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Chapter 1

Complex manifolds

1.1 Holomorphic functions

Let U < C™ be an open subset, and f: U — C be a function. Identifying
C™ with R?”, and C with R?, we may view f as a function from the open
U < R?™ to R?, and hence it makes sense to state that f is, or is not,
differentiable at a € U.

Definition 1.1.1. Let U < C™ be an open subset. A function f: U — C is
holomorphic if, for each a € U, it is differentiable at a, and the differential
df (a): C* — C is complex linear, i.e. there exists a complex linear function
L: C" — C such that

L@+ h) = fa) = L))
= Inl

Remark 1.1.2. With notation as in Definition 1.1.1, the linear function L
is identified with the differential df (a) via the standard identifications of C™
and C with R?” and R? respectively.

Let Homp(C™,C) be the real vector space of R-linear maps C" — C.
Then Hompg(C",C) contains the subspace Homc(C",C) of C-linear maps
C™ — C, and the subspace Hom¢(C", C) of C-conjugate linear maps C* —
C, i.e. homomorphism f: C" — C of additive groups such that f(\v) =
Af(v) for A € C and v € C" (equivalently, such that v — f(v) is C-linear).
We have a direct sum of real vector spaces

Homg (C", C) = Home(C", C) @ Homc(C", C). (1.1.1)

=0.

Thus, a function f: U — C is holomorphic if and only if its differential at
each point of U belongs to the direct summand Homg(C", C) of the above

5
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decomposition. A differentiable function f: U — C is antiholomorphic if
df (a) € Homg(C™,C) for all a € U.

We rewrite the decomposition in (1.1.1) as follows. First notive that we
have a natural isomorphism

HomR(C”, R) ®R C = HOHIR(C”, (C)
f®A = (v Af(v)

Remark 1.1.3. Let f: U — C be differentiable, and write f = u + iv, where
u, v are real functions. For a € U, the decomposition df (a) = du(a) + idv(a)
illustrates (1.1.2), by rewriting it as df (a) = du(a) + dv(a) ®i.

Thus, letting

(1.1.2)

QL) := Home(C™,C), Q%Y(U) := Home(C", C), (1.1.3)
(as above, U < C™ is open) we may rewrite (1.1.1) as
T.(U)* ® C = QL0(U) @ Q2L(U). (1.1.4)
Complez bases of Q3 (U) and QU (U) are respectively
{dz1(a),...,dzn(a)}, {dzi(a),...,dzn(a)} (1.1.5)
Next, let
0/0z1(a),...,0/0zn(a),0/0Z1(a),...,0/0Zy(a) € To(C") ®C (1.1.6)

be defined by the conditions

<aij(a),dzk(a)> = b (1.1.7)
(@ da@ ) = (G(@nza) ) = (1.18)
<aij(a),dzk(a)> = 5y (1.1.9)

With the above notation, a differentiable function f: U — C is holomorphic
if and only if
0f(a)

~—— =0 Vke{l,...,n}, YaeU. (1.1.10)
0Zk

Informally: f is holomorphic if it depends on the z;’s, but not on the z;’s.
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Ezample 1.1.4. Let f: C" — C be a polynomial function of the z;’s and
Zi’S, l.e.

fe) = > exz’Z, (1.1.11)
|7|+|K|<d
where J = (j1,...,Jn) and K = (k1,..., k) are multindices. Then
a;f (2) = Z ey k2’270, (1.1.12)
0% ’
JK
ks>1

where {e1,...,e,} is the standard basis of R™. It follows that f is holo-

morphic if and only ¢, = 0 for all K + (0,...,0).
Remark 1.1.5. Let f: U — C be a holomorphic function of one variable,
i.e. U is an open subset of C. For a € U we let f'(a) := %(za).

Ezample 1.1.6. Let R > 0. Let f: B(0, R) — C be defined by an absolutely
convergent series

fz) =D ema™, (1.1.13)
m=0

i.e. the right hand side is absolutely convergent for every z € B(0, R). We
claim that f is holomorphic, and that

Fl(z) = Y (m+ Demaz™ (1.1.14)
m=0

In fact, given 0 < p < R, there exists M (p) > 0 such that
lem|p™ < M(p) VYm, (1.1.15)

because the right hand side of (1.1.13) is absolute convergent for every z
such that |z| = p. It follows that the right hand side of (1.1.14) is absolutely
convergent for |z| < R. Moreover, for |z| < R we have

F&)=f(z0) = 35 enl(z0+(z=20))"~2") = D] em (Z <m> <z_zo>jza”‘j> _

J

m=0 =1 j=1

m

0

= (2 — 29) <Z (m+ 1)cm+1zgq’> + (2 — 20)%0(2), (1.1.16)
m=0

where ¢(z) is uniformly bounded on B(zo, €) for ¢ < (R—|z0|), (use (1.1.15)).

Hence

%(ZO) = 0.

== (20) = Z (m + 1)emi120" g

m=0

The claim follows because zj is an arbitrary point of B(0, R).
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Writing out (1.1.10) in real coordinates, one gets the Cauchy-Riemann
equations. More precisely, let z; = x; + iy;, where x;,y; are the real co-
ordinate functions. Then (1.1.7), (1.1.8), and (1.1.9) are equivalent to

o VN AT
=3 (0 -ig@). - (i)

(1.1.17)
In particular, we may rewrite (1.1.10) as
of of .
— =Y 1,...,n}.
aiL‘j ié’yj J € { ’ ’n}

Letting f(z) = u(z) +1iv(z), where u(z), v(z) are the real and the imaginary
part of f(z) respectively, we get that f: U — C is holomorphic if and only
if it is differentiable and for all j € {1,...,n} the following Cauchy-Riemann
equations hold on U:

ou ov

ou ov

1.2 Holomorphic maps

Definition 1.2.1. Let U < C™ be an open subset. A map f: U — C™ is
holomorphic if, for each a € U, it is differentiable at a, and the differential
df(a): C* — C™ is complez linear.

Write f = (f1,..., fm); then f is holomorphic if and only if each of its
component functions fj: U — C is holomorphic. This holds because an
R-linear map V' — W @ Ws, where V, Wi, Wy are complex vector spaces is
C-linear if and only if each of the maps V' — W; obtained by composing
with the projections (W; @ Ws) — W; is C-linear.

Theorem 1.2.2. Let U < C" be a non empty open subset.

1. The set of holomorphic functions f: U — C with pointwise addition
and multiplication is a ring, with unit the constant function 1. If
f: U — C is holomorphic and nowhere zero, then 1/f(z) is holo-
morphic.
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2. Let U < C" and W < C™ be open subsets. Let f: U — W and
g: W — CF be holomorphic (f holomorphic means that it is holo-
morphic when viewed as a map U — C"). Then the composition
go f: U — CF is holomorphic.

3. Holomorphic Inverse Function Theorem: Let U < C" be open, and let
f: U — C™ be holomorphic. Let a € U, and assume that df (a): C* —
C"™ is invertible. Then f is a local diffeomorophism at a, with holo-
morphic local inverse.

4. Holomorphic Implicit Function Theorem: Let U < C™ be open, and
let f: U — C* be holomorphic, with components fi,..., fp. Write
elements of C" as (z,w), where z € C"* w e CF. Let (a,b) € U.

_ ; M)
Suppose that f(a,b) = 0, and that the k x k matriz ( )<y nek

is non degenerate. Then there exist open (non empty) balls B(a, R)
C"*, B(b,r) = C* and a holomorhic function o: B(a,R) — B(b,r)
such that B(a, R) x B(b,r) < U and

{(z,w) € B(a, R) x B(b,r) | f(z,w) = 0} = {(z,9(2)) | = € B(a, R)}.

Proof. All the statements above follow from corresponding results on differ-
entiable maps. As an example, assume that f: U — C is holomorphic and
nowhere zero. Let u,v: U — C be the real and imaginary parts of f. Then

1 U L
= —q .
f(z)  wu?+0? u? + v?

Thus 1/f is differentiable. Since
of

o (1\__ 7
%(f)z_ﬂ -0

1/f is holomorphic. O

1.3 Complex valued differential forms

Definition 1.3.1. Let U < C" be open. A complex valued m form w on U
is a section of (A" T(U)*) ®g C (the complexified m-th exterior power of
the cotangent bundle of U), i.e. w = a + i, where a, 3 are real m forms
on U. We say that w is continuous, differentiable or C! if each of «, 8 is
respectively continuous, differentiable or C*.
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We recall that the complexified cotangent space of an open U < C™ at a
point a has a direct sum decomposition with addends the complex vectior
subspaces Q4 (U) and Q9 (U). There is a similar decomposition of the fiber

of (A" T(U)*)®r C at a.

Definition 1.3.2. Let QF%(U) be the complex subspace of (A" T'(U)*)®rC
spanned by alle elements of the form df; (a) A...Adfp(a) Adgi(a)A...Adgq(a),
where fi,..., f, are holomorphic defined in an open neighborhood of a, and
g1, ---,9gq are antiholomorphic defined in an open neighborhood of a.

For multindices J = (j1,...,Jp) and K = (k1,...,kq), let
dzj(a) :=dzj (a)n...Adzj,(a), dZk(a):=dzy (a)A.. AdZg,(a). (1.3.1)

A complex basis of Q54 (U) is provided by all dz;(a) A dzj(a), where the
multiindices J, K have p and q entries respectively.
We have a direct sum decomposition

/\T HRC= @ Q2IU). (1.3.2)

ptq=m

Hence a complex valued m form on U can be written uniquely as

w = Z (A.}[,JdZ[ A df], wr,Jg- U— (C, (1.3.3)
[I|+|J|=m

and w is continuous, differentiable or C* if and only if each of wr,j is re-
spectively continuous, differentiable or C¥.

Definition 1.3.3. A differential form w on an open U < C" is of type (p, q)
if w(a) e QPY(C™) for alla e U.

Let U < C" be open. For a differentiable complex valued m form w =
u~+1iv, where u, v are the real and imaginary parts of w, we let dw = du+1idv.
It is convenient to split dw according to the decomposition in (1.3.2). For a
differentiable function f: U — C, we let

o
of = Z | 32, —dz;, = ;;1 a—zkdzk. (1.3.4)
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We extend 0 and 0 to linear operators on differential forms by imposing
Leibiniz rule. Thus

ow
0( Z U)LJdZ[ A d?J) = Z LJde Adzr A d?J(l.3.5)
2k
[]+]J[=m H]+]J]=m
ke{l,...,n}
- Ow
5( Z WLJCZZI A dZ]) = Z f’dek Adzr A d?](1.3.6)
<k
[]+]J]=m H]+]J]=m
ke{l,...,n}

A straighforward computation shows that
d=0+0. (1.3.7)
Since d o d = 0, it follows that
00d=0, 0od=0, 0od+000=0. (1.3.8)

In fact, it suffices to prove that the above operators are zero on a (p, ¢) form
w. We have

0=dod(w)=000(w)+ (000 + 0dod)(w)+ 0o d(w). (1.3.9)

Since do d(w) is of type (p +2,q), (0004 000)(w)is of type (p+1,q+1),
and 0o d(w) is of type (p,q + 2), it follows that each vanishes.

1.4 Cauchy’s integral formula

Definition 1.4.1. Let U < C” be open, and let w be a continuous complex
valued 1 form on U. Write w = a + i3, where «, 8 are (real) 1 forms on U.
Given a piecewise C'! parametrized path v: [a,b] — U, we let

Lw:LaHLB:va*(a)Jriva*(ﬂ)-

(Since v is piecewise C!, v*(a) and v*() make sense over each closed in-
terval over which ~ is differentiable, and they are continuous 1 forms, hence
they have finite integrals.)

Remark 1.4.2. With notation as in Definition 1.4.1, the integral of w does
not change if we reparametrize vy by a non decreasing differentiable function
[e,d] — [a,b] (by the change of variables formula). Thus we may speak of
the integral of w over an oriented path in U.
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Remark 1.4.3. Complex valued differential forms make sense on any open of
R? (but of course dz; and dz; make sense only on C"), and one may define
differentiation and pull-back as above, by reducing to the real and imaginary
parts. In Definition 1.4.1 we could have defined Sﬁ/w to be SZ v*(w).

Definition 1.4.4. Given a € C and R > 0 we let I';(R) be the path
Lu(R)

[0, 27] C
0 — a+ Rexp(if)
Ezample 1.4.5. We have
d
f © _ omi.
z—a
La(R)

In fact
= id#.

dz Riedp
I, (R)* _ e
(R) ( ) e

(see Remark 1.4.3) and the result follows.

The following integral representation is the beginning of complex analyis
in one variable.

Theorem 1.4.6 (Cauchy’s integral formula). Let f: U — C be a holo-

morphic function, where U < C is open. Suppose that the closed disk B(a, R)
is contained in U. Then, for all z € B(a, R) we have

f&%aif J(t)dt (1.4.1)

211 t—z
T'a(R)

Z—a

We prove Cauchy’s integral formula after a few preliminaries.

Key Observation 1.4.7. Let U < C be open, and f: U — C differentiable.

Then of of of

d(f(z)dz) = adz A dz + %dz Adz = gdz A dz.
In particular f is holomorphic if and only if the (differentiable) 1 form
f(2)dz is closed.

Theorem 1.4.8 (Cauchy-Goursat). Let U < C be open, and f: U — C be
holomorphic. Let R — U be compact, with piecewise C* boundary OR, with
orientation induced by the standard orientation' of C* = R*™. Then

jfwzo. (1.4.2)
oR

1t zj = xj + 1y;, the orientation is given by dx1 A dyr A ... A dxn A dyn.
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Proof. If one assumes that f is C'!, then Stokes’ Theorem applies to f(z)dz
and the Theorem follows from the Key Observation 1.4.7. For the beau-
tiful proof (by Goursat) valid without the assumption that f is C!, see

Ahlfors [?]. O
Proof of Cauchy’s integral formula. By Example 1.4.5, it suffices to prove
that
t) —
= (1.43)
t—z
Cu(R)

Let ¢ be a very small (strictly) positive number. By applying Proposition
1.4.8 to the region between the circles described by I',(d) and T'x(R), we

get that
[ 0=t [ S0t
t— 2z T, (5)
La(R)

t—=z

On the other hand, § f’(a)dt = 0 because f’(a)dt = d(f'(a)t) is an exact
I'.(9)
differential, and hence

f ﬂw—ﬂdﬁ:f fO=FE=FE-t=2)y (4
: t—=z I.(8) . N

t—=z
Tu(R

Since f is differentiable at a, with derivative f’(a), the integrand in the right
hand side of (1.4.4) has absolute bounded above, say by M > 0. It follows
that the integral in the right hand side of (1.4.4) has absolute bounded
above by 2rd M. Since § is arbitrarily small, it follows that integral in the
left hand side of (1.4.4) is zero. O

Corollary 1.4.9. Let f: U — C be a holomorphic function, where U < C
1s open. Then [ is C™, and the derivatives of any order are holomorphic.
Suppose that the closed disk B(a, R) is contained in U. Then for z € B(a, R)

we have ' At
FM () = % f (tf_(z))nH (1.4.5)
La(R)

Proof. If the closed disk B(a, R) is contained in U, then (1.5.4) holds for
n = 0 by Cauchy’s integral formula. By differentiation under the integral
sign (this has to be justified, we leave details to the reader) and induction
on n, we get the corollary. O
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1.5 Holomorphic functions are analytic

Definition 1.5.1. Let U < C” be an open subset. A function f: U — C
is analytic if, for each a € U there exist an open ball B(a,R) < U and an
absolutely convergent power series in B(a, R)

Z em(z —a)™, (1.5.1)

meN”

where ¢, is a complex number and (z — a)™ = (21 —a1)™ -+ (2, — ap)™,
whose sum is equal to f(z) for all z € B(a,r).

Example 1.1.6 shows that analytic functions of one variable are holo-
morphic. The same is true of analytic functions of several complex variables.
What is surprising is that the converse holds, i.e. holomorphic functions are
analytic that is the main result of the present subsection.

Let a € C" and let (Ry,...,R,) € R%. Let

B(a1, Ry) x - xB(an,Rn)L(C

be a continuous function. Let 0 <r; < R; for i € {1,...,n}. We let
f fA)ydti A ndt, J . ( ft)dty A - A dty, )
(ti—21) - (tn — 2n) P\t —2) o (ta—2))
Loy (r1)x--xTap (rn) [0,27]™
(1.5.2)
where ¢ : =Ty, (r1) x ... x Iy, (1), i.e.
[0,27]" % cr

(01,...,60n) — (a1 +riexp(ibh),...,an + rpexp(if;))

(Continuity of f guarantees that the integral in the right hand side of (1.5.2)
is defined.)

Proposition 1.5.2. Let a € C" and let (Ry,...,R,) € R".. Suppose that

B (a1, Ry) x -+ x B(ap, Ry) i>(CE
is a continuous function which is holomorphic in each variable separately.
Let 0 <r; < R; forie{l,...,n}. Then
1 H,y ooty dt Ao A dEy,
f2) = = f flh s t)dtincee o (1.5.3)

(2mi)" (ty—21) - - - (tn — 2n)
Loy (r1) % xTap (1n)

for all z € B (a1, Ry) x -+ x B (an, Ry)
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Proof. By induction on n. For n =1 (1.5.3) is Cauchy’s formula, i.e. The-
orem 1.4.6. Let’s prove the inductive step. Let n > 2. By Fubini’s theorem
the right-hand side of (1.5.3) is equal to

L f 1 J f(tl,...,tn>dt1/\-~~dtn_1 dty,
27 (2mi)" (tr—21) - (b1 — 2n—1) | tn— 20
TCa,, (rn) Taq (7’1)><---><I‘an71 (rn—1)

By the inductive hypothesis the above integral is equal to

1 f f(z1,. s 2n_1,tn) dty

21 tn — 2n ’

Fan (r’ﬂ)

and the proposition follows from Cauchy’s integral formula O

Arguing as in the proof of Corollary 1.4.9, we get the following result.

Corollary 1.5.3. Let f: U — C be a holomorphic function, where U <
C"™ is open. Then [ is C®, and the partial derivatives of any order are
holomorphic. Suppose that the closure of B (a1, R1) X -+ x B(an, Ry) is
contained in U. Then for z € B (a1, R1) X -+ x B (an, Ry) we have

Rt thnf(z) Rl k! J Fte, .. tn)dty - dty
o ok 2mi t— )t (4, — )T
“ ‘ Taq (r1)x--xTay, (rn) ( ! Zl) ( & )
(1.5.4)

Theorem 1.5.4. Let U < C" be open and f: U — C. The following
conditions on [ are equivalent:

1. f is holomorphic.

2. f is a continuous function, and is holomorphic in each variable separ-
ately.

8. f is analytic.

Proof. (1) = (2): immediate from the definitions. (2) = (3): by Pro-
position 1.5.2 and the geometric series expansion

1 1 1 1 2k — ag (2 — ak)Q

. = _ * _ == . _ 2 . 3 ce ey
th—zr  th—ap 1—3=0 fe—ap (te—ak)? (e —ag)
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we get that for z € By, (r1) X ... X By, (1)

f(z) = 2 Chyoondin (21 — al)kl oo (zn — an)k”, (1.5.5)
keN™
where
1 f)ydty A -+ A dty,
- 1.5.
Ck1,....kn 2 (tl o Zl)]f1+1 . (tn o Zn)kn+1 ( 5 6)

Fal(rl)xmxf‘an(rn)

(3) = (1): Since f is analytic, it is a continuous function, and it is ana-
lytic in each variable separately. By Example 1.1.6, it follows that f is
holomorphic in each variable separately. By Proposition 1.5.2 it follows
that f is holomorphic (differentiation under the inegral sign). O

Corollary 1.5.5. Let U < C" be open and f: U — C be holomorphic. Let
a € U, and let (according to Theorem 1.5.4) be an expansion in power
series of f around a

f(z) = Z em(z—a)™, zeB(a,R)cU.

meN”"
Then okt +k ( )
1T nf a
R O T 1.5.7
P oy e GRS (157)
Proof. Follows from Corollary 1.5.3 and (1.5.6). O

The following result is in stark contrast with what happens for C* func-
tions.

Proposition 1.5.6 (Principle of analytic continuation). Let U < C™ be
open and connected. If f,g: U — C are holomorphic, and are equal on a
non empty open V < U, then they are equal on all of U.

Proof. Since the difference of two holomorphic functions is holomorphic, it
suffices to prove that if a holomorphic function is zero on a non empty open
V < U, then it is zero on all of U. Let D < U be the subset of z such that
all partial derivetives of f in z vanish. Then D is closed because it is the
intersection of the closed subsets of points where a specific partial derivative
vanishes. In addition D is non empty because it contains Y. Since U is
connected, it suffices to show that U is also open. If a € D, then f vanishes
in a neighborhood of a by Corollary 1.5.5, and hence D contains an open
neighborhood of a. Thus D is open. O
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1.6 Complex manifolds

Let X be a topological manifold. A holomorphic atlas on X is a family
{(Uk, ¥k)}kek , where

1. {Uk}rek is an open covering of X,
2. ¢p: U, — V} is a homeomorphism between U, and an open V;, = C?,

3. and for each k, h € K, the transition function ¢ (Up nUy) — @ (Up N
Uy) is holomorphic (this makes sense because domain and codomain
are open subsets of C").

Remark 1.6.1. If {(Uk, ¢x)}rex is a holomorphic atlas on X, we say that
(Uk, pr) are the charts of the atlas. Each chart determines holomorphic
coordinates (z1 0@k, ..., zn 0 @k) on Ug. It is often convenient to identify Uy
with its image ¢k (Uyx) < C", and to denote the associated coordinates by
(Zl, ce ,Zn).

Two holomorphic atlases on X are compatible if the union is a holomorphic
atlas. The relation of compatibility is an equivalence relation.

Definition 1.6.2. A complex manifold is an equivalence class of holo-
morphic atlases for the relation of compatibility. If the charts take values in
C"™, the dimension of X is n.

Let U < C™ be open. The atlas on U defined by the identity map U — U
determines an equivalence class of holomorphic atlases on U, and hence gives
U the structure of a complex manifold. Below are non trivial (i.e. not zero
dimensional) examples of compact complex manifolds.

Ezample 1.6.3. Let P" be complex projective space, with atlas {(P?,, f;) }o<i<n,
where [P is the open subset of points whose Z; homogeneous coordinate is
non zero, and

Py I cr
Zi—1 Z;
[Z] - (&,..., 5558

The above atlas is holomorphic, hence it provides P" a structure of complex
manifold. From now on P" denotes the above complex manifold. More
generally the complex Grassmannian Gr(d,n) of complex vector subspaces
V < C” of dimension d has the following holomorphic atlas. First, given a
multiindex J = (j1,...,jq), where 1 < j; < ... <jg<n,letV(Z;,...,Z;,)
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be the kernel of the linear map C"* — C¢ defined by Z — (Zj,,...,Z;,). Let
Gr(d,n); < Gr(d,n) be the open subset defined by
Gr(d,n)y = {WeGr(d,n) | WnV(Z,...,2Z;) ={0}.

A d dimensional subspace W < C" belongs to Gr(d, n); if and only if it has

a basis {v1,...,v4} given by the rows of a matrix
S R IS T e R WS B U WS R UGN Wes |
220 - Z25-1 0z zge-1 o zgerr 0 0 2
Zan oo Zdji-1 0 Zagier o Zage—1 0 Zager o b Zageen

We let f;: Gr(d,n); — C4"=9 be the map associating to W the entries
Zy, j above. The atlas {(Gr(d,n) s, f;)} is homolorphic, and it gives Gr(d,n)
a structure of complex manifold of dimension d(n — d).

Definition 1.6.4. Let X and Y be complex manifolds. A continuous
map f: X — Y is holomorphic if, for any atlases {(Uk, ¢i)}kex of X and
{(Wh,vn)}her of Y, the following holds. Let (k,h) € K x H; then the map

ou(Up 0 f7H W) — cr
z = Un(f(er ' (2)))

is holomorphic (this makes sense because the domain is an open subset of a

c).

(1.6.1)

If the maps in (1.6.1) are holomorphic for one choice of atlas for X, then
they are holomorphic for any other choice of compatible atlas. Similarly,
if the maps in (1.6.1) are holomorphic for one choice of atlas for Y, they
remain holomorphic for a compatible atlas of Y. Thus, in order to check
whether a given continuous function is holomorphic, it suffices to check that
the maps in (1.6.1) are holomorphic for one choice of atlas for X and one
choice of atlas for Y.

In particular, if U < C" is open, the two definitions of a holomorphic
map f: U — C™, ie. Definition 1.2.1 and Definition 1.6.5, coincide.
We notice that the identity map Idx: X — X is holomorphic, and that the
composition of holomorphic maps f: X — Y and ¢g: Y — Z is holomorphic.

Definition 1.6.5. Let X and Y be complex manifolds. A holomorphic
map f: X — Y is an isomorphism if it has a holomorphic inverse, i.e. a
holomorphic map ¢g: Y — X such that go f = Idx and fog = Idy. An
automorphism of X is an isomorphism between X and itself.

Z1,n
22.n

Zd,n
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The set of automorphisms of X with operation given by composition is
a group that we denote by Aut(X).

Definition 1.6.6. Let X, Y be two complex manifolds, with holomorphic
atlases {(Uj, f;)}jes and {(Vi, gr)}kex respectively. Then {(U; x Vi, fj %
9k)}(j,k)esx K 18 a holomorphic atlas of the topological manifold X x Y. Re-
placing {(Uj, fj)}jes and {(Vk, gk)}rer by compatible holomorphic atlases,
we get a holomorphic atlas compatible with {(U; x Vi, fj X gk)}(jk)esx k-
Hence X x Y has a complex structure induced by those of X and Y.

From now on X xY denotes the complex manifold defined in Definition
1.6.6. The projections X x Y — X and X x Y — Y are holomorphic,
because in local coordinates they are given by the projection the first (or last)
coordinates. Moreover X x Y is the product of X and Y in the category of
complex manifolds, i.e. given a complex manifold W and holomorphic maps
f: W — X and g: W — Y, there is a unique holomorphic map W — X xY
which composed with the two projections X xY — X and X xY —» Y
gives back f and g.

A complex manifold determines an underlying C* manifold, because
a holomorphic atlas is also a C® atlas, and a holomorphic map between
complex manifolds is a C® map of the underlying C* manifolds. One
distinctive feature of the C'° manifolds underlying holomorphic manifolds
(beyond having even dimension) is that they are oreintable.

Proposition 1.6.7. The C* manifold underlying a complex manifold is
orientable.

Proof. Let X be a complex manifold. Let z = (z1,..., 2,) be holomorphic
coordinates on a holomorphic chart (U, f) of X. Then

wy :=1i"dzy ANdZ1 A ... Adzy AdZp =2"day Adyr AL A dxp A dyy

is a volume form on U. Let u = (uy,...,u,) be holomorphic coordinates
on another holomorphic chart (V, g) of X, and let w, be the corresponding
volume form on V. Let z = ¢(u) be the transition function, and let

9p1 9p1
oul Tt Oup
J)=| +
% O0pn
ouq te Oun

be the holomorphic Jacobian determinant. Then w, = |J(¢)|?w,. Thus the
holomorphic atlas of X is oriented, and hence X is orientable. O
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Remark 1.6.8. The proof of Proposition 1.6.7 shows that a complex man-
ifold has a well-defined complex orientation. An isomorphism f: X — Y of
complex manifolds maps the complex oientation of Y to the complex ori-
entation of X. Moreover the complex orientation of the product of complex
manifolds X and Y is the product of the complex orientation of X and the
complex orientation of Y.

One goal that we would like to reach when studying complex manifolds
is to determine the isomorphism classes of complex manifolds. A neces-
sary condition for two complex manifolds to be isomorphic is that the un-
derlying C* manifolds be diffeomorphic. The latter condition is far from
being sufficient. The simplest example is provided by C and the unit disc
A :={ze C||z| = 1}. A holomorphic map C — A is constant by Louville’s
Theorem (see Exercise 1.8.1), and hence C and A are not isomorphic,
although they are clearly diffeomorphic. A richer family of such examples
is provided by annuli in C, see Ahlfors [?]. We will give plenty of compact
examples later on.

Definition 1.6.9. Let X be a complex manifold. A subset ¥ < X is a
complex submanifold of X if the following holds. There exist a covering
{Uk}rex of X by the open sets of a (holomorphic) atlas of X and, for each
k € K, holomorhic functions f,%, .o, [ Uy — C (we identify Uj, with an
open subset of C" via the local chart, see Remark 1.6.1) such that

1. Y n Uy is the set of zeroes of fkl:, o fi

Y AU ={zeUp| fi(z) = ... = fi(z) = 0}.

2. The differentials df](z),...,df}(z) are linearly independent for each
zeY nU, k-

Given a complex submanifold Y < X, we can define an equivalence class
of holomorphic atlases on Y, by imitating the C*® definition - we simply
replace the C® Implicit Function Theorem by its holomorphic analogue,
i.e. Item (4) of Theorem 1.2.2. Thus Y is a complex manifold, and the
inclusion map Y — X is a holomorphic map.

1.7 Tangent space

Let M be a C* manifold, and a € M. The ring of germs of smooth functions
at a, denoted &4, is the set of equivalence classes of couples (U, f), where
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U < M is an open subset containing a, f € €*(U), and couples (U, f),
(V,g) are equivalent if there exists a couple (W, h) such that W < U nV
and h = fiw = gjw. Given ¢ = [(U, f)] € Eu,a, the evaluation ¢(a) := f(a)
is well defined. Hence we may give the abelian group R a structure of module
over &y q by setting ¢ - = p(a)z, for ¢ € &y, and x € R.

One may define the tangent space of M at a as the real vector space of
R derivations D: &y, — R, where R has the &7, module structure defined
above. In local coordinates (z1,...,x,) centered at a, a basis of tangent
space of M at a is given by (% le=0,- -, % lz=0). We denote the tangent
space to M at a by TX(M).

Now we let TS (M) := TR(M) ®g C be the complexified tangent space to
M at a. Moltiplication on the right hand side by complex numbers, gives
TE(M) a structure of complex vector space (of dimension dim M). Let
é”]%a = &m,a @r C be the ring of germs of complex valued smooth functions
at a. One has a canonical identification of TC(M) with the complex vector
space of derivations Der(c(é‘}g’a, C). Concretely, an element of &y, ® C is
represnted by (U, f+ig), where f,g € €% (U), and a basis (over C) of T.C(M)
is provided by the basis of TX(M) given above.

Going from the tangent space to the complexified tangent space does not
give anything new in general. On the other hand, the complexified tangent
space of a complex manifold has a canonical splitting into a direct sum of
complex vector spaces of equal dimensions. In order to explain this, we give
a couple of definitions.

Definition 1.7.1. Let X be a complex manifold, and € X. The ring
of germs of holomorphic functions at x is the set of p € é‘}g’a which are
represented by couples (U, f) such that f is holomorphic (clearly a subring),

1 ar
and is denoted Ko

Definition 1.7.2. Let X be a complex manifold, and x € X. A (complex)
tangent vector v € TC(X) is holomorphic if v(p) for every ¢ € T TRURE

anti holomorphic if v(p) for every ¢ € OF,.

In local holomorphic coordinates (z1,...,z,) centered at x, a basis of
the complexified tangent space of X at x is given by

0 0 0 0

8721 |Z:05°"a£ |Z:0787§1 |Z=Uu"'7a |Z:0 .
The first n tangent vectors are holomorphic, the last n are anti holomorphic.
Let T,(X) < TS(X) be the subspace of holomorphic tangent vectors (no-
tice the potential for notational confusion!). Then we have a direct sum
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decomposition
TE(X) = To(X) @ T (X). (1.7.1)

1.8 Differential forms on complex manifolds

Exercises

Exercise 1.8.1. Let f be an entire function, i.e. a holomorphic function f: C — C.
Suppose that there exists an integer d such that

: |f(2)]

lim ———— =0. 1.8.1

L P (-5

Prove that f is a polynomial of degree at most d, i.e. there exist ag,...aq € C such
that f(z) = apz® + ...+ aq. (Hint: prove that ") (0) = 0 for n > d.) In particular
one gets Liouwville’s Theorem: a bounded entire function is constant.

Exercise 1.8.2. Let U < C be open, and a € U. Suppose that f: (U\{a}) — C is
holomorphic, and that there exists r > 0 such that f is bounded on B(a,r) n U.
Riemann’s extension Theorem states that f extends to a holomorphic function
f: U — C. Prove it as follows. Let r > 0 be such that B(a,r) < U. Show that the
usual Cauchy integral formula holds for all z € (B(a,r)\{a}):

f(z) = 1 ft)

21 t—z
Fa (7)

dt,

and then notice that the right hand side of the above eugation extends to a holo-
morphic function over a as well.

Exercise 1.8.3. Let U < C be open and connected and let f: U — C be holo-
morphic non constant. Prove that f is open, i.e. it maps open sets to open sets,
proceeding as follows. Let a € U, and let

f(2)= ) cmlz—a)"

m=0

be a power series expansion of f in a neighborhhod of a, say B(a,r). Let mg be
the minimum strictly positive natural number such that ¢,,, + 0 (since f is not
constant on U, such an myg exists by the Principle of analytic prolungation). Then,
on B(a,r) we have

f(Z) = Co + Cmy (Z - a)m’Og(Z%
where g is holomorphic and g(a) # 0.

1. Prove that for a sufficiently small positive §, there exists a homolorphic func-
tion h: B(a,0) such that g|g(,,s = ™ (use the Inverse function Theorem,
i.e. Item (3) of Theorem 1.2.2).
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2. Let ¢: B(a,d) — C be the holomorphic function p(z) = c%;no (z—a) - h(z).
By Item (1), on B(a,d) we have f(z) = co + ¢(z)™°. Check that ¢'(a) £ 0,
and hence ¢(B(a,d)) o B(0,d1), for some ¢; > 0 by the Inverse function
Theorem.

3. Conclude that f(B(a,d)) > B(cg, 7).

Notice that the analogous statement for differentiable (or even analytic) real func-
tions of a real variable is false.

Exercise 1.8.4. Prove the Maximum modulus priciple: Let U < C™ be open and
connected, and let f: U — C be holomorphic non constant. If K < U is compact,
any zp € K achieving the maximum of the absolute value function |f(z)| is not
an interior point of K, i.e zg € 0K. (Hint: if n = 1 the result follows at once
from Exercise 1.8.3. If n > 1 reduce to the case n = 1 by restricting f to lines in

cm)

Exercise 1.8.5. Let (Z b) be an invertible 2 x 2 matrix. Then

d

P! i) P!

(1.8.2)

[Zo, Zl] — [CZl + dZy,aZ; + bZO]

is an automorphism of P!. (The weird choice of formula in (1.8.2) is explained by

the formula f(z) = ‘jjj:db valid when using the affine coordinate z = z1/29.) Prove

that every automorphism of P! (as complex manifold!) is of the above form, and
hence

Aut(P') = PGLy(C),
by arguing as follows.

1. Let ¢ € Aut(P'). Composing with a suitable automorphism in (1.8.2), we
may replace ¢ by an automorphism )y of P! such that +([0,1]) = [0,1].
The restriction of v to the affine line P*\{[0,1]} defines a (holomorphic)
automorphism vy € Aut(C). It suffices to prove that there exists (a, ) €
C* x C such that ¥o(z) = az + .

2. Prove that (1.8.1) holds for f = ¢y and d = 1. Conclude that g is a
polynomial function of degree 1 by Exercise 1.8.1.

Exercise 1.8.6. Let f: C — C be an automorphism. Prove that the map f: P! —
P! defined by setting

> L AE)] it Zo 40,
(120, 21]) o= {[0, 1] . if Zo = 0,

is an automorphism of P!. Conclude that there exists (a, 3) € C* x C such that

f(z) = az+ 6.
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Exercise 1.8.7. Prove that the upper half plane
H:={ze C|Im(z) > 0}

is isomorphic (as complex manifold) to the unit disc A < C. (Hint: find an auto-
morphism f of P& which takes the closure of the real line to the boundary of the
unit disc. Either f or % defines an isomorphism between H and A.)
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Algebraic varieties

2.1 Projective varieties

Let C[Zo,...,Zn]a © C[Zy,...,Z,] be the degree-d subspace of the algebra of
polynomials. If F € C[Zy,...,Z,]4, and Z € C"*!, then F(Z) = 0 if and only if
F(M\Z) = 0 for every A € C*, because F(\Z) = A F(Z). Hence, although F(x)
is not defined, it makes to state F(z) = 0 or F(z) # 0 for a point x € P". Let
F,eCl[Zy,...,Zp]a, forie {1,...,r}; we let

V(F,...,F,) = {zeP" | Fi(z) = ... = F.(x) = 0}.

Definition 2.1.1. A subset X < P is a projective variety if it is equal to V (Fy, ..., F,)
for suitable homogeneous polynomials Fi, ..., F. € C[Zy,..., Z,].

Ezample 2.1.2. A subset X < P" is a hypersurface if X = V(F), where F is a non
zero homogeneous polynomial of strictly positive degree. Assume that

oF oF
V| —,...,.— | = . 2.1.1
<(7Z0 B OZn> Z ( )
Then X is a complex submanifold of P™, of dimension n—1. In fact let (zq,...,%j,...,2x)
be the (customary) holomorphic coordinates on IF’%], given by zj := g—’; Then

XﬁPTZLj = {ZE(C”|F(Zo,...7Zj,1,1,Zj+1,...,Zn) =0,

and hence it suffices to show that for each z € X nP7 , at least one of the partial

derivatives %(zm .3 Zj—1,1,2j41,.. ., 2,) does not vanish. Suppose the contrary.

25
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From Euler’s relation we get that

0= (degF) (ZOa"'7Zj—lalazj+1a-~~7zn) =

Z Zk (20,5 2j-1,1, 2541, 20) + 5 (20,5 2j—1, L, 241 o0 20) =
aZj
0<k<n
k+j
oF
= 7(20,...7Zj,1,1,2j+1...7Zn), (212)
é’zj
and hence also g—i(zo, ey Zj—1,1,2j41, ..., 2,) vanishes. This contradicts (2.1.1).

Notice that F' := Z;Lo qul provides an example satisfying (2.1.1) in an arbitrary
number of variables and arbitrary degree.

Remark 2.1.3. If V is a finite dimensional complex vector space, a subset X < P(V)
is a projective variety if there is a collection F7,..., F, of homogeneous elements
of Sym V" such that X = V(Fy,...,F,.). Everything that we do in the present
section applies to this situation, but for the sake of concreteness we formulate it for
P.

2.2 Zariski’s topology

Let I < C[Zy,...,Zy,] be a homogeneous ideal, i.e. such that
[o0]
= PUNnC[Z,...,2Z]a). (2.2.1)
d=0

We let
V() :={xeP"| F(x) =0 V homogeneous F e I} ={[Z]eP" | F(Z) =0 VF}.

(The second equality holds because I is homogeneous.) If I is generated by ho-
mogeneous polynomials Fy,..., F,, then V(I) = V(Fy,...,F,), and hence V(I) is
a projective variety. Conversely, by Hilbert’s basis Theorem a homogeneous ideal
I < Cl[Zy,...,Z,] is generated by homogeneous polynomials Fy, ..., F,., and hence
V(I) is a projective variety.

Corollary 2.2.1. The collection of projective varieties in P™ satisfies the axioms
for the closed subsets of a topological space.

Proof. We must show that the collection of subsets V/(I) ¢ P, where I ¢ C[Zy, ..., Z,]
is a homogeneous ideal, satisfies the axioms for the closed subsets of a topological
space. We have ¢ = V((1)), P* = V((0)). If I,J are homogeneous ideal, then

I n J is a homogeneous ideal of C[Zy,...,Z,], and V(I) uV(J) = V(I J). I
{It}ter is a family of homogeneous ideals of C[Zy, ..., Z,], then

(VL) = V{Tiher),

teT
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where ({I;}sc7) is the (homogeneous) ideal generated by the collection of the I;’s.
O

Definition 2.2.2. The topology whose closed sets are projective varieties in P"
is the Zariski topology. The Zariski topology of a subset A < P™ is the topology
induced by the Zariski topology of P".

Notice that the Zariski topology is weaker than the classical topology of P™.
In fact, unless n = 0, the Zariski is much weaker than the classical topology, in
particular it is not Hausdorff. Given a subset A < P™, let

I(A) :=(FeC|Zy,...,Zy,] | F is homogeneous and F(p) = 0 for all p € A),
(2.2.2)
where {;) means “the ideal generated by”. Clearly I(A) is a homogeneous ideal of
ClZy,...,Zy], and V(I(A)) is the closure of A in the Zariski topology.

Ezample 2.2.3. Identify A™ with the open subset (P™\V(Z)) < P". A subet
X < A" is closed if and only if there exist an ideal I < C[zy, ..., 2,] (in general
not homogeneous!) such that X = V(I).

Definition 2.2.4. A quasi-projective variety is a Zariski locally closed subset of a
projective space, i.e. X < P" such that X = U n'Y, where U,Y < P" are Zariski
open and Zariski closed respectively.

Definition 2.2.5. Let X < P™ be a quasi projective variety. A principal open
subset of X is a U < X which is equal to

Yp = Y\V(F),

where Y < P" is closed, and F € C[Zy,...,Z,] is a homogeneous polynomial of
strictly positive degree.

Claim 2.2.6. Let X < P™ be locally closed. The collection of principal open subsets
of X is a basis of the Zariski topology of X .

Proof. By hypothesis there exist Zariski closed subsets Y, W < P" such that X =
Y\W. We have W = V(I), where I < C[Zy,...,Z,] is a homogeneous ideal. Let
J c C[Zy, ..., Z,] be the homogeneous ideal generated by all products F'- Z;, where
Fel and i € {0,...,n}. Then V(J) = V(I) = W, and J is generated by a non
empty finite set of homogeneous polynomials Fi, ..., F,.. Then

XZY\V(Fl,...,FT)ZYFlUYF2U...UYFT.
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2.3 Noetherianity and decomposition into irredu-
cibles

A proper projective variety i P! is a finite set of points. In general, a quasi projective
variety is a finite union of closed subsets which are irreducible, i.e. are not the union
of proper closed subsets. This will be proved in the present subsubsection.

The following is a remarkable geometric consequence of Hilbert’s basis Theorem.

Proposition 2.3.1. Let Ac P", andlet Ao Xgo>X;D...2X;, D... bea
descending chain of Zariski closed subsets of A, i.e X, is defined for all m € N,
and X, D X1 for all m € N. Then the chain is stationary, i.e. there exists
mg € N such that X, = X, for m = myg, i.e. .

Proof. Let X; be the closure of X; in P?. Then X; = AnX;, because X; is closed in
A. Hence we may replace X; by X;, or equivalently we may suppose that the X; are
closed in P*. Let I,,, = I(X,,,). Then Iy c I) = ... c I,  ...is an ascending chain
of (homogeneous) ideals of C[Zy, ..., Z,]. By Hilbert’s basis Theorem and Lemma
A.1.3 the ascending chain of ideals is stationary, i.e. there exists mg € N such that
I, = I, for m = mg. Thus X,y = V(1) = V(1) = Xy, for m = my. O

Corollary 2.3.2. Let X c P", with the Zariski topology. Every open covering of
X has a finite subcover.

Definition 2.3.3. Let X be a topological space. We say that X is reducible if
either X = (¥ or there exist proper closed subsets Y, W < Z such that X =Y o W.
We say that X is irreducible if it is not reducible.

Ezample 2.3.4. P™ with the euclidean (classical) topology is reducible except if
n = 0. P” with the Zariski topology is irreducible for any n. In fact suppose that
P* =Y uW with Y and W proper closed subsets. Then there exist F' € I(Y') such
that F'(p) £ 0 for one (at least) p e W and g € I(W) such that g(q) # 0 for one (at
least) ¢ € Y. Then fg = 0 because P* =Y u W; that is a contradiction because
ClZy,...,Zy,] is an integral domain.

We leave the easy proof of the following claim to the reader.

Claim 2.3.5. Let X be a topological space. A subset of X is irreducible (with the
induced topology) if and only if its closure is irreducible.

The proof of the following result is left to the reader (see Example 2.3.4).

Proposition 2.3.6. A subset X < P" is irreducible if and only if 1(X) is a prime
ideal.

Remark 2.3.7. Let I := (Z2) < C[Zy, Z1]. Then V(I) = {[0,1]} is irreducible
although I is not prime. Of course I(V(I)) is prime, it equals (Zp). In general
V(I) is irreducible if and only if VT is prime (by Proposition 2.3.6 and the
Nullstellensatz).
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Definition 2.3.8. Let X be a topological space. An irreducible decomposition of
X consists of a decomposition (possibly empty)

X=Xu---uUX, (2.3.1)

where each X; is a closed irreducible subset of X (irreducible with respect to the
induced topology) and moreover X; ¢- X; for all ¢ # j.

The following result is easily proved. We leave the details to the reader.

Proposition 2.3.9. Let X be a topological space. Suppose that an irreducible de-
composition (2.3.1) of X exists. Then the irreducible decomposition of X is unique
up to reordering the X;’s. In particular the collection of the X;’s is uniquely de-
termined by X. The X;’s are the irreducible components of X.

Theorem 2.3.10. Let A < P™ with the (induced) Zariski topology. Then A admits
an irreducible decomposition.

Proof. If A is empty, then it is the empty union (of irreducibles). Assume that A
is not empty. Suppose that A does not admit an irreducible decomposition; then
A in reducible, i.e. A = Xg u Wy with Xy, Wy < A proper closed subsets. Suppose
that both X and Wy have an irreducible decomposition; then A is the union of the
irreducible components of X, and Wy, contradicting the assumption that A does
not admit an irreducible decomposition. Hence one of Xy, Wy, does not have an
irreducible decomposition. We may assume that Xy does not have an irreducible
decomposition. In particular Xj is reducible, say Xy. Thus Xy = X7 u Wy with
X1, Wy € X proper closed subsets. Iterating the reasoning above, we get a strictly
descending chain of closed subsets

A2X02X12 2Xn2Xna 2
This contradicts Proposition 2.3.1. O

Ezample 2.3.11. Let V(F) < P" be a hypersurface, and let Fi,...,F, be the
distinct prime factors of the decomposition of F into a products of primes (recall
that C[Z, ..., Z,] is a UFD, by Corollary A.3.2. The irreducible decomposition
of V(F) is

V(F)=V(F))u...uV(F,).

2.4 Regular maps

Definition 2.4.1. Let X < P" and Y < P be quasi-projective varieties, and let
p: X — Y be amap. Then ¢ is reqular at x € X if there exist an open U < X
containing x and Fy, ..., F,, € C[Zy,...,Z,]4 such that for all [Z] e U,

1. (Fo(Z),...,Fn(2)) #(0,...,0), and
2. o([2]) = [Fo(2),- - -, Fm(2)]-
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The map ¢ is regular if it is regular at each point of X.

The identity map of a quasi-projective variety is regular (choose F;(Z) = Z;).
If f: X > Y and g: Y — W are regular maps of quasi projective varieties, the
composition g o f: X — W is regular, because the composition of polynomial
functions is a polynomial function. Thus we have the category of quasi projective
varieties. In particular we have the notion of isomorphism between quasi-projective
varieties.

Ezample 2.4.2. Let A" =P7 and A™ = P7, and let

Ar L, A™
z = (fi(2),..., fm(2))

where f1,..., fm € C[z1,...,2,]. Then f is regular. In fact,

Z Z, A Z,
—[72 7d Z1 -n d 21 -n
fZo, Z1,....2Z,)) =25, 2§ fr <ZO,..., Zo) oo s L5 fm <Z07..., ZO)L

and if d is large enough, then each of Z¢, Z4 f1 (%, cee §O> ooy Z8fm (%,,%)

is a homogeneous polynomial of degree d.
Ezxample 2.4.3. Let

— n 60 61 gnfl
Cn—{[ﬁo,...,in]elf" Irk(51 & £n><1}. (2.4.1)

Since a matrix has rank at most 1 if and only if all the determinants of its 2 x 2
minors vanish it follows that %, is closed, and hence it is a projective variety. We
have a regular map

Pt 2 Gn

2.4.2
[s,t] +— [s",s"71t,...,t"] ( )

Let us prove that ¢, is an isomorphism. Let 1), : C, — P! be defined as follows:

{[50,51] if [€o, .., €n] € Co N PR,

(o ([607 R ,gn]) = [€n 1, 6n] if [€0s- .. ' En] €Cp ]P,gn

Of course one has to check that the two expressions coincide for points in %, N P N
P¢ : from (2.4.1) we get that & - §, — §1€n—1 vanishes on ¢, and this shows the
required compatibility. One checks easily that 14 0 ¢, = Idp: and ¢, o ¢, = Idg,;
thus ¢,, defines an isomorphism P! - %,.

Unless we are in the trivial case n = 1, it is not possible to define v, globally
as

wn ([§0a cee agn]) = [P(§07 s 75”)7 Q(E()v s 75”)]5 (243)
with P,Q € C[&,...,&n]e. In fact suppose that (2.4.3) holds, and let

p(s,t) == P(s",...,t"), q(s,t):=Q(s",...,t").
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Then
[p(s,t),q(s,t)] = [s,t] V[s,t] e P (2.4.4)

It follows that
p(s,t) = as®™, q(s,t) = bt

where a,b e C*. That contradicts (2.4.4), unless de = 1.

The following lemma will be useful later on. The easy proof is left to the reader.

Lemma 2.4.4. Let f: X — Y be a map between quasi projective varieties. Suppose
that Y = J,c; Us is an open cover, that FU; is open in X for each i € I and that

the restriction
v, — U

r = fz)

1s reqular for each i € I. Then f is reqular.
Regarding A™ as the open subset P , it makes sense to give the following.

Definition 2.4.5. An affine variety is a quasi projective variety isomorphic to a
closed subset of A™.

Ezample 2.4.6. Let F' € C[Zy,...,Z,] be a homogeneous polynomial of strictly
positive degree. The principal open subset P (see Definition 2.2.5) is an affine
variety. In fact, consider the Veronese map

o p('+) (2.4.5)
(2] — [28,28'2Z,..., 29 o

defined by all homogeneous monomials of degree d. The map v} is clearly regular.

One checks that 7" := Im v} is a closed subset of p(“")-1 (see Exercise 2.12.1)
- it is called a Veronese variety. Moreover, one shows that the map P* — ¥
defined by v} is an isomorphism. The case n = 1 was discussed in Example 2.4.3,
the general case is treated similarly. From the above it follows that the restriction
of v} to P defines an isomorphism between P} and ¥]"\H, where H < p("") -1
is a suitable hyperplane section. Equivalently, P} is isomorphic to the intersection

of the affine space ]P’(d:”)_l\H and the closed set 7', which, by definition, is an
affine variety.

It follows that an arbitrary principal open set Y, where Y < P is closed, and
FeC|Zy,...,Z,] is homogeneous of strictly positive degree d, is an affine variety.
In fact, since v/} is an isomorphism v} (Yr) is closed in the affine variety ¥\ H, and
hence is itself affine. Moreover, the restriction of v/} to Yr defines an isomorphism
Yr and the affine variety v} (Yp).

Claim 2.2.6 and Example 2.4.6 give the following result.

Proposition 2.4.7. The open affine subsets of a quasi projective variety form a
basis of Zariski’s topology.
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In a certain sense, open affine subsets of a quasi projective variety are similar
to the open subsets of a complex manifold given by charts of a holomorphic atlas.

Definition 2.4.8. A regular function on a quasi projective variety X is a regular
map X — C.

Let X be a non empty quasi projective variety. The set of regular functions
on X with pointwise addition and multiplication is a C-algebra, named the ring of
regular functions of X. We denote it by C[X].

Let X < P™ be a quasi projective variety which happens to be a complex
submanifold, e.g. hypersurfaces satisfying (2.1.1). Then regular functions on X are
holomorphic. If in addition we assume that X is closed, then it is compact (classical
topology) and hence every holomorphic function on X is locally constant by the
Maximum modulus principle (see Exercise 1.8.4). In fact, it is true in general
that a regular function on a projective variety is locally constant (see Exercise
?7?). On the other hand, affine varieties have plenty of functions. In fact if X < A™
is closed we have an inclusion

Clz1, ..., 2a]/I(X) — C[X]. (2.4.6)

Theorem 2.4.9. Let X < A™ be closed. Then (2.4.6) is an equality, i.e. every
reqular function on X is the restriction of a polynomial function on A™.

Before proving Theorem 2.4.9, we notice that, if X < A" is closed, the
Nullstellensatz for C[z1,...,2,] implies a Nullstellensatz for C[z1,...,2,]/I(X).
First a definition: given an ideal J < (C[z1,...,2,]/I1(X)) we let

V(J):={aeX | fla)=0 VfelJ}.
The following result follows at once from the Nullstellensatz.

Proposition 2.4.10 (Nullstellensatz for a closed subset of A™). Let X < A™ be
closed, and let J < (Clz1,...,2,]/I(X)) be an ideal. Then

{f e (Clerse. 2l IX) | frvy = 0F = V.

(The radical v/J is taken inside Clz1, ..., 2,]/I(X).) In particular V(J) = & if
and only if J = (1).

The following example makes it clear that Proposition 2.4.10 must play
a role in the proof of Theorem 2.4.9. Let X < A" be closed. Suppose that
g€ Clz1,...,2,] and that g(a) # 0 for all a € Z. Then 1/¢g € C[X] and hence The-
orem 2.4.9 predicts the existence of f € C[z,...,2,] such that g=' = fx.
By Proposition 2.4.10, (g) = (1) in C[z,...,2,]/I(X), because V(g) = &,
where g := g|x. hence there exists f € C[z1,...,2,] such that f-g = 1, where

fi=fix,le. g7t = fix

Proof of Theorem 2.4.9. Let ¢ € C[X]. We claim that there exist f;,g; €
Clz1,...,2n] for 1 < i < d such that
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1. X = Ulsinggw ie. V(gi,...,94) n X = &,
2. for all a € X, we have p(a) = ggg;,

3. for 1 <4 < j we have (g9;f; — ¢:f;)|x = 0.

(Notice: the last item implies that on X, n X, we have f;/g; = f;/g;.) For
i=1,...,dlet g; := g;;x and f; := f;x. Then

gip = - (2.4.7)
In fact by Item (1) it suffices to check that (2.4.7) holds on X, for j = 1,...,d. For
J = i it holds by Item (2), for j = ¢ it holds by Item (3). (Notice: if we do not assume
that Item (3) holds we only know that (2.4.7) holds on U; n U;.) By Proposition
2.4.10 we have that (g1,...,g4) = (1), i.e. there exist hy,...,hq € C[z1,...,2,]
such that

1 =higr + -+ haga-

where h; := h x. Multiplying by ¢ both sides of the above equality and remem-
bering (2.4.7) we get that

p= Blgup + -+ Bdgd%@ = Blfl + ...+ Bl?d = (hlfl + -+ hdfd)|X~ (248)
It remains to prove that there exist f;, g; € C[z1,..., z,] with the properties stated
above. By definition of regular function there exist an open covering of X, and

for each set U of the open cover a couple «a, 8 € C[zy,...,2,] such that p(x) =
a(z)/B(x) for all x € U (it is understood that 8(x) £ 0 for all z € U). By Remark

2.4.11 we may cover U by open affine sets X,,,..., X,,. Since V(8) < (| V()
i=1

the Nullstellensatz gives that, for each i, there exist N; > 0 and p; € C[z1, ..., z,]
such that 7' = ;8 and hence p(z) = pi(x)a(z)/yi(z)N for all z € X,,,. Since
Xy, = Xﬂ{’fv we get that we have covered X by principal open sets X such that
¢ = f'/g for all x € X, where f' € C[z1,...,2,] (of course f' depends on ¢').
By Corollary 2.3.2, the open covering has a finite subcovering, corresponding to
1,95, £, 9. Now let

fi="figi,  gi= (90"
Clearly Items (1) and (2) hold. In order to check Item (3) we write
(g5fi — gif)x = (g7 figi — (@) 19| x = ((9ig5) (fig; — fi9))]x-
Since ¢(z) = fi(2)/9i(2) = fj(2)/g}(z) for all z € Xy N X, the last term vanishes
on Xy N X, on the other hand it vanishes also on (X\Xy N Xg;) =X nV(gg;)
because of the factor (g;g;). O
We end the present section with a couple of consequences of Theorem 2.4.9.
First we give a more explicit version of Proposition 2.4.7 in the case that
the quasi projective variety itself is affine. Given a quasi projective variety X, and
f € C[X], let
X¢:=X\V(f), (2.4.9)

where V(f) := {x € X | f(x) = 0}. The following remark is easily verified.



34 CHAPTER 2. ALGEBRAIC VARIETIES

Remark 2.4.11. Let X < A™ be closed (and hence an affine variety). Let f € C[X],
and hence by Theorem 2.4.9 there exists f € C[z1,...,2,] such that fix = f.
Let Y < A™"! be the subset of solutions of g(z1,...,2,) = 0 for all g € I(X), and

the extra equation f(z1,...,2n) - 2n+1 — 1 = 0. Then the map
Xy — Y
(217...,25”) [ (Zl,...72'n,m)

is an isomorphism. In particular X is an open affine subset of X. Moreover, the

open affine subset X, for f € C[X] form a basis for the Zariski topology of X.
Notice that, by Theorem 2.4.9 and the above isomorphism, every regular

function on X7y is given by the restriction to X of f‘%, where g € C[X] and m € N.
Next, we give a few remarkable consequences of Theorem 2.4.9.

Proposition 2.4.12. Let R be a finitely generated C algebra without nilpotents.
There exists an affine variety X such that C[X] = R (as C algebras).

Proof. Let aq,...,a, be generators (over C) of R, and let ¢: C[z1,...,2,] &> R
be the surjection of algebras mapping z; to «;. The kernel of ¢ is an ideal I <
Clz1,. .., 2n], which is radical because R has no nilpotents. Let X := V(I) c A"™.
Then C[X] = R by Theorem 2.4.9. O

In order to introduce the next result, consider a regular map f: X — Y of
(non empty) quasi projective varieties. The pull-back f*: C[Y] — C[X] is the
homomorphism of C-algebras defined by f*(¢) := ¢ o f.

Proposition 2.4.13. Let Y be an affine variety, and let X be a quasi projective
variety. The map

{f: X >Y|f regulary —> {p: C[Y]— C[X]| ¢ homomorphism of C-algebras}
f — f*
(2.4.10)
is a bijection.

Proof. We may assume that Y < A™ is closed; let t: Y < A™ be the inclusion
map. Suppose that f,g: X — Y are regular maps, and that f* = ¢g*. Then
F*0*(z1)) = g% (¢t*(z)) for i € {1,...,n}, and hence f = g. This proves injectivity
of the map in (2.4.10). In order to prove surjectivity, let ¢: C[Y] — C[X] be a
homomorphism of C algebras. Let f; := ¢(t*(2;)), and let f: X — A" be the
regular map defined by f(z) := (fi(x),..., fu(x)) for x € X. Then f(z) € Y for
all z € X. In fact, since Y is closed, it suffices to show that g(f(z)) = 0 for all
ge I(X). Now

9(f1(2),- ., (@) = glp(*(21)), -, 0 (" (2n)) = @(9(7(21)), - - " (2n)) = $(0) = 0.

(The second and last equality hold because ¢ is a homomorphism of C-algebras.)
Thus f is a regular map f: X — Y such that f*(¢*(2;)) = o(t*(2)) for @ €
{1,...,n}. By Theorem 2.4.9 the C-algebra C[Y] is generated by t*(z1), ..., t*(zn);
it follows that f* = ¢. O
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Corollary 2.4.14. In Proposition 2.4.12, the affine variety X such that C[X] =
R is unique up to isomorphism.

2.5 Products

The category of quasi projective sets has products. If X < P™ and Y < P" are
quasi projective sets which happen to be complex submanifolds (or just locally
complex submanifolds), then the product X x Y in the category of quasi projective
sets is a complex submanifold of P™**+™+" jsomorphic to the product of X and Y
in the category of complex manifolds. We go thorugh the construction of products
in the category of quasi projective sets. Proofs are absent or sketched.

First let X, Y be affine varieties. Thus, we may assume that X < A™ and
Y < A" are closed subsets. Then X x Y < A™ x A" =~ A™'" is a closed subset,
and the maps X xY — X and X xY — Y given by the two projections are regular.
One checks easily that X x Y with the two projection maps is the product of X
and Y in the category of quasi projective varieties (use Proposition 2.4.13). The
ring of regular functions of X x Y is constructed from C[X] and C[Y] as follows.
Let mx: X xY - X and 7y : X xY — Y be the projections. The C-bilinear map

C[X]xC[Y] — C[X xY]

(o) — 7)) 25.1)

induces a linear map

CX]®cC[Y] — C[X xY]. (2.5.2)
Proposition 2.5.1. The map in (2.5.2) is an isomorphism.

Proof. We may assume that X < A™ and Y < A" are closed subsets. Then X xY <
A™*" is closed subset, and hence the map in (2.5.2) is surjective by Theorem
2.4.9. Tt remains to prove injectivity, i.e. the following: if A < C[X] and B < C[Y]
are finite-dimensional complex vector subspaces, then the map AQ B — C[X x Y]
obtained by restriction of (2.5.2) is injective. Let {f1,..., fa}, {g1,---, s} be bases
of A and B. By considering the maps

X — Cc® Y — (0
Z = (fl(Z)V"'vfa(Z)) z = (gl(z)v'“agb(z))

we get that there exist p1,...,p, € X and ¢1,...,q, € Y such that the square
matrices (f;(p;)) and (gi(g;)) are non-singular. By change of bases, we may assume
that f;(p;) = d;; and gr(qn) = dkn. Computing the values of 7% (f;) - 75 (g;) on
(ps,qe) for 1 < i,s < a and 1 < j,t < b we get that the functions ..., 7% (f;) -
73-(gj), - .. are linearly independent. Thus A ® B — C[W x Z] is injective. O

(2.5.3)

Since every quasi projective variety has an open cover by affine varieties, one
could try to define the product of quasi projective varieties X and Y by gluing
together the products of the affine varieties in open coverings of X and Y. This



36 CHAPTER 2. ALGEBRAIC VARIETIES

is done in scheme theory, where schemes are algebriac varieties defined by atlases
with charts given by affine schemes. However, one wants to show more, for example
that the product of projective varieties is a projective varietry. This is why we need
the more elaborate construction presented below.

Let Mp11.n+1 be the vector space of complex (m + 1) x (n + 1) matrices. Let

Em’n = {[A] € P(Q%m+1’n+1) | tk A = 1}

Then ¥,,, is a projective variety in P(Aq1n41) = P™T™H7 0 In fact the
entries of a non zero matrix A € A, +1n+1 define homogegeous coordinates on
P(My+1,n+1), and L, ,, is the set of zeroes of determinants of all 2 x 2 minors of
A. Let [W] € P™ and [Z] € P"; then W' - Z is a complex (m + 1) x (n + 1) matrix
of rank 1, determined up to recsaling. Thus we have the Segre map

[og
]Pm x ]P)n m,n Emwn

(W),[2]) — [W'-Z] (2.5.4)

Proposition 2.5.2. The map in (2.5.4) is a bijection.

From now on, we identify P x P™ with the projective variety X,, ,,. In partic-
ular P x P™ has a Zariski topology.

Claim 2.5.3. A subset X < P™ x P" is closed if and only if there exist bihomo-
geneous polynomials !

F17...,FT€(C[W0,...,Wm,ZO,...,Zn]
such that

X =V (F,...,F) = {([W],[Z]) e P" x P™ | 0 = Fy(W;Z) = --- = F,(W; Z)}.
(2.5.5)

Remark 2.5.4. If m + 0 and n #+ 0, then the Zariski topology on the product
P™ x P™ is not the product topology. In fact it is finer than the product topology

Ezxample 2.5.5. The diagonal Apr < P" x P™ is closed. In fact, A is the set of
couples ([W1],[Z]) such that the matrix with rows W and Z has rank less than 2,
and hence it is the zero locus of the bihomogeneous polynomials W;Z; — W; Z; for
(i,7) € {0,...,n}. Notice that this is not in contrast with the fact that, if n % 0,
the Zariski topology on P™ is not Hausdorff, because of Remark 2.5.4.

Claim 2.5.6. The projections of P™ x P™ on its two factors are regular maps.

Proof. Let a;j;, where (i, j) € {0,...,m} x {0,...,n}, be the homogeneous coordin-
ates on P(My+1.n+1) given by the entries of a matrix A € 4, 41n+1. Then

P x P = | (B xP")g,. (2.5.6)

0<i<m
o<j<n

! A polynomial F € C[W; Z] is bihomogencous of degree (d,e) if F = Y a; ;W Z7.
deg I=d
deg J=e
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On the open subset (P x P"),, , the projections P™ x P — P™, P™ x P — P"
are given by

Pm x Pt — pm pm ox P —s P
[A] —  |agj,...,am;] [A] — a0, ..., ain]

respectively. O

Proposition 2.5.7. Let X be a quasi projective variety, and let f: X — P™ and
g: X — P" be regular maps. Then

X — P xP"

r - (f(2),g() 25.7)

s a regular map.

Proof. We have the open cover of P™ x P™ given by (2.5.6), with open sets indicized
by {0,...,m} x {0,...,n}. By Lemma 2.4.4, it suffices to prove that, for each
(i,7) € {0,...,m} x {0,...,n}, the following hold:

L (f xg) ' (P™ x P™),,,) is open in X.
2. The restriction

(f x @) P™ x P)q,,) — (P xP),,

r e (f(@).g(@) (25.8)

is regular.

We have

(f x 9)TH@™ x P")q,,) = X\(fTIV(Wi) U g™V (Z))).
Both f and g are continuous, because they are regular, and hence f~'V(X;) and
gV (Y;) are closed. It follows that Item (1) holds. The map

A™xA™ — (P™ xP™)a,;

((Wosee ey @i yeeeswim ), (20,500,255 020)) = ([wo,eowim1, L wip 1 Wi ], [20,5-025-1,1,2541,,2n])
is an isomorphism commuting with the projections. Item (2) follows. O

It follows that P™ x P™ with the two projections is the product of P™ and P™
in the category of quasi projective varieties.

Now suppose that X < P™ and Y < P™ are locally closed sets. It follows from
Claim 2.5.3 that Y x Y < P™ x P" is locally closed, i.e. we have identified W x Z
with a quasi-projective set. Moreover, the projections of X x Y to X and Y are
regular, because they are the restrictions of the projections of P™ x P™ to X x Y.

The proof of the following result is easy; we leave details to the reader.

Proposition 2.5.8. Keep notation as above. The quasi projective variety X x Y,
with the projections to the two factors, is the product of X and Y in the category
of quasi projective sets.
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Notice that if X < P™ and Y < P" are closed then X x Y is closed in P™ x P™.
Hence the product of projective varieties is a projective variety. On the othar hand,
we have already observed that the product of affine varieties is an affine varietry.

Remark 2.5.9. Let X < P™ and Y < P" be locally closed sets. Let ¢: X — X',
1Y =5 Y’ be isomorphisms, where X’ < P% and Y’ < P? are locally closed sets.

Then
XxY — X'xY'

(r,e) = (p),v(2)

is an isomorphism. This follows from the formal property of a categorical product.
Thus the isomorphism class of X x Y is independent of the embeddings X < P™
and Y < P™. This is why we say that X x Y is the product of X and Y.

Since the product of two quasi projective varieties exists, also the product
X1 x ... x X, of a finite collection X1, ..., X, of quasi-projective varieties exists;
it is given by (X7 x (X2 x (X3... x X,)...) (we may rearrange the parenthesis
arbitrarily, and we will get an isomorphic variety).

Let X be a quasi projective variety, and let Ax < X x X be the diagonal. It
follows from Example 2.5.5 that A x is closed in X x X (this is not in contradiction
with the fact that, if X is not finite, then it is not Hausdorff, see Remark 2.5.4).
This property of quasi projective varieties goes under the name of properness. The
following is a consequence of properness.

(2.5.9)

Proposition 2.5.10. Let X, Y be quasi projective varieties, and let f, g be reqular
maps X — Y. If f(z) = g(z) for x in a dense subset of X, then f = g.

Proof. Let ¢: X — Y x Y be the map defined by ¢(z) := (f(z),g(z)). Then ¢ is
regular, because Y x Y is the categorical square of Y. Since Ay is closed, o~ !(Ay)
is closed. By hypothesis ¢~!(Ay) contains a dense subset of X, hence it is equal
to X, ie. f(z) =g(x) for all z € X. O

2.6 Elimination theory

Let M be a topological space. Then M is quasi compact, i.e. every open covering
has a finite subcovering, if and only if M is universally closed, i.e. for any topological
space T, the projection map T'x M — T is closed, i.e. it maps closed sets to closed
sets. (See tag/005M in [TSPR].)

A quasi projective variety X is quasi compact, but it is not generally true that,
for a variety T, the projection T' x X — T is closed. In fact, let X < P™ be
locally closed; then Ax, the diagonal of X, is closed in X x P™, because it is the
intersection of X x X < P" x P™ with the diagonal Ap» < P™ x P™, which is closed.
The projection X x P — P™ maps X to X, hence if X is not closed in P™, then
X is not universally closed. This does not contradict the result in topology quoted
above, because the Zariski topology of the product of quasi projective varieties is
not the product topology.

The following key result states that projective varieties are the equivalent of
compact topological spaces in the category of quasi projective varieties.
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Theorem 2.6.1 (Main Theorem of elimination theory). Let T be a quasi-projective
variety and X be a projective variety. Then the projection

T xX-—->T
is closed.

Proof. By hypothesis we may assume that X < P" is closed. It follows that T'x X <
T x P™ is closed. Thus it suffices to prove the result for X = P". Since T is covered
by open affine subsets, we may assume that 7" is affine, i.e. T is (isomorphic to) a
closed subset of A™ for some m. It follows that it suffices to prove the proposition
for T'= A™. To sum up: it suffices to prove that if X < A™ x P" is closed, then
7m(X) is closed in A™, where m: A™ x P* — A™ is the projection. We will show
that (A™\m(X)) is open. By Claim 2.5.3 there exist F; € C[ty,...,tm, Z0,-- -, Zn)
fori=1,...,r, homogeneous as polynomial in Xy, ..., X, such that

X ={t[Z])|0=F(t2Z)=...=F(t2)}.

Suppose that F; € C[t1,...,tm][Zo,- .-, Znla, 1.e. F; is homogeneous of degree d;
in Zo,...,Zn. Let t € (I'\w(X)). By Hilbert’s Nullstellensatz, there exists N > 0
such that

(F1(t,2),...,F.(t,2)) 2 Cl[Zo,- .., Zn]N- (2.6.10)

We may assume that N > d; for 1 < ¢ < r. For t € A™ let

[}
C[Zos s Zolnedy % oo % [Zose s Znlnea, 2B C[Zos..., Zuln
(G17...7G7~) Land 22:1 Gz Fz

Thus ®() is a linear map: choose bases of domain and codomain and let M (t) be the
matrix associated to ®(t). Clearly the entries of M (t) are elements of C[ty,...,tm].
By hypothesis ®(t) is surjective and hence there exists a maximal minor of M (¢),
say My, s(t), such that det M ;(t) + 0. The open (AZ\V(det My ;)) is contained

in (T\7(X)). This finishes the proof of Theorem 2.6.1. O

We will give a few corollaries of Theorem 2.6.1. First, we prove an elemntary
auxiliary result.

Lemma 2.6.2. Let f: X — Y be a reqgular map between quasi-projective varieties.
The graph of f
Lp:={(z, f(z)) | pe X}

is closed in X x Y.

Proof. The map
fxIdy: X xY >Y xY

is regular, and T'y = (f x Idx)~!(Ay). Hence I'; is closed because Ay is closed in
Y xY. O
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Proposition 2.6.3. Let X be a projective variety and Y be a quasi-projective set.
A regular map f: X — Y is closed.

Proof. Since closed subsets of X are projective it suffices to prove that f(X) is
closed in Y. Let m: X x Y — Y be the projection map. Then f(X) = =n(T's

By Lemma 2.6.2 and the Main Theorem of elimination theory we get that f(X)
is closed. O

Corollary 2.6.4. A locally-closed subset of P¢ is projective if and only if it is
closed.

Corollary 2.6.5. Let X be a projective set. A regular map f: X — C is locally
constant.

Proof. Composing f with the inclusion j: C — P! we get a regular map f: X -
P'. By Proposition 2.6.3 f(X) is closed. Since f(X) # [0,1] it follows that
f(X) = f(X) is a finite set. O

2.7 Rational maps

Let X and Y be quasi projective varieties. We define a relation on the set of
couples (U, ) where U c X is open dense and ¢: U — Y is a regular map, as
follows: (U,¢) ~ (V,4) if the restrictions of ¢ and ¢ to U NV are equal. One
checks easily that ~ is an equivalence relation.

Definition 2.7.1. A rational map f: X --+ T is a ~-equivalence class of couples
(U, p) where U c X is open dense and ¢: U — Y is a regular map. Let f: X --» Y
be a rational map.

1. The map f is regular at z € X (equivalently x is a regular point of f), if
there exists (U, ) in the equivalence class of f such that x € U. We let
Reg(f) < X be the set of regular points of f.

2. The point z € X is a point of indeterminancy if it is in X\ Reg(f).

From now on we will consider only rational maps between irreducible quasi
projective varieties. Let f: X --» Y and g: Y --+ W be rational maps between
(irreducible) quasi projective varieties. It might happen that for all x € Reg(f) the
image f(x) does not belong to Reg(g), and then the composition g o f makes no
sense. In order to deal with compositions of reational maps, we give the following
definition.

Definition 2.7.2. A rational map f: X --» Y between irreducible quasi projective
varieties is dominant if it is represented by a couple (U, ¢) such that o(U) is dense
inY.

Notice that if f: X --» Y is dominant and (V1)) is an arbitrary representative
of f then (V) is dense in Y.
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Definition 2.7.3. Let f: X --+ Y be a dominant rational map, and let g: ¥ --»
W be a rational map (X,Y,W are irreducible). Let (U, ¢) and (V,%) be rep-
resentatives of f and g respectively. Then ¢~V is open dense in X. We let
gof: X --» W be the rational map represented by (¢ =V, o). (The equivalence
class of (p~1V,1 0 ¢) is independent of the representatives (U, ) and (V,)).)

Definition 2.7.4. A dominant rational map f: X --» Y between irreducible quasi
projective varieties is birational if there exists a dominant rational map ¢g: ¥ --» X
such that go f = Idx and fog = Idy. An irreducible quasi projective variety X
is rational if it is birational to P™ for some n, it is unirational if there exists a
dominant rational map f: P™ --» X.

Example 2.7.5. 1. Of course isomorphic irreducible quasi projective varieties are
birational. On the other a quasi projective (irreducible) variety is birational
to any of its dense open subsets. In particular P™ is birational to A™, although
they are not isomorphic if n > 0 (if they were isomorphic, they would be
diffeomorphic as C* manifolds, but P" is compact, A" is not).

2. Let 0 & F e C[Zy,...,Zy]2, and let Q"' := V(F) < P". Suppose that F is
prime, i.e that rk F' > 3, and hence Q! is irreducible. We claim that Q™!
is rational. In fact, after a suitable change of coordinates, we may assume
that F = ZyZ,, — G, where 0 = G € C[Z1, ..., Zy—1]2. The rational maps

Qn—l _J_i) ]Pm—l
[Z(),...,Zn] [ [Z(),...,Zn_l]

and

Pnfl _29 anl

[T07-~~;Tn—l] L [T()Z,T()Tl,...,T()Tn_l,G(Tl,...,Tn_l)]

are dominant, and they are inverses of each other. Notice that if n = 2,
then f and g are regular (see Example 2.4.3), while for n > 3, the quadric
Q™! is not isomorphic to P"~!, because the underlying C® manifolds are
not homeomorphic.

Proposition 2.7.6. Irreducible quasi varieties X, Y are birational if and only if
there exist open dense subsets U < X and V < 'Y that are isomorphic.

Proof. An isomorphism ¢: U — V clearly defines a birational map f: X --» Y.
Conversely, suppose that f: X --+ Y is birational with inverse ¢g: Y --» X. Let
(U, ¢) represent f and (V, 1)) represent g. Then o=V < U and ¢~1U < V are open
dense. By hypothesis the composition 1 o (p,-1y/) : ¢!V — U is equal to the
identity on an open non-empty subset of ¢ ~!V. By Proposition 2.5.10, we get
that 9 o (g@lw—lv) = Id,-1y. In particular ¢ o ¢ (30’1V) cU ie ¢ (gofl‘/) c
U, and similarly ¢ o (1/}|¢—1U) =Idy-1y and o (w_lU) c ¢~ V. Thus we
have isomorphisms ¢~ 'V — ¢ ~1U and ¢ 'U = ¢~ 'V. O
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Many natural invariants of projective varieties do not separate between (pro-
jective) birational varieties. This fact gives practical criteria that allow to establish
that certain projective varieties are not birational. On the other hand, it leads
us to approach the classification of isomorphism classes of projective varieties in
two steps: first we classify equivalence classes for birational equivalence, then we
distinguish isomorphim classes within each birational equivalence class.

2.8 The field of rational functions

If we consider the category whose objects are irreducible quasi projective varieties,
and morphisms are dominant rational maps, we get a familiar algebraic category.
In order to explain this, we introduce a key definition. Let X be an irreducible
quasi projective variety. The field of rational functions on X is

C(X):={f: X --» C| f is a rational map}. (2.8.1)

Addition and multiplication are defined on representatives. Let f,g € C(X) be
represented by (U, ¢) and (V, 1) respectively. Then

f+g9 = [(UnV,ouav +duav)l,
f-9 (U nV,ouav - Yuav)]-

Ezample 2.8.1. e C(P™) =~ C(z1,..., 2,) is the purely transcendental extension
of C of transcendence degree n.

e Let p € C[2] be free of square factors (and degp > 1). Then t?> —p(z) is prime
and hence X := V (2 — p(z)) < A? is irreducible. Then C(z) ¢ C(X) is an
extension of degree 2. We may ask whether C(X) is a purely trascendental
extension of C. The answer is yes if degp = 1,2 (see Example 2.4.3), no if
deg p > 3 (this requires new ideas).

Let f: X --» Y be a dominant rational map of irreducible quasi projective
varieties. We have a well-defined pull-back

cy) £S5 cw)
@ — pof

(The composition is well defined because by hypothesis f is dominant.) The map
f* is an inclusion of extensions of C. Suppose that f: X --» Y and g: Y --» W are
dominant rational maps of irreducible quasi projective varieties. Then go f: X --+
W is dominant and

ffog*=(g0f)". (2.8.2)

Of course Id%: C(X) — C(X) is the identity map. We will prove the following
result.
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Theorem 2.8.2. By associating to each quasi projective variety its field of frac-
tions, and to each dominant rational map f: X --+Y of irreducible quasi project-
we varieties the pull back, we get an equivalence between the category of irreducible
quasi projective varieties with homomorphisms dominant rational maps, and the
category of finitely generated field extensions of C.

What must be proved are the following two statements:

1. An extension of fields C ¢ E is isomorphic to the filed of rational functions
C(X) of a quasi projective variety X if and only it it is finitely generated
over C.

2. Let E, F be finitely generated field extensions of C, and let a: E — F
be a homomorphism of C extensions (i.e. an inclusion E < F which is
the identity on C). Let Y, X be irreducible quasi projective varieties such
that C(Y"), C(X) are isomorphic to E and F' respectively as extensions of C
(they exist by Item (1)). Then there exists a unique dominant rational map
f: X --»Y such that f* = qa.

Ttem (1) is proved in Proposition 2.8.4. Item (2) is proved in Proposition 2.8.5.

We start by observing that we may restrict our attention to affine (irreducible)
varieties. In fact, let X be an irreducible quasi projective variety, and let Y < X
be an open dense affine subset (e.g. a prinipal open subset). We have a well-defined
restriction map

C(X) --» C(Y). (2.8.3)

In fact, let f € C(X), and let (U, ) be a couple representing an element. Then
U nY is an open dense subset of Y, and the couple (U n'Y, ¢|7~y) represents an
element f € C(Y'), which is independnet of the representative of f. The restriction
map in (2.8.3) is an isomorphism of C extensions. Hence, when dealing with the
field of fractions of a quasi projective variety, we may assume that the variety is
affine.

Let X be an irreducible quasi projective variety. We have an inclusion of C
extensions:

(field of fractions of C[X]) — C(X)

o

o 2.8.4
2 [(X\V(5), %)) (284)
Claim 2.8.3. Let X be an affine irreducible variety. Then (2.8.4) is an isomorph-
sm.

Proof. We must prove that the map in (2.8.4) is surjective. Let f € C(X), and let
(U, @) represent f. By Remark 2.4.11, there exists 0 + v € C[X] such that the
dense principal open subset X, is contained in U. Moreover, by Remark 2.4.11
and Theorem 2.4.9, C[X/] is generated as C-algebra by C[X] and v, hence ¢
is represented by (X, -57) where v € C[X]. Let § := . Since X, = Xp, we have
proved that f belongs to the image of (2.8.4). O
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Proposition 2.8.4. A field extension of C is isomorphic to the field of fractions
of an irreducible quasi projective variety if and only if it is finitely generated over

C.

Proof. Let X be a quasi projective variety. The field C(X) is isomorphic to the
field of fractions of an open dense affine subset of X. Thus we may assume that
X < A" is closed. By Claim 2.8.3 C(X) is the field of quotients of C[X], and
by Theorem 2.4.9 C[X] is generated (over C) by the restrictions of the coordinate
functions z1,...,z,. Hence the restrictions of the coordinate functions z1,...,z,
to X generate C(X) over C.

Now assume that F is a finitely generated field extension of C. In particular
the transcendenece degree of E over C is finite, say d. Let f1,..., fi, € C(X) be a
transcendence basis of C(X) over C. Then C(X) is a finitely generated algebraic
extension of C (f1,..., fm). By the Theorem on the primitive element, i.e. The-
orem A.4.1, there exists g € C(X) algebraic of degree d over C(f,..., fm) and
such that C(X) is generated over C by fi,..., fm,g. Let P € C(f1,..., fn)[y] be
the minimal polynomial of g over C (f1,..., fn). Thus

Ply)=vl+cy +-4ci, c€C(fiyennsfm)-

Write ¢; = Z—Z where a;,b; € C[f1,..., fm]- Let Qe Clf1,---, fm]ly] be obtained

from P by clearing denominators, i.e. Q= (b1-....bg)P. Let Q € C[f1, ..., fm][y] be
obtained from @ by factoring out the maximum common divisor of the coefficients
(recall that C[f1,..., fm] is a UFD). Notice that @ is irreducible and hence prime.
Write

=14 tey, e; €C[f1,. .., fm], €0 % 0.

Let 0: C[f1,---, fm,y] — C[21, ..., 2Zm,y] be the isomorphism of C-algebrae map-
ping f; to z; and y to itself. Let ® := 6(Q). Then X := V(®) < A" is an
irreducible hypersurface because ® is prime. Let z; := 2;x. We claim that the
rational functions on X represented by {Z1,...,Z,} are algebraically independent
over C. In fact suppose that R € C[t1,...,ty] and R(Z1,...,Z,) = 0. By the
fundamental Theorem of Algebra, for any (&1,...,&y,) € (A™\V(ep)) there exists
Em+1 € C such that (&1,...,&m,&m+1) € X. It follows that R(&q,...,&n) = 0 for
all (&1,...,&m) € (A™\V(ep)), and hence R - e vanishes identically on A™. Thus
R -eg = 0, and since eg + 0 it follows that R = 0. This proves that {Z1,...,Zm}
are algebraically independent over C. On the other hand 7 := y|x is algebraic over
C(z1,...,Zm) and its minimal polynomial equals ®. Since the field of fractions of
X is the field of quotients of C[X] = C[z1, ..., zm+1]/(®), we get that

E=C(fi,.-, fm) [y]/(Qy)) = C(Z1,...,Zm) [y]/(®) = C(X).

Q= 60yd + ey

O

Proposition 2.8.5. Let X and Y be irreducible quasi projective varieties. Suppose
that a: C(Y) — C(X) is an inclusion of extensions of C. There exists a unique
dominant rational map f: X --»Y such that f* = a.
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Proof. We may assume that X < A” and Y < A™ are closed. By Claim 2.8.3
C(X), C(Y) are the fields of fractions of C[X] and C[Y'] respectively, and by The-
orem 2.4.9, C[X] = C[zy,...,2,]/I(X) and C[Y] = Clwy,...,w,]/I(Y). Given
peClz1,...,2,] and q € Clwy, ..., wy] we let p:= p|x and G := ¢|y. We have
. f _
a(wi)_yia fiagiec[zla"'azn]a 97.7&0
Let U := X\(V(¢1) v... UV (gm)). Then U is open and dense in X. Let

RN A™

— f1(a) fm(a)
a (gi(a)*""gm(@)

We claim that ¢(U) < Y. In fact let h € I(Y). Since a is an inclusion of extensions
of C,

R(f1/T1s s fon/Tm) = R(a(@1), ..., a(W,)) = a(h(Wi, ..., W) = «(0) = 0.

This proves that if & € I(Y) then h vanishes on ¢(U) , i.c. ¢(U) < Y. Thus ¢
induces a regular map ¢: U — Y. Let f: X --» Y be the equivalence class of
(U, $). Then f* = a.

It is clear by the above construction that f is the unique rational (dominant)
map such that f* = a. O

The result below follows at once from what has been proved above.

Corollary 2.8.6. Irreducible quasi projective varieties are birational if and only if
their fields of rational functions are isomorphic as extensions of C.

The result below follows from the above corollary and the proof of Proposition
2.8.4.

Proposition 2.8.7. Let X be an irreducible quasi projective variety and let m :=
Tr.dege C(X). Then X is birational to an irreducible hypersurface in A™+1.

2.9 Dimension

Let X be an irreducible quasi projective variety. The dimension of X is defined
to be the transcendence degree of C(X) over C. Next, let X be an arbitrary quasi
projective variety, and let X = X7 U --- U X, be its irreducible decomposition.

1. The dimension of X is the maximum of the dimensions of its irreducible
components.

2. Let p e X. The dimension of X at p is the maximum of the dimensions of
the irreducible components of X containing p.
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Notice that the dimension of X is equal to the dimension of any open dense subset
UcX.

Ezample 2.9.1. 1. The dimension of A" is equal to n because {z1,...,2,} is a
transcendence basis of C(z1, ..., 2,) over C.

2. Let X < AT be an irreducible hypersurface. Let I(X) = (f). Reordering
the coordinates (21, ..., 2n, 2n+1) We may assume that

f:cozz+1+clszﬂ+~--+cd, ¢i € Clz1,...,2n], ¢ #0, d>0.

In proving Proposition 2.8.7 we showed that the restrictions to X of the
z;’s, for i = 1,...,d give a transcendence basis of C(X). Thus dim X = n.
It follows that the dimension of any hypersurface X < P**! is also n.

Proposition 2.9.2. Let X be an irreducible quasi projective variety and Y < X
be a proper closed subset. Then dimY < dim X.

Proof. We may assume that Y is irreducible. Since X is covered by open affine
varieties, we may assume that X is affine. Thus X < A" is a closed (irreducible)
subset, and so is Y. We may choose a transcendence basis {f1,..., fa} of C(Y),
where each f; is a regular function on Y (for example a coordinate function).

Let fi,...,fs € C[X] such that fi|W = f;. Since Y is a proper closed subset
of X, there exists a non zero g € C[X] such that gy = 0. It suffices to prove that
fi,..., fa,g are algebraically independent over. We argue by contradiction. Sup-
pose that there exists 0 # P € C[Sy, ..., Sq, T] such that P(fl, e fd,g) = 0. Since
X is irreducible we may assume that P is irreducible. Restricting to ¥ the equality
P(f1,...,fa,9) = 0, we get that P(f1,..., f4,0) = 0. Thus P(S1,...,54,0) = 0,
because fi,..., fq are algebraically independent. This means that 7' divides P.
Since P is irreducible P = ¢T', ¢ € C*. Thus P(f1,..., fa,9) = 0 reads g = 0, and
that is a contradiction. O

Proposition 2.9.3. Let X andY be quasi projective varieties. Then dim(X xY) =
dim X + dimY.

Proof. We may assume that X and Y are irreducible affine varieties. There exist
transcendence bases {f1,..., fa}, {91, -, ge} of C(X) and C(Y") respectively given
by regular functions. Let mx: X xY — X and 7y : X XY — Y be the projections.
We claim that {7% (f1),..., 7% (fa), 75 (91), ..., 75 (ge)} is a transcendence basis of
C(X xY).

First, by Proposition 2.5.1 C[X x Y] is algebraic over the subring generated
(OVGI‘ C) by W?((fl)’ LR ’/T;k/(ge)'

Secondly, let us show that 7% (f1),...,75(ge) are algebraically independent.
Suppose that there is a polynomial relation

S P @5 () TR () )™ T (g™ =0,

0<mi,....,me<N
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where each P, . m,. is a polynomial. Since g¢;,...,g. are algebraically inde-
pendent we get that P, . m.(fi(a),..., fs(a)) = 0 for every a € X. Since
fi,..., fa are algebraically independent, it follows that P, . m,. = 0 for every
0 < mq,...,me < N, and hence P = 0. This proves that 7% (f1),..., 75 (g.) are
algebraically independent. O

2.10 Tangent space

One definition of tangent space of a C® manifold M at a point z € M is as
the real vector space of derivations of the space &y, of germs of C* functions
at x. Similarly, the holomorphic tangent space of a complex manifold X at a
point x € X is as the complex vector space of derivations of the space Ox , of
germs of holomorphic functions at . We will give an analogous definition of the
tangent space of a quasi projective variety. A fundamental difference between quasi
projective varieties and the previous examples is that the dimension of the tangent
space at a point might depend on the point. Intuitively, the reason is that a quasi
projective variety can have non smooth points, meaning that in a neighborhood of
such a point the variety is not a complex submanifold of the ambient projective
space.

Let X be a quasi projective variety. We start by defining the ring of germs of
regular functions at x € X.

Definition 2.10.1. Let X be a quasi projective variety, and let z € X. Let (U, ¢)
and (V1) be couples where U, V are open subsets of X containing z, and ¢ € C[U],
¢ € C[V]. Then (U, ¢) ~ (V,4) if there exists an open subset W < X containing =
such that W c U n'V and ¢\ = ¥w-

One checks easily that ~ is an equivalence relation: an equivalence class for the
realtion ~ is a germ of regular function of X at x. We may define a sum and a
product on the set of germs of regular functions of X at = by setting

(U0 + [(Vi4)] == [(U n Viduav + buav)], (2.10.1)
and
[(U, )] - [(V.)] == [(U AV, djunv - Yiuav)]- (2.10.2)
Of course one has to check that the equivalence class of the sum and product is
independent of the choice of representatives: this is easy, we leave details to the
reader. With these operations, the set of germs of regular functions of X at x is a
ring.
Definition 2.10.2. Let X be a quasi projective variety, and let z € X. The local

ring of X at x is the ring of germs of regular functions of X at x, and is denoted
Ox 4.

We have a natural homomorphism of rings

C[lx] & Ox.

7 (X ] (2.10.3)
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Lemma 2.10.3. Suppose that X is an affine variety, and let x € X. If o € Ox 4

then there exist f,g € C[X], with g(x) + 0, such that ¢ = %.

Proof. Let ¢ be represented by (U, h), where U — X is open, and = € U. Since
the principal open affine subsets of X form a basis of the Zariski topology, there
exists h € C[X] such that X;, < U and z € X;, (see Remark 2.4.11). Then
¢ = [(Xn, hx,)]. By Remark 2.4.11, there exist f € C[X] and m € N such that

h is the restriction to X}, of him Then ¢ = %. O

There is a well-defined surjective homomorphism

ﬁX,x I C

[(U.¢)] = ¢la) (2.10.4)

The kernel
m, == {[(U,9)] | ¢(z) = 0}

of (2.10.4) is a maximal ideal, because (2.10.4) is a surjection to a field.

Proposition 2.10.4. With notationas above, m, is the unique maximal ideal of
Ox z, and hence Ox s a local ring. Moreover, Ux , is Noetherian.

Proof. Let f =[(U,¢)] € (Ox z\mg). Then W := (U\V(9)) is an open subset of X
containing x and hence g := [(W, (¢|w)~'] belongs to Ox .. Since gf = 1 we get
that f is invertible. It follows that m, contains any proper ideal of Ox , and hence
is the unique maximal ideal of Ox ;.

In order to prove that Ox , is Noetherian, we notice that if U < X is Za-
riski open and contains z, then the natural homomorphism 0y, — Ox , is an
isomorphism. Since X is covered by open affine ssubsets, it follows that we may
assume that X is affine. Let I = Ox , be an ideal. Then p~1(I) is a finitely gen-
erated ideal, because C[X] is Noetherian. Let fi,..., f. be generators of p~1(I).
Then p(f1), ..., p(fr) generate I. In fact let ¢ € I. By Lemma 2.10.3, there exist

1,9 € C[X], with g(z) # 0, such that ¢ = %. We have f = >_, a;fi, and hence
o =i Z8o(fi). O

The homomorphism (2.10.4) equips C with a structure of &x ,-module. Moreover
Ox 5 is a C-algebra. Thus it makes sense to speak of C-derivations of Ox , to C.

Definition 2.10.5. Let X be a quasi projective variety, and let z € X. The Zariski
tangent space to X at x is Derc(Ox 5, C), and will be denoted by ©,X. Thus ©,X
is an Ox z-module (see Section A.5), and since m, annihilates every derivation
Ox 5 — C, it is a complex vector space.

The result below shows that the Zariski tangent space at a point of A™ agrees
with the holomorphic tangent space.
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Lemma 2.10.6. Let a € A™. The complex linear map

0,A" — cr

D = (D(z1),...,D(z) (210.5)

s an isomorphism.

Proof. The formal partial derivative % defined by (A.5.1) defines an element of
O,A" by the familiar formula

o (f)( S ORORS QIR0

P a) = ()2 .

(See Example A.5.3.) Since %(zj) = 0yj, the map in (2.10.5) is surjective.
Let’s prove that the map in (2.10.5) is injective. Assume that D € Ox , is

mapped to 0 by the map in (2.10.5), i.e. D(z;) = 0 for j € {1,...,n}. Let f,g €

Clz1,- .-, 2n], with g(a) & 0. Then

D <f> _ D(f) - g(a) = f(a) - D(g)

g

9 g(a)?
(See Example A.5.3.) Hence it suffices to show that D(f) = 0 for every f €
Clz1,...,2n]. Consider the first-order expansion of f around a i.e. write
f=fla)+ Eci(zi—a)—kR, Rem?. (2.10.6)
i=1

Since D is zero on constants (because D is a C-derivation) and D(z;) = 0 for all
j it follows that D(f) = D(R), and the latter vanishes by Leibniz’ rule and the
hypothesis D(z;) = 0 for all j. O

The differential of a regular map at a point of the domain is defined by the
usual procedure. Explicitly, let f: X — Y be a regular map of quasi projective
varieties, let © € X and y := f(z). There is a well-defined pull-back homomorphism

oy, L Ox.a (2.10.7)
[(U7 ¢)] = [(f71U7¢O (f|f*1U))]

The differential of f at x is the linear map of complex vector spaces
df (z)
LX — I,y (2.10.8)
D — (¢~ D(f*9))

The differential has the customary functorial properties. Explicitly, suppose that
we have

X1 L}XQL)X:;, 1‘1€X1, $2=f1(1'1).
Since (f2 0 f1)* = f¥ o f¥ we have

d(f20 f1) (1) = df2 (z2) o df1 (1) . (2.10.9)
Moreover d1dx (x) = Idp, x for z € X.
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Remark 2.10.7. It follows from the above that if f is an isomorphism, then df (z): T, X —
T()Y is an isomorphism, in particular dim 7 X = dim T, Y.

The next result shows how to compute the Zariski tangent space of a closed
subset of A™. Since every point x of a quasi projective variety X is contained in an
open affine subset U, and ©,X = ©,U (because restriction defines an identification
Ox o = Oyy), the result will allow to compute the Zariski tangent space in general.

Proposition 2.10.8. Let v: X < A™ be the inclusion of a closed subset and a € X.
The differential di(a): ©,X — O,A" is injective and, identifying ©,A™ with C"
via (2.10.5), we have

Imdj(a) = {v = (v1,...,v,) €C" | 2 j
i=1

j(a) v =0 Vfe I(X)} . (2:10.10)

Proof. The differential di(a) is injective because the pull-back ¢*: ﬁAg@ — Ox,q is
surjective. Let D € Derc(@x ,q,C). If f € I(X) < Clz1,. .., 2z,], then du(D)(f) =
D(t*f) = D(0) = 0. Hence Imd(a) is contained in the right-hand side of (2.10.10).
Let’s prove that Imdi(a) contains the right-hand side of (2.10.10). Let D €
Derg(Opn q,C) belong to the right hand side of (2.10.10), i.e. D(f) = 0 for all
f € I(X). By Item (3) of Example A.5.3 it follows that 5(5) = 0 whenever

fr9 € Clz1,...,2,] and f € I(X) (of course we assume that g(a) + 0). Thus D
descends to a C-derivation D € Der(0x 4, C), and D = diy(a)(D). O

Remark 2.10.9. With the hypotheses of Proposition 2.10.8, suppose that I(X)
is generated by f1,..., fr. Then

@) vi=0 ke{l’--ﬂ“}}'

7

Imdj(a) = {v = (v1,...,0,) €C"| Z
i=1

In fact, the right hand side of the above equation is equal to the right hand side
of (2.10.10), because if f = >37_, g; f;, then A (a) =", gi(a) D,

6’27‘, 6‘zi
Ezample 2.10.10. Let f € C[z1,...,2,] be a polynomial without multiple factors,
i.e. such that 4/(f) = (f), and let X = V(f). Let a € X; by Remark 2.10.9

Zariski’s tangent space to X is the subspace of C" defined by

LRy
52{ (a)-v; =0
i=1
Hence o o
1 if (£ e, 0,
dim @aX — n 1 (‘/“zl (a) [}FZ‘;L (a)) :*:
n if (52-(a),...,3(a)) =0
0z1 Zn

Let us show that 5 5
X\V (f f> (2.10.11)
1
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is an open dense subset of X (it is obviously open, the point is that it is dense),
i.e. dim©,X =n — 1 for a in an open dense subset of X.

First assume that f is irreducible. Reordering the coordinates if necessary, we
may assume that

f—aoz +a1zd1+-~-+ad, a; € Clz1,...,2n-1], ao#0, d>0.

Thus
0
af _ dapz®™' + (d—1)a1z8 2+ +ag1 £ 0.

Zn, "

The degree in z, of f is d (1 e. f has degree d as element of C[z1,...,2n-1][2n])

while the degree in z, of L is (d — 1) and hence f 15 f This shows that the set
in (2.10.11) is dense in X if f is irreducible.
In general, let f = f1 - --- - f, be the decomposition of f as product of prime

factors. Let X; = V(f;). Then

X=X,u---ulX,

is the irreducible decomposition of X. As shown above, for each i € {1,...,7}
of; of;
X;\V (fj,,fj> + .
z1 Zn

Hence there exists a € X; such that i—]’?(a) # 0 for a certain 1 < h < n, and in
addition a does not belong to any other irreducible component of X. It follows that

(if( af] ka

Zh ks

This proves that the open set in(2.10.11) has non empty intersection with every
irreducible component of X, and hence is dense in X.

The result below shows that the behaviour of the tangent space examined in
the above example is typical of what happens in general.

Proposition 2.10.11. Let X be a quasi projective variety. The function

X — N

: o dim©.X (2.10.12)

18 Zariski upper-semicontinuous, i.e. for every k € N
={reX |dm6,X =k}

is closed in X.
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Proof. Since X has an open affine covering, we may suppose that X < A" is closed.
Let I(X) = (f1,..., fr). For z € A let

gy ... 2hy)

21

J(flv"'afs)(x) = : . :
Ur(g) - Ux(g)

21

be the Jacobian matrix of (f1,..., fs) at z. By Proposition 2.10.8 we have that

X ={xe X |rtkJ(f1,....fr)(x) <n—k}. (2.10.13)

Given multi-indices I = {1 < i3 < ... <4 < sfand J = {1 < j; < ... <
Jm < n} let J(f1,..., fs)(x)r,g be the m x m minor of J(f1,...,fr)(x) with
rows corresponding to I and columns corresponding to J (if m > min{r,n} we
set J(f1,..., fs)(@)r,; = 0). We may rewrite (2.10.13) as

X =Xn V("'7det‘](f1""’fr)(m)IvJ“")|I\:|J|:nfk+1'

It follows that X}, is closed. O

2.11 Cotangent space

Let X be a quasi projective variety, and let x € X. The cotangent space to X at x
is the dual complex vector space of the tangent space ©,X, and is denoted Qx (x):

Qx(2) == (0,X)" . (2.11.1)

We define a map
Ox.» 5 Qx(2) (2.11.2)

as follows. Let f € Ox , be represented by (U, ¢). The codomain of the differen-
tial dp(z): ©O,U — Oy, C is identified with with C, because of the isomorphism
in (2.10.5), and hence d¢(z) € (©,U)". Since U — Z is an open subset containing
x, the differential at = of the inclusion map defines an identification ©,U — 0, X.
Thus do(z) € (0,X)Y = Qx(x). One checkes immediately that if (V) is another
representative of f then diy(x) = do(x). We let

df (z) := do(x), (U, ¢) any representative of f.

Remark 2.11.1. We equip Qx () with a structure of Oy z-module by composing
the evaluation map Oy, — C given by (2.10.4) and scalar multiplication of the
complex vector-space {1z(a). With this structure (2.11.2) is a derivation over C.

Remark 2.11.2. Let f € C[z,...,2,] and a € A™. Then the familiar formula

4@ = Y, @)

i=1



2.11. COTANGENT SPACE 93

holds. In fact this follows from the first-order Taylor expansion of f at a:

az‘(a)(zi—ai)—k Z mij(zi—ai)(zj—aj), My EC[Zl,...,Zn].
g 1<i,j<n

(2.11.3)
Remark 2.11.3. Let X < A™ be closed, and let a € X. Identify ©,A™ with C™
via Lemma 2.10.6. By Remark 2.11.2 we have the identification
T.X = Ann{df(a) | f € I(X)}.

Let X be a quasi projective variety, and let z € X. Let m, < Ox, be the
maximal ideal. By Leibiniz’ rule d¢(x) = 0 if ¢ € m2 (recall that d: Ox , — Qx ()
is a derivation over C). Thus we have an induced C-linear map

m/m2 " Oy () (2.11.4)
[¢]  —  dé(a)

Proposition 2.11.4. Keep notation as above. Then §(x) is an isomorphism of
complex vector spaces.

Proof. Since ©,X is a finite dimensional complex vector space, it is the dual of its
dual, i.e. the dual of Qx (). Thus, in order to prove that §(z) is surjective it suffices
to show that no non zero D € ©,X annihilates the image of d(x). Suppose that
dp(z)(D) = 0 for all [¢] € m,/m2. Since the differential of a constant is zero we
get that dé(x)(D) = 0 for all ¢ € Ox ,, and hence D = 0. This proves surjectivity
of (x).

In order to prove injectivity of §(z), we must show that if ¢ € m, is such
that do(z)(D) = 0 for all D € ©,X, then ¢ € m2. We may suppose that X is
a closed subset of A”. In order to avoid confusion, we let © = a = (a1,...,a,).
Let (U, f/g) be a representative of ¢, where f,g € C[X], and f(a) = 0, g(a) £ 0.
It will suffice to prove that f € m2. Since 0 = d¢p(a) = g(a) 'df(a) we have
df(a) = 0. By Theorem 2.4.9 there exists f € C[z1,...,2,] such that fix = f.
By Proposition 2.10.8 we may identify ©,X with the subspace of T,C" = C"
given by (2.10.10). By hypothesis df(a)(D) =0forall De ©,X, ie.

df(a) € Ann (0,X) < Qpn ().

By (2.10.10) there exists h € I(X) such that df(a) = dh(a). Then (f—h)‘x = fand
d(f —h)(a) = 0. Thus (f —h) € Clz1,. .., 2] has vanishing value and differential
at a. It follows (first-order Taylor expansion of f — h at a) that

(f—h)e (21 — a1y 20 — ap).

Since h € I(X) we get that f e m2. O
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2.12 Smooth points of quasi projective varieties

Definition 2.12.1. Let X be a quasi projective variety, and let x € X. Then X
is smooth at x if dim©,X = dim, X, it is singular at z otherwise. The set of
smooth points of X is denoted by X®™. The set of singular points of X is denoted
by sing X.

Ezxample 2.12.2. Let Y < A™*! be a hypersurface. By Example 2.9.1, the di-
mension of Y is equal to m, and hence the set of smooth points of Y is an open
dense subset of Y by Example 2.10.10.

The main result of the present section extends the picture for hypersurfaces to
the general case.

Theorem 2.12.3. Let X be a quasi projective variety. Then the following hold:
1. The set X of smooth points of X is an open dense subset of X.
2. For v € X we have dim©,X > dim, X.

3. If X < P" is locally closed, then X5™ is a complex submanifold of P™\sing X,
and for x € X®™ the dimension of X*™ as complex manifold equals its di-
mension as quast projective variety.

We will prove Theorem 2.12.3 at the end of the section. First we go through
some preliminary results.

Our first result proves a weaker version of Item (1) of Theorem 2.12.3, and
proves Item (2) of the same theorem.

Proposition 2.12.4. Let X be a quasi projective variety. Then the following hold:
1. The set X of smooth points of X contains an open dense subset of X.

2. For x € X we have dim©,X > dim, X.

Proof. Suppose that X is irreducible of dimension d. By Proposition 2.8.7 there
is a birational map ¢g: X --» Y, where Y c A%t is a hypersurface. By Proposi-
tion 2.7.6 there exist open dense subsets U ¢ X and V < Y such that g is regular
on U, and it defines an isomorphism f: U — V. By Example 2.12.2, the set of
smooth points Y™ of Y is open and dense in Y. Since V is open and dense in Y the
intersection Y™ N V is open and dense dense in Y and hence f~1(Y*™ A V) is an
open dense subset of X. Since f~1(Y* n V) is contained in U™, we have proved
that the set of smooth points of X contains an open dense subset of X. We have
proved that Item (1) holds if X is irreducible. In general, let X = X; u--- U X,
be the irreducible decomposition of X. Let

X0 = o0 %0 = 6\ U X

17#] 1#]

By the result that was just proved, (XJQ)S’m contains an open dense subset of smooth
points. Every smooth point of XjQ is a smooth point of X, because XJQ is open in
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X. Thus Ui(XiO )*™ is an open dense subset of X, containing an open dense subset
of X. This proves Item (1).
Let us prove Item (2). Let 29 € X, and let X be an irreducible component of
X containing xg such that dim Xy = dim,, X. By Item (1) X§™ contains an open
dense subset of points x such that dim ©, Xy = dim, X, and hence by Proposition
2.10.11 we have dim 0,Xy > dim, X, for all z € X. In particular dim ©,, Xy >
dimgy, Xo = dimg, X. Since ©4,Xo < O,4,X, it follows that dim ©,,X > dim,, X.
O

The next result involves more machinery. We will give an algebraic version of
the (analytic) Implicit Function Theorem. The algebraic replacement for the ring
of analytic functions defined in a neighborhood of 0 € A™ is the ring C[[z1, ..., 2]]
of formal power series in z1, ..., 2, with complex coefficients. We have inclusions

Clz1,...,2n] € Opno < C[[21, ..., 20]] (2.12.1)

(The second inclusion is obtained by developing 5 as convergent power series
centered at 0, where f, g € C[z1,...,2,] and g(0) & 0.) We will need the following
elementary results.

Lemma 2.12.5. Let m < C[z1,...,2,], W © Ogng and m” < C[[21,...,2,]] be
the ideals generated by z1,...,z, in the corresponding ring. Then for every i = 0
we have (m”)' N Opn g = (W), and (m')" A Clz1,...,2,] = m’.

Proof. By induction on i. For i = 0 the statement is trivially true. The proof
of the inductive step is the same in both cases. For definiteness let us show that
(m")F A Opn o = (m')*F1] assuming that (m”)" N Opn o = (m’)". The non trivial
inclusion is (m”)"™ A Opn o < (M) Assume that f e (m”)*! A Opng. Then
fem”)t A Opn o, and hence f € (m')? by the inductive hypothesis. Thus we may

write
f=> a2,
1]
where the sum is over all multiindices J = (ji, ..., j,) of weight |J| = >"_, js = i,
and oy € Opn g for all J. Since f € (m”)"*1 we have a;(0) = 0 for all J. It follows
that oy € m’ for all J, and hence f € (m')i*1. O

Proposition 2.12.6 (Formal Implicit Function Theorem). Let ¢ € C[[21,...,2n]],
and suppose that ¢ = z1 + @2 + ...+ @4 + ..., where 4 € C[z1,...,2,]a. Given

a € C[[z1,...,2n]], there exists a unique p € C[[21,...,2,]] such that
(a—p-p)eCl[za,...,2n]] (2.12.2)
Hence the natural map Cl[z2, ..., zn]] = C[[21, ..., 2x]]/(¢) is an isomorphism.

Proof. Write p =pg+p1 + ...+ pa+ ..., where pg € C[z1,...,2,]4. Expand the
product (a—p- ), and solve for py (we get py = 1), then for p;, etc. At each stage
there is one and only one solution. O
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Proposition 2.12.7. Let f1,..., fx € C[z1,...,2,] and a € A™. Suppose that
(i) each f; vanishes at a, and
(i) the differentials dfi(a),...,dfx(a) are linearly independent.
Then V (f1,..., fx) = X 0Y, where
1. X,Y are closed in A™, a € X, while Y does not contain a;

2. X isirreducible of dimension n—k, it is smooth at a, and ©,(X) = Ann({dfi(a), ..., dfx(a)))
(as subspace of ©,A™).

Moreover, there exists a principal open affine set Ay containing a such that f1|An, ceey fkwb
g 9
generate the ideal of X n Ay.

Proof. By changing affine coordinates, if necessary, we may assume that a = 0,
and that df;(0) = z; for i € {1,...,k}. Let J° < Oano be the ideal gener-
ated by fi1,...,fr (to be consistent with our notation, we should write J' =
(e(f1)s---,0(fr))), let J := J n Clzy,... 2], and let J” < C[[z,...,2,]] be
the ideal generated by f1,..., fx. Lastly, let I < C[z1,...,2,] be the ideal gener-
ated by f1,..., fx. We claim that

J-gclcld (2.12.3)

for a suitable g € C[z1,...,2,] with g(0) £ 0. In fact, the second inclusion is
trivially true. In order to prove the first inclusion, let hq,...,h, be generators of
the ideal J < C[z1, ..., 2,]. By definition of J, there exist a;, g; € C[z1, ..., 2z,], for
i€ {l,...,r}, such that a; € I, g;(0) # 0, and h; = ‘;— Hence the second inclusion
in (2.12.3) holds with g = ¢ - ... g,. This proves (2.12.3), and hence we have
V(J)c V() < (V(J)uV(g)). It follows that, letting X := V(J), there exists a
closed Y < V(g) such that

V(fi,..,fr) =X 0Y, 0¢Y. (2.12.4)

Let us prove that J is a prime ideal, so that in particular X is irreducible. First,
we claim that

J" A Opng = J. (2.12.5)
The non trivial inclusion to be proved is J” n Oyn o < J'. Let f € J" N Opn . Then
there exist aq,...,ax € C[[z1,...,2,]] such that f = Z?Zl ajfj. Given s € N, let

o be the MacLaurin polynomial of a; of degree s, i.e. such that (a;—af) € (m”)**!,

where m” is as in Lemma 2.12.5. Then
k ) k
f= Z a§s i+ Z(aj —aj)f;.
j=1 j=1

Both addends are in Oan . In addition, the first addend belongs to J', and the
second one belongs to (m”)**!. By Lemma 2.12.5, it follows that the second one
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belongs to (m')**1. Hence f € (i_,(I’+ (m')**!). By Corollary A.6.2, it follows
that f € I'. This proves (2.12.5). By (2.12.5) and the definition of J, we have an
inclusion

Clz1, .-+, 20]/d < C[[21,- -, 2a]]/T".

Hence, in order to prove that .J is prime, it suffices to show that C[[z1, ..., z,]]/J”
is an integral domain. In fact we will see that the natural map

Clzks1y -y 2n) — Cll21,- -+, 20]]/ " (2.12.6)

is an isomorphism of rings. This follows from the algebraic version of the Implicit
Function Theorem, i.e. Proposition 2.12.6. In fact, by Proposition 2.12.6,
the natural map C[[z2,...,2,]] = C[[21,-..,2x]]/(f1) is an isomorphism. Let i €
{2,...,k}. Given the identification C[[21,...,2,]]/(f1) = C[[22, - ., 2x]], the image
of f; under the quotient map C[[z1,...,2,]] = C[[21,...,2,]]/(f1) is an element
2+ f1, where f/ € (m”)? (notation as in Lemma 2.12.5). Iterating, we get that the
map in (2.12.6) is an isomorphism of rings. As explained above, this proves that J is
a prime ideal. In particular X is irreducible. Moreover, since zg41, ..., 2, € C[X],
the isomorphism in (2.12.6) shows that C(X) has transcendence degree n — k,
i.e. X has dimension n — k. Since f1,..., fx vanish on X, and their differentials
are linearly independent, it follows that dim ©y(X) < (n — k) = dimg X. Hence
dim By (X) = (n — k) = dimg X, by Item (2) of Proposition 2.12.4, ie. X is
smooth at 0, and Og(X) < OpA™ is the annihilator of dfi(0),...,df,(0). This
proves Items (1) and (2). The last statement in the proposition holds with the
polynomial g appearing in (2.12.3). O

Corollary 2.12.8. Let X < A™ be a Zariski closed subset. Let a be a smooth point
of X, and let k = n — dim, X. Then following hold:

1. there exist fi,...,fr € Clz1,...,2,] with linerly independent differentials
dfi(a),...,dfx(a), and a Zariski open affine subset U < A™ containing a,
such that I(X nU) = (fiu,---» fayp)s

2. there is a unique irreducible component of X containing a;

3. there exists an open (classical topology) % < A™ containing a such that
X U is a complex submanifold of % , of dimension n — k;

4. the natural map To(X N U) — ©,X, where To,(X N %) is the holomorphic
tangent space, induced from the injection of rings of germs Ox o — ﬁ;‘("r{%’a
is an tsomorphism.

Proof. Since X is smooth at a, and dim, X = n — k, there exist fi,..., fr € I(X)
such that dfi(a),...,dfx(a) are linearly independent. Of course X < V(f1,..., fx).
By Proposition 2.12.7 there is a unique irreducible component of V(fi,..., fx)
containing a, call it Y, and dimY = n — k. Every irreducible component of X
containing a is contained in Y. Since dim, X = n — k, there exists (at least) one
irreducible component of X containing a of dimension n—k. Let X’ be such an irre-
ducible component; by Proposition 2.9.2, X’ =Y. It follows that there is a single
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component of X containing a, and it is equal to the unique irreducible compon-
ent of V(f1,..., fr) containing a. Hence the corollary follows from Proposition
2.12.7. O

Proof of Theorem 2.12.3. Let X = | J,.; X; be the irreducible decomposition of
X. Since X is covered by open affine subset, Corollary 2.12.8 gives that

X e X\ | nXin X;. (2.12.7)

i,5€l

i+]
The right hand side of (2.12.7) is an open dense subset of X. Let X? be an
irreducible component of the right hand side of (2.12.7). Thus X? < X; is the
complement of the intersection of X; with the other irreducible componets of X.
The set of smooth points of X? is non empty by Proposition 2.12.4, and it is
open by upper semiconinuity of the dimension of ©,X (Proposition 2.10.11),
because dim, X is independent of z € X?. Hence X*™ is an open dense subset of
the open dense subset of X given by the right hand side of (2.12.7), and hence is
open and dense in X. This proves Item (1) of Theorem 2.12.3. Ttem (2) has been
proved in Proposition 2.12.4. Item (3) follows at once from Corollary 2.12.8,
because X is covered by open affine subset. O

Exercises
Exercise 2.12.1. Let V < P(C[Zy,..., Z,]q) be defined by
V:={[LY|0# LeC[Zy,...,Zn]a}
1. Prove that [F] € V if and only if
oF OF

oz Az span a 1-dimensional subspace of C[Zy, ..., Z,].

[Hint. By induction on deg F. Moreover use Euler’s identity

oF (deg F) - F

Zjmre =
17075

J

for F' homogeneous.]
2. Deduce from (1) that V' is closed in P(C[Zy, ..., Zn]a)-
3. Identify up to projectivities V' with the Veronese variety 7*.



Appendix A

Commutative algebra a la
carte

A.1 Noetherian rings

In what follows, rings are always commutative with 1. The proofs of the results
below are contained in most Algebra textbooks (e.g. Lang [?]).

Definition A.1.1. A (commutative unitary) ring R is Noetherian if every ideal of
R is finitely generated.

Ezample A.1.2. A field K is Noetherian, because the only ideals are {0} = (0) and
K = (1). The ring Z is Noetherian, because every ideal has a single generator.

Lemma A.1.3. A (commutative unitary) ring R is Noetherian if and only if every
ascending chain
Iypclhc...cl,c...

of ideals of R (here I, is defiend for all m € N, and I,,, € Ip,41 for allm € N) is

stationary, i.e. there exists mg € N such hat I, = L,, for m = my.

Proof. Suppose that R is Noetherian. The union I := |,y Im is an ideal because
the {I,,,} form a chain. By Noetherianity I is finitely generated, say I = (a1, ..., a,).
There exists mg such that a; € I,,, for j € {1,...,7}, and hence I = I,,,,. Let
m = mo; then I,, € I and I c I,,,, hence I = I,,,. Thus I,,,, = I,, for m = my.

Now suppose that every ascending chain of ideals of R is stationary. Let I < R
be an ideal. Suppose that I is not finitely generated. Let a; € I. Then (a1) & I
because I is not finitely generated; let as € (I\(a1)). Then (a1,a2) & I because I is
not finitely generated. Iterating, we get a non stationary chain of ideals (contained
in I)

(a1) € (a1,a2) S ... S (a1,...,am) S

This is a contradiction. O

59
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Ezample A.1.4. The ring Hol(C) of entire functions of one variable is not Noeth-
erian. In fact let f,, € Hol(C) be defined by

fm<z>:=1f[<1—;), -

n=m

Then (fim) & (fims1)- Thus (f1) < (f2) < ... < (fm) < ... is a non-stationary
ascending chain of ideals, and hence Hol(C) is not Noetherian by Lemma A.1.3.

Theorem A.1.5. Let R be a Noetherian commautative ring. Then R[t] is Noeth-
eran.

Theorem A.1.6 (Hilbert’s basis Theorem). Every ideal of C[z1,...,x,] is finitely
generated.

Proof. By induction on n. If n = 0, the ring is a field, and hence is Noeth-
erian. The inductive step follows from Theorem A.1.5, because Clz1,...,z,] =
(C[xla"'vxnfl][t]' O

A.2 The Nullstellensatz

We will denote C™ by A™ when we will view it as an n dimensional complex affine
space. If I < C[z1,...,2,] is an ideal, we let

VI):={z€A"| f(z) =0 Vfel}l

(The above notation is the same that is used for closed subsets of P", and hence
there is potential for confusion. Which of the two definitions of V(I) applies in
each instance will be clear from the context.)

If'Y < A™ is a subset, we let I(Y) := {f € C[z1,...,2,] | fly = 0}. We recall
that the radical of an ideal I ina ring R, is the set of elements a € R such that
a™ € I for some m € N. As is easily checked, the radical is an ideal; it is denoted

by V1,

Theorem A.2.1 (Hilbert’s Nullstellensatz). Let I < Clzy,...,2,] be an ideal.
Then I(V(I)) = /1.

Corollary A.2.2 (Weak Nullstellensatz). Let I c C[z1,...,2y,] be an ideal. Then
V()= if and only if I = (1).

Proof. If I = (1), then V(I) = &¥.Assume that V(I) = ¢. By the Nullstellensatz,
VI=I(V(I)) = I(&) = (1). Thus 1™ € I for some m € N, and hence 1 € I. O
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A.3 Unique factorization

Theorem A.3.1. Let R be a UFD. Then R[t] is a UFD. Moreover a polynomial
p = aot? + a1t + ... + aq is prime if and only if

1. p is prime when viewed as element of K[t], where K is the field of fractions

of R,
2. and the greatest common divisor of ag,a1,...,aq s 1.
Corollary A.3.2. The ring C[z1,...,z,] is a unique factorization domain.

Proof. By induction on n. If n = 0, the ring is a field, and hence it is trivially a
UFD. The inductive step follows from Theorem A.3.1, because Clzy,...,z,] =
C[:L'la"'axnfl][t]' O

A.4 Extensions of fields

Let F ¢ E be an extension of fields. Elements «aq,...,a, € E are algebraically
dependent over F is there exists a non zero polynomial f € F[z1,..., z,] such that
flag,...,a,) = 0 (strictly speaking, we should say that the set {a1,...,a,} is al-
gebraically dependent over F'). A collection {q;}es of elements of F is algebraically
independent over F if there does not exist a non empty finite {i1,...,4,} < I such
that «;,,...,q;, are algebraically dependent (with the usual abuse of language,
we also say that the «;’s are algebarically independent). A transcendence basis
of E over F is a maximal set of algebraically independent elements of E over F.
There always exists a transcendence basis, by Zorn’s Lemma. One proves that any
two transcendence bases have the same cardinality, which is by definition the tran-
scendence degree of E over F'; we denote it by Tr.degp(E). An extension F' c F
is algebraic if the transcendence degree is 0. Every finitely generated extension
F < E can be obtained as a composition of extensions F' < K and K < FE, where
F c K is a purely transcendental extension, i.e. there exists a transcendence basis
{a1,...,ap} of K over F such that K = F(ay,...,q,) (thus F(ay,...,q,) is iso-
morphic to the filed of rational functions in n indeterminates with coefficients in
F), and F' c K is a finitely generated algebraic extension.

Theorem A.4.1. Let F c E be a finite extension of fields, i.e. the dimension of E
as F-vector space is finite. Suppose that F' is of characteristic 0. Then there ezists
a primitive element of E over F, i.e. o € E such that E = F(«).

A.5 Derivations

Let R be a ring (commutative with unit), and let M be an R-module.

Definition A.5.1. A derivation from R to M is a map D: R — M such that
additivitity and Leibinitz’ rule hold, i.e. for all a,b € R,

D(a+b) = D(a) + D(b), D(ab) =bD(a)+ aD(b).
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If k is a field and R is a k-algebra a k-derivation (or derivation over k) D: R — M
is a derivation such that D(c) = 0 for all ¢ € k. We let Der(R, M) be the set of
derivations from R to M. If R is a k-algebra we let Dery(R, M) < Der(R, M) be
the subset of k-derivations.

Example A.5.2. Let k be a field, and let f = >, arz! be a polynomial in k[21, ..., 2,],
where the summation is over multiindices I, a;y € C for every I, and aj is almost
always zero. The formal derivative of f with respect to z,, is defined by the familar
formula

of ; i m— im—1  im i
Fr Z N RS A A AU (A5.1)
M ISt dm >0
The map
Ll
k[Zl,.‘.,Zn] AN k[Zh...,Zn] (A52)
! - 2
0zZm
is a k-derivation of the k algebra to istelf. We claim that Dery (k[z1, ..., 2n], k[21,- -, 2n])
is freely generated (as k[z1, ..., 2,] module) by %, e %. In fact there is no re-
lation between =2, ..., =2~ because % _ im, and moreover, given a k derivation
0z1 0zn 0zZm J

D:k[z1,...,2n] = k[21,- .-, 20]
we have D =" _| ozm%m, where ay, 1= D(zp).
Example A.5.3. Let D: R — M be a derivation.
1. By Leibniz we have D(1) = D(1-1) = D(1) + D(1) and hence D(1) = 0.
2. Suppose that g € R is invertible. Then
0=D(1)=D(g-g") =9 'Dg+fD(g™") (A5.3)
and hence D(¢g~!) = —g72D(f).

3. Suppose that f,¢g € R and that g is invertible. By Item (2) we get that the
following familiar formula holds:

D(f-g7") =g7*(D(f) g~ f D(g)). (A.5.4)

Let D, D’ € Der(R, M) and z € R we let

D+D’
R — M (A.5.5)
a +—  D(a)+ D'(a)
and 5
B = M (A.5.6)
a +— zD(a)

Both D + D’ and zD are derivations and with these operations Der(R, M) is an
R-module. If R is a k-algebra then Dery (R, M) is an R-submodule of Der(R, M).
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A.6 Order of vanishing

The prototype of a Noetherian local ring (R, m) is the ring Ox , of germs of regular
functions of a quasi projective variety X at a point x € X, with maximal ideal
m,, see Proposition 2.10.4. The following result of Krull can be interpreted as
stating that a non zero element of €'x , can not vanish to arbitrary high order at
x. In other words, elements of O , behave like analytic functions (as opposed to
C* functions).

Theorem A.6.1 (Krull). Let (R,m) be a Noetherian local ring. Then

ﬂ m’ = {0}.

120

Proof. Since R is Noetherian the ideal m is finitely generated; say m = (aq,...,ap).
Let b € [),5om’. Let i > 0; since b € m’ there exists P; € R[Xy,...,X,]; such
that P;(ai,...,an) = b. Let J < R[Xi,...,X,] be the ideal generated by the
P;’s. Since R is Noetherian so is R[X1,...,X,]. Thus J is finitely generated
and hence there exists N > 0 such that J = (P,...,Py). Thus there exists
Qnt1-i € R[X1,..., Xy|Nnq1—i fori=0,..., N such that Py, = vazo Qny1-iF;.
It follows that

N N
b= Pnii(ar,...,an) = Z Qny1-i(a1,...,an)Pi(ay, ... a,) = bZ Qnsi-ilal,...,an).
i=0 i=0

(A.6.7)
Now Qni1-i(a1,...,a,) €miori=0,..., N and hence e := Zi]\io Qni1—i(ar,...,an) €
m. Equality (A.6.7) gives that (1 —€)b = 0: since € € m the element (1 — €) is in-
vertible and hence b = 0. O

Corollary A.6.2. Let (R, m) be a Noetherian local ring, and let I < R be an ideal.
Then

()3 +m') = {o}.

=0

Proof. Let S := R/J. Then S is a Noetherian local ring, with maximal ideal
mg := J 4+ m. The corollary follows by applying Theorem A.6.1 to (S,mg). O
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