij}. (5.4.54)

If Λ ∈ Σij then Y |Λ is an effective divisor because Y does not contain planes
and we have

Y |Λ = rij + cΛ, cΛ ∈ |OΛ(2)|. (5.4.55)

Let Γ0
ij ⊂ Σij be the subset parametrizing planes Λ such that the conic cΛ is

reducible and rij 6⊂ supp(cΛ). Let

Γij ⊂ Gr(2,P5) be the closure of Γ0
ij . (5.4.56)

If Λ ∈ Γ0
ij then pi, pj ∈ supp(cΛ) because Y is singular at pi and pj ; hence there

is a unique decomposition cΛ = `i + `j with pi ∈ `i and pj ∈ `j . Thus we have
regular maps

Γ0
ij

π0
ij−→ Spi

Λ 7→ `i

Γ0
ij

τ0
ij−→ Spj

Λ 7→ `j
(5.4.57)

As is easily verified the above maps extend to regular maps

πij : Γij → Spi , τij : Γij → Spj . (5.4.58)

The fiber of πij over a point of Spi \ {rij} consists of a single point, and the
same holds for the fiber of τij over a point of Spj

\ {rij}. By Item (3) of
Proposition (5.27) both Spi

and Spj
are normal and hence πij and τij define

isomorphisms

(Γij \ π−1
ij (rij))

∼−→ Spi
\ {rij}, (Γij \ τ−1

ij (rij))
∼−→ Spj

\ {rij}. (5.4.59)

In particular πij and τij are birational maps and hence Spi
is birational to Spj

.
Thus the minimal desingularizations S̃pi

and S̃pj
are birational: by Item (b)
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of Proposition (5.8) (already proved modulo Proposition (5.28))both S̃pi
and

S̃pj
are K3 surfaces and hence we get that they are isomorphic. This proves

that Item (c) holds. We are left with the task of proving Proposition (5.28).
The proof will be given after some preliminary results. Let V be a smooth
surface, W a normal surface and ϕ : W → V be a double cover branched over
the effective reduced divisor D ∈ Div(V ). One can get a desingularization Ŵ

of W by constructing an embedded resolution D̂ of D in a suitable blow-up V̂
of V and taking a double cover Ŵ → V̂ branched over D̂ and a suitable sum of
components of the exceptional divisors: from this construction one easily gets
the following criterion.

Condition 5.29. Keep notation as above. Let w ∈W and v := ϕ(w). Suppose
that multv(D) ≤ 3 and moreover that if multv(D) = 3 the strict transform of
D in Blv(V ) intersects the exceptional divisor in at least two distinct points.
Then W has a du Val singularity at w.

Let Y ⊂ P5 be a singular cubic hypersurface which does not contain any
plane. Let k be as in (5.4.53); for 1 ≤ i ≤ k let

Upi
:= Spi

\ {ri1, . . . , ri,i−1, ri,i+1, . . . , rik}. (5.4.60)

Proposition 5.30. Let Y ⊂ P5 be a singular cubic hypersurface which does not
contain planes. Let pi ∈ sing(Y ). Then Upi

is a du Val surface.

Proof. By Proposition (5.15) we know that Upi
is smooth away from sing(P(Cpi

Y ))∩
Spi

. Thus we must prove that Upi
has a du Val singularity at all s ∈ sing(P(Cpi

Y ))∩
Spi . Choose such an s. Let [X0, . . . , X4, Z] be homogeneous coordinates on P5

such that pi = [0, . . . , 0, 1]. Let F,G ∈ C[X0, . . . , X4] be as in (5.4.12); by
Proposition (5.27) Spi

is the complete intersection

Spi = V (F,G) ⊂ P4
[X] = P(ΘpiY ) (5.4.61)

and the cubic V (G) is smooth at s. By Proposition (5.27) the quadric P(CpiY )
has rank at least 3; since V (G) is smooth at s it follows that mults(Spi) = 2.
Let ϕ : S̃pi

→ Spi
be the blow-up of s. Let ωSpi

and ωeSpi
be the dualizing

sheaves of Spi
and S̃pi

respectively; since Spi
is a surface with a hypersurface

singularity of multiplicity 2 at s we have ϕ∗ωSpi

∼= ωeSpi
. Thus it suffices to

prove that
S̃pi has du Val singularities along ϕ−1(s). (5.4.62)

Since P(Cpi
Y ) is singular at s we have P(Cpi

Y ) = J(s,Q) where Q ⊂ P4
[X]

is a quadric surface not containing s. By Item (1) of Proposition (5.27) we
know that Q is either smooth or the cone over a smooth conic. By Item (4)
of Proposition (5.15) we know that Spi

contains no lines and hence projection
from s defines a regular finite map ψ : S̃pi → Q of degree 2. We will write out
explicit formulae for ψ. We may assume that s = [0, 0, 0, 0, 1] and span(Q) =
V (X4). Thus [X0, . . . , X3] are projective coordinates on span(Q); we let P3

[X] =
span(Q). We recall that P(CpiY ) = V (F ); since s = [0, 0, 0, 0, 1] ∈ singV (F )
we have F ∈ C[X0, . . . , X3]2. Since s = [0, 0, 0, 0, 1] ∈ V (G) we have

G = AX2
4 +BX4 + C (5.4.63)
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where A,B,C ∈ C[X0, . . . , X3] are homogeneous of degrees 1, 2, 3 respectively.
We notice that since Spi

contains no lines we have

P3
[X] ⊃ V (F,A,B,C) = ∅. (5.4.64)

Since S̃pi is normal the branch divisor of ψ : S̃pi → Q is the reduced effective
divisor D(ψ) ∈ Div(Q) defined by

D(ψ) = V (F,B2 − 4A · C) ⊂ Q = V (F ) ⊂ P3
[X]. (5.4.65)

Let t ∈ ϕ−1(s) and let [e] = ψ(t). We have

[e] ∈ ψ(π−1(s)) = V (F,A) ⊂ Q ⊂ P3
[X]. (5.4.66)

If B(e) 6= 0 then by (5.4.66) and (5.4.65) we get that [e] /∈ D(ψ). Thus a
neighborhood of t in S̃q is isomorphic to a neighborhood of [e] in Q. Since Q
has du Val singularities we get that S̃q is du Val at t. Thus we may assume
from now on that

B(e) = 0. (5.4.67)

By (5.4.64) we have
C(e) 6= 0. (5.4.68)

We treat separately the two cases:

(α) Q is smooth at [e].

(β) Q is singular at [e].

Assume that Item (α) holds. If V (A) is transverse to Q = V (F ) at [e] then
by (5.4.68) we get that D(ψ) is smooth at [e] and hence S̃q is du Val at t
- actually smooth. If V (A) is tangent to Q at [e] we distinguish two cases:
Q smooth and Q singular - of course if Q is singular then it is singular at a
point different from [e] because we are assuming that Item (α) holds. If Q is
smooth then V (A,F ) is the union of two distinct lines through [e] and we get
from (5.4.68) and (5.4.65) that D(ψ) has a quadratic singularity at [e]: thus S̃q
is du Val at t by Criterion (5.29). If Q is singular then V (A,F ) is a “double
line”supported on ` := span([e], singQ). If V (B) is singular at [e] or if it is
smooth at [e] and transverse to ` then D(ψ) has a quadratic singularity at [e];
thus S̃q is du Val at t by Criterion (5.29). Finally assume that V (B) is smooth
at [e] and that ` is tangent to V (B) at [e]. We notice that

(` · V (B))[e] = 2. (5.4.69)

In fact if this does not hold then ` ⊂ V (B) because V (B) is a quadric and hence
` ∩ V (C) ⊂ V (F,A,B,C); this contradicts (5.4.64). Let [e] = [e0, . . . , e3] and
choose 0 ≤ h ≤ 3 such that eh 6= 0. Let a, b, c ∈ C[P3 \ V (Xh)] be the regular
functions a := A/Xh, b := B/X2

h, c := C/X3
h. From (5.4.69) we get that there

exists an open (in the classical topology) U ⊂ Q containing [e] and analytic
coordinates (x, y) on U centered at [e] such that

I(` ∩ U) = (y), b|U = y + x2. (5.4.70)
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Then a|U = λy2 and c|U = µ with λ, µ ∈ C{x, y} units. Let λ ·µ =
∑
i,j fi,jx

iyj ,
where fi,j ∈ C. Then

(b2−4a·c)|U ≡ (1−4f0,0)y2+2y(x2−2f1,0xy−2f0,1y2) mod (x, y)4. (5.4.71)

If 4f0,0 6= 1 then D(ψ) has a quadratic singularity at [e] and hence S̃pi is du Val
at t by Criterion (5.29). On the other hand if 4f0,0 = 1 then the multiplicity
of D(ψ) at [e] is 3 and the strict transform of D(ψ) under the blow-up of
Q at [e] intersects the exceptional divisor in at least 2 distinct points; thus
Criterion (5.29) applies again and we get that S̃pi is du Val at t. This finishes
the proof of (5.4.62) under the assumption that Item (α) above holds. Now
assume that Item (β) holds, i.e. that Q is a cone with vertex [e] over a smooth
conic. Let ρ : Q̂→ Q be the blow-up of [e] and R be the exceptional divisor of
ρ. Let D̂(ψ) ⊂ Q̂ be the strict transform of D(ψ). Since 0 = A([e]) = B([e])
and C([e]) 6= 0 we get that

ρ∗D(ψ) = D̂(ψ) +R. (5.4.72)

Thus ρ∗D(ψ) is reduced, and there is a unique square-root of O bQ(ρ∗D(ψ)),

namely ρ∗OQ(2); let ν : W → Q̂ be the corresponding normal double cover
with branch divisor ρ∗D(ψ). We have a natural map ζ : W → S̃q which is
an isomorphism outside t and such that ζ−1(t) = ν−1(R). Furthermore the
dualizing sheaf ωW is locally-free because W has hypersurface singularities and
we have

ωW ∼= ζ∗ωeSq
. (5.4.73)

Thus it suffices to prove that W has du Val singularities at all points of ν−1(R).
Since ρ∗D(ψ) is smooth at all points of R \ (suppD̂(ψ)) we get that W is
smooth at points of

(
ϕ−1(R) \ ϕ−1(suppD̂(ψ))

)
. Let V̂ (A,F ) ⊂ Q̂ be the

strict transform of V (A,F ) ⊂ Q; we have

R ∩ (suppD̂(ψ)) = R ∩ V̂ (A,F ). (5.4.74)

Either V (A,F ) consists of two lines `1, `2 or it is a “double line”supported on
a single line `. In the first case R ∩ V̂ (A,F ) consists of two points r1, r2. One
easily checks that ρ∗D(ψ) has a quadratic singularity at r1 and at r2; thus W is
du Val at ν−1(r1), ν−1(r2) by Criterion (5.29). In the second case R ∩ V̂ (A,F )
consists of a single point r: one easily checks that the multiplicity of ρ∗D(ψ) at
r is at most 3 and that if it is equal to 3 then the strict transform of ρ∗D(ψ)
under the blow-up of r intersects the exceptional divisor in 2 distinct points;
thus W is du Val at ν−1(r) by Criterion (5.29).

Now let Σij and Γij be as in (5.4.54) and (5.4.56) respectively. Let πij : Γij →
Spi

be as in (5.4.58.

Proposition 5.31. Let Y ⊂ P5 be a singular cubic hypersurface which does
not contain any plane. Suppose that k := |singY | > 1 and let 1 ≤ i, j ≤ k
with i 6= j. The embedding Γij ↪→ Σij ∼= P3 realizes Γij as a quartic surface.
Furthermore π−1

ij (Upi ∪ {rij}) is an open subset of Γij with du Val singularities.
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Proof. Over Σij we have a tautological family of conics: the conic over Λ is given
by the divisor cΛ appearing in (5.4.55). Thus we have a discriminant divisor
∆ij ⊂ Σij locally defined by the determinant of a symmetric matrix defining the
family of conics; of course Γij ⊂ supp(∆ij). Let’s show that Γij 6= supp(∆ij).
Let

Ωij := {Λ ∈ Σij | Y |Λ = 2rij + `Λ, `Λ ∈ |OΛ(1)|}. (5.4.75)

Clearly Ωij ⊂ supp(∆ij) and

supp(∆ij) = Γij ∪ Ωij . (5.4.76)

A plane Λ ∈ Σij is parametrized by a point of Ωij if and only if it is tangent to
Y at each point of rij , i.e. if Λ is contained in

Lij :=
⋂
y∈rij

ΘyY. (5.4.77)

By hypothesis Y is singular at pi and pj but rij 6⊂ sing(Y ) by Lemma (5.21).
It follows that Lij is a hyperplane and hence Ωij is a plane. Thus Ωij is an
irreducible component of supp(∆ij). We will write out explicit equations for
Ωij and Γij . Let [X0, X1, X2, X3, Z0, Z1] be projective coordinates on P5 such
that

pi = [0, . . . , 0, 1, 0], pj = [0, . . . , 0, 1]. (5.4.78)

Thus rij = V (X0, X1, X2, X3) and we have an obvious identification Σij ∼= P3
[X].

Since rij ⊂ Y we have Y = V (
∑
tAtXt) where At ∈ C[X,Z] is homogeneous

of degree 2. Since Y is singular at pi and pj we have 0 = At(0, . . . , 0, 1, 0) =
At(0, . . . , 0, 1). Thus

At = Bt + CtZ0 +DtZ1 + FtZ0Z1 (5.4.79)

where Bt, Ct, Dt, Ft ∈ C[X] are homogeneous of degrees 2, 1, 1 and 0 respec-
tively. By hypothesis Y does not contain any plane and hence by Lemma (5.21)
the line rij is not contained in singY ; thus

(F0, F1, F2, F3) 6= (0, 0, 0, 0). (5.4.80)

An easy computation gives that

Ωij = V (
∑
t

FtXt). (5.4.81)

Let [X] correspond to the plane Λ ∈ Σij ; a straightforward computation gives
that the conic cΛ appearing in (5.4.55) is defined by the 3×3 symmetric matrix

Mij(X) :=

∑tBtXt

∑
t CtXt

∑
tDtXt∑

t CtXt 0
∑
t FtXt∑

tDtXt

∑
t FtXt 0

 . (5.4.82)

In particular since Y does not contain any plane we get that

V

(∑
t

BtXt,
∑
t

CtXt,
∑
t

DtXt,
∑
t

FtXt

)
= ∅. (5.4.83)
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The divisor ∆ij is defined by

detMij =

(∑
t

FtXt

)
·

∑
t,h

(2CtXtDhXh −BtXtFhXh)

 . (5.4.84)

Let Pij ∈ C[X] be the second factor appearing in the right-hand side of (5.4.84).
It follows from (5.4.81) and (5.4.83) that Pij does not vanish identically on Ωij ;
thus by (5.4.76) the zero-set of Pij is equal to Γij . By Item (2) of Proposi-
tion (5.27) we know that Γij is irreducibile and hence we get that

div(Pij) = mijΓij (5.4.85)

for some positive integer mij . Let

[e] ∈ V (
∑
t

FtXt,
∑
t

CtXt,
∑
t

DtXt). (5.4.86)

Then
Pij(e) = 0,

∂Pij
∂Xs

(e) = −Fs
∑
t

Bt(e)et. (5.4.87)

By (5.4.80) we have Fs 6= 0 for some 0 ≤ s ≤ 3 and by (5.4.83) we have∑
tBt(e)et 6= 0; thus

if (5.4.86) holds then Pij(e) = 0 and ∇Pij(e) 6= 0 . (5.4.88)

This proves that the mij appearing in (5.4.85) is equal to 1; since degPij = 4
we get that Γij is a quartic, defined by the vanishing of Pij . Let’s show that
π−1
ij (Upi

∪ {rij}) is an open subset of Γij with du Val singularities. The subset
(Upi

∪ {rij}) ⊂ Spi
is open, see (5.4.60), and hence π−1

ij (Upi
∪ {rij}) is open.

Next we notice that if Λ ∈ Γij and πij(Λ) = riu with u 6= j then τij(Λ) = rju
and hence

τij
(
π−1
ij (Upi

∪ {rij})
)

= Upj
∪ {rij}. (5.4.89)

Let Λ ∈ π−1
ij (Upi

∪ {rij}). By (5.4.89) one of the following holds:

(1) πij(Λ) ∈ Upi
.

(2) τij(Λ) ∈ Upj
.

(3) Λ ∈ π−1
ij (rij) ∩ τ−1

ij (rij).

Suppose that (1) holds. By (5.4.59) the map πij is a local isomorphism onto
Spi

in a neighborhood of Λ. By Proposition (5.30) we get that Γij is du Val at
Λ. If (2) holds a similar proof gives that Γij is du Val at Λ. Finally suppose
that (3) holds. We claim that

π−1
ij (rij) = V (

∑
t FtXt,

∑
tDtXt), (5.4.90)

τ−1
ij (rij) = V (

∑
t FtXt,

∑
t CtXt). (5.4.91)

In fact let Λ ∈ π−1
ij (rij) and let [X] be its projective coordinates. Since Λ∩Y =

2rij+`Λ where pj ∈ `Λ we have Λ ∈ Ωij and span(pj , [X, 0, 0]) ⊂ P(Cpj
Y ). This
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gives that π−1
ij (rij) consists of those points of the right-hand side of (5.4.90)

which are contained in Γij . Since Γij is the zero-locus of Pij we get that the
right-hand side of (5.4.90) is contained in Γij ; this proves (5.4.90). Exchanging
the rôles of pi and pj we get Equation (5.4.91). From (5.4.90)-(5.4.91) we get
that

π−1
ij (rij) ∩ τ−1

ij (rij) = V (
∑
t

FtXt,
∑
t

CtXt,
∑
t

DtXt). (5.4.92)

By (5.4.88) we get that Γij is smooth at every point of π−1
ij (rij)∩ τ−1

ij (rij).

Proof of Proposition (5.28). By Item (a) of Proposition (5.8) (already
proved) singY is finite; let k := |singY |. We let singY = {p1, . . . , pk}. If k = 1
then Up1 = Sp1 and hence Sp1 has du Val singularities by Proposition (5.30).
Now assume that k > 1 and let 1 ≤ i ≤ k. Then Upi has du Val singularities by
Proposition (5.30). It remains to show that Spi has a du Val singularity at each
rij , where 1 ≤ j ≤ k and j 6= i. Let [X0, X1, X2, X3, Z0, Z1] be homogeneous
coordinates on P5 such that (5.4.78) holds. Projection of Spi

from rij defines an
embedding Blrij

(Spi
) ↪→ P3

[X]; the image of this embedding is Γij and it gives
an identification of πij : Γij → Spi

with the blow-up of rij . In particular since
degSpi = 6 and deg Γij = 4 we get that multrijSpi = 2. On the other hand Spi

has embedding dimension 3 at rij by Item (3) of Proposition (5.27) and hence
we get that

ωΓij
= π∗ij(ωSpi

). (5.4.93)

Let ρij : Γ̃ij → Γij be the minimal desingularization of the singularities belong-
ing to π−1

ij (rij). By Proposition (5.31) we get that Γij has du Val singularities
along π−1

ij (rij) and hence
ωeΓij

= ρ∗ij(ωΓij
). (5.4.94)

The regular map πij ◦ ρij : Γ̃ij → Spi
gives a desingularization of the singular

point rij and by (5.4.93)-(5.4.94) we have

ωeΓij
= (πij ◦ ρij)∗(ωSpi

). (5.4.95)

This proves that Spi
has a du Val singularity at rij .

5.4.4 Proof of Proposition (5.9)

Let Ssmp ⊂ Sp be the smooth locus of Sp. We have a cylinder map

cyl : H2(Ssmp ; Z) → H4(BlSp
P(ΘpY ); Z) (5.4.96)

defined as follows. Let

π : BlSpP(ΘpY ) → P(ΘpY ) (5.4.97)

be the blow-down map. Given a homology class α ∈ H2(Ssmp ; Z) represented
by an oriented closed smooth real surface Σ ⊂ Ssmp the oriented smooth real 4-
fold π−1Σ is in the smooth locus of BlSpP(ΘpY ), hence π−1Σ has a well-defined
Poincaré dual class PD(π−1Σ) ∈ H4(BlSp

P(ΘpY ); Z) independent of the choice
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of representative Σ: we set cyl(α) := PD(π−1Σ). Now let . . . , Ri, . . . be the
irreducible components of the desingularization map S̃p → Sp; thus we have

j : Ssmp ↪→ S̃p, j(Ssmp ) =

(
S̃p \

⋃
i

Ri

)
. (5.4.98)

Since Sp has du Val singularities the map H2(j) is injective and it gives an
identification

H2(Ssmp ) = {α ∈ H2(S̃p; Z)| 〈α,Ri〉 = 0 ∀Ri}, (5.4.99)

where 〈·, ·〉 is the intersection pairing on H2(S̃p; Z). If α ∈ H2(S̃p; Z) is Poincaré
dual to a class in T (S̃p) then α belongs to the right-hand side of (5.4.99). Thus
via Poincaré duality we get an injection

T (S̃p) ↪→ H2(Ssmp ; Z). (5.4.100)

Composing the above inclusion with the cylinder map (5.4.96) and tensoring
with C we get a map

γ̃ : T (S̃p)C −→ H4(BlSp
P(ΘpY )). (5.4.101)

A moment’s thought will convince the reader that the map above is a morphism
of type (1, 1) of Hodge structures. Furthermore for α, β ∈ T (S̃p)C we have∫

BlSp P(ΘpY )

γ̃(α) ∧ γ̃(β) = −
∫

eSp

α ∧ β. (5.4.102)

In fact this follows from a standard computation based on the fact that the
normal bundle of the exceptional divisor of (5.4.97) has degree −1 on a fiber
of the P1-bundle π−1(Sp) → Sp. By Isomorphism (5.4.17) we may replace the
right-hand side of (5.4.101) by H4(BlpY ); thus γ̃ defines a morphism (we do
not change its name) of type (1, 1)

γ̃ : T (S̃p)C −→ H4(BlpY ). (5.4.103)

Let
ρ : BlpY → Y (5.4.104)

be the blow-down map. The exceptional divisor of ρ is the projectivized nor-
mal cone P(CpY ). Composing the map of (5.4.103) with the restriction map
H4(BlpY ) → H4(P(CpY )) we get

T (S̃p)C → H4(P(CpY )). (5.4.105)

We claim that the above map is zero. It suffices to prove triviality of the map

T (S̃p)C → H4(P(CpY ))/W3H
4(P(CpY )) (5.4.106)

obtained by composing (5.4.105) with the quotient map. The right-hand side
of (5.4.106) is a sub Hodge structure of H4 of any desing ularization of P(CpY );
since P(CpY ) is a quadric we get that the right-hand side of (5.4.106) is of pure
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type (2, 2). By (5.4.7) we get that (5.4.106) has a non-zero kernel, and since
T (S̃p)C has no non-trivial rational sub-Hodge structure we get that the kernel
of (5.4.106) is all of T (S̃p)C. Thus (5.4.105) is zero and Im(γ̃) ⊂ ImH4(ρ)
where ρ is the blow-down map (5.4.104). Hence there exists a morphism of type
(1, 1) of Hodge structures

γ̂ : T (S̃p)C −→ H4(Y )/ ker(ρ∗). (5.4.107)

such that γ̃ = H4(ρ) ◦ γ̂. Clearly ker(ρ∗) ⊂ W3H
4(Y ); we let γ be the com-

position of γ̂ with the quotient map H4(Y )/ ker(ρ∗) → GrW4 H4(Y ). This
defines the morphism of Hodge structures (5.4.8). Equation (5.4.9) follows
from (5.4.102).

5.5 (4) of Proposition (4.4) does not hold

The proof is by contradiction. We assume that we have f : X → Y a finite
regular map of degree 4 onto a cubic 4-fold Y ⊂ P5 and we reach a contradiction.
Since f is regular Y = Y0 and hence Y does not contain planes by Item (1) of
Corollary (4.2). By Propositions (5.8) either Y is smooth or else it is singular
and Items (a), (b) and (c) of Proposition (5.8) hold. Suppose first that the
latter holds. By Proposition (5.9) we have the morphism of type (1, 1) of Hodge
structures γ of (5.4.8). Composing γ with f∗ we get a morphism of type (1, 1)
of Hodge structures

T (S̃p)C
f∗◦γ−→ H4(X). (5.5.1)

Let η, θ ∈ T (S̃p)C; by (5.4.9) we have∫
X

f∗γ(η) ∧ f∗γ(θ) = −4
∫

eSp

η ∧ θ. (5.5.2)

Since the restriction to T (S̃p)C of the intersection form on H2(S̃p) is non-
degenerate we get that f∗◦γ is injective. Thus Im(f∗◦γ) is a rational Hodge sub-
structure of H4(X) with Hodge numbers hp,q = hp−1,q−1(T (S̃p)C). By (5.4.7)
this contradicts Item (4) of Proposition (3.2). Now suppose that Y is smooth.
Since deg f = 4 we have

〈f∗α, f∗β〉X = 4〈α, β〉Y , α, β ∈ H4(Y ) (5.5.3)

where 〈, 〉X and 〈, 〉Y are the intersection forms on H4(X) and H4(Y ) respec-
tively. Thus f∗ : H4(Y ) → H4(X) is an injection of rational Hodge structures.
Let

H4(Y )prim := {α ∈ H4(Y )| α ∧ c1(OY (1)) = 0} (5.5.4)

be the primitive cohomology of Y : this a rational sub Hodge structure of
H4(Y ). Since dimH4(Y )prim = 22 Item (4) of Proposition (3.2) gives that
f∗H4(Y )prim = Ch⊗ h⊥. Thus

f∗H4(Y ; Q)prim = Qh⊗ h⊥Q (5.5.5)

where h⊥Q := h⊥∩H2(X; Q). Let B = {α1, . . . , α22} be a Z-basis ofH4(Y ; Z)prim.
Let QB be the matrix of the restriction of 〈, 〉Y to H4(Y ; Z)prim in the basis B.
Since 〈, 〉Y is unimodular and deg Y = 3 we have

|det(QB)| = 3. (5.5.6)
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Let B′ := {f∗α1, . . . , f
∗α22}; by (5.5.5) we know that B′ is a Q-basis of Qh⊗h⊥Q .

Let QB′ be the matrix of the restriction of 〈, 〉X to Qh⊗ h⊥Q in the basis B′; by
(5.5.6)-(5.5.3) we have

|det(QB′)| = 3 · 244. (5.5.7)

Now let {β1, . . . , β22} be a Z-basis of h⊥Z := H2(X; Z) ∩ h⊥; then B′′ :=
{hβ1, . . . , hβ22} is a Q-basis of Qh ⊗ h⊥Q . Let QB′′ be the matrix of the re-
striction of 〈, 〉X to Qh ⊗ h⊥Q in the basis B′′. By Remark (2.1) one gets (use
also Lemma (3.4)) that

|det(QB′′)| = 224. (5.5.8)

Since both B′ and B′′ are Q-bases of Qh ⊗ h⊥Q the determinants appearing in
Equations (5.5.7)-(5.5.8) must represent the same class in Q∗/(Q∗)2. This is
visibly false, contradiction.

5.5.1 Comment

The following is an example of X a numerical (K3)[2] and H a big and nef
divisor on X with (c1(H), c1(H)) = 2 such that f : X → |H|∨ is a regular
double covering of a cubic hypersurface - we do not know of any such example
withH ample. Let V be a 3-dimensional complex vector space and π : S → P(V )
be a double covering ramified over a smooth sextic curve; thus S is a K3 surface.
Let X := S[2] and let f be the composition

S[2] → S(2) → P(V )(2) ↪→ P(Sym2V ) ∼= P5. (5.5.9)

The image of P(V )(2) ↪→ P(Sym2V ) is the discriminant cubic hypersurface;
since f has degree 4 onto its image we get that

∫
X
c1(H)4 = 12 and hence

(c1(H), c1(H)) = 2 by (2.1.4). The divisor H is big and nef and f can be
identified with the natural map f : X → |H|∨: thus f has the stated properties.

5.6 (5) of Proposition (4.4) does not hold

In Subsubsection (5.6.1) we will prove the following result.

Proposition 5.32. Let Y ⊂ P5 be a quartic hypersurface such that dim(singY ) ≥
3. Then Y contains a plane.

Granting the above proposition let’s prove that Item (5) of Proposition (4.4)
does not hold. We argue by contradiction. Assume that we have f : X →
Y regular of degree 3 onto a quartic hypersurface Y ⊂ P5. By Item (1) of
Corollary (4.2) and Proposition (5.32) we get that dim(singY ) ≤ 2. Let R ∈
Div(X) be the ramification divisor of f . Applying the adjunction formula to

Y sm := (Y \ singY ) and Hurwitz’ formula to f−1(Y sm)
f→ Y sm we get that

R ∈ |OX(2H)|. (5.6.1)

By applying (4.0.1) we get that

h0(OX(2H)) = 21 = h0(OY (2)). (5.6.2)

Thus the pull-back map f∗ : H0(OY (2)) → H0(OX(2H)) is an isomorphism and
from (5.6.1) we get that there exists an effective Cartier divisor D ∈ Div(Y )
such that f∗D = R. Comparing the orders of vanishing of f∗D and R at a
prime component of R we get a contradiction.
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5.6.1 Proof of Proposition (5.32)

If Y is not reduced or not irreducible then there is an irreducible component
of Y of degree at most 2 and the result follows immediately. Thus we may
assume that Y is irreducible and reduced. Let V be an irreducible component of
singY ; intersecting Y with a generic plane we get that deg V ≤ 3. If deg V = 1
there is nothing to prove. Assume that deg V = 2. If V is singular then V
contains planes and we are done. Thus we may assume that V is smooth. Let
L := span(V ). Then L ∼= P4 and V is a quadric hypersurface in L. Since Y is
irreducible of degree 4 we have the cycle-theoretic intersection

Y · L = 2V. (5.6.3)

We claim that there exists a complete intersection of two quadrics

Ỹ = Q1 ∩Q2 ⊂ P6 (5.6.4)

such that Y is isomorphic to the projection of Ỹ from a point outside Ỹ . In fact
let IV ⊂ OP5 be the ideal sheaf of (the reduced) V . The linear system |IV (2)|
has dimension 6. The rational map

ϕ : P5 99K |IV (2)|∨ ∼= P6 (5.6.5)

is the composition of the blow-up of V and contraction of the strict transform of
L to a point, call it p. The image of ϕ is a smooth quadric Q1 ⊂ P6. The inverse
of P5 99K Q1 is projection from p. The image (strict transform) of Y under ϕ
is a codimension-1 subset Ỹ ⊂ Q1 which does not intersect p - use (5.6.3) to
get this last statement. Thus deg Ỹ = deg Y = 4 and hence there exists a
quadric Q2 ⊂ P6 such that (5.6.4) holds. By a theorem of Debarre-Manivel [5]
we get that Ỹ contains a plane Λ. Since projection from p will map Λ to a
plane in Y we are done. Finally assume that deg V = 3. The variety is non-
degenerate: in fact if dim(span(V )) = 4 then span(V ) ⊂ Y contradiction. Since
V is non-degenerate of degree 3 we get that V is smooth and linearly normal;
as is well-known [15] it follows that V is the Segre 3-fold i.e. P1 × P2 embedded
by OP1(1) �OP2(1). Since the Segre 3-fold contains planes we are done.
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